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ABSTRACT 

The Los Alamos foil implosion program has the goal of producing an intense, high-energy density 

x-ray source by converting the energy of a magnetically imploded plasma into radiation and 

material energy. One of the methods for converting the plasma energy into thermal energy and 

radiation and utilizing it for experiments is called the "flying radiation case (FRC)." In this paper 

we shall model the FRC and provide a physical description of the processes involved. An analytic 

model of a planar FRC in the hydrodynamic approximation is used to describe the assembly and 

shock heating of a central cushion by a conducting liner driver. The results are also used to 

benchmark a hydrodynamics code for modeling an FRC. We then use a radiation-hydrodynamics 

cemputational model to explore the effects of radiation production and transport when a gold 

plasma assembles on a CW cushion. Results are presented for the structure and evolution of the 

radiation hohlraum. 
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I. INTRODUCTION 

The Los Alamos foil implosion program has the goal of producing an intense, high-energy density 

x-ray source by converting the energy of a magnetically imploded plasma into radiation and 

material internal energy. The intermediate-term goal is to obtain a source with which experiments 

on radiation transport, opacity, equation of state, and implosion physics may be performed. 

Ultimately, with a multi-megajoule source it is envisioned that fusion experiments will be possible. 

At Los Alamos one of the methods for converting the kinetic energy of the plasma into thermal 

energy and radiation and utilizing it for experiments has been dubbed the "flying radiation case" 

(FRC). This is basically a cylindrical driver plasma which implodes and stagnates upon a 

centrally-located cushion. It is arranged for the driver to become optically thick at the time of 

maximum convergence in order to inhibit the radiative cooling of the cushion. Figure 1 shows 

several representative geometries which utilize the FRC for physics experiments in cylindrical 

geometry. 

- 

The backside of the driver-plasma is magnetically Rayleigh-Taylor unstable and perturbations 

which are present in the initial foil, or which arise during the implosion, will grow'. If the 

perturbations are of sufficient amplitude, or if the ratio of plasma shell thickness to run-in distance 

is small, the instabilities may disrupt the driver. Physical arguments and two-dimensional (2-D) 

magnetohydrodynamic (MHD) calculations indicate that an imploding driver plasma will tend to 

reassemble when it impacts a cushion material. Thus, the cushion can lead to a more nearly 

homogeneous central radiation environment than would be obtained from the implosion of a simple 

plasma which stagnates on axis. Two-dimensional models of these effects are necessary in 

arriving at reasonable estimates of temperatures and the radiation output from a FRC. Consistent 

modeling of an FRC implosion should include the coupling of the pulsed power system to the 

lR.L. Bowers, J.H. Brownell, A.E. Greene, H. Kruse, H. Oona, DL. Peterson, "Nonlinear Intemction of 
Magnetohydrodynamic Instabilities in Radially Imploded Plasmas", Megagauss Magnetic Field Generation 
and PulsedPower Applications, ed. by. M. Cowan and R.B. Spielman, (Nova Science Publishers, Inc: New 
Yak, 1994) pg. 777; and D.L. Peterson, R.L. Bowers, J.H. Brownell, A.E. Greene, H.W. Piuse, H. Lee 
and W. Matuska, "Radiation Magnetohydrodynamic Modeling of X-Ray Output from P a b e d  Plasma 
Implosions", Megugauss Magnetic Field Generutwn and PulseaFower Applications, ed. by. M. Cowan and 
R.B. Spielman, (Nova Science Publishers, Inc: New York, 1994) pg. 897. 
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gamma y = yc, which is initially at rest against a solid, impenetrable wall (Figure 2). We choose 

time t=O as the instant when the driver plasma impacts the cushion. When the driver impacts the . 
cushion, shocks are generated in both media (Figure 3). The shock in the cushion travels inward 

toward the reflecting plane in our model until it contacts the wall where it is reflected at time ti 

(Figure 3). It then moves outward reaching the contact discontinuity at time t2. The shock in the 

driver moves outward until it reaches the outer boundary, where a rarefaction forms and travels 

back towards the contact discontinuity. 

