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Uncertainty Estimation for Bayesian Reconstructions from Low-Count SPECT Data' " 

G.S. Cunningham and K.M. Hanson 
MS P940, Los Alamos National Laboratory, Los Alamos, NM 87545 

Abstract 
Bayesian analysis is especially useful to apply to low- 

count medical imaging data, such as gated cardiac SPECT, 
because it allows one to solve the nonlinear, ill-posed, inverse 
problems associated with such data. One advantage of the 
Bayesian approach is that it quantifies the uncertainty in 
estimated parameters through the posterior probability. We 
compare various approaches to exploring the uncertainty in 
Bayesian reconstructions from SPECT data including: 1) the 
standard estimation of the covariance of an estimator using a 
frequentist approach, 2) a new technique called the "hard 
truth" in which one applies "forces" to the parameters and 
observes their displacements, and 3) Markov-chain Monte 
Carlo sampling of the posterior probability distribution, which 
in principle provides a complete uncertainty characterization. 

I. INTRODUCTION 
In a Bayesian formulation of the data analysis problem, 

one obtains the MAP estimate of the parameters by 
maximizing the posterior probability of model parameters 
given the measured data. The posterior probability can 
include prior information about model parameters, either 
physically-based or subjective, which can be critical for 
solving ill-posed problems such as limited-view tomography. 
The negative logarithm of the posterior probability, which is 
minimized, can be highly nonquadratic (due to non- 
Gaussianity of the noise, e.g.) or even possess more than one 
minimum (due to nonlinearities in the model, e.g.), and so 
iterative methods are employed for optimization. 

We have implemented the Bayesian approach in a tool that 
we call the Bayes Inference Engine (BIE) to analyze image 
data acquired from 2D (and soon 3D) objects. This versatile 
and intuitive computer application allows one to develop 
complex geometric models for the objects under study, as well 
as complex models of the measurement process. The BIE 
permits one to compose a data-flow diagram (see Fig. 1) that 
produces a predicted image given a configuration of the object 
model, which could include geometric model(s) combined 
with models for variable intensities. Various aspects of the 
BIE are described elsewhere [l], [2], [3]. Geometric models 
have received increasing attention in medical imaging for 
tasks such as segmentation, reconstruction, restoration, and 
registration. 

'This work was supported by the United States 
Department of Energy under contract number W-7405-ENG- 
36. 

Figure 1 : BIE canvas showing simulation of a 2D SPECT system. 

In gated cardiac SPECT, a radiotracer is injected into the 
patient's circulatory system and travels to the heart, wherein 
disintegrations occur that produce photons which are 
individually detected. At certain instants in time, the 
radiotracer will perfuse one or the other of the chambers, and 
in this instant one can assume that the distribution of 
radiotracer will be relatively constant throughout a region 
defined by the walls of that chamber. Thus, a tomographic 
reconstruction of the radiotracer density should provide 
quantitative information about the location of the chamber 
walls. Normally, a reconstruction yields a voxellated image 
that must be segmented (often manually) to produce an 
estimate of the chamber volume. The ratio of the volumes at 
systoli and diastoli, called the ejection fraction, is an indicator 
of heart function. 

In this article, we use 2D geometric models to reconstruct 
an area of constant, but unknown, radiotracer density from 
simulations of a low-count, limited-view, gated cardiac 
SPECT system. We estimate the contour of the area directly 
from the data using the BIE's modelling tools and gradient- 
based optimizer. Our near-term goal is to use 3D geometric 
models [4] to directly estimate volumes of (near) constant 
radiotracer density from real SPECT data. The small number 
of counts and limited number of views make gated cardiac 
SPECT ideally-suited for a Bayesian approach using 
geometric models. The computational cost associated with a 
Bayesian approach is similar to maximum likelihood 
approaches using simple voxellated models since the non- 
Gaussianity of the noise prohibits a closed-from solution to 
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the problem and iterative methods like maximum-likelihood 
expectation maximization (ML-EM) are used. 

