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Abstract: The Pseudoknot Problem is an application from molecular biology that computes 
all possible three-dimensional structures of one section of a nucleic acid molecule. The prob- 
lem spans two important application domains: it includes a deterministic, backtracking 
search algorithm and floating-point intensive computations. Recently, the application has 
been used to compare and to contrast functional l a n m e s .  In this paper, we describe a se- 
qukntial and parallel implementation of the problem in Sisal. We present a method for writ- 
ing recursive, floating-point intensive applications in Sisal that preserves performance and 
parallelism. We discuss compiler optimizations, runtime execution, and performance on 
several multiprocessor system. 

1. Introduction 

The Pseudoknot Problem [21 is a modification of a three-dimensional molecular biology 
application. The program exhaustively searches a state space of structures, built fkom nu- 
cleotides stored in a database, to build all possible three-dimensional structures of one sec- 
tion of a nucleic acid molecule. Only structures that satisfy certain corc;traints are returned. 
Both the database and the structural constraints are built into the program. Recently, the 
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application has been used to compare and to contiast functional languages [3]. The problem 
is appropriate for language comparison for several reasons: 

1. The problem spans two important application domains; it includes a deterministic, 
backtracking search algorithm and floating-point intensive computatio~s. The search path 
extends 23 steps and includes five branch points. The C version of the program executes 6.9 

million floating point operations and 190 thousand square root and trigonometric functions. 

2. The width of the search tree is quite large for even small problems. A particular ex- 
pression of ,the problem may expose too much parallelism degrading performance. 

3. The program includes both stack and array data structures. hi a parallel environ- 
ment, the traditional operations on these structures must be defined without introducing 
race conditions and excessive copying. - 

4. The computation includes opportunities for lazy and eager evaluation. The program 
may compute a nucleotide's position in a structure when it is added to the structure, or it 
may compute the position only when needed. 

. In this paper, we present a sequential and a parallel version of the :Pseudoknot Problem 
written in Sisal [4], a high-performance functional language developed by Lawrence Liver- 
more National Laboratory and Colorado State University. The performance of the sequential 
version was first reported in [31. The objective of the Sisal Language Project is to develop 
high-performance functional compilers and runtime systems for commercially available com- 
puter systems. The language developers have focused on large-scale scientific application 
codes. Currently, mature Sisal compilers exist for single processor and shared-memory mul- 
tiprocessor systems, including the family of Cray computers, Sun and SGI systems, and IBM 
and Macintosh PCs. On such systems, Sisal codes can execute as fast as codes written in im- 
perative programming languages [ll. 

We are experienced at writing Sisal programs with many more floating-point operations 
than necessary to solve the Pseudoknot Problem; however, we have little experience writing 
recursive and/or stack-base programs. This paper is the first substantive report on the 
expression, optimization, and execution performance of a recursive, stack-based Sisal 
program. In section two we present a sequential and a parallel implementation of the 
pseudoknot problem written in Sisal. While we can compile the latter for sequential 
execution, we wrote two versions of the program to minimixe the sequential execution time. 
Section three discusses compilation and runtime issues and gives the execution times of the 
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programs on several multiprocessor computer systems. In section four, we summarize and 
present our conclusions. 

2. Sisal implementation 

The pseudoknot program returns all possible three-dimensional structures of one section 
of a nucleic acid molecule by adjoining nucleotides one at a time Since the order in which we 
can add nucleotides to the structure is known, the search is determinant. Figure 1 depicts a 

partial search tree and gives the.names of the Sisal routine called at each level. The parame- 
ter indicates the type of nucleotide, A, C ,  G, or U, considered at that level. Before adding a 
nucleotide to  the structure, the program decides whether the addition violates the con- 
straints of the problem. If the addition is legal, the program adds the nucleotide to the struc- 
ture and descends to the next level; otherwise, the program considers an alternative nu- 
cleotide at the same level. If there are no other alternatives, the last nucleotide added to the 
structure is removed and the program ascends to  the previous level. When the search 
reaches level 23, a solution has been found by dewtion. The program saves the structure, 
removes the last nucleotide, and pops back one level. Note that multiple alternatives exist 
only at steps 16,17,18,20,21, and 22. These steps represent the branch points in the search 
space. Pruning occurs only at steps 18 and 22, where the addition of a nucleotide may violate 
the problem’s constraints. 

