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DISCLAIMER 

This report was prepared as an account of work spomored by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or assumes any legal tiabdi- 
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa- 
ratus, product, or process disclosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, p m e s ,  or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
any agency thereof. The views and opinions of authors expressed herein do not necessar- 
ily state or reflect those of the United States Government or any agency thereof. 
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Abstract 

The OVERTURE Framework is an ob ject-oriented environment for solving PDEs 
on serial and parallel architectures. It is a collection of C++ libraries that enables the 
use of finite difference and finite volume methods at a level that hides the details of the 
associated data structures, as well its the details of the parallel implementation. It is 
based on the A++/P++ array class library and is designed for solving problems on a 
structured grid or a collection of structured grids. In particular, it can use curvilinear 
grids, adaptive mesh refinement and the composite overlapping grid method to represent 
problems with complex moving geometry. 

1 htroduction 
The OVERTURE Framework is an object-oriented C++ library for solving partial 
differential equations (PDEs) on serial and parallel architectures. It supports finite 
difference and finite volume computations on a structured grid, or on a collection of 
structured grids. Collections of structured grids are used, for example, in the method 
of composite overlapping grids, with block-structured adaptive mesh refinement (AMR) 
algorithms, and for patched-based domain decomposition methods. This paper concentrates 
on the implementation of support for two of the higher-level application environments, 
which are the method of composite overlapping grids 17,141 and the AMR method [I, 3,171. 

A composite overlapping grid consists of a set of logically rectangular (in 2-D) or 
hexahedral (in 3-D) curvlinear computational grids that overlap where they meet and 
together are used to describe a computational region of arbitrary complexity. This method 
has been used successfully over the last decade and a half, primarily to solve problems 
involving fluid flow in complex, often dynamically moving, geometries [3, 5, 9, 10, 211. 

The data structures associated with a flexible overlapping grid solver can be quite com- 
plex. Mathematically, each component grid can be described in terms of a transformation 
from the unit square or cube to the coordinate space of that grid. In order to complete 
the description of the computational geometry, the overall composite grid also requires in- 
formation specifying how the component grids communicate with each other e.g. through 
interpolation formulas. It is also possible for component grids to move with respect to 
each other as part of a time-dependent simulation. Thus, tools are required to efficiently 
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recompute the overlap information when the grids move. In the discrete representation 
of such a system, for each component grid, data such as the location of the grid points, 
values of the transformation derivatives and volumes of the grid cells must be stored. In 
addition, each grid point can have attributes associated with it, such as whether it is used 
for discretization of the PDE or a boundary condition, if it will have values interpolated 
to it from another component grid, or possibly that it is not used at all. Information on 
where to find interpolation stencils for the interpolation points must also be stored. 

The PDEs that are to be approximated can be quite complex. (A current application 
at Los Alamos involves low Mach-number combustion with many reacting species). The 
difference approximations that are used can vary from relatively simple (e.g. centered 
second-order finite-difference methods) to quite complex (e.g. unsplit Godunov procedures 
for compressible or incompressible fluid flow [5] ,  or fully fourth-order centered finite 
difference methods [lo]). In addition, techniques such as block structured AMR may 
be used to locally increase computational resolution and increase overall computational 
efficiency. If the simulation is to run on a parallel architecture, there are correspondingly 
more complexities involved in writing the code. The net result of the data structures, 
advanced algorithms, and modern architectures is a PDE solver code that is an extremely 
complex system. Successfully writing, debugging, modifying and maintaining software that 
implements this complex system is a daunting if not impossible task using a traditional 
structured programming approach and procedural languages such as Fortran or C. 

An alternative to the traditional structured approach is to use object-oriented design 
principles and object-oriented languages like C++ to write the code [2]. With object- 
oriented design, the task is to develop computational “objects” that represent fundamental 
abstractions of elements in a computational model. Where in the structured approach, the 
fundamental unit of code is a subroutine or function that modifies the data in some way, 
in the object-oriented approach the fundamental unit is an object, described by a class in 
C++. A class contains both a description of the data structures that describe the object, 
as well as class member functions that operate on that data. An example of an object for 
a composite grid application is the composite grid itself. The class describing composite 
grids includes a description of the data describing the grid as well as functions that operate 
on that data. Examples of such functions might be those that get or put the data to a 
database file, add an adaptive mesh refinement grid to the data structure, or return values 
of parameters that describe properties of the grid. 