Ultimately, the quality of any reconstruction approach 
should be judged in terms of the bias and variance of the 
resultant estimator. In this paper, we use the BIE to apply 
three different approaches for quantifying the variance of 
estimators of radiotracer area using voxeilated and geometric 
models: a frequentist approach, the “hard truth”, and Markov- 
Chain Monte Carlo (MCMC). We show that all three 
approaches agree with one another for the pixellated model, 
and that MCMC indicates that geometric models can reduce 
the variance of the area estimator if sufficient prior 
information can be applied to the problem regarding the 
smoothness of the 2D contour. We expect that the 
improvement in variance reduction will be even greater for 3D 
surface models. 

11. BACKGROUND 

A.  The simulation of 2 0  gated cardiac SPECT 
The data for this study were simulated using the real 2D 

system response of the University of Arizona’s FastSPECT 
machine [5]. The “2D” system response was measured over 
a 58x70 planar grid in object space with 2-mm voxel size by 
placing a 2-mm cube of radioactive tracer at the centers of 
each of the grid elements and measuring the response at each 
of the 24 detector grids (64x64 pixels). We selected the 27th 
row out of each of the first 13 detectors in an attempt to create 
a 2D problem for study. Thus, the system is modelled by a 
matrix H that maps the mean intensities in a 58x70 object 
image f into the mean intensities g=Hf for each of 64 pixels in 
the 13 detectors (each detector pixel row was selected so that 
is approximately co-planar with the object slice). Systematic 
errors like scatter and attenuation were neglected for this 
study, but can be incorporated into a more complex model 
using the BIE. 

The object slice was created by hand-tracing the contour 
for the right ventricle in an MIU reconstruction [6 ]  and setting 
the pixel size so that the maximum width of the ventricle is 
about 6 cm. For this simulation, the radiotracer is assumed to 
be completely homogenous in density throughout the area 
defined by the contour, and the intensity per unit area is set so 
that the mean intensities at the detector yield an average of 
about 1/2 count per detector pixel, the average count level 
expected in a 20 msec frame for a real dynamic study. The 
total number of counts in the simulation used below is 488 
(summed over a total of 64* 13=832 detector pixels). 

B. Methods for quantifiing uncertainty 

I )  Frequentist lis. Bayesian 
For a linear, Gaussian data analysis problem, the 

uncertainty in the estimator or any linear functional of the 
estimator is straightforward. Let g=Hf+n, where f is the 

object of interest, n is additive, white Gaussian noise, and g is 
the data. Further assume that H is full-rank. The maximum 
likelihood estimator (MLE) for f given g is just f=(HTH)- 
H g. If one is interested in a linear functional off, say a=hTf, 

then the MLE for a is a’= hT f .  The covariance of f is just 
(HTH)-’. One can construct a confidence interval for a’ that is 
independent off.  That is, for every p one can find a number d 
such that the probability that la’-al is greater than d is p, 
independent o f f .  Note that the probabilistic variable here is 
a’, not a. 

The Bayesian approach to this problem produces exactly 
the same result, but with a completely different interpretation. 
If one treats the likelihood as a posterior (with a uniform 
prior), then the posterior is Gaussian with covariance (H’H)-I. 
Thus, one could construct a “credible interval” on a’ and say 
that the probability that ja’-al is greater than d is p, for some 
value of p. The difference is that now a is viewed as the 

probabilistic variable, not a’. The estimator a’ is fixed by 
the current realization of the data! 

For a nonlinear, non-Gaussian problem though, confidence 
intervals do not, in general, exist. That is, the variance of the 
estimator does depend on the value of the real parameters f, 
which are unknown. In this case, a Bayesian perspective is 
more satisfying, since one can still construct credible intervals 
on the parameters. One should take care, however, not to 
interpret credible intervals in the same way as confidence 
intervals. 

