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ABSTRACT 
The increasing use of results fiom probabilistic risk 

assessments in the decision-making process makes it ever more 
important to eliminate simplifications in probabilistic models that 
might lead to conservative results. One area in which 
conservative simplifications are often made is modeling the 
physical interactions that occur during the progression of an 
accident seqwnce. 
This paper demonstrates and compares different approaches for 

incorporating deterministic models of physical parameters into 
probabilistic models: parameter range binning, response curves, 
and integral deterministic models. An example that combines all 
three approaches in a probabilistic model for the handling of an 
energetic material (i.e. high explosive, rocket propel1 ant,...) is 
then presented using a directed graph model. 

NOMENCLATURE 
@(x) Heaviside step function. Equal to 0 if x is negative, and 

1 otherwise. 

P Mean 

d Standard Deviation 

P(X) Probability ofx. 

P ( x ~ )  Probability of x given y. 
rnd ArandomnumberbetweenOandl. 

vIowe, 

vWpm 

Velocity at a lower bin boundary 

Velocity at an upper bin boundary 

Probabilistic models are used to help understand real world 
systems. However, just as a scale model of an aircraft that is 
designed for use in a wind tunnel does not have all of the details 
such as engines, control systems, and radios of an actual aircraft, 
probabilistic models cannot contain all of the details of the 
physical interactions that may OCCUT in the real world. 
Probabilistic models should contain enough detail to m e r  the 
question being asked, just as the wind tunnel model of the aircraft 
contains adequate detail to answer specific questions about the 
aircraft design. 
This paper takes a physical problem, modeling the probability 

of an energetic material reacting given an impact, and compares 
various approaches for modeling it probabilistically. This is done 
to give the reader some insight into the strengths and weaknesses 
of each solution technique. 

SIMPLE PROBLEM 
A simple problem is used to illustrate a case where physical 

responses need to be modeled probabilistically. The problem is: 
given an energetic material such as a high explosive or missile 
propellant impacting a surface, what is the probability of an 
energetic reaction of the material. An event tree depicting the 
problem is shown in figure 1. 

Energetic 
Impact Response Outcome I 

I I OK I I Fail 

INTRODUCTION 
Deterministic models describe the behavior of a system with 

certainty. For a given set of inputs a deterministic model will 
produce a single answer. Examples of deterministic models are 
bite element or finite difference models that always give the 
same answer each time the model is m. In the real world, the 
outcome of a system is generally not so well defined. Inherent 
randomness in material properties, geometry, initial conditions, 
and other parameters lead to randomness in the outcome. 
Probabilistic models 8ccount for this ~tural  randomness as well 
as modeling uncertainties that arise as a result of simplifying 
assuxnptions and incomplete knowledge. 

Figure 1. Event Tree for Simple Problem 

Even for this simple problem there are many physical 
parameters describing the impact that are important in 
&&mining if the material will react. Some of these parameters 
are: material con.Quration, impact surface roughness, impact 
surface hardness, orientation, mass, velocity, impact area, 
electrostatic charge and temperature. Modeling the influence of 
each parameter, accounting for all of the inherent randomness in 
the materials and impact conditions as well as accounting for 
other modeling uncertainties can quickly become an 
overwhelming task. 



For this simple example problem, the probability of a reaction 
is Bssumed to depend only on the impact velocity. The initial 
conditions of this p b l e m  are modeled probabilistically because 
of variation in the impact velocities due to natural randomness. 
There may I s 0  be mcextam * ty as to where the velocity 
distribution lies due to incomplete knowledge. The family of 
velocity distributions shown in figure 2 includes distributions for 
the lower bound, ezrpected value, and upper bound showing both 
the natural randomness and the uncertainty in the location of the 
velocity distribution. 

~ - Expected Value 
-..-... Upper Bomd 
----LOW Bomd 

Figure 2. impact Velocity Distributions 

The model must predict if a reaction occurs given an impact 
velocity. The response model should reflect the inherent 
randomness in the material as well as any additional uncertainties 
due to incomplete knowledge. The probability of the material 
responding at a given impact velocity is represented by a f d l y  of 
curves as shown in figure 3. The shape of the curve represents 
the random variation within the energetic material and the 
expected value, lower bound, and upper bound curves represent 
the uncertainty in the actual location of the response curve. 
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Figure 3. Response Curves 

To facilitate an analytic solution of the simple problem, all of 
the uncertainty is assumed to be captured in a single velocity 
distribution and a single response cwe .  This assumes that the 
curves are well defmed and no uncertainty as to the location of the 
curve exists. This allows the results generated by parameter range 
binning and by a Monte Carlo simulation (Sobol', 1994) with 
response curves to be compared directly to an analytic solution. 
For the simple problem the impact velocities are assumed to be 
distributed normally with a mean of 170 and a standard deviation 
of 30. The material is assumed to respond 5% of the time at a 

velocity of 200 and 95% of the time at a velocity of 300. A 
response curve is approximated using a Weibull function. 