The driver consists of a relatively low density plasma (typical densities are expected to be in the 

range of to 10-5 g/cm3) which, because of Joule heating and radiative losses will be at 

temperatures of 5 - 50 eV. Prior to impact (t = 0), the cushion will be preheated by radiation from 

this hot plasma. Shock heating, associated with impact between the driver and the cushion, also 

produces a radiation front which moves into the cushion supersonically for cushion materials of 

interest here. In the next section the hydrodynamic evolution is followed from first impact to 

maximum compression of the cushion. In Section IV we include the radiation front structure. One 

of the goals is to find the material and radiation temperature history in the cushion. The detailed 

behavior depends on the fluid variables and initial dimensions, and we shall find the parameters 

that optimize the hohlraum conditions. 

The problem will be described by means of the radiation-hydrodynamic equations. In the 

energy range of interest for our applications the radiation pressure and radiation energy density are 

ignorable, but it is necessary to include the radiation flux in the equations. Similarity solutions to 

the remaining equations are well-known3, but they break down in the presence of a symmetry axis, 

or an external boundary (such as the impenetrable wall assumed in OUT model). We consider the 

evolution of the system in two steps. First, from the hydrodynamic equations we obtain the 

plasma temperature resulting from shock heating of the materials. In the case of an optically thick 

cushion, the radiation temperature and the plasma temperatures will be comparable. In the case of 

31.P. Raizer, Soviet Physics JETP, 5, N0.6, 1957, pg. 1242; M.A. Heaslet and B. S. Baldwin, Phys. 
Fluids, 6, No. 6, 1963, pg. 781; M. Mitchner and M. Vinokur, Phys. Fluids, 6, No. 12, 1963, pg. 1682. 
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an optically thin cushion , a numerical model will be solved to give the hohlraum temperature as a 

function of the velocity and temperature of the driver plasma. 
+ 

To describe the flow before the fronts encounter boundaries, Hugoniot relations including 

radiative flu will be applied. For our application it is more convenient to express these relations in 

the laboratory frame (see the Appendix). In the Appendix we also show that away from the front 

the flow variables approach those that would be derived in the absence of radiative effects. These 

flow variables will be found as functions of the initial driver and cushion conditions, and from this 

a good understanding of the energy conversion dynamics will be gained. 

111. HYDRODYNAMICS OF THE ASSEMBLY 

We now consider the hydrodynamic evolution of the driver-cushion assembly. An analysis of 

the time development will be done in two stages, shown schematically in Figure 3, which 

correspond to the time intervals: 0 < t < t i  (direct shock heating of the cushion); and t i  c t < t2 

(heating of the cushion by the reflected shock); the interval t > t2 (stagnation and beginning of 

disassembly) will not be considered here. Including the effects of the MHD drive will produce late 

time tamping of the FRC, and will change the results. 

A. Shock Heating (0 < t e t i )  

Consider the driver plasma with initial density, P F ~ ,  and pressure, PFO, that is initially in 

motion with velocity, vo , and which collides with the cushion at rest with initial density, pco, and 

pressure, Pco. Let us find the solution for the flow variables for the case where radiation is 

ignored. By the proof given in the Appendix this will give the exact solution at points removed 

from the front. The subsequent motion is described by Figure 3, which shows the space-time 

diagram of the dynamics (the subscript 1 denotes the shocked state). The relations that describe the 

flow from the time of impact to the time that the shocks reach the outside boundary of the driver 

plasma (denoted by subscript F) and/or the cushion (denoted by subscript C) are: 

Driver: 



I i 
J 

where U denotes the shock velocity and E is the specific internal energy. 

