
Title:

Author(s):

Submitted to:

Los Alamos - _ _ ~~

N A T I O N A L L A B O R A T O R Y

Analysis, Design, and Implementation of PHENIX
On-Line Computing Systems Software using
Shlaer-Mellor Object-Oriented Analysis and
Recursive Design

Thomas Kozlowski, Ed Desmond, John Haggerty,
Hyon-Joo Kehayias, Martin Purschke, and
Chris Witzig

International Conference on Computing in
High Energy Physics
Berlin, Germany, April 7-1 1, 1997

Los Alamos National Laboratory, an affirmative actiordequal opportunity empkFyer. is operated by the University of California for the US. Department of Energy
under contract W-7405ENG-36. By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive, royatty-free license to
publish or repmduce the published form of this contribution. or to allow others to do so, for US. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

F m No. 836 R5
ST262910Bl

Portions of this document may be illegii’le
in electronic image products. Images are
produced from the best available original
doctxnenL

Analysis, design, and implementation of PHENIX on-line
computing systems software using Shlaer-Mellor
Object-Oriented Analyis and Recursive Design

Thomas Kozlowski ’, Ed Desmond ‘, John Haggerty b,

Hyon-Joo Kehayias b, Martin Purschke b , Chris Witzig

a Physics Division, Los Alamos National Laboratory, Los Akamos, NM 87545
Physics Department, Brookhaven National Laboratory, Upton, NY, 11 973

Abstract

An early prototype of the core software for on-line computing systems for the
PHENIX detector at RHIC has been developed using the Shlaer-Mellor OOA/RD
method, including the automatic generation of C++ source code using a commerical
translation engine and “architecture”.

Keywords: OOA; OOD; Object-Oriented; Shlaer-Mellor; C++; PHENIX.

1 Shaler-Mellor OOA/RD

The Shlaer-Mellor method is centered on “Information Models” that precisely
define the entities, rules and policies of a domain. Domains are the high-
est level components of a Shlaer-Mellor system, identified according to their
specific “subject matter”, and can’be developed relatively independently. The
life-cycle of each “active” object in an Information Model is modeled in a State
Transition Diagram. Actions are associated with each state and are specified
by Data Flow Diagrams or a high level Action Specification Language. Tran-
sitions between states result from “events” (messages) sent from objects or
external domains. The resulting set of models is a description of the system as
a set of interacting Finite State Machines embedded in object instances. Since
the models are rigorous and complete, the system can be simulated by execut-
ing them, or they can be transformed directly into source code by a translation
engine according to a specific ”architecture” (translation rules, code templates
and supporting software libraries). Performance and resource constraints are
addressed in the architecture, not the OOA models. Different architectures
can be developed for different implementation requirements. While the OOA

Preprint submitted t o Elsevier Science 16 February 1997

,

models precisely define each domain in an implementation-free way, a Shlaer-
Mellor architecture is used to translate the models to an implementation in
an application-free way. In this sense an architecture is very analoguous to a
high level language compiler and associated run-time libraries (thus the al-
ternative term, “model compiler”). Recently it has been possible to purchase
architectures “off-the-shelf” , offering a fast implementation path, especially
for prototype projects. More details about the method can be found in books
by Shlaer and Mellor[l,2] and from the company founded by the method’s
authors, Project Technology Inc. Our reasons for selecting this particular
method were reported at a past conference[3].

2 Application to PHENIX On-line Computing

The On-line Computing Systems (ONCS) group has completed the first pro-
totype of the on-line computing software. This prototype is a skeleton system
that implements only essential data acquisition capabilities (primarily run con-
trol and configuration of down-loadable frontend hardware). A primary goal
of this prototype was to gain experience with the method through a complete
development cycle. In support ofthis effort, we purchased from Project Tech-
nology the BridgePoint Model Builder tool for creating the OOA models. We
also contracted for several weeks of a Shlaer-Mellor OOA consultant. Members
of the group have also received various levels (from none to three weeks) of
formal Shlaer-Mellor training courses.

I

ONCS Shlaer-Mellor Domains. The domains for the prototype system
are diagrammed in Figure 1. The arrows do not show data or control flow,
but “dependencies”. For example, the PHENIX On-line Operations domain
assumes there is a User Interface domain that provides input from and out-
put to users and user processes. PHENIX On-line Operations is the main
or “application domain”; it represents the system from the point of view of
the user. Various service domains provide services to other domains: User
Interface (including access control), Ancillary Systems Management (access
to high voltage, etc.), Event Analysis (processes built events), Custom Hard-
ware Management (access to data acquisition hardware), Event Data Logging,
and Archive and Log Management (non-event data and logs). Architecture is
the Shlaer Mellor architecture domain. The remaining domains are imple-
mentation domains which are used by the architecture or independently to
implement the other domains. The domains in the dashed box are domains
which may be implemented in whole or in part using Shlaer-Mellor. The oth-
ers are imported software or are implemented using “traditional methods”. In

http:/ /www .pro j tech .corn/

2

Fig. 1. ONCS Domain Chart.

the case of these latter domains, a layer of inter-domain “bridge” software is
added to interface them to client domains. For the first prototypes, some of
these domains are very simple. Their capabilities will be expanded as needed
in later releases. The Shlaer-Mellor bridge concept provides a clean interface
which can simplify upgrades. .