Analvtic Solution 

To compute an analytic solution, functions describing the 
velocity distribution as well as the response curve must be 
developed. The velocity distribution, a normal distribution with a 
mean of 170 and standard deviation of 30, is calculated using 
equation 1. 

-- [ y*) 
(1) 

1 
W = z e  

A plot of this fimction is shown in figure 4. 
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Figure 4. 

A Weibull curve is fit to the known response values using 
equation 2. 

~ ( ~ e a c t i m p )  = 1 - e (2) 
where, 

This response curve is shown in figure 5 .  
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Figure 5. Response Curve 



Given the distribution of impact velocities and the response 
m e ,  the expeckd value of the probability of a reaction can be 
calculated analytically using equation 3. 

W 

Impaa 

(3) 

Velocity Energetic outcome 
Response 

0 
= 0.029 

A standard deviation is calculated for the associated probability 
density function using equation 4. 

(4) 

= 0.055 
The standard deviation is large (relative to the mean) due to a 
highly skewed probability distribution. 

The probability that a given velocity contributed to the reaction 
is a measure of the importance of a given velocity. This is an 
indication of what velocity range contributes most to the risk of a 
reaction. A density function for the probability of a velocity given 
a reaction can be calculated by applying generalized Bayes 
theorem (Sveshnikov, 1978) as given in equation 5 .  

0 

A plot of this function is show in figure 6. 
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Figure 6. Velocity importance Distribution 

Another measure of interest is the cumulative probability of a 
reaction given a velocity. This is used to determine the risk 
reduction obtained if all velocities higher than a given velocity are 
eliminated. This is calculated by integrating the probability of a 
reaction fkom 0 to the velocity. 

V 

a+euctioniy) = j’(.(...ctionp) x P(V)F (6) 
0 

A pllot of this function is shown in figure 7. 
It can be seen fiom figure 7 that most of the probability of a 

reaction is a result of velocities above 150. It also shows that 
eliminating impacts with a velocity above 200 (n 15% of the 
impacts) reduces the risk of a reaction by about 65%. 
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Figure 7. Reaction CDF 

Parameter Range Binning 

The next approach used to solve the simple problem is 
parameter-range binning. This approach is similar to damagestate 
binning which is a technique that has been used successllly in 
nuclear reactor PRAs for many years. Damage state binning 
defmes accident bins and groups accident sequence with similar 
endstates into a bin. An advantage of binning is that a 
probabilistic model can be developed that expresses the physical 
parameters as probability distributions assigned to each bin. 

Parameter-range binning is similar to damage-state binning 
except that it breaks distributions of physical parameters into bins 
and treats all values within the parameter range of a bin the same. 
This makes the models mpatible with most common F’RA 
techniques such as fault tree linking, event tree linking or directed 
graph models without the PRA software being required to track 
physical parameters through a sequence. It also allows parameter 
importance to be calculated based on the bin ranges using 
standard event tree importance measures. 
This technique is applied to the simple problem by breaking the 

velocity distribution into discrete ranges and assuming that the 
probability of a response is the same for any velocity within a 
range. The event tree in figure 7 demonstrates the approach. 
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Figure 8. Parameter Range Binning 
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For the simple problem, the probability of being in each 
velocity range is detemud * based on the velocity distribution 
shown in figure 4. The probability of impacting at a velocity in a 
given bin can be determuaed * either by integration 

P(Bin)= "j5(v)dv (7) 

or by Monte Carlo simulation 

where vi are random samples of the velocity distribution. As 
eqmted, for large sample sizes the total probability for any 
velwity bin is very similar using either approach. Table 1 lists 
the bin probabilities calculated using each method. 