Cushion: 

Letting p = lN ,  where V is the specific volume, it is easily shown that 

and 
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(5c) 

Using (4b) and (5b) to eliminate the specific volumes and defrning the effective heat capacity Cv 

through the relation 

I ECI - ECO = $Pc1 + p~o)wco - VC1) 

&=-- pv - CYT , 
Y - 1  

and noting that at the contact discontinuity uc1 = uF1 = u, and Pc1 = PF1 = P, we find in the 

strong shock limit P >> PFO and P >> Pco 

where 

The plus sign in the denominator has been chosen to satisfy analytic contiuation in the parameters p 

and y. In addition, the pressure and velocity in the cushion behind the shock can be written in the 

form 

and 

The ratio of the temperature across the shock front in the cushion can be written in the form 
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or, equivalently, 

It follows from (8) and (1 1) that the maximum temperature is obtained in the limit pco / p ~ o  -+ 0. 

Finally, the shock velocities are given by 

uc= - % + I u  
2 

and 

We can now calculate the kinetic and internal energies at the time t i  = dc / Uc (dc is the initial 

thickness of the cushion) when the shock reaches the far surface of the cushion (Figure 3), 

assuming that the rarefaction in the driver plasma has not yet reached the contact discontinuity. 

First, note that the total energy per unit area A (neglecting any initial internal energy) is 

Here dF is the initial thickness of the driver plasma. The kinetic energy per unit area of the cushion 

is found to be 

For the internal energy, E, per unit area of the cushion, we note that in the strong shock limit 

W A ) C  = (=Ah2 (16) 

and there is equipartition. For completeness, the driver kinetic energy per unit area is 
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The first term is the kinetic energy of the unshocked plasma, and the second is term is that of the 

shocked part (it is implicitly assumed at this point that dF is large enough that the shock has not 

reached the driver plasma's free surface). After some reduction, (17) becomes 

Finally, it is found that the driver internal energy is 

where 
6=----v($-- YF-1 a 

2 I +a 

At t i  a large fraction of the total energy is still in kinetic form, but the material is beginning to heat. 

For example, we note that in the special case where dF = dc,  ~ F O  = pco, and yF = yc, there is 

complete equpartition and (KE) = (IE) = (WA)/4 for both the cushion and the driver plasma. 

B. Shock Reflection (t i  < t < t2) 

At time t1 the shock in the cushion is reflected from the wall, leaving the material behind it at 

rest. Using the Hugoniot relations (the fluid ahead of the shock is denoted by subscript 1, while 

the material behind it is denoted by subscript 2) it is found that 
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where u is the fluid velocity behind the incident shock. The temperature behind the reflected shock 

may be expressed in terms of the initial state variables as 

This is a factor (3yc - l)/yc times greater than the temperature before shock reflection and is due 

to the complete stagnation of the kinetic energy of the cushion. This is the primary reason why the 

solid cushion has been chosen instead of an annulus. The increased cushion or hohlraum 

temperature comes at a price, however, in that one must deal with the strong shock on axis which 

could destroy an experiment that is placed there. In the case of a fusion capsule which is placed in 

the cushion, for example, the shock can be handled either through placing the capsule inside of a 

blast shield for protection, or by designing the capsule so that its ablator holds off the shock. That 

these options are viable has been confiied with detailed numerical calculations. 

C. Stagnation (t > t2) 

The goal is to convert as much of the internal energy of the driver, (EUA), as possible into 

internal energy of the cushion at the time the reflected shock reaches the contact discontinuie. To 

do this, the kinetic energy of the cushion must be stagnated. If the initial fluid parameters are 

chosen so that the rarefaction in the driver that travels back toward the cushion does not reach the 

contact discontinuity before time t2, then the outward moving shock completely stagnates the 

cushion. The condition, then, to obtained complete stagnation of the cushion is that the position of 

the rarefaction in the driver at t2, x~ ( t2 ) ,  be to the left (see Figure 3) of the contact discontinuity, 

ut2 . That is, 

4The cushion can be further heated if the reflected shock is itself reflected at the contact discontinuity back 
into the cushion. If the shock is not reflected, a rarefaction will travel back into the cushion causing 
disassembly and conversion of the stored internal energy into kinetic energy. These cases are not considered 
in the analysis above. 