Information Models. In the first prototype, only the PHENIX On-line
Operations domain was developed using OOA. A large domain can be divided
into more manageable sized “subsystems7’, which are collections of closely
related objects, loosely connected to objects in other subsystems. The pro-
totype subsystems are: the Detector Subsystem (PHENIX detector in terms
of subdetectors, magnets, gas systems, and electronics racks); the Subdetec-
tor Subsystem (a subdetector in terms of major components such as a drift
chambers and ancillary system facilities like high voltage channels); the Data
Acquisition Subsystem (configurable data acquisition and trigger components,
runs, detector “partitions”, etc.); and the Bridge Objects Subsystem (handles
interfacing to external domains - bridges). Figure 2 is a simplified version of
the Information Model for the Subdetector Subsystem. The boxes represent
objects and list their attributes. It shows a Subdetector (an object in the
Detector Subsystem), its Subdetector Components and associated Ancillary
System Facilities, and the relations between them. Attributes flagged by aster-
isks are “identifiers” used to uniquely identify a particular instance, and those
qualified by “(Rnnnn)” expressions are referential attributes used to formal-
ize relationships with the identifying attributes of related objects. The arrows
show relations. A doubled-headed arrow points at an object which may have

3

4 is part of

consists of

Subdetector-component

Anc-sys-facility

sd-name (R2021)
* as-fac-type
* number-with-type - availability - active-state - monitoring-on - fault - fault-severity - comp-id (Fl2020) - current-state

comp-id - cornp-type-name
(WCW - comp-name - number-with-name - sd-name (R2000 c) - fault-severii - sc-type-name (R2001)

R2009
specifies

subdet-comp-wpe

+ sd-type-name (R2009)
+ comp-type-name

Fig. 2. Simplified Subdetector Subsystem Information Model.

“many” instances that participate in a relation. The small (‘c)) by an arrow
head, indicates a conditional relation, ie., there may be no object instances
that participate. The textual tags further specify the relation. They can be
read in either direction: “a Subdetector consists of none or more Subdetec-
tor Components” or “a Subdetector Component is part of one and only one
Subdetector”.

State Models. The dynamics of an active object are specified by a State
Transition Diagram (STD), using the Moore form in which actions are associ-
ated with the destination states (not with transitions). A transition may occur
on receipt of an event by an object instance from the same or another object
instance or from an external domain. Events are given a unique event name
based on the destination object type and state. An event can carry “supple-
mental” data for use by the State Action. Figure 3 shows the STD for the
Ancillary System Facility object. An Ancillary System Facility is a generic
object representing supporting equipment or a sensor. This STD specifies the
dynamics of an Ancillary System Facility, including the posting of significant
state changes and fault conditions. The detailed equipment operations are not
modeled here, since they are handled by the Ancillary System Systems Manag-
ment domain which has knowledge of the capabilities and operational details
of each specific type of equipement or sensor. The textual tags associated with
transition arrows specify the events that cause the transition.

Process Models.
specific form of a traditional Data Flour Diagram) to
that occurs on a transition to a state. Most

The method uses an “Action Dat

SD-ASFAC2 Make Available
[avail dWflDti0fll -

Available Not Available

SD-ASFAW. Make-iVot-A
SD-ASFAc4: Configure [wnfi9_tile]

Configun,

4 SD-ASFArnConfigure [confis_file]
SD-ASFACS: wait ‘Or

SD-ASFACS: W$ For Rqu&

SD-ASFAWSef Standby a
SD-ASFAC3: M&e-No~Avai/ab/e I
SD-ASFAC5: Wait For Request

Post Fault

fault]

SD-ASFACI I : SD-ASFAmSet Sefpoint

[severity, fault]

Wait for Request
SD-ASFAC10 New State [new-state] I

SD-ASFACIO: New State I SD-ASFACIO New State
~new-statel new-state]

SetToSrandby - PostNewstate 4

SD-ASFACl1:fault [Severity, fault]

Fig. 3. Ancillary System Facility State Transition Diagram.

