
A W (A s W J ' - S,a3Qy
THE PROCEDURE EXECUTION MANAGER AND ITS APPLICATION

TO ADVANCED PHOTON SOURCE OPERATION

Advanced Photon Source, Argonne National Laboratory
9700 South Cas Avenue, Argonne, Illinois 60439 USA

M. Borland cOPJF-cj70!33--/3y

A bstract
The Procedure Execution Manager @EM) combines a

complete scripting environment for coding accelerator
operation procedures with a manager application for exe-
cuting and monitoring the procedures. PEM is based on
Tcl/Tk. a supporting widget library, and the dp-tcl exten-
sion for distributed processing. The scripting environment
provides support for distributed, parallel execution of pro-
cedures along with join and abort operations. Nesting of
procedures is supported, permiting the same code to run as
a top-level procedure under operator control or as a sub-
routine under control of another procedure. The manager
application allows an operator to execute one or more pro-
cedures in automatic, semi-automatic, or manual modes. It
also provides a standard way for operators to interact with
procedures.

A number of successful applications of PEM to accel-
erator operations have been made to date. These include
start-up, shutdown, and other control of the positron accu-
mulator ring (PAR), low-energy transport (LET) lines, and
the booster rf systems. The PAR/L.ET procedures make
nested use of PEM's ability to run parallel procedures.
There are also a number of procedures to guide and assist
tune-up operations, to make accelerator physics measure-
ments, and to diagnose equipment. Because of the success
of the existing procedures, expanded use of PEM is
planned.

1 INTRODUCTION
The motivation for creating PEM is the observation

that many accelerator operations take the form of written
or memorized procedures. It is not unheard of for accelera-
tor operators to control a sophisticated accelerator with the
guidance of a checklist written on paper. While this works,
it is a long way from being automated. Sometimes automa-
tion of an activity is hampered by lack of computer control
of a part of the facility or by the difficult nature of the
equipment being controlled. Even in such cases, a combi-
nation of automatic and manual steps can often be used to
produce partially automated operation. This partially auto-
mated procedure can include instructions to and advice for
the operator and, as such, will result in a greater uniformity
of operation. For example. some PEM scnpts used at APS
will set up a diagnostic device. then ask the operator to
perform a specific tuning operation that uould be difficult
if not impossible for a computer to perform with current
technology.

PEM's ability to execute procedures in parallel was
similarly developed from the observation that often times
several operations can be done simultaneously. For exarn-
pie, one can standardize DC magnets uhile warming up
pulsed power supplies. With a small system, this can be
done manually. Howeber, with a large system this becomes

difficult, and operators tend to do things somewhat sequen-
tially, with attendant loss of time. For this reason, a design
goal for PEM was to allow parallel procedure execution.

Finally, many procedural activities have individual
steps that are themselves procedures. These steps may in
some circumstances be performed separately as a stand-
alone procedure. Based on this observation, another design
goal for PEM was that any procedure should be easily
embeddable within another.

Given that some procedures require human input and
guidance, even while largely automated, PEM has three
modes in which it may execute a procedure. Automatic
mode accepts no human input at any point. Semi-auto-
mutic mode accepts human input at the beginning of a pro-
cedure, in order to allow seiection of options and changing
of parameters. Manual is like Semi-automutic except that
at each defined step of the procedure the user must press a
button indicating that he wants to proceed. A procedure
that is called from within another procedure is run in Auto-
matic mode, thus removing any user interaction. In this
case, the calling procedure is responsible for providing
input to the called procedure in place of human input.
PEM procedures may switch modes internally to circum-
vent this, but it is uncommon and is discouraged.

Another principle underlying the creation of PEM is
the desire and need to separate the interface from the algo-
rithm, in order to make higher-level automation possible.
For example, some storage ring facilities use orbit correc-
tion algorithms that are embedded in a graphical user inter-
face, making it impossible to automate. Orbit correction
and beamline steering at A P S [1,2] are performed from
several graphical user interfaces (GUIs) (including PEM),
all of which use a common generic feedback program to
execute the actual correction. This feedback program has
no GUI and is used not only for orbit correction but for
other tasks that are mathematically identical. The PEM
orbit steering procedures also use Tcl/Tk library routines
that are shared with various GUI applications.