10 



1 

where cF is the sound speed in the driven after it is shocked, tl  ' is the time for the shock to reach 

the outside of the driver, and is given by 
- 

t1'= dF 
v u + ~ u F ~  

and 
dc+ I u,2 I tl 

u + I k , 2  I tz = 

and the inequality places the following condition on the dimensions of the initial assembly: 

IV. RADIATION-HYDRODYNAMIC ASSEMBLY OF THE FRC 

In the preceeding section we considered the hydrodynamic conditions in the driver and the 

cushion after assembly. Prior to assembly, ultraviolet radiation from the Joule-heated imploding 

driver will preheat the cushion. The shock waves produced when the driver impacts the cushion 

further heats the plasma (as discussed in Section 111) and will serve as an additional source of 

radiation. The radiation front produced by the shock in the cushion can be described by similarity 

solutions to the radiation hydrodynamic equations prior to its reaching the axis of symmetry (the 

impenetrable wall in the planar model). Once radiation reaches the wall the equations must in 

general be solved numerically. We are primarily interested in the case where the radiation field 

moves supersonically into the cushion (material and radiation in the cushion ahead of the shock are 

not strongly coupled). For real materials the effective gammas, yc and YF, and the specific heat 
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appearing in (6) are not constants, but vary with ionization during the evolution. This makes 

analytic treatments difficult. Consequently, an analysis including radiative effects has been carried 

out using a one dimensional (I-D) hydrodynamic computational model which includes radiation 

diffusion and material coupling in a three temperature approximation and uses tabular equations of 

state and opacities for the driver and liner.5 The effects of magnetic fields are not included in this 

discussion (this allows us to concentrate on the radiation and hydrodynamic issues). The presence 

of MHD effects will be considered in a subsequent paper. Thus we exclude the effects of Joule 

heating of the drive plasma during assembly and the magnetic tamping of the pinch. These effects 

are expected to increase the temperature of the driver and extend the time of maximum temperature 

in the cushion by reducing the amount of expansion at pinch. Preliminary l-D MHD calculations 

using tabular electrical resistivities for carbon and hydrogen in the cushion indicate that there is 

little cunent penetration into the cushion during assembly and after pinch. 

The accuracy of the numerical hydrodynamic treatment has been confmed by benchmarking it 

against the analytic solutions presented in Section III. The test problem consisted of two gamma 

law fluids in planar geometry. The cushion was 0.5 cm thick, with an initial density 0.053 g/cm3. 

We used (1) for the equation of state for the cushion, with ‘yc = 1.4. The cushion was initially at 

rest with essentially zero internal energy. The driver for the FRC was 0.5 cm thick, with an initial 

density 0.0265 g/cm3. The equation of state for the FRC was of the form (1) with 1 ” ~  = 5/3. The 

entire FRC had an initial velocity of 40 cm/p  and essentially zero internal energy. The calculated 

and theoretical values for the fluid variables associated with the main shock and the first reflected 

shock compared quite well, as is shown in Table 1. 

The driver plasma for the numerical model is gold and the cushion is CH foam with initial 

conditions shown in Figure 5. The initial conditions chosen for the gold plasma are typical of the 

conditions obtained in MHD simulations of a thin gold foils driven by pulsed power systems. 

Unperturbed models tend to predict a relatively thin radial sheath near pinch. However, perturbed 

description of the physics model used here can be found in D.L. Peterson, R.L. Bowers, J.H. Brownell, 
A.E. Greene, K.D. Mclenithan, T.A. Oliphant, N.F. Roderick and A.J. Scannapieco, to appear in Phys. 
Plasmas, Jan. 1996. 
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(2-D) simulations produce a much thicker plasma near pinch. These effects will reduce the 

temperature in the cushion. We have chosen the thickness of the driver plasma to reflect these 

effects. Tabular constitutive relations have been used in the simulations. Figure 4 shows the 

equation of state P(p,T) and the Rosseland mean opacity K(~,T) used for each of these materials. 

