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Abstract 

An early prototype of the core software for on-line computing systems for the 
PHENIX detector at  RHIC has been developed using the Shlaer-Mellor OOA/RD 
method, including the automatic generation of C++ source code using a commerical 
translation engine and “architecture”. 
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1 Shaler-Mellor OOA/RD 

The Shlaer-Mellor method is centered on “Information Models” that precisely 
define the entities, rules and policies of a domain. Domains are the high- 
est level components of a Shlaer-Mellor system, identified according to their 
specific “subject matter”, and can’be developed relatively independently. The 
life-cycle of each “active” object in an Information Model is modeled in a State 
Transition Diagram. Actions are associated with each state and are specified 
by Data Flow Diagrams or a high level Action Specification Language. Tran- 
sitions between states result from “events” (messages) sent from objects or 
external domains. The resulting set of models is a description of the system as 
a set of interacting Finite State Machines embedded in object instances. Since 
the models are rigorous and complete, the system can be simulated by execut- 
ing them, or they can be transformed directly into source code by a translation 
engine according to a specific ”architecture” (translation rules, code templates 
and supporting software libraries). Performance and resource constraints are 
addressed in the architecture, not the OOA models. Different architectures 
can be developed for different implementation requirements. While the OOA 
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models precisely define each domain in an implementation-free way, a Shlaer- 
Mellor architecture is used to translate the models to an implementation in 
an application-free way. In this sense an architecture is very analoguous to a 
high level language compiler and associated run-time libraries (thus the al- 
ternative term, “model compiler”). Recently it has been possible to purchase 
architectures “off-the-shelf” , offering a fast implementation path, especially 
for prototype projects. More details about the method can be found in books 
by Shlaer and Mellor[l,2] and from the company founded by the method’s 
authors, Project Technology Inc. Our reasons for selecting this particular 
method were reported at a past conference[3]. 

2 Application to PHENIX On-line Computing 

The On-line Computing Systems (ONCS) group has completed the first pro- 
totype of the on-line computing software. This prototype is a skeleton system 
that implements only essential data acquisition capabilities (primarily run con- 
trol and configuration of down-loadable frontend hardware). A primary goal 
of this prototype was to gain experience with the method through a complete 
development cycle. In support ofthis effort, we purchased from Project Tech- 
nology the BridgePoint Model Builder tool for creating the OOA models. We 
also contracted for several weeks of a Shlaer-Mellor OOA consultant. Members 
of the group have also received various levels (from none to three weeks) of 
formal Shlaer-Mellor training courses. 

I 

ONCS Shlaer-Mellor Domains. The domains for the prototype system 
are diagrammed in Figure 1. The arrows do not show data or control flow, 
but “dependencies”. For example, the PHENIX On-line Operations domain 
assumes there is a User Interface domain that provides input from and out- 
put to users and user processes. PHENIX On-line Operations is the main 
or “application domain”; it represents the system from the point of view of 
the user. Various service domains provide services to other domains: User 
Interface (including access control), Ancillary Systems Management (access 
to high voltage, etc.), Event Analysis (processes built events), Custom Hard- 
ware Management (access to data acquisition hardware), Event Data Logging, 
and Archive and Log Management (non-event data and logs). Architecture is 
the Shlaer Mellor architecture domain. The remaining domains are imple- 
mentation domains which are used by the architecture or independently to 
implement the other domains. The domains in the dashed box are domains 
which may be implemented in whole or in part using Shlaer-Mellor. The oth- 
ers are imported software or are implemented using “traditional methods”. In 

http:/ /www .pro j tech .corn/ 

2 



Fig. 1. ONCS Domain Chart. 

the case of these latter domains, a layer of inter-domain “bridge” software is 
added to interface them to client domains. For the first prototypes, some of 
these domains are very simple. Their capabilities will be expanded as needed 
in later releases. The Shlaer-Mellor bridge concept provides a clean interface 
which can simplify upgrades. . 

Information Models. In the first prototype, only the PHENIX On-line 
Operations domain was developed using OOA. A large domain can be divided 
into more manageable sized “subsystems7’, which are collections of closely 
related objects, loosely connected to objects in other subsystems. The pro- 
totype subsystems are: the Detector Subsystem (PHENIX detector in terms 
of subdetectors, magnets, gas systems, and electronics racks); the Subdetec- 
tor Subsystem (a subdetector in terms of major components such as a drift 
chambers and ancillary system facilities like high voltage channels); the Data 
Acquisition Subsystem (configurable data acquisition and trigger components, 
runs, detector “partitions”, etc.); and the Bridge Objects Subsystem (handles 
interfacing to external domains - bridges). Figure 2 is a simplified version of 
the Information Model for the Subdetector Subsystem. The boxes represent 
objects and list their attributes. It shows a Subdetector (an object in the 
Detector Subsystem), its Subdetector Components and associated Ancillary 
System Facilities, and the relations between them. Attributes flagged by aster- 
isks are “identifiers” used to uniquely identify a particular instance, and those 
qualified by “( Rnnnn)” expressions are referential attributes used to formal- 
ize relationships with the identifying attributes of related objects. The arrows 
show relations. A doubled-headed arrow points at an object which may have 
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Anc-sys-facility 
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R2009 
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+ sd-type-name (R2009) 
+ comp-type-name 

Fig. 2. Simplified Subdetector Subsystem Information Model. 

“many” instances that participate in a relation. The small (‘c)) by an arrow 
head, indicates a conditional relation, ie., there may be no object instances 
that participate. The textual tags further specify the relation. They can be 
read in either direction: “a Subdetector consists of none or more Subdetec- 
tor Components” or “a Subdetector Component is part of one and only one 
Subdetector”. 