I T  

2) The “hard truth” 
We have introduced the concept that we call “the hard 

truth” and implemented it in the BIE [7]. The hard truth 
allows one to explore the uncertainty in complex models. 
This technique is understood in terms of an analogy between 
the negative log posterior and a physical potential. Near the 
MAP solution f ,  the minus log posterior can be approximated 
as a quadratic function of perturbations to the parameter set: 
$=$’+.S(f-f)’K(f-f). Starting from f ,  the user can apply a 
“force” cF to the parameters by defining a new posterior 
$=$’+.5(f-f )‘K(f-f )-cFT(f-f ), re-optimizing to obtain a new 
“MAP” solution f ’  and observe the displacements in f as the 
solution converges to f’. The displacements (f’-f) are 
related to the curvature of the minus-log-posterior in the limit 
as the force becomes infinitesimal (c goes to zero). That is, 
the response can be shown to be equal to the covariance 
matrix of a Gaussian approximation to the posterior times the 
force: (f ’-f )=cK-IF. If the value of the posterior at f’ is $”, 
then we expect $”-$’=.5c202, where o2 is the variance of F‘f. 
Confidence intervals on linear measurements of the 
parameters (F’9 can be made for the case in which the 
posterior is Gaussian. Specifically, G~ =FT (f ‘-f )/c. For the 
non-Gaussian case, approximate credible intervals can be 
obtained. 

3) Markov-chain Monte Carlo 



An alternative way to explore the uncertainties in a 
reconstruction and in quantities derived from it is to generate 
a sequence of random realizations drawn from the posterior. 
Such a sequence can be generated using the Markov-chain 
Monte Carlo (MCMC) technique in which one moves through 
a probability distribution by accepting or rejecting a proposed 
random step in the parameter space based on a Metropolis- 
Hastings algorithm[S]. This powerfhl approach allows one to 
study the full, marginalized probability distribution for any 
function of any combination of parameters. 

111. ML-EM RECONSTRUCTION AND UNCERTAINTY 
The traditional approach for analyzing gated cardiac 

SPECT data is to perform a voxel-based 3D reconstruction 
using maximum likelihood expectation-maximization (ML- 
EM) or a faster reconstruction technique like pre-processed 
filtered backprojection, and then to perform segmentation on 
the 3D volume to determine the 3D surfaces of the ventricles. 
The 3D surfaces define a volume which is measured at systoli 
and diastoli, and the ratio of the two volumes is computed to 
produce an estimate of the ejection fraction. 

The ML-EM algorithm was employed for our 2D 
simulated data set and the result after 60 iterations is plotted in 
Fig. 2 alongside the original object. Increasing the number of 
iterations to 120 only decreased the log likelihood by 2.60 and 
did not noticeably change the appearance. Note that the ML- 
EM reconstruction has a very spiky appearance due to the fact 
that a zero detector pixel value strongly favors an estimate for 
the object intensity in which the path integral of the object 
intensity that produces that detector output is zero. Since the 
object intensity cannot be less than zero, a path integral of 
zero means that every pixel along the path must also be zero. 

A) B) 
Figure 2. A) ML-EM reconstruction after 60 iterations, B) original 
object, both plotted with a contrast of [0,8e-4]. 

Ideally, what we’d like to do is incorporate the 
segmentation technique as an automatic subroutine so that we 
could apply the three techniques for quantifying uncertainty 
discussed above to the entire traditional process for estimating 
areas in the case of our 2D simulation. Unfortunately, much 
of the gated cardiac SPECT data is still segmented by hand, or 
is inherently 3D in nature, and so we were unable to 
incorporate the segmentation into our results. The author’s 
manual segmentation of the ML-EM estimate of intensity 
produced an estimate of the area that was in error by about 
25% (too large). 

An alternative to incorporating the segmentation into the- 
uncertainty analysis is to compute the intensity estimated by 
ML-EM in the known area used for the simulation. This is the 
approach that we adopted. This approach will only tell us 
how wrong the reconstruction was in the sense of being too 
large, since, if all of the intensity in the reconstruction is 
placed inside the known area (but potentially in a much 
smaller area) then the “ ~ I T o ~ ”  we calculate will be zero. 

? 

’ 

A. Uncertainty analysis using fiequentist approach 
We generated 200 datasets with the same mean intensity as 

the simulation that produced 488 total counts (for 832 detector 
pixels) but with different realizations of the Poisson process. 
Each dataset was fed to the ML-EM algorithm with the initial 
guess for the object set at a constant value of 1.0 (the correct 
value is 8e-4). 60 iterations of ML-EM were performed for 
each dataset, and the total intensity in the known area was 
computed. The mean of the 200 estimated total intensities 
was 0.41 1 (or 89.3% of the correct total intensity - 0.460) and 
the variance was 6.le-4, yielding a standard of deviation of 
0.0247 (or 5.4% of the correct total intensity). 