- 

The initial temperatures of each material are also chosen to represent the conditions from MHD 

simulations at impact, which include the radiative losses and Joule heating of the driver plasma 

during implosion, and a simple (spatially uniform) pre-heat model for the cushion. Figure 6 

shows the position versus time of the radiation front (solid curve), the contact discontinuity 

(dashed-dot curve), the shock front in the cushion (dotted curve) and the shock front in the gold 

(dashed curve). 

At impact, shock waves are generated in the driver and in the cushion which can be described 

by the analysis of Section III. Shock heating of the plasma serves as the source of radiation 

generation in the hohIraum and of radiative losses from the driver plasma. In this section we 

consider the dynamics of the driver and the cushion, and concentrate on radiative effects. Profiles 

of density (in g/cm3), radiation temperature (in eV) and material temperature (in eV) versus the 

spatial coordinate x (in cm) are shown in Figure 7 at several times after impact (t = 0). In the 

following sections we shall discuss the radiation-hydrodynamic effects using the temporal stages 

appearing in Section III. 

A. Assembly of the Hohlraum (0 < t < t i )  

At impact, the inward moving shock sets up a radiation front in the cushion which propagates 

toward the left with a velocity of about -21 cm / ps. Figure 7a shows system 5.3 ns after impact. 

The cushion density behind the shock is about 0.19 g/cm3. The contact discontinuity is at xc = 

0.41 cm, and travels to the left with velocity vc = -16.4 cm / p; the shock front, located at XC,S = 

0.38 cm, travels with velocity vs = -20 cm / ps. The Rosseland mean free path in the unshocked 

portion of the cushion initially is about 2.5 x 10-3 cm. As the radiation front moves into it, the 

cushion is preheated to about 50 eV and the mean free path incresses to about 0.04 cm. Here, the 

radiation field and the cushion are only weakly coupled. At the front the radiation temperature '& 
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= 90 eV, and the plasma temperature Te = 55 eV. Behind the shock front in the cushion TR varies 

from 125 eV to 135 eV, and Te = 140 eV (apart from the small peak at the shock front). - 
In the FRC the radiation and plasma are tightly coupled. The radiation diffusion front moves 

supersonically outward from the contact discontinuity at about 17.3 cm / ps, reaching the backside 

of the driver at t = 10 ns. This corresponds to the beginning of the x-ray emission from the FRC 

as seen to the right. In a cylindrical pinch this would correspond to the radial output. The peak 

power during this stage occurs at about t = 16.9 ns (Figure 8), and is 55.9 MJ / ps. The total 

output per unit area6 during this stage of the implosion is about 175 kT / cm2. 

Near the end of first stage of x-ray output, the FRC appears as shown in Figure 7b. The 

radiation temperature in the cushion varys from about 75 eV to 125 eV, and preheats the cushion to 

about 50 eV. The shock-heated cushion is at a plasma temperature of about 130 eV. Just prior to 

the time the shock reaches the wall (x = 0) the cushion has been heated to a nearly uniform 

temperature of about 125 eV. During this period the driver is about 500 radiation mean free paths 

thick, and acts as an efficient radiation case. The opacity in the shock heated cushion is about 600 

cm2/g, corresponding to a Rosseland mean free path of about 10-2 cm. This corresponds to only a 

few radiation mean free paths between the wall and the contact dis~ontinuity.~ This explains the 

near uniform radiation field structure in the shocked cushion. The relative lack of x-ray output on 

the right from the right (Figure 8) during the time 20 ns < t e 32 ns shows that the FRC is acting to 

confine the radiation. 

B. Shock Reflection (t i  c t < t2 ) 

The shock in the cushion is reflected from the wall at about 24 ns. Figure 7c shows the 

structure at t = 24.4 ns as the reflected shock begins to move to the right into the cushion. There is 

a rapid rise in plasma temperature at the wall x = 0, which is weakly coupled to the radiation field. 

As during the frrst shock stage, the radiation from reflected shock moves ahead of the shock and 

preheats the pIasma. This is clear in Figure 7d, showing the system at t = 27.4 ns when the 

61n the one-dimensional planar approximation the output is characterized by the emission per unit area of 
the system, and will be expressed in MJ/cm2. 
7The Rosseland mean opacity actually underestimates the mean free path in regions that are optically thin. 
Multigroup opacities would predict less absorption that indicated by the model here. 
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reflected shock has reached 0.05 cm. The temperature of the radiation precursor is slightly greater 

than 200 eV, and has heated the cushion to about 175 eV. The contact discontinuity is at x = 0.1 . 
em. 