When a developer creates a new PEM procedure, he
does not create a GUI. PEM provides a GUI, as well as
mechanisms for determining what mode the interface is in,
so that procedures may run outside of a GUI environment.
Typically, the developer of even a complicated PEM pro-
cedure will only create an initialization dialog box. This
dialog box will appear only when the procedure is run in
the proper context (i.e., by a person).

2 PEM OPERATOR INTERFACE
The PEM manager GL? consists of five areas. The

first is a scrollable text window for status and error mes-
sage reporting. The second is a scrollable list of available
procedures. The third is a scrollable text box used to dis-
plav detailed information about individual Drocedures. . -

IUs7*RiBUTloN OF THIS DOCUMENT IS UNllMlTED
The submitted m u s c n p t h a been crated by the Univerur). si Chicago LS Operator of Argonne National L;lboratoFy c"Arg.onne") under C o n u x t No. W-31-109-ENG-38
with the U S. Department of Energy The U S Governmcnt r r u n s for itself. md orhers actins on i ts tuhdf. a paid-up. nonexclusive. irrevocable worldwide license in said
;mic.le to reproduce. prepare d r n \ m v e works. hstnbute copies 10 the public. and perform publicly and display publicly. by or on behalf of h e Governmnt.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government oor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, m m -
mendation. or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United Statu Government or any agency thereof.

The fourth is a scrollable list of currently executing proce-
dures. Finally, there are various buttons that select execu-
tion mode, lock and unlock execution, start procedures,
and abort procedures.

PEM is configured by a file that contains a list of pro-
cedure names, along with optional arguments that specify
default values for the procedure. These arguments are
specified using a convention given in the next section.
From this configuration file, PEM creates a procedure
selection list. Clicking on the name of any procedure in
this list causes the manager application to display infonna-
tion about the procedure, if the programmer has supplied
any.

Prior to executing a procedure, the user may select the
execution mode, i.e., Automatic, Semi-Automatic, or Man-
ual. The manager application also features an execution
lockout that reduces the chance of accidentally executing a
procedure. Once a procedure has been selected, the mode
chosen, and the lockout released, the user clicks on the
Execute button to execute the procedure. Following this,
PEM launches a subprocess to execute the procedure. The
name of the subprocess appears in a list of executing pro-
cesses that is part of the manager window. The user may
select any process from this list and abort it using the
Abort button on the manager window.

PEM automatically creates an execution dialog to
show the progress of the subprocess. Except in Automatic
mode, the subprocess automatically displays an initializa-
tion dialog if one has been set up by the programmer; this
is described below in Section 3.7. The execution dialog has
its own scrollable text window for status output, as well as
a scrollable area showing the names of the procedure steps
as they are executed (again, except in Automatic mode).
These names are coded green when being executed and red
when halted for user interaction. The dialog has a Con-
tinue button and Done button that are used in Manual
mode to proceed from step to step and to acknowledge ter-
mination of the procedure. There is also a button to
ac know led, oe errors.

3 PES1 PROGRAMhIING FACDLITIES
PEM provides a number of facilities for creation of

procedures [3]. A11 PEM procedures are written in TcIfTk
and may be used outside of PEM like any other TcVI’k
code. Because we have many other TcV”I procedures, we
distinguish PEM procedures with the letters Mp (Machine
procedure) in the name. The blp designation indicates
either that a procedure is part of the PEM environment or it
uses aspects of that environment. The PEM environment
defines several procedures that the programmer invokes
when writing machine procedures. Among these are
APSMpStep. APShlpParallel. APShlpJoin, APSM-
pAbort, and APShlpInterface. These procedures and
other aspects of the PEM development environment are
described below.
3. I Argumenr Passing