B. Uncertainty analysis using the “hard truth ’’ 
The “hard truth” was also applied to this dataset. There 

are two competing numerical issues in trying to apply the hard 
truth to a minus-log-posterior in the vicinity of the MAP 
solution: a) the constant c has to be chosen large enough to 
produce perturbations (f ’4’) that yield substantial changes in 
the posterior, and b) we don’t want to make c so large that we 
start exploring the non-Gaussian behavior of the posterior, at 
least for this example. 

Since we are using a 60-iteration ML-EM as the MAP 
solution, and a 120-iteration ML-EM yields a change in minus 
log posterior I$”-@’ of about 2 units, we’d like to make the 
constant c large enough to produce 9”-$’ >> 2 units. The 
relationship 9”-$’=.5c2d, where 02 is the variance of the 
intensity in the known area, can then give us an idea of what 
range to look at for c. In this case d was estimated using the 
frequentist approach as 6e-4. This would indicate a value of 
c=182.5 in order to get a change in minus log posterior of 
about 10 units. Figure 3A shows the quantity (4”-@’)/ c2, 
plotted for c in the range 100-400. Notice that the values at 
c=100 and 150 do not lie on the same flat line that the higher 
values do, most likely due to the numerical issue a) above. At 
a value c=lOOO, the optimizer essentially blew up. Notice also 
that the non-negativity constraint was still in place during 
these re-optimizations (which were done using 20-30 global 
steps of conjugate gradient), and that the value for d 
determined from Fig. 3A is about 7.0e-4, within 15% of the 
value determined using the fi-equentist approach. However, 
another measure of d can be determined from the 
relationship $ =FT (f ’-f )/c. This quantity is plotted as a 
function of c in Fig. 3B. These values for 02 also vary by 
about 15% (6.1 e-4 to 7.9e-4). 



A) B) 
Figure 3. A) An indication of the quadratic behavior of the 
minus-log-posterior for the pixellated model: ($”-$’)/ c2, 
where c is the strength of the force and $”-I+’ is the actual 
change in minus log posterior, and B) the variance of the 
estimator as defined by o2 =FT (f ’-f )/c. 

C. Uncertainty analysis using MCMC 
Our first attempt at using MCMC on this problem failed 

miserably due to the non-negativity constraint. One cannot 
simply use a random walk to propose the next step and then 
project that on the constraint space (if the constraint space is 
nonlinear) before performing the accept‘reject step. 

One quick fix for this problem is to re-parameterize the 
pixel values as the exponential of a set of unconstrained pixel 
values. Since the pixel values we are interested in are now 
just a simple function of another set of pixels values on which 
we can easily perform MCMC, our problem is solved. 

We ran an MCMC chain of 25,000 trials on the re- 
parameterized model, of which 12,167 were accepted. The 
“burn-in’’ period was approximately the first 4000 accepted 
samples, as seen in Figs 4A and 4B. The sample mean of the 
intensity in the known area is 0.352 (23.4% error) and the 
sample variance is 4.4e-4 (so that the standard of deviation is 
4.6% of the true area). The diagnostic program gibbsit [9] 
indicates that this run is adequate for obtaining the 2.5% 
quantile to reasonable accuracy. 

The fact that the mean of the posterior is lower than the 
MAP estimate makes sense, since the MAP estimate will pin 
many pixel values to 0.0 intensity, leaving them with nowhere 
to go but up when the posterior is sampled. If intensity is put 
into these background pixels, it must be taken away from the 
area where the intensity is known to be (since the total number 
of counts in all of the detector pixels presumably determines 
the total intensity in the image to 3% or so). The lower 
sample standard of deviation may be due to an inadequate 
number of samples in MCMC, as the gibbsit diagnostic for 
the 80% quantile showed that only every 463rd accepted 
sample was independently drawn from the posterior! 

A) B) 
Figure 4. A) Minus log posterior and B) intensity in known 
area for accepted samples drawn using MCMC for the 
exponentially reparameterized pixellated model. 