C. Stagnation (t2 < t ) 

Reflected shock heating of the cushion is complete at about t = 31 ns, and the second stage of 

x-ray output begins. The structure of the FRC at t = 31.32 (Figure 7e) shows the contact 

discontinuity at about x = 0.075 cm. The temperature in the cushion is slightly greater than 200 eV 

(the radiation temperature is uniform). The second stage of x-ray output (Figure 8), which occurs 

as the reflected shock heats the driver, lasts about 5 ns and emits an additional 76 kJ / cm2. The 

peak power during this stage, which occurs at about t = 34 ns) is comparable to the first stage 

(about 55 MJ / ps). The total x-ray energy emitted to the right is about 251 kJ / cm2. Including 

the MHD drive is expected to increase the energy output because the magnetic field acts effectively 

as a tamper for the system. This reduces cooling associated with the hydrodynamic expansion of 

the the FRC. Joule heating of the driver will also contribute to the net x-ray output. 

The energy partition during the implosion versus time is shown in Figure 9. The total energy 

in the radiation field is negligable compared with the other forms of energy and is not shown. The 

values shown assume a 1 cm radius disk for the driver and cushion. This corresponds to a 3.3 MJ 

implosion, and produces about 0.8 MJ of x-ray output to the right. 

Figure 10 shows the time history of the radiation temperature and the plasma temperature in the 

cushion at several points to the right of the wall. The point nearest the wall (solid curve) shows a 

slight precursor followed by a rapid rise to a peak temperature of about 250 eV. The other curves, 

which lie to the right of the wall, show the effect ot the first shock, which heats the plasma to about 

140 eV, followed by the reflected shock which heats it to about 200 eV. Finally, Figure 11 shows 

the plasma pressure just to the right of the wall versus time. 

V. DISCUSSION 



8D.L. Peterson, R.L. Bowers, J.H. Brownell, A.E. Greene, K.D. McLenithan, T.A. Oliphant, NF.  
Roderick, and A.J. Scannapieco, "Two-Dimensional Modeling of Magnetically Driven Rayleigh-Taylor 
Instabilities in Cylindrical Z Pinches", Physics of Pluasmas 3,368 (1996); W. Matuska, R.L. Bowers, 
J.H. Brownell, H. Lee, C.M. Lund, D.L. Peterson and N.F. Roderick, "Two-Dimensional Modeling of 
Radiation Output from Perturbed 2 Pinches", Physics of Plasmas 3, 1415 (1996). 
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The analytic hydrodynamic and numerical radiation-hydrodynamic models discussed above 

illustrate most of the essential physics of a FRC. More nearly realistic models should include the 

effects of magnetic fields and the magnetic drive during the implosion, as well as the effects of 
. 

convergence associated with cylindrical geometry. Finally, the effects of magnetic Rayleigh- 

Taylor instabilities during the implosion need to be included. Probably the most important of these 

issues are the effects of instability growth, since they tend to increase the thickness of the driver 

plasma and distribute the implosion kinetic energy over a larger volume. This leads to an increase 

in the radiation pulse-width at pinch. If the instabilities are of sufficient magnitude, they may 

disrupt the driver and Seriously degrade the performance of the FRC. When one-dimensional 

calculations of bare implosions (a driver plasma without a central target) have been carried out and 

compared with experiments which are known to be perturbed, the agreement with data is not good 

(calculated radiation pulse-widths, for example, are too short and predicted plasma temperatures 

are too high). Two-dimensional studies of bare implosions which include the effects of instability 

growth have been carried out in the low energy regime and are found to resolve many of the 

discrepancies with the data. Similar two-dimensional studies of the FRC are needed to determine 

the effectiveness of this concept. 