Table 1. Bin Probabilities for n=500 

The next step is to determine the probability of a reaction given 
a bin. Six Herent approaches for determining the probability of 
a response within a bin are compared. These are calculating the 
response at the upper bin boundary, at the center of the bin, 
calculating a mean response for the bin, uniform distribution 
across the bin, and calculating the total probability for a reaction 
in each bin based on the velocity distribution and the response 
curve. Comments on the applicability of each approach are made 
assuming that the probability of a reaction increases from the 
lower bin boundary to the upper bin boundary as it does in the 
simple problem. 

Response At Upper Bin Boundary 
This is the easiest and also the most conservative approach to 

using bins for this type of problem. It assumes that the response 
of e v q  sample in a bin is equal to the response that would be 
seen at the upper (most conservative) boundary of the bin. As 
shown in equation 9, the probability of a reaction for each sample 
placed in the bin is assumed to be the same as that of a sample at 
the upper bin boundary. 

P(&uctionPin) = P(Reucti+up,.) (9) 
This type of bin response may be appropriate in cases where 
detailed deterministic calculations or tests can be run to 
determine the response at the bin boundaries but no inference can 
be made to the shape of the response curve between bin 
boundaries. This approach is simple to apply but can lead to 
cmsmdve  results. Care should be taken to estimate the level of 
conservatism. 

Response At Center Of Bin 
This approach applies the response of a sample at the center of 

a bin (i.e. 225 for a bin fhm 200 to 250) to the entire bin. This is 
less #2msema 've than caking the response at the upper bin 
boundary. Equation 10 is used to calculate the probability of a 
reaction for a bin. 

P(Reuctimpin) = P Reacti ( -1'--.5") 
Using equation 10 to generate bin probabilities produces a good 
estimate for many problems but it should be noted that in certain 
circumshuxs it can produce a nonconservative result. 

Mean Response For Bin Boundaries 
Taking the average of the response at the upper bin b o u n m  

and the response at the lower bin boundary is another way of 
approximating the probability of a response given a bin. This 
estimate is also less conservative than taking the response at the 
upper bin boundary. Equation 11 is used to estimate the 
probability of a response given a bin. 

P(~euctionlv~,) + p(ReoctionlvUpF) 
P(Reuctimpin) = 2 (11) 
This approach also produces a good estimate for many problems. 
It should be noted however that like taking the response at the 
center of the bin, this approach can produce a nonconservative 
result in some cases. 

Uniform Distribution Across The Bin 
This method uses the response curve to develop a probability 

distribution for each bin assuming that the velocity samples are 
evenly distributed across a bin. This technique may be 
appropriate when the response curve is known but the velocity 
distribution is not. Equation 12 calculates the bin probability by 
integrating the response curve across the bin. 

\ 
J V u p r  - v l m ~ r  

vbrn 

Equation 13 calculates the bin probability using Monte Carlo 
sampling. 

Equations 12 and 13 give equivalent results for large n. This 
approach is less conservative than choosing the response at the 
upper bin boundary but can be nonconservative for some velocity 
distributions. 

Velocity Distribution And Response Curve Integration 
This approach takes all of the information about the velocity 

distribution and the response curve and calculates the probability 
of a response given the bin. This requires detailed information 
about the velocity distribution as well as the response curve. The 
probability of a bin is calculated with equation 14. 

.- 
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As expected, this produces a very good ~tlswer but quires 
information about both the velocity distribution and the response 
curve. 

Binning Results 
Results for the simple problem generated using each of these 

approaches and the bins shown in table 1 are listed in table 2. 

Table 2. Simple Problem Results Using Binning 

Determined At Reaction Probabili 

Center of Bin 

Uniform Distribution Across Bin 
Inteerated Curves .029 

The results range h m  the guaranteed conservative results 
obtained by taking the response at the upper bin boundary to the 
very accurate integration of the velocity distribution and the 
response curve across the bin. It should also be remembered that 
if conservative estimates are made in successive events in an 
accident sequence, the conservatism is multiplicative and can 
easily generate very conservative results. 