them, but use instead a high level “Action Specification Language” (ASL).
The following is the Bridgepoint ASL that specifies the “Configure” state
action (See Figure 3):

// ** update a c t i v e state at tr ibute
assign s e l f . act ive-state = “CONFIGURING” ;

// ** send event t o Ancillary Systems Service
generate AS3 : Conf igure-Facility-Using-Conf ig,File (

config,file:rcvd,evt.config,file, sd:self.sd,name,
as,fac,type:self.as,fac,type, number:self.number,with,type,
to AS;

This very simple state action does two things: it sets the object’s “activestate”
attribute to the new ”CONFIGURING” state, and sends an event to the
Ancillary System Management domain (AS), with instance identifiers and
configuration file name for use by the service. When the service completes it
will send a “New-State” event back to this instance.

5

Architecture and Code Generation. The ONCS group purchased the
Bridgepoint code generator and an “off-the-shelf” architecture (MC-2010)
from Project Technology. MC-2010 is a simple but complete architecture com-
patible with the Bridgepoint toolset. While MC-2010 does not meet our final
needs, it was adequate for the prototype. It is somewhat restricted: OOA ana-
lyzed domains all reside in an single task; non-OOA domains may reside in the
OOA task or an external task; and all tasks are on the same node. It generates
C++ code in a UNIX environment, including: C++ classes for every object; a
member function for each state action; header and source files for events (they
can be used by non-OOA domains for sending events an OOA-domain); and
header files for events directed to non-OOA domains (the non-OOA domain
supplies the implementation). Inter-task communication uses UNIX message
queues. User control of the actual generation process is simple: configuration
information is specified such as which domains are in which tasks, and then
a top level make file is invoked. The following code was generated for the
preceding “Configure” :

void PHLOPSAS,Anc,sys,facility-c::asyncActionConfi~re-state(
stda-string-c const Lp-Config-file) {

st da-benchmarkkt ionSt art ed () ;
this->setm,Active,state(“CONFIGURING” ;
PHLOPSAS-ANCSYS-AS-bridge-c::

Conf igure-Facility-Using-Conf ig-File (
this->getm,As,f ac-type 0, p-Conf ig-f ile,
this->getm-Number,with-type() , this->getm,Sd,nameo) ;

3

Since even our prototype system is a distributed one, we added a Shlaer-
Mellor-event-like intertask and internode communication mechanism based
on CORBA.

3 Experiences and Future Plans

Experiences. Our experiences have been mostly positive, although there is
concern about payback from the investment in tools, training, learning on the
job, and the inevitable unease in developing software in a way that is quite
different for most of us. In particular, the large analysis effort expended early
on in a project in getting the models right (and understanding the system)
tends to make those used to “traditional methods”, in which emphasis is con-
centrated on developing code, uncomfortable. Formal training in the method
is definitely important and results in a net saving of time. But is it is not
enough, since developing analysis skills takes time and experience. The use
of a consultant has been valuable in helping us make progress and giving us

6

encouragement during the often difficult learning period. The learning curve
problem practically guarantees that the initial projects will take significantly
longer than with more traditional methods. The investment should result in
better productivity in subsequent development and in better understood and
documented systems which match requirements and are more maintainable
(It is much easier to work at the level of the graphical models than C++
source code.). It is important that the entire team be involved in learning
and understanding the method at appropriate levels, so that all efforts will fit
in with the Shlaer-Mellor way of organizing and doing things. This has been
somewhat of a problem for us because of more than normal staffing changes.

Future. After the completion of the early prototypes, we will evaluate our
experiences and our options for subsequent ONCS releases, including final sys-
tem architecture requirements and extending OOA analysis to other domains.
As mentioned earlier, the purchased architecture is not adequate beyond the
first prototypes. The size of the PHENIX system requires a distributed system
because of the large number of processors and expected performance gains
from parallelism. We will either have to modify the current architecture or
provide our own. We have already had to port the architecture to new plat-
forms, which was not a simple effort. Although it will not be easy to make
major modifications, the current architecture probably is a good basis and
sufficient framework for modifications (adding CORBA distributed objects,
for example) for the next level of prototype.

Acknowledgements

This work has been funded by the U.S. Department of Energy.

References

[l] Sally Shlaer and Stepan

[2] Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis, Modeling

Mellor, Object Oriented Systems Analysis, Modeling
the WorZd in Data Yourdon Press, 1988.

the World in States Yourdon Press, 1992.

[3] T. Kozlowski et al., Shlaer-Mellor Object-Oriented Analyis and Recursive
Design, an effective modern software development method for development
of computing systems for a large physics detector, in: Proceedings of the
International Conference on Computing in High Energy Physics, Rio de Janeiro,
BraziZ, 1995 (World Scientific, 1996) 687-695.

7