APPENDIX 

The Hugoniot relations may be obtained in the laboratory frame of reference starting with the 

hydrodynamic equations of continuity, momentum and energy. In one spatial dimension the latter 

8D.L. Peterson, R.L. Bowers, J.H. Brownell, A.E. Greene, K.D. McLenithan, T.A. Oliphant, NF.  
Roderick, and A.J. Scannapieco, "Two-Dimensional Modeling of Magnetically Driven Rayleigh-Taylor 
Instabilities in Cylindrical Z Pinches", Physics of Pluasmas 3,368 (1996); W. Matuska, R.L. Bowers, 
J.H. Brownell, H. Lee, C.M. Lund, D.L. Peterson and N.F. Roderick, "Two-Dimensional Modeling of 
Radiation Output from Perturbed 2 Pinches", Physics of Plasmas 3, 1415 (1996). 
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$(PX + q) = -gp.(. + $) + PU + SI (3) 

where p, u, and P are the material density, velocity and pressure, respectively. The quantity 2: is 

the specific internal energy, and S is the total radiative flux. We assume that the shock structure is 

steady and transform to a frame that is moving at the shock speed, U > 0. In this coordinate 

system the flow variables are independent of time, and under the transformation 

x' = x-ut, I = t  , equations (1)-(3) become 

-& d [(u-U,p] = 0, - d [pu(u-U) + P] = 0 dr 

and 

$ [ p ( X + + ( * - U ) + P * + S ]  U2 = 0 

It will be assumed that the shock front and the radiation front extend only over an inifinitesimal 

width (a few mean-free paths). In fact, it is found that the front has a width of several photon 

mean-free paths. Integrating these equations, and evaluating the integration constants far away 

from the shock on the downstream side where u = 0, P = Po , I: = Eo and S = S, , we obtain: 

(U-u)p = up, (4) 

p*Uu = P -  Po 

p,u(z-z, + ?) U2 = Pu + s-s, 



where p, u, P, and C denote quantities behind theshock and the subscript o denotes quantities in 

front of the shock. Equations (4)-(6) are the Hugoniot relations in the laboratory frame of 

reference, which have been used to derive the results in Section III. 

Finally, we consider the flow variables away from the shock front when radiation is present. 

In particular, we show that the flow variables associated with the shock, which is strong enough 

that radiative flux must be accounted for, approaches those in a shock where radiation can be 

ignored. Denoting flow variables in the former case (radiation present) by primes, and using 

unprimed quantities for the corresponding variables without radiation, we write the energy relation 

along the Hugoniot (6) as 

p*U’ (r-z; + 2 u ’ 2 )  = Pir’+ S(x) 

Subtracting the second from the first equation gives 

’2 
p,U’(X’-X’,) - p,U (z -xu) + p,U’$- Pb’- Pu + S(X) 

Next, we note that the specific internal energyz,’ = Z, , so the second term on the left side 

vanishes. Now we assume that away from the front, the radiation field is in equilibrium and the 

positive and negative components of the flux cancel. Therefore S -+ 0 at points removed from the 

discontinuity. Of course, this does not necessarily imply that the actual values of the fluid 

variables have not been altered from their non-equilibbum values. We can also subtract the mass 

continuity equation for non-radiative flow from the corresponding equation including radiation to 

obtain 

PJU’- v) = ( U ’ - u ~ p ’ - ( U - u ) p  
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In the same way we find for the momentum equation 
c 

p,(Utr’- vu) = P’- P 

At large distances (compared with the mean free paths) behind the shock front we have 

u = u’ and P = P’ , since these quantities are set by the piston (ignoring the short time interval 

when the front is near the piston when the radiative flux can affect the fluid variables). It then 

follows from the fluid equation of state (and the assumption that the fluid is in radiative 

equilibrium) that X = E’ away from the front. Consequently, away from the front the flow 

variables approach their radiation-free values. These assumptions have been used throughout the 

analysis of Section HI. 