Monte Carlo Simulation Without BTnning 

Another approach to solving the simple problem is by direct 
application of the Monte Carlo method (Sobol', 1994) without 
binning. Using the Monte Carlo method, the problem is solved by 
sampling the velocity distribution and calculating the probability 
of a response for each sample. The probability of a reaction for 
an given velocity is defined by the Weibull function 
P ( k u d m ~ V )  and velocities are sampled from the function P#. 
Equation 15 is used to calculate the expected value for the 
probability of a reaction. 

n C P(Rencrionbj) 

n wfiere, (15) i=l P= 
vi are random samples of the velocity distribution. For this 
exercise, 500 samples of the velocity distribution were used to 
develop a probability distribution for the response. An expected 
value, p, of 0.029 and a standard deviation, Q, of 0.0501 were 
calculated. These agree well with the results of the analytic 
solution for p of 0.029 and Q of 0.054. Figure 9 shows a 
histogram of the probability density tinction for a reaction 
generated by the Monte Carlo simulation. 
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Figure 9. 

The highly skewed curve causes the standard deviation to be high 
relative to the expected value. Figure 10 shows the velocity 
importance in the form of a histogram based on the samples h m  
the simulation. 
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Figure 10 

This compares well with the plot shown in figure 6 developed in 
the analytic solution. The difference in the probability between 
figure 6 and figure 10 is an artifact of the ranges selected for the 
histogram and doesn't reflect on the accuracy of the solution. 

The last measure that will be compared to the analytic solution 
is the cumulative probability of a reaction at a velocity. Figure 11 
shows the cumulative probability of a reaction given a velocity 
calculated based on the results of the Monte Carlo simulation. 
This plot also compares very will with the coxresponding plot 
fiom the analytic solution presented in figure 7. 
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Figure 11 



INTEGRATED DETERMINISTIC MODELS 
Many problems of interest are much more complex than the 

simple example problem and are offen dependent upon multiple 
physical parameters. For these cases, simple response curves 
with respect to one variable, like the one used in the example 
problem, are not adequate. Instead, fast Iunning deterministic 
models that can take a set of initial conditions and model the 
outcome are needed. By varying model parameters, these fast 
rumhg models can be used in a Monte Carlo simulation to 
determine probability distributions fof the outcomes. 

A number of techniques exist for developing fast running 
models for use in Monte Carlo simulations. These techniques fall 
into two categorieq theoretical models based on physical laws and 
empirical models based on experimental data or the results of 
more detailed theoretical models such as finite element or finite 
difference models. 
Fast running theoretical models are developed using 

engineering tools like spring mass models for impact forcing 
functions or lumped capacitance models for thermal transfer. The 
amount of simplification that must be employed in a theoretid 
model is dictated by the detail with which the system is knom, 
the number of runs required, and the speed with which the model 
runs. As the processing speed of computers increases, the level 
of detail that can be employed directly in fast running theoretical 
models will also increase. 

Empirical models use curve fitting or look up tables to 
determine the response to the input parameters. Curve fitting 
techniques develop multidimensional response surfaces using data 
points obtained experimentally or by running detailed 
deterministic models. The equations defining the response 
surfaces are then used to determine the probability of a response. 
Look up tables use the data points direcay and either pick the 
most appropriate data point fiom the look up table or they 
interpolate between points to determine a response. 

A fast running theoretical model of tool drops in a silo was 
developed by Applied Research Associates (ARA) as part of the 
Minuteman IlI weapon system safety assessment (Sues, 1994) 
performed by the Defense Nuclear Agency. This model contained 
a 1 1 1  three dimensional model of the important silo geometry and 
tracked the path of a tool drop to determine impact points for tools 
dropped in a silo. The model takes the geometry and physical 
characteristics of the tools and parameter distributions describing 
the kinematics of the tool as it is dropped. Based on this 
infixmation and the silo geometry, the model calculates all of the 
impact points in the silo and the impulse imparted as a result of 
each impact. This model runs very quickly, allowing hundreds of 
tool drops to be simulated in minutes on a personal computer. 
The model was incorporated into a Monte Carlo simulation using 
software developed by ARA. 

Without this model, conservative assumptions would have been 
made in developing the risk model. These conservative 
a.ssumptions would have given an answer that could have misled 
analysts and potentially caused them to give poor advice to 
decision makers. Iden-g the possible impact of the 
conservatism and developing a fast running, detailed deterministic 
model resulted in a realistic and defensible result. 