OVERTURE is an object-oriented framework that supports applications of the type 
discussed above. It has been used to develop a variety of PDE solvers that use the 
composite overlapping grid method and support applications at Los Alamos. Among these 
are solvers describing incompressible, nearly incompressible and high-speed compressible 
fluid flow. Under development at present are solvers for internal combustion applications. 
The remainder of this paper discusses details of this framework. 

2 
The main class categories that make up OVERTURE are as follows: 

Overview of the OVERTURE Classes 

0 Arrays [18]: describe multidimensional arrays using A++/P++. A++ provides 
the serial array objects, and P++ provides the distribution and interpretation of 
communication required for their data parallel execution. 
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0 Mappings [13]: define transformations such as curves, surfaces, areas, and volumes. 
These are used to represent the geometry of the computational domain. 

0 Grids [8, 121: define a discrete representation of a mapping or mappings. These 
include single grids, and collections of grids; in particular composite overlapping grids. 

0 Grid functions [12]: storage of solution values, such as density, velocity, pressure, 
defined at each point on the grid(s). 

0 Operators [6, 111: provide discrete representations of differential operators and 
boundary conditions 

0 Plotting [16]: provides high-level plotting interface based on OpenGL. 

0 Adaptive Mesh Refinement: The AMR++ library is described in section 8. 

0 Load Balancing: The MLB load balancing library is presented in [20]. 

Solvers for partial differential equations are written using the above classes. 

3 
A++ and P++ [IS] are array class libraries for performing array operations in C++ in 
serial and parallel environments, respectively. P++ is the principle mechanism by which 
the OVERTURE F'ramework operates in parallel, there is little code in OVERTURE outside 
of P++ which is specific to parallel execution. A++/P++, in a modified form to reflect 
collaboration with other object-oriented work at LANL, is expected to be used as the array 
class library within the High-Performance C++ (HPC++) effort as well '. 

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not requiring 
any modification to the C++ compiler or language. A++ provides an object-oriented array 
abstraction specifically well suited to large scale numerical computation. It provides efficient 
use of multidimensional array objects which serves to both simplify the development of 
numerical software and provide a basis for the development of parallel array abstractions. 
P++ is the parallel array class library and shares an identical interface to A++, effectively 
allowing A++ serial applications to be recompiled using P++ and thus run in parallel. This 
provides a simple and elegant mechanism that allows serial code to be reused in the parallel 
environment. With the improvements in C++ compiler technology, the A++/P++ classes 
are presently being converted to the use of templates which provides greater flexibility, 
though at the likely cost of working with fewer C++ compilers. 

P++ provides a data parallel implementation of the array syntax represented by the 
A++ array class library. To this extent it shares a lot of commonality with FORTRAN 
90 array syntax and the HPF programming model. However, in contrast to HPF, P++ 
provides a more general mechanism for the distribution of arrays and greater control as 
required for the multiple grid applications represented by both the Overlapping Grid model 
and the Adaptive Mesh Refinement (AMR) model. Additionally, current work is addressing 
the addition of task parallelism as required for parallel adaptive mesh refinement. 

It is unreasonable to expect that FORTRAN 90 and HPF would readily include the 
mechanisms required to successfully handle the requirements of adaptive mesh computa- 
tions since these algorithms are still not dominant within scientific computing. Thus the 

The A++ and P++ array classes 
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use of C++’s ability to define and extend itself to application specific domains through the 
construction of general purpose object-oriented libraries with overloaded operators has pro- 
vided a simple mechanism to explore the development of such complex parallel applications 
quickly and easily. 