I n order to make Tcl/Tk procedures easier to use and
upgrade. we have adopted a procedure calling conven-

tion. A procedure call is always of the form: procName
@xedArgs] [variableArgs], where items in square brackets
may be absent for any particular procedure. jixed4rgs are
arguments that must be given in an established order; not
doing so will result in a Tcl error. vuriableArgs are always
optional, may come in any order, and take the form of tag-
value pairs, specifically -tug value. The vast majority of
procedures have only variable arguments in order to
enhance code readability.
3.2 Initialization Dialogs

As described above, PEM’s interaction with the user
is context-dependent. At the beginning of each PEM pro-
cedure, the programmer inserts an APSMpStep with an
init tag and the name of a procedure (the “initialization”
procedure). In Manual and Semi-Automatic modes, PEM
executes the initialization procedure, which typically
brings up a GUI dialog to allow the user to specify initial
parameters for execution of the main procedure. If a PEM
procedure is called by another PEM procedure, the mode
is set to Automaric, and hence the initialization dialog is
never invoked. Instead, the calling procedure is responsi-
ble for providing proper initialization for the called proce-
dure. The argument-passing mechanism discussed in the
previous paragraph is important here, since it allows a pro-
cedure to be called with only the arguments needed in a
given context. When a procedure is executed as a subrou-
tine, it is generally supplied with a large number of argu-
ments to substitute for the parameters normally supplied
by a user.
3.3 Labelling of Steps

The second function of APSMpStep is to pennit
labeling of sections of a procedure, in order to define steps
within the procedure. A step may comprise any number of
actual operations. When a procedure is invoked in Manual
and Semi-Automatic modes, the PEM execution dialog
shows the progress of the script through these labeled
steps. In Manual mode, the user must press the Continue
button on the PEM dialog to permit execution of each step.

Labelling of steps also permits PEM to ensure servic-
ing of user abort requests. When a user asks to have a
PEM procedure aborted (via the PEM manager applica-
tion), this request is serviced at the next occurrence of a
TcvTk update or tkwait call. Such a call is guaranteed to
happen prior to each step of the procedure.
3.4 Parallel Processes

Creating parallel processes with PEM is simply matter
of providing the APSMpParailel procedure with the TcV
Tk command that is to be executed. One may also specify
the host machine on which to execute the command and
the PEM mode under which the command should be exe-
cuted. The defaults are to execute the command on the
present host and in the present PEM mode. (In most cases,
the mode is set to Automatic.) For each process created in
this fashion, APSMpParallel returns a unique identifier
that may be used to control the process.

Having created one or more PEM parallel processes, it
is typical to want to wait for these processes to complete.

d - This is done using APSMpJoin. If .4PSMpJoin is not
used within a procedure that creates parallel processes, an
implied join is performed prior to returning from the pro-
cedure. APSMpJoin takes a single argument, namely the
identifier of a process for which to wait. A series of
APSMpJoin statements is used to ensure that all parallel
processes are complete. Each APShIpJoin returns a
catchable error. In the case of an error. the programmer
may elect to abort other parallel processes.

Aborting parallel processes is accomplished using
APSMpAbort. This procedure accepts a list of identifiers
for processes to abort or it can abort all processes. It can
also be used to set up a conditional abon wherein if any of
the listed parallel processes returns an error, then all of the
listed processes are aborted. This prevents blocking of
APSMpJoin on one process when another process has
encountered an error.

1 EXAblPLES
4.1 PAR/LET Start-Up Procedures

This was one of the first applications of PEM and is
the most mature and sophisticated one to date. The PAR/
LET consists of three main systems: the PAR itself, the
linac-to-PAR transport line (LTP), and the PAR-to-booster
transport line (PTB). While the LTP and PTB are simple
and nearly identical, the PAR is somewhat complicated.
The LTP and PTB both contain only DC magnets, vacuum
hardware (including remotely controlled valves), and vari-
ous diagnostics (including insertable screens). The PAR
contains these components, plus two rf systems and four
pulsed power supplies.