RESPONSE CURVES WITH UNCERTAINTY 
The family of curves in figure 3 show the uncertrun . t y o f t h e  

response due to the natural randomness in the material as well as 
the uncertainty as to where the response curve actually lies. The 
top curve shorn the upper bound of possibilities, the middle curve 
the best estimate, and the bottom curve a lower bound on where 
the response curve could be. One approach to handling this is to 
develop a response distribution that has a lower bound at the 
lower curve and an upper bound at the top curve for each value of 
the parame&. This distribution can be sampled to determine the 
probability of a reaction given a value of the parcuneter. The 
simplest distributions to apply are a unifom distribution between 
the upper and lower bounds or a triangular distribution with the 
point on the expected value as the mode. 

Figure 12 shows a family of response curves. For each sample 
of V, a probability density function is developed and then 
sampled. 
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Figure 12. 

If a triangular distribution is assumed between the curves the 
resulting probability distribution for V equal to 200 is shown in 
figure 13. Sampling the distribution in figure 13 accounfs for the 
uncertainty in the location of the response curve. 
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Figure 13. 



This technique has been used to develop probabilistic models 
of the response of eaergetic materials to impacts. It allows the 
probabilistic analyst to capture the randomness present in 
experimental data on energetic materials as well as incorporate an 
estimateoftheuncertrun ’ ty about the applicability of the data to 
the problem being modeled. 

COMBINED EXAMPLE 
The techniques presented thus far represent a set of tools that 

can be c o m b d  to develop probabilistic models of complex 
accident sequences. One example problem that combines the 
techniques is a tool drop that could bounce off of a handling 
&we and impact an eneqgetic material. Binning is used to 
differentiate between different tool types, integrated deterministic 
model track the motion of the tool being dropped, and response 
cutyes with llllc&m . ty determine the response of the energetic 
material upon impact. This model is represented by the directed 
graph in figure 14. 

Tool 3 No Response 

Figure 14. Directed Graph of Combined Example 

The model is quantified by developing the minimal path sets 
through the graph in terms of arcs and performing a Monte Carlo 
simulation using the path sets. The path sets of interest are those 
going fiom the node labeled “Drop” to the node labeled 
‘‘Response.” Equation 16 is a Boolean representation of the path 
sets in terms of arcs. 

Response Path Sets = A De J i B .  E .  J + C F -  J (16) 

The arcs A, B, and C represent bins of tool W s .  Each bin is 
assigned a probability distribution that represents the fraction of 
the time that a particular tool is dropped given a tool drop. 
Integrated deterministic models are required to detemine the 
probability distributions for D, E, and F. These models take 
distributions of the initial kinematic parameters associated with 
the tool drop bin and determine if the tools trajectory causes an 
impact with the energetic material. They also determine the 
appropriate parameters to evaluate the response given an impact. 
These parameters might be the impulse imparted to the material 
and the effective impact area. Response curves with uncertainty 
then use the parameters generated by the integrated deterministic 
models to develop probabilities of a reaction. These probabilities 
are used to quantify J. The arcs G, H, I, and K are quantified by 

taking the complement of the probabilities assigned to D, E, F, 
and J respectively. 

LANSE 
LANSE is a p r o g r a m  developed at Los Alma that @mns 

Monte Carlo simulations using a ditected graph methodology that 
tracks physical parameters through an accident sequence, and 
allows deterministic models and response curves to be inkgrated 
directly into probabilistic models. LANSE has the capability to 
evaluate the combined example as presented. 
LANSE models the combined example by first evaluating the 

minimal path sets through the graph and then performing a Monte 
Carlo simulation using the path sets. Linkurg rules are used to 
assign the proper models and parameten to each sequence. A 
dynamic parameter spreadsheet is updated, as each sample is 
taken in a Monte Carlo simulation, to track physical parameters 
through a sequence. Integrated detenninistic models, developed 
as dynamic link libraries, pass parameters back and forth from the 
parameter spreadsheet for each sample in the simulation. LANSE 
also has the capability to develop response curves with 
uncertainty by simply entering know values along the curves. It 
uses a parameter in the spreadsheet to develop a probability 
density fiu~ction based on the response curves. This probability 
density function is sampled to evaluate the probability of a 
response given an impact. 

SUMMARY AND CONCLUSIONS 
Probabilistic risk assessment analysts should give decision 

makers the best possible infomation on risk and on ways to 
reduce risk. Several techniques are presented in this paper to 
refine the results of a risk assessment by including more detail 
about the physical processes at work in an accident sequence. 
Employing techniques l i e  those presented can produce more 
realistic results and will serve to increase the credibility of the 
PRA process among decision makers. 
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