Iv. GEOMETRIC MODELLING AND UNCERTAINTY 
The BIE was used to construct a 50-vertex simple polygon 

model of the contour describing the area with constant 
intensity. A curvature prior [ 101 with user-manipulable 
strength was used to penalize non-smooth realizations of the 
contour. 

The MAP solution for the curve using a strong prior is 
plotted in Fig. 5A, and the MAP solution for a weak prior (the 
strength is only 3% of that used for the strong prior) is plotted 
in Fig. 5B. Obviously, the smooth parts of the contour are 
reconstructed very well using the strong prior, while the high- 
curvature deviations from smoothness are missed completely. 
On the other hand, the reconstruction using the weak prior 
does marginally better at capturing the high-curvature parts of 
the true contour while doing substantially worse on the 
smooth parts. 

Figure 5. The MAP estimate for the geometric model with 
prior strength equal to A) 1 .O and B) 0.03. 

The MAP estimate for the area using the strong prior was 
in error by about 1% of the true area, which is better than one 
might guess is possible by simply looking at the signal-to- 
noise ratio in the total number of counts (the square root of 
488 counts is 22.1, meaning there is a standard of deviation of 
roughly 5% in the total number of counts!). The MAP 
estimate for area using the weak prior was in error by about 
10% of the true area (comparable to the pixellated model 
using ML-EM). 

A) Uncertainty analysis 
The frequentist approach to measuring the uncertainty in 

this case is difficult because the BIE’s optimizer requires 
some user interaction when optimizing highly non-quadratic 



functions like the one obtained when using a geometric model 
[ll]. Thus, as with segmentation, we can’t just put the 
optimizer in a black box and run multiple realizations of the 
data through it in order to obtain sample statistics. 

The hard truth was not attempted for this example, either, 
as we were not interested in exploring the higher-order 
correlations in the geometry that can be discovered using the 
“hard truth” [7], but rather in connecting the “hard truth” 
result to other methods of quantifying uncertainty, which we 
have already done for the pixellated model. 

We did run MCMC on the geometric model using the very 
strong prior in order to determine how much better than a 
pixellated model it was for determining area. We ran 20,800 
trials, of which approximately 6000 were accepted. The error 
in the sample mean of the area was 2.74% of the true area, and 
the sample standard of deviation was 3.26% of the true area. 
The gibbsit diagnostic indicated good convergence of the 
2.5% quantile statistic with very little bum-in needed. Once 
again, though, the higher quantiles indicated a need to go to 
much larger samples to get the desired precision. For 
example, the 75% quantile indicated that only every 268th 
sample was drawn independently. 

V. CONCLUSIONS 
Geometric modelling has been shown to have excellent 

potential for improving the quality of ejection fraction 
estimates from low-count, gated cardiac SPECT data when 
strong prior information about the curvature of the chamber 
walls can be employed. The MCMC runs show a reduction in 
variance of about a factor of 2 over traditional pixellated 
models, while the MAP solutions showed a reduction in error 
of a factor of 1 O! 

On the other hand, the weak prior geometric model 
performed quite poorly, and the MAP solution here still had a 
curvature value that was only about 50% of what the true 
contour had. If aspects of the heart wall that have high 
curvature are expected to be estimated well, then more counts 
or a better model of the wall that incorporates prior 
information about where the high curvature is spatially 
located, and where it is not, may be needed. We plan to use 
3D surface models in the near future to estimate ejection 
fractions from real data using the FastSPECT system at the 
University of Arizona. The 3Dness of the surface models may 
help substantially in reducing the variance of the volume 
estimates over what might be expected by extrapolating this 
2D study. 

Three alternative methods for exploring the uncertainty in 
reconstructions from simulated 2D SPECT data have been 
demonstrated: frequentist, “hard truth”, and MCMC. All 
three are in fair agreement for the pixellated model, although 
the MCMC showed a reduction in variance of about 30% 
relative to the other two. The agreement between the 
frequentist approach and the “hard truth” indicates a high 
degree of Gaussianity for the problem of estimating the area 
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of constant intensity from limited-view, low-count’ 
tomographic data. This is most likely due to the fact that the 
area is quite large, and so the Poisson counting statistics 
accumulate to an approximately Gaussian distribution. If one 
is interested in small areas, or specific contour location, it may 
be that the Gaussianity disappears. 
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