Here is a simple example code segment that solves Poisson’s equation with the Jacobi 
method in either a serial or parallel environment using the A++/P++ classes. Notice how 
the Jacobi iteration for the entire array can be written in one statement. 

// Solve u-xx + u-yy = f by a Jacobi Iteration 
Range R(0.n) // ... define a range of indices: 0,1,2, ...,n 
floatArray u(R,R), f (R,R) // ... declare two two-dimensional arrays 
f = 1.; u = 0.; h = 1.h; // ... initialize arrays and parameters 
Range I(1.n-11, J(1.n-1) ; // ... define ranges for the interior 
for (int iteration=O; iteration<lOO; iteration++) 
u(1,J) = .25*(u(I+1,J)+u(I-l,J)+u(I,J+l~+u(I,J-l)-f(I,J)*(h*h)); // . . . data parallel 

In this example, “Range” objects are first constructed using base, bound, and optional 
stride information. These are then used to build the array objects and later to specify 
the indexing in the final array statement. The “f 1oatArray” objects are constructed 
with no additional information about the distribution, thus the default distribution is a 
“block-blo~k~’ distribution of the array object’s data over all the available processors. The 
initialization of the &ray objects proceeds locally and in parallel on each processor since no 
communication is required. The “for” loop is done on all processors and the only genuinely 
interesting parallel part of the example code is the data-parallel statement representing the 
Jacobi relaxation step. To be more technically accurate this statement executes using an 
SPMD simulation of data parallel execution. The operands in this statement are already 
distributed over a selected number of processors and the operations dictated by the array 
statement are executed in place. Communication requirements are interpreted at runtime 
as required to permit the dynamic redistribution of data (required for AMR applications). 

In the execution of this statement, either of two modes of execution are possible 
depending upon the quality of the template mechanism with the C++ compiler used. 

0 Expression Templates: With the best compilers an expression template mechanism 
is used, work on this has provided high performance but few C++ compilers can 
handle the resulting template instantiations; this represents the most recent and 
continuing work in P++. 

0 Overloaded Operators: With other C++ compilers the right hand side operands 
are evaluated using the overloaded C++ binary operators. This forces each binary 
operator to be evaluated separately and is less efficient. 

By using expression templates, a single in-lined f o r  loop is generated internally and 
the performance is improved significantly (within 90-95% of FORTRAN 77) on cache based 
architectures and for certain array statements (like the Jacobi relaxation example). In 
contrast, using the execution of the individual binary operators, the performance is about 
half that of FORTRAN 77, and for cache based architectures it is worse. A++ abstracts the 
array operations, and P++ abstracts the details of its execution in the parallel environment, 
thus providing an architecture independent mechanism for the development of larger C++ 
libraries. 
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4 Mappings and Grids 
The geometry of the computational domain is defined by a set of mappings, one mapping for 
each grid. Mappings have been designed so that an object can be easily moved by composing 
it with a transformation such as a translation, rotation or scaling [13]. In general, a mapping 
defines a transformation from Rn to R”. In particular, mappings can define lines, curves, 
surfaces, volumes, rotations, coordinate stretchings , etc. The base class Mapping contains 
the data and functions that apply to all mappings. Specific types of mappings are derived 
from this base class. Mappings contain a variety of information and functions that can be 
useful for grid generators and solvers. For example, mappings contain information about 
their domain space, range space, boundary conditions and singularities. Mappings are easily 
composed, allowing coordinate stretching, rotations, translations, bodies of revolution, etc. 
The inverse of a mapping is always defined, either analytically or by discrete approximation. 

Grids define a discrete representation of a mapping. There are several main grid classes 
[8, 121. The MappedGrid class defines a grid for a single mapping that contains, among 
other things, a mapping and a mask array for cut-out regions. The GridCollection class 
defines a collection of MappedGrid’s. The CompositeGrid class defines a valid overlapping 
grid, which is essentially a GridCollection plus interpolation information. Grids contain 
many geometry arrays such as grid points, Jacobians , normal vectors, face areas and cell 
volumes. 