Table 1. Comparison of calculated and theoretical values of fluid variables in hydrodynamic test 

problem. The subscripts 0,1, and 2 denote initial quantities, quantities behind the first shock, and 

quantities behind the reflected shock respectively. Numbers in parenthesis are from the analytic 

model. 

Au CH Au CH 

4.19 6.11 9.94 20.3 17.3 3.55 2.29 6.6 

(4.0) (6.0) (9.47) (20.5) (17.1) (3.5) (2.29) (6.84) 
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Figure Captions 

Figure 1. Schematic representation of a flying radiation case (FRC) in cylindrical 

geometry. In each case the voltage drop associated with the pulsed power source (not 

shown) is connected across the two electrodes. (a) FRC and a central cushion; (b) cushion 

containing a capsule; (c) cushion and a side hohlraum. The axis of symmetry is horizontal. 

Figure 2. Schematic set up for planar model of FRC. A rigid wall is located at the left 

(x = dc ), and the contact discontinuity between the FRC and the cushion is located 

initially at x = 0 . The outer boundary of the FRC is denoted by -dF . Initial values for 

the fluid variables are also shown. Finally, the locations xCSandxF,,  of the shock 

fronts are shown in the cushion and plasma respectively. 

Figure 3. Space-time representation of the evolution of the FRC. The spatial coordinate x 

runs vertically. The reflecting boundary is shown cross-hashed. The times 

t i ,  tl and t2 correspond to shock breakout at the outer surface of the driver, shock 

arrival at the reflecting wall, and the time the reflected shock in the cushion reaches the 

contact discontinuity. 

Figure 4. Equations of state and opacities used in the radiation-hydrodynamic model of the 

planar FRC. (a> P(p,T) in Mbar and (b) Rosseland mean opacity K(~,T) in cm2 g-1 for a 

gold FRC. Pressure isotherms range from 2.5 x 10-3 eV to 300 eV. The opacity curves 

range from 2 x 10-5 g k m 3  to 2 x 103 glcrn3. (c) P(p,T) and (d) Rosseland mean opacity 

K(~,T) for a CH cushion. The pressure isotherms range from 2.5 x 10-3 eV to 500 eV, 

and the opacity curves from 1 x 10-6 g/cm3 to lo4 g/cm3. 
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Figure 5. Initial conditions for the l-D planar model of the FRC, showing the driver plasma and 

the cushion at the moment of impact. The driver is moving to the left with a kinetic energy of 1.04 

MJlcm2. The left-hand boundary is considered to be impenetrable to matter and radiation. 

Figure 6. Position versus time for the radiation hydrodynamic calculation of the radiation front in 

the cushion,(solid curve), the contact discontinuity (dashed-dot curve), the shock in the cushion 

(dotted curve) and the shock in the gold driver (dashed curve). 

Figure 7. Profiles of plasma density (solid curve, in g/cm3), radiation temperature TR (dotted 

curve, in eV) and material temperature T (dash-dot curve, in eV) versus spatial coordinate x (cm) at 

several times: (a) t = 5.3 ns; (b) t = 19.6 ns; (c) t = 24.4 ns; (d) t = 27.4 ns; and (e) t = 31.3 ns. 

Impact occurs at t = 0, and the rigid boundary is located at x = 0. The position of the contact 

discontinuity between the gold and the cushion for the times above is XCD = 0.41 cm, 0.19 cm, 

0.14 cm, 0.09 cm and 0.08 cm, respectively. 

Figure 8. Radiation output (solid curve, in MJ/cm2) and power (dotted curve, in MJ/ps) from the 

outside of the gold plasma, versus time in p. The power is normalized to the peak value of 58.87 

MJ/ps, which occurs at t = 16.9 ns. 

Figure 9. Energy (MJ) versus time (p). Kinetic energy (solid), plasma internal energy (dotted), 

and radiation output Eout (dashed-dot). The dashed curve at top is the total energy in the problem, 

which should be a constant. 

Figure 10. Material temperature in keV versus time in ps for several positions in the cushion near 

the rigid boundary. 

Figure 11. Material pressure (Mbar) near the wall in the cushion versus time (p). 
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