- 

2.1 Sequential implementation 

While we could have implemented the sequential program as a simple sequence of in- 
structions, we decided to write a recursive, depth-first search program. This implementation 
is similar to the original C program and the programs written in other functional languages. 
The recursive program was not difficult to write in Sisal; however, we did have t o  think 
carefully about the data structures we used and memory management issues. 

There are three important data structures in the program: 1) the database of nucleotides, 
2) the stack maintaining the current structure, and 3) the list of solutions. The original C 
program implements the database as an array of nucleotides. It defines a nucleotide as a 
variant structure to  accommodate the differences between the four types without introducing 
multiple data types. Although Sisal supports the equivalent of variant records, we chose to 
represent a nucleotide as a real, two-dimensional array. The difference between the four 
nucleic types manifests itself in the number of columns in the fifth row. Since array type 



definitions in Sisal are independent of size and shape, we can define a single data type for all 
four nucleic types. It is important that all nucleotides have the same data type because Sisal 
functions are not polymorphic. The program calls the same function at different sites with 
different nucleic types. For example, the program calls wc-dumas with a nucleotide of type 
U at level 1, but with nucleotide of type C at level 3. 

As the program descends and ascends the search tree, nucleotides are added to  and re- 
moved fiom the stack which maintains the current structure. We implemented the stack as  
an array, and used the array routines array-ad& and array-remh to push and pop nu- 
cleotides. Since Sisal implements n-dimensional arrays as an m a y  of pointers to (n-l>-di- 
mensiqnal arrays, the stack is actually an array of pointers to  the nucleotides in the 
database. No nucleotide is every copied; only addresses are copied. Moreover, Sisal passes 
all arrays by reference, so the stack is not copied at each call site.. Copying can occur only. 
when the stack is pushed or popped, and then only if the stacys reference count (number of 
outstanding consumers) is greater than one. If we can limit the number of consumers that 
modify the stack to one in every scope, the program wil l  not copy. 

Consider the Sisal code2 for functions pseudoknot-domains and wc-dumas, 

- -function pseudoknot-domains(k, stack8 ... returns solutions-type) 
if k = 0 then 

reference(k, nucleotide, stack8 solutions) 

wc-dumas (k, nucleotide, stack8 ..., solutions) 

helix3 (k, nucleotide, stack, ..., solutions) 

elseif k = 1 then 

elseif k = 2 then 

. . .  

. . .  
end if 

end function 

To improve readability, we present only pseudocode, and not actual Sisal code. 



function wc-dumas(k, nucleotide, stack, ..., solutions 
returns solutions-type) 

if pseudoknot-constraint(nucleotide, stack, . . . I  then 
let new-stack := array-addh(stack, nucleotide) 
in pseudoknot-domains(k+l, new-stack, ..., solutions) 
end let 

else 
solutions 

end if 
end function % wc-dumas 

Pseudoknot-domains is the program's central function. It is a conditional statement that 
calls the function to  be executed at each stage of the search. It is called originally from the 
main program with k = 1 and an empty stack. The functions reference,  wc-dumas, 
G37-A38, helix3, and helix5 are all similar; P-03 is different and is discussed-later. 
Notice the recursive call to pseudoknot-domains in the Zet statement in wc-dumas. 

In pseudokno%-domains, for a given value of k, there is only one consumer of stack. 
In wc-dumas there are two consumers of stack, but only the second modifies the stack and 
it is guaranteed to execute after the first. Thus, the array-addh operation executes in place 
without copying. Moreover, .the recursive call to pseudoknot-domains is the only con- 
sumer of new-stack and so, it is passed with a reference count of one. 