The FTB and LTP each have seven low-level machine
procedures for functions like turning power supplies on
and off, conditioning magnets. and clearing the aperture of
obstructing valves and screens. These functions are imple-
mented as stand-alone machine procedures and may be
individually executed from PEM. In addition, there are
start-up and shut-down procedures for the LTP and PTB
that make use of these low-level procedures.

The PAR procedures show a similar structure, with the
addition of procedures for the rf and pulsed magnet sys-
tems, for a total of 17 procedures. Again. these are poten-
tially stand-alone procedures but are also integrated into a
pair of start-up and shut-down procedures. The relatively
time-consuming operations of pulsed power supply warm-
up and DC magnet conditioning are run in parallel.

Finally. at the highest levei there is 3 pair of start-up
and shut-down procedures for &e entire P.U/LET system.
These execute the PAR. PTB. and LTP procedures in paral-
lel. In addition, the start-up procedure guides the operator
through several manual steps necessary to obtain beam.
4.2 APS Ring Procedures

One difficult aspect of . U S ring operation has been
tuning up injection for high efficiency. .A tuning procedure
was developed by ph>sicists in the course of machine stud-
ies and subsequentl) implemented as a PEM procedure.
Because much of the tuning inLolves an operator looking
at a scope trace, insenable screen, or similar diagnostic.

this might at first seem a difficult task for automation.
However, if the goal is simply to improve convenience for
the operator and standardize operational methods, PEM is
quite useful in this application. Specifically, the PEM pro-
cedure walks the operator through the tune-up. For some
steps, the procedure helps the operator by inserting a
screen into the beam or bringing up a needed control sys-
tem display. For such steps, it gives instructions on what
to look at and what to try to achieve. This procedure
makes use of the Manual execution mode of PEM and is
not intended to be embedded within another procedure.

Beamline steering in the A P S involves a complicated
series of steps to ensure that the orbit is maintained within
acceptable tolerances. This procedure is implemented
using PEM and makes use of the ability to switch execu-
tion mode inside of a procedure. It does this in order to
allow operators to complete activities using other inter-
faces. In this way, PEM allows the use of other code as
part of a procedure without any “real” connection between
PEM and the other code. Again, there is no intention of
embedding this type of procedure in a larger one.

5 CONCLUDING REMARKS
The success of the PARlLET procedure makes it clear

that such procedures are desirable for the other systems. It
is also clear that more effort is involved in writing a proce-
dure robust enough that it can be embedded deep inside
another procedure for automatic execution. The problem is
partly one of anticipating all of the potential problems with
the hardware. Still, we intend eventually to write start-up
and shut-down procedures for all of the systems. In princi-
ple, this would allow starting up or shutting down the
entire facility with a single operation, though the proce-
dures are clearly desirable even if one never wants to run
them all in parallel.

Since PEM was designed with multi-workstation and
multi-operator tasks in mind, it would be desirable to be
able to execute procedures on the least loaded workstation
of a cluster. This would be particularly useful for compu-
tationally intensive procedures. Presently, the multi-work-
station capabilities in PEM are disabled due to problems
with IPC software from the vendor.

6 ACKNOWLEDGMENT
PEM was implemented by C . W. Saunders, formerly

of APS, based on concepts developed by M. Borland and
C. W. Saunders. Several of the scripts described above
were created or contributed to by L. Emery (APS). Work
is supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, under Contract No. W-3 1-109-
ENG-3 8.

7 REFERENCES
[I] L. Emery. M. Borland, “Advancements in Orbit Drift Correction in

the Advanced Photon Source Storage Ring,” these proceedink;.
[? I M. Borland. “*Applications Toolkit for Accelerator Control and

Analysis.” these proceedings.
[3] C W. Saunders. “PEM-Procedure Execution Manager.” hnp:N

www.aps.anl.gov/3sd/oa~manuds/APSPEM/APSPEM4.h~.

