DOE/RF/00653-TI

# **Final Report**

Noninstrusive Characterization at Rocky Flats Using 3-D Seismic Reflection Techniques

September 1994

## Prepared by: ENSERCH ENVIRONMENTAL CORPORATION

Prepared for: Department of Energy CONTRACT NO. DE-AC34-93RF00653

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED



## DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

# DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

## TABLE OF CONTENTS

| Sec | tion                                  | Page |
|-----|---------------------------------------|------|
|     |                                       |      |
| 1.0 | INTRODUCTION                          | . 1  |
|     | 1.1 SCOPE OF WORK                     | . 1  |
|     | 1.2 SITE DESCRIPTION                  | . 2  |
|     | 1.3 GEOLOGIC SETTING                  | . 5  |
|     | 1.4 PREVIOUS STUDIES                  | . 7  |
|     |                                       |      |
| 2.0 | FIELD PROCEDURES AND DATA ACQUISITION | . 8  |
|     | 2.1 3-D HR SEISMIC REFLECTION         | . 8  |
|     | 2.2 FIELD TESTS                       | . 10 |
|     | 2.3 EQUIPMENT                         | . 10 |
| 2.0 | SEIGNIC DATA PROCESSING               | 10   |
| 3.0 | SEISMIC DATA PROCESSING               | . 13 |
| 10  |                                       | 15   |
| 4.0 | DATA INTERPRETATION                   | . 15 |
| 5.0 | CONCLUSIONS                           | 34   |
| 5.0 | 51 GEOLOGIC                           | . 54 |
|     | 5.2 3-D SEISMIC METHOD                | 34   |
|     |                                       |      |
| 6.0 | <u>REFERENCES</u>                     | . 36 |

# APPENDICES

| APPENDIX I   | Theory of Seismic Reflection Techniques |
|--------------|-----------------------------------------|
| APPENDIX II  | Seismic Reflection Equipment            |
| APPENDIX III | Glossary of Geophysical Terms           |
| APPENDIX IV  | In-line and Cross-line Seismic Profiles |
| APPENDIX V   | Seismic Data Processing Report          |

## RFL\0416 09/22/94 4:16 pm bpw

i

LIST OF TABLES

#### RFL\0416 09/22/94 4:16 pm bpw

<u>Table</u>

Page

# LIST OF FIGURES

| . 3<br>. 4<br>. 6<br>. 9<br>. 14<br>. 17<br>. 18<br>. 20 |
|----------------------------------------------------------|
| . 4<br>. 6<br>. 9<br>. 14<br>. 17<br>. 18<br>. 20        |
| . 6<br>. 9<br>. 14<br>. 17<br>. 18<br>. 20               |
| . 9<br>. 14<br>. 17<br>. 18<br>. 20                      |
| . 14<br>. 17<br>. 18<br>. 20                             |
| . 17<br>. 18<br>. 20                                     |
| . 18<br>. 20                                             |
| . 20                                                     |
|                                                          |
| . 21                                                     |
| . 22                                                     |
| . 23                                                     |
| . 24                                                     |
| . 25                                                     |
| . 27                                                     |
| . 28                                                     |
| . 29                                                     |
| . 30                                                     |
| . 31                                                     |
| . 32                                                     |
| . 33                                                     |
|                                                          |