State Models. The dynamics of an active object are specified by a State 
Transition Diagram (STD), using the Moore form in which actions are associ- 
ated with the destination states (not with transitions). A transition may occur 
on receipt of an event by an object instance from the same or another object 
instance or from an external domain. Events are given a unique event name 
based on the destination object type and state. An event can carry “supple- 
mental” data for use by the State Action. Figure 3 shows the STD for the 
Ancillary System Facility object. An Ancillary System Facility is a generic 
object representing supporting equipment or a sensor. This STD specifies the 
dynamics of an Ancillary System Facility, including the posting of significant 
state changes and fault conditions. The detailed equipment operations are not 
modeled here, since they are handled by the Ancillary System Systems Manag- 
ment domain which has knowledge of the capabilities and operational details 
of each specific type of equipement or sensor. The textual tags associated with 
transition arrows specify the events that cause the transition. 

Process Models. 
specific form of a traditional Data Flour Diagram) to 
that occurs on a transition to a state. Most 
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Fig. 3. Ancillary System Facility State Transition Diagram. 

them, but use instead a high level “Action Specification Language” (ASL). 
The following is the Bridgepoint ASL that specifies the “Configure” state 
action (See Figure 3): 

// ** update a c t i v e  state at tr ibute  
assign s e l f .  act ive-state  = “CONFIGURING” ; 

// ** send event t o  Ancillary Systems Service 
generate AS3 : Conf igure-Facility-Using-Conf ig,File ( 

config,file:rcvd,evt.config,file, sd:self.sd,name, 
as,fac,type:self.as,fac,type, number:self.number,with,type, 
to AS; 

This very simple state action does two things: it sets the object’s “activestate” 
attribute to the new ”CONFIGURING” state, and sends an event to the 
Ancillary System Management domain (AS), with instance identifiers and 
configuration file name for use by the service. When the service completes it 
will send a “New-State” event back to this instance. 
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Architecture and Code Generation. The ONCS group purchased the 
Bridgepoint code generator and an “off-the-shelf” architecture (MC-2010) 
from Project Technology. MC-2010 is a simple but complete architecture com- 
patible with the Bridgepoint toolset. While MC-2010 does not meet our final 
needs, it was adequate for the prototype. It is somewhat restricted: OOA ana- 
lyzed domains all reside in an single task; non-OOA domains may reside in the 
OOA task or an external task; and all tasks are on the same node. It generates 
C++ code in a UNIX environment, including: C++ classes for every object; a 
member function for each state action; header and source files for events (they 
can be used by non-OOA domains for sending events an OOA-domain); and 
header files for events directed to non-OOA domains (the non-OOA domain 
supplies the implementation). Inter-task communication uses UNIX message 
queues. User control of the actual generation process is simple: configuration 
information is specified such as which domains are in which tasks, and then 
a top level make file is invoked. The following code was generated for the 
preceding “Configure” : 

void PHLOPSAS,Anc,sys,facility-c::asyncActionConfi~re-state( 
stda-string-c const Lp-Config-file ) { 

st da-benchmarkkt ionSt art ed () ; 
this->setm,Active,state( “CONFIGURING” ; 
PHLOPSAS-ANCSYS-AS-bridge-c:: 

Conf igure-Facility-Using-Conf ig-File ( 
this->getm,As,f ac-type 0, p-Conf ig-f ile, 
this->getm-Number,with-type() , this->getm,Sd,nameo) ; 

3 

Since even our prototype system is a distributed one, we added a Shlaer- 
Mellor-event-like intertask and internode communication mechanism based 
on CORBA. 

3 Experiences and Future Plans 

Experiences. Our experiences have been mostly positive, although there is 
concern about payback from the investment in tools, training, learning on the 
job, and the inevitable unease in developing software in a way that is quite 
different for most of us. In particular, the large analysis effort expended early 
on in a project in getting the models right (and understanding the system) 
tends to make those used to “traditional methods”, in which emphasis is con- 
centrated on developing code, uncomfortable. Formal training in the method 
is definitely important and results in a net saving of time. But is it is not 
enough, since developing analysis skills takes time and experience. The use 
of a consultant has been valuable in helping us make progress and giving us 
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encouragement during the often difficult learning period. The learning curve 
problem practically guarantees that the initial projects will take significantly 
longer than with more traditional methods. The investment should result in 
better productivity in subsequent development and in better understood and 
documented systems which match requirements and are more maintainable 
(It is much easier to work at the level of the graphical models than C++ 
source code.). It is important that the entire team be involved in learning 
and understanding the method at appropriate levels, so that all efforts will fit 
in with the Shlaer-Mellor way of organizing and doing things. This has been 
somewhat of a problem for us because of more than normal staffing changes. 

Future. After the completion of the early prototypes, we will evaluate our 
experiences and our options for subsequent ONCS releases, including final sys- 
tem architecture requirements and extending OOA analysis to other domains. 
As mentioned earlier, the purchased architecture is not adequate beyond the 
first prototypes. The size of the PHENIX system requires a distributed system 
because of the large number of processors and expected performance gains 
from parallelism. We will either have to modify the current architecture or 
provide our own. We have already had to port the architecture to new plat- 
forms, which was not a simple effort. Although it will not be easy to make 
major modifications, the current architecture probably is a good basis and 
sufficient framework for modifications (adding CORBA distributed objects, 
for example) for the next level of prototype. 
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