It might appear that the stack must be copied at the branch points ofthe search, but this 
is not so. Consider the following sequential implementation of P-03 

function P-O3(k, set-ofnucleotide, stack, solutions-in, ... 
returns solutions-type) 

for initial 
i := 0; 
solutions := solutions-in 

while i c array-size(set-of-nucleotide) repeat 
i := old i + 1; 
nucleotide := set-of-nucleotide[il; 
solutions := P-O3a(k, nucleotide, stack, ..., old solutions) 

returns value of solutions 
end for 

end function % P-03 

where the code for P-03a is similar to the code for wc-dumas and the other functions. 
Since each instance of the loop body is a consumer of stack, the object is not mutable by 



P-03a; consequently, the array-addh operation within P-03a will copy the stack. We can 
eliminate the copy by explicitly passing the stack from iteration to  iteration. This change re- 
quires that P-03a returns both a stack and a solution list, and that it pop off the nucleotide 
that it pushes onto the stack before returning. With these changes, the code for P-03 and 
P-03a is now 

function P-O3(k, set-of-nucleotide, stack-in, solutions-in, ... 
returns stack-type, solutions-type) 

for initial 
i := 0; 
stack := stack-in; 
solutions := solutions-in 

i := old i + 1; 
nucleotide := set-of-nucleotide[il; 
stack, solutions := 

returns value of stack 

while i < array-size(setpf-nucleotide) repeat 

P-O3a(k, nucleotide, old stack, ..., old solutions) 

value of solutions 
end for 

end function % P-03 

function P-O3a(k, nucleotide, stack, solutions, ... 
returns stack-type, solutions-type) 

if pseudoknot-constraint (nucleotide, stack, . . . ) then 
let 

stackl := array-addh(stack, nucleotide) ; 
stack2, 
solutions := pseudoknot-domains(k+l, stackl, ..., solutions) 

array_rernh(stack2), solutions. 
in 

end let 
else 

stack, solutions 
end if 

end function % P-03a 

Of course, we must make similar changes to wc-dumas and the other functions to maintain 
program consistency. 

By explicitly removing the nucleotide pushed onto the stack before the call to pseudo- 
knot-domains, P03a returns the same stack that it was passed. More importaddy, there . 



is now a single consumer of the stack in every scope. The compiler recognizes this fact and 
generates code to update the stack in place. The Sisal program executes with a single 
stack-all pushes and pops executing in place. Note that the Sisal code is no more complex 
than the equivalent imperative code in which the programmer also explicitly pushes and 
pops nucleotides onto and off the stack 

The third data structure of importance is the solution list. It is an array of solutions, or 
stacks. At level 23, the runtime system copies the stack and appends a pointer to the copy to  
the solution list. Remember that the stack is an array of pointers, so only memory addresses 
are copied. Note, that the copy is unavoidable and language independent-the stack must be 
saved at this point. As with the stack, we single-threaded the solution list to eliminate any 
unnecessary copying however, some copying might s t i l l  occur. Since ihe number of solutions 
is not known, neither the compiler nor the runtime system can preallocate storage for the so- 
lution list. When the size of an array is unknown prior t o  definition, the Sisal runtime sys- 
tem preallocates n bytes of storage for the array (a runtime parameter with a.default value of 
100). As array elements are computed, they are written to the storage. If the storage is 
exhausted before the array is defined fully, the runtime system preallocates a greater 
amount of storage, copies the array elements already defined from the old storage to the new 
storage, recycles the old storage, and continues. 

The final memory management issue regards scalarization. The program computes a 
large number of atomic positions: x, y, andz coordinates. Storing the Coordinates as a record 
or an array .results in the allocation and deallocation of a large number of small data objects. 
To avoid this cost, the program passes all coordinates as scalar values. 