## RFL\0416 09/22/94 4:16 pm bpw

# LIST OF ACRONYMS AND ABBREVIATIONS

| A/D            | Analog/Digital                            |  |  |  |  |  |  |  |  |  |  |
|----------------|-------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| ACU            | Acquisition Control Unit                  |  |  |  |  |  |  |  |  |  |  |
| AGC            | Automatic Gain Control                    |  |  |  |  |  |  |  |  |  |  |
| ALARA          | As low as reasonably achievable           |  |  |  |  |  |  |  |  |  |  |
| bpi            | Bits per inch                             |  |  |  |  |  |  |  |  |  |  |
| CDP            | Common depth point                        |  |  |  |  |  |  |  |  |  |  |
| cm             | Centimeter                                |  |  |  |  |  |  |  |  |  |  |
| CMP            | Common midpoint                           |  |  |  |  |  |  |  |  |  |  |
| CPU            | Central Processing Unit                   |  |  |  |  |  |  |  |  |  |  |
| CRT            | Cathode Ray Tube                          |  |  |  |  |  |  |  |  |  |  |
| DAM            | Data Acquisition Memory                   |  |  |  |  |  |  |  |  |  |  |
| Db             | ecibels                                   |  |  |  |  |  |  |  |  |  |  |
| DC             | Direct Current                            |  |  |  |  |  |  |  |  |  |  |
| DOE            | U.S. Department of Energy                 |  |  |  |  |  |  |  |  |  |  |
| DT&E           | Demonstration, Testing, and Evaluation    |  |  |  |  |  |  |  |  |  |  |
| EG&G           | EG&G Rocky Flats, Inc.                    |  |  |  |  |  |  |  |  |  |  |
| Enserch        | Enserch Environmental Corporation         |  |  |  |  |  |  |  |  |  |  |
| EPMS           | Enserch Performance Measurement System    |  |  |  |  |  |  |  |  |  |  |
| ERD            | Environmental Restoration Division        |  |  |  |  |  |  |  |  |  |  |
| F <sub>c</sub> | Cutoff Frequency                          |  |  |  |  |  |  |  |  |  |  |
| F。             | Frequency of Origin                       |  |  |  |  |  |  |  |  |  |  |
| FK             | Frequency-Distance                        |  |  |  |  |  |  |  |  |  |  |
| FPA            | Floating point average                    |  |  |  |  |  |  |  |  |  |  |
| fps            | Feet per second                           |  |  |  |  |  |  |  |  |  |  |
| ft             | Feet                                      |  |  |  |  |  |  |  |  |  |  |
| GB             | Gigabyte                                  |  |  |  |  |  |  |  |  |  |  |
| HASP           | Health and safety plan                    |  |  |  |  |  |  |  |  |  |  |
| HR             | High-resolution                           |  |  |  |  |  |  |  |  |  |  |
| Hz             | Hertz                                     |  |  |  |  |  |  |  |  |  |  |
| I/O            | Input/Output Incorporation                |  |  |  |  |  |  |  |  |  |  |
| IHSS           | Individual Hazardous Substance Site       |  |  |  |  |  |  |  |  |  |  |
| Kg             | Kilograms                                 |  |  |  |  |  |  |  |  |  |  |
| lb             | Pound                                     |  |  |  |  |  |  |  |  |  |  |
| LSB            | Least significant bit                     |  |  |  |  |  |  |  |  |  |  |
| Mini-Vib       | Industrial Vehicles, Inc. Mini-Vib T-2500 |  |  |  |  |  |  |  |  |  |  |
| MB             | Megabyte                                  |  |  |  |  |  |  |  |  |  |  |
| ms             | Milliseconds                              |  |  |  |  |  |  |  |  |  |  |
| mw             | Milliwatts                                |  |  |  |  |  |  |  |  |  |  |
| NMO            | Normal Move Out                           |  |  |  |  |  |  |  |  |  |  |
| OU2            | Operable Unit 2                           |  |  |  |  |  |  |  |  |  |  |
| OZ             | Ounce                                     |  |  |  |  |  |  |  |  |  |  |

iv

| P-wave         | Compressional wave                                         |
|----------------|------------------------------------------------------------|
| PC-PMS         | Performance Measurement System                             |
| PF             | Preamplifier Filter                                        |
| PRDA           | Program Research and Development Announcement              |
| QA             | Quality assurance                                          |
| QC             | Quality control                                            |
| RAM            | Random Access Memory                                       |
| R <sub>c</sub> | Circuit Resistivity                                        |
| RFP            | Rocky Flats Plant                                          |
| RMS            | Root Mean Square                                           |
| R <sub>s</sub> | Source Resistivity                                         |
| S/N            | Signal-to-Noise                                            |
| S-wave         | Shear wave                                                 |
| SEG            | Society of Exploration Geophysicists                       |
| SH             | Directional component of S-wave motion in horizontal plane |
| SV             | Directional component of S-wave motion in vertical plane   |
| v              | Volts                                                      |
| V <sub>p</sub> | P-wave velocity                                            |
| Vrms           | Voltage root mean square                                   |
| Vs             | S-wave velocity                                            |
| XT             | Distance-Time                                              |
| °C             | Degrees Centigrade                                         |
| μfd            | Microfarad                                                 |
| 2-D            | Two-dimensional                                            |
| 3-D            | Three-dimensional                                          |
|                |                                                            |

## RFL\0416 09/20/94 4:14 pm bpw

#### 1.0 INTRODUCTION

#### 1.1 SCOPE OF WORK

A three-dimensional (3-D), high-resolution (HR) seismic reflection evaluation was conducted at the Rocky Flats Plant (RFP), near Golden, Colorado, to demonstrate the applicability of nonintrusive characterization techniques to detect buried objects, contamination, and geological/hydrological features at RFP. The evaluation was conducted as part of the U.S. Department of Energy's (DOE) request for demonstration, testing, and evaluation (DT&E) of nonintrusive techniques, under DOE Program Research and Development Announcement (PRDA) No. DE-RA05-910R22000.

The overall goal of the PRDA program is to reduce the spread of contamination, time spent investigating contaminated media or contamination sources, and