5 Grid Functions 
Grid functions represent solution values at each point on a grid or grid-collection. There 
is a grid function class (of float’s, int’s or double’s) corresponding to each type 
of grid [12]. So, for example, a MappedGridFunction lives on a MappedGrid and a 
CompositeGridFunction lives on a CompositeGrid. Grid functions are defined with up 
to three coordinate indices (i.e. up to three space dimensions) and up to five component 
indices (i.e. they can be scalars, vectors, matrices, 3-tensors,...). Since they are derived 
from A++ arrays, all of the array operations are defined. In the following example, a grid 
function is made and assigned values at all points on the grid. 

SphereMapping sphere; // ... create a mapping 
MappedGrid mg (sphere) ; // ... the sphere 
mg.update0 ; / /  ... this function computes all the geometry arrays 
GridFunctionParameters defaultcentering; // ... other grid function centerings can be 

// ... specified through this class 
// ... create a grid fn with default centering and 2 components defined at all grid points 
floatMappedCridFunction u(mg,defaultCentering,2) ; 
Index 11.12.13; 
getIndex(mg . dimension, I1,12,13) ; // ... get Index’es for all grid points 

// ... set x-component to sin(x)*cos(y) 
const int xComp = 0, yComp = 1; 
u(Il,I2,13, xcomp) = sin (mg. vertex (11,12,13 ,xcomp) 1 *cos (mg. vertex (I1,12,13 ,yComp) 1 ; 

mapping has been used to define a grid 

Notice that when the f 1oatMappedGridFunctionis declared, the number of grid points 
does not have to be specified since this information is contained in the MappedGrid. 

6 Operators 
Operators define discrete approximations to differential operators and boundary conditions 
for grid functions. Many different types of approximations can be used. For example, 
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the class MappedGridOperators [ll] defines finite-difference style operators, while the 
class MappedGridFiniteVolumeOperators [6] defines finite-volume style operators. An 
operator class for incompressible flow Godunov methods has also been implemented. The 
Projection class computes the divergence-free part of a velocity function and is used in 
some of our incompressible flow codes. Here is an example using one of the operator classes: 

... 
MappedGrid mg(sphere1; 
MappedGridFiniteVolumeOperators op(mg); //define operators for a MappedGrid 
floatMappedGridFunction u(mg) , v(mg) ; 
u. setoperators (op) ; //associate operators with grid fn. 
u = ... //assign u some values 
v = u.grad0; 
v = u.laplacian0; //compute Laplacian(u1 
v = op.laplacianCoefficients0; 

//compute gradient of u 

//compute matrix for the discrete Laplacian 

The result of the statement u.grad0 is a grid function containing the gradient of u. 
An equivalent statement is op . grad(u). The matrix for the discrete Laplacian holds the 
stencil at each grid point for the Laplacian, and so is a grid function itself. This grid 
function can be passed to a sparse solver, for example [15]. 

6.1 Boundary Conditions 
The programming model for boundary conditions is to use ghost points (instead of one-sided 
difference approximations). A library of elementary boundary conditions such as Dirichlet, 
Neumann, extrapolation, etc has been defined. Solvers define more complicated boundary 
conditions in terms of these elementary ones. The interface is quite simple, as can be seen 
in the following routine. 

// ... composite grid boundary types 
const int wall = 1, inflow = 3, outflow = 5, slip = 5; 
void applyVelocityBoundaryConditions (floatCompositeGridFunction t v) 
c 
Index allVelocityComponents; 
allVelocityComponents = Range (0,l); 
float ZERO = O. ,  INFLOW,VELOCITY = 1.0; int ucomponent = 0, vcomponent = 1; 

// ... set velocity to zero on walls 
// ... extrapolate velocities at outflow 
// ... extrapolate corners, enforce periodic conditions, interpolate, etc. 

v.app1yBoundaryCondition (allVelocityComponents. BCTypes::dirichlet, wall, ZERO); 

v.app1yBoundaryCondition (allVelocityComponents, BCTypes::extrapolate. outflow); 

... other boundary conditions ... 
Y . f inishBoundaryConditions 0 ; 