2.2 Parallel implementation . .. 

Parallel work occurs at the branch points of the search space. We exploit this parallelism 
by substituting a for expression in place of the for initial expression in P-03, 



function P-O3_L(k, set-of-nucleotide, stack-in, solutions-in, ... 
returns stack-type, solutions-type) 

let 
sltns := for nucleotide in set-of-nucleotide 

S O L O  := array solutions-type [ I ;  
stack, sltn := P-O3a(k, nucleotide, stack-in, sol-0) 

returns array of sltn 
end for 

in 
s tack-in, 
for sltn in sltns returns value of catenate sltn end for 

end let 
end function % P-034 

Each search branch rooted by a nucleotide in the set will execute concurrently. The system 
will give each thread its own copy of the stack; again only memory addresses are copied. 
This copying is unavoidable since each thread must be able to modify its stack independent of 
the other threads. Each sequential thread manipulates its stack in place without copying. 

Given the large number of possible search paths, we must be careful not t o  create too 
many parallel threads. Ideally, we want to use P-03-L at each call site and have the system 
decide whether or not to search the alternate paths sequentially or in parallel. Unfortu- 
nately, the current Sisal runtime system does not throttle parallelism. The decision as to 
how to execute the loop bodies of a for expression is made at compile time and depends on the 
loop’s nesting level, the number of loop bodies, the size of the body, and the granularity of the 
target machine. On our target machines and for the given instance of the problem, we found 
that calling P-03-L at level 16 and P-03 at levels 17,18, and 20 gave the best performance. 
The static encoding of parallelism in a Sisal program is unsatisfactory; future Sisalruntime 
systems should automatically throttle parallel work permitting programmers to write more 
general code. 

. 

3. Performance 

Here we report on the performance of the Sisal codes on a four processor SGI IRIS 340 
and a sixteen processor Cray (3-90. In the jjnal version of the paper, we will also include a 
twelve processor SGI Challenge and possibly other machines that may become available to us 
in the coming months. For each test, we give the compiler and runtime parameters, the 
compile time, the execution time, and the data space used. The compile time includes both 



user and system time. The execution times of the programs are reported in knots. The unit 
gives the relative speed with respect to the execudon speed of the sequential C program. To 
run at "100 knots" means to  run at exactly the same speed as the sequential C program. All 
runs were double-precision. We used the Sisal compiler OSC 13.0 in all cases. 

The compiler options for the sequential and parallel programs in all cases were, respec- 
tively, 

-cpp -seq -0 -externC atan2 
and 

-cpp -0 -externC atan2. 
The first option calls the C preprocessor before calling the Sisal.frontend. The option -seq 
compiles the Sisal code for sequential execution. Code to spawn parallel work and manage 
shared resources among worker processes is not inserted in the C code generated by the Sisal 
compiler. -0 t u r n s  on all Sisal optimizations. The -extern(= flag provides a convehient. 
mechanism tk link in C library routines. A similar flag is available for Fortran library rou- 
tines. These flags are one component of the Sisal Foreign Language Interface. 

For sequential runs, the only runtime flag we used was -r. This flag instructs the Sisal 
nu&he system to generate a statistics file. We report herein the execution times and data 
space sizes from that report. For parallel runs, we used the -r, -w, and -1s flags. The second 
and third flags define the number of workers and the number of loop slices. 

Table 1 gives the performance for the sequential and parallel Sisal code on a four proces- 
sor SGI IRIS 340. The processors are 33MHZ MIPS 3000 chips with 64KB caches. The ma- 
chine has a total of 64ME3 of main memory. The SGI runs under the I R E  4.0.5 System V op- 
erating system. We used the C compiler gcc 2.5.8, and compiled all C programs at optimiza- 
tion level -0. The pseudoknots achieved by the Sisal program are respectable, but the worst 
that we have seen. The small cache size of the SGI machine may be hurting the Sisal per- 
formance, We saw similar performance with respect to the C code'on a Sun4 with a 64K ' 

cache [3]. The C code generated by the Sisal program is voluminous causing Sisal programs 
to have worse instruction cache performance than equivalent C programs [SI. 

We suspect that the parallel code performs significantly worse on one processor the the 
sequential version because of copying, but we have not confirmed this suspicion. Perfor- 
mance on more than two processors was improved by slicing the for expression in P-03-L in 
ten slices (one slice per search path at level 16). This number of slices resulted in a better 



load balance, and only slightly increased the runtime overhead. Even so, the speedup is be- 
low average for the SGI machine. Notice the slight increase in space per additional worker. 

Table 2 gives the performance for the sequential and parallel Sisal code on a sixteen pro- 
cessor Cray C-90. This system is a vector supercomputer with 16GFlops peak performance. 
Long vector computations run fast on this machine; everything else runs significantly below 
peak performance. The system has 128MW of main memory arranged in 64 banks per 
processor, and no cache. The operating system is UNICOS 7.C. We used the C compiler cc 

4.0.2.8, and compiled all C programs at optimization level -02. The parallel program runs 
slightly worse on one processor than the sequential program. We believe the degradation is 
small because the Sisal compiler splits the for expression in P-03-1L into two loops: a 
concurrentrvector loop and a concurrent loop. The former computes the coordinates of the. 
nucleotides appended to the structure at step 16, and passes the coordinates in an array to 
the second loop. The second loop then descends the alternate search paths in parallel. Since 
we use a for initial expression at step 16 in the sequential version, this optimization is not 
available. Increasing the amount of vector work in the parallel code compensates for any loss 
in performance due to parallel runtime overhead. 

.Given the small size of the computation'and small vector lengths, the Sisal program ex- 
hibits good performance and speedup. The data space is larger than on the SGI, but s t i l l  

small. Note that on the Cray, all words are 8 bytes long. Neither increasing the number of 
parallel threads (calling P-03-L at step 17) nor increasing the number of loop slices im- 
proves performance; in fact, ,performance degrades due to increase runtime overhead. Simply 
put, there is insufficient work to keep more than three C-90 processors busy. 

4 Conclusions 

In this paper, we have discussed a sequential and parallel implementation of the Pseudo- 
knot  Problem in Sisal and presented performance numbers on- several multiprocessor sys- 
tems. We have presented a method to write recursive programs in Sisal that preserves per- 
formance and parallelism. In the sequential code, we single-thread the data structures ma- 
nipulated by the program enabling the Sisal bgenerate code that updates the data struc- 
tures in place despite recursive calls. In the parallel code, we use a for expression to imple- 
ment the highest branch point in the search tree, and then single-thread the data structures 
along each concurrent search path. The parallel program generates a sufiicient number of 
.concurrent threads to fully utilize our target machines; however, the parallelism is not dy- 



namic. We have shown that with some insight, it is possible to write recursive, floating-point 
intensive parallel programs in Sisal that achieve good performance and speedups on com- 
mercial multiprocessor systems. 
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Compile Time I 

55.0 knts 
130KB 

C 

95.5 knts 
132KB 

696.0 + 7.3 s I 
234.8 + 18.2 s I Sisal (sequential) 

255.6 + 19.3 s I Sisal (parallel) 

255.6 + 19.3 s I Sisal (parallel, -1~10) 

C 

Sisal (sequential) 

Sisal (parallel) 

I Execution SpeedAIemory 
P1 I p2 I P3 I P4 

100 knts I I  
70.9 knts 
mKB I I  

119.3 knts 126.5 knts 
134KB I 135KB I 

54.4 knts 95.5 knts 127.3 knts 152.2 kn t s  
130KB I 132KB I :L34KB I 136KB I 

Table 1 - Performance on the SGI IRIS 340 

Compile Time I P1 

37.37 + 0.68 s 100 knts I 
93.3 knts 

86.91 + 4.07 s 229 I 
88.9 knts 

106.19 + 6.21 s 255 KB I 

Execution SpeeWemory 
p2 I P3 I P4 1 P5 

164.7 knts 215.4 knts 243.5 knts 280 knts 
259KB I263KB I 267KB I 270KB 

Table 2 -Performance on the Cray C-90 