> 

7 An OVERTURE code for the incompressible Navier-Stokes equations 
This example demonstrates the power of the OVERTURE kamework by showing a 
working code that solves the incompressible Navier-Stokes equations in any number 
of space dimensions on an overlapping grid. It is based on a cell-centered Projec- 
tion method with a two-stage Runge-Kutta time integrator. A routine to initialize 
the velocity, initializevelocity, and to initialize the Projection boundary condi- 
tions, setPro j ectionBoundaryConditions, must also be supplied to complete the code. 
PlotStuff El61 is the graphics package associated with OVERTURE. 
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CompositeGrid cg; //...create composite grid 
getFromADataBase (cg, "grid.hdf") ; //...read in from database (HDF) file 
cg.update 0 ; 
Interpolant interp (cg) ; // ... initialize interpolant 
Plotstuff ps (TRUE); // ... initialize plotting 
ps .plot (cg) ; // ... plot the grid 
int numberOfVelocityComponents = 2; // ... velocities stored in q,qMid 
GridFunctionParameters cellcentered = GridFunctionParameters::cellCentered; 
floatCompositeGridFuction q (cg, cellcentered, numberOfVelocityComponents); 
floatCompositeGridFunction qMid (cg, cellcentered, numberOfVelocityComponents); 
initializevelocity (vortexInBox, q. cg); 
CompositeGridFiniteVolumeOperators op (cg); 
q. setoperators (op) ; 
qMid. setoperators (op) ; 
Projection projection (cg) ; // ... initialize Projection operator 
setProjectionBoundaryConditions (projection); 

// ... solve Incompressible Navier-Stokes equations 
float t=O., dt=.0005. viscosity=.05; int numberOfSteps-100, frequencyOfOutput = 10; 
for (int step=O; step < numberOfSteps; step++) 
c 
qMid = q + 0.5*dt*(-q.convectiveDerivativeO + viscosity*q.laplacianO) ; 
applyVelocityBoundaryConditions (qMid); 

qMid = projection.project (qMid) ; 

q = q + dt* (-qMid. convectiveDerivative0 + viscosity*qMid.laplacianO 1 ; 
CpplyVelocityBoundaryConditions (q); 

// . . . correct again with projection 
q = projection.project (q) ; 

// ... plot every so many timesteps 
if (step X frequencyofoutput == 0) ps.stredines (9); 

// ... predict velocity at midpoint using forward Euler 

// ... correct by enforcing incompressibility constraint 
// ... predict velocity at new time using midpoint rule 

1 
1 

8 
Adaptive mesh refinement is the process of permitting local grids to be added to the 
computational domain and thus adaptively tailoring the resolution of the computational 
grid. The block-structured AMR algorithm implemented in OVERTURE provides such 
support for both simple problems with a single underlying grid, and problems that use 
the composite overlapping grid method. The AMR algorithm itself uses the multiple grid 
functionality provided by the basic OVERTURE classes in an essential way. AMR results 
is greater computational efficiency but is difficult to support. AMR++ is a library within 
the OVERTURE Framework which builds on top of the previously mentioned components 
and provides support for OVERTURE applications requiring adaptive mesh refinement. 
AMRff is current work being developed and supports the adaptive regridding, transfer 
of data between adaptive refinement levels, parent/child/sibling operations between local 
refinement levels, and includes parallel AMR support. AMR++ is a parallel adaptive mesh 
refinement library because it is uses OVERTURE classes which derive their parallel support 

Adaptive Mesh Refinement - AMR++ 

from the A++/P++ array class library. I 
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9 Software Availability 
The OVERTURE Framework and documentation is available for public distribution at the 
Web site http: //www. c3. lanl . gov/cici9/teams/napc/. A++/P++ dates back to its 
first version in 1990 and has been publicly distributed since 1994; the current version was 
released in 1996 [19]. The OVERTURE libraries have been under development since 1994, 
and have been available to the public since 1996 [4]. The AMR++ classes in OVERTURE 
are still under development and are expected to be released in fourth quarter 1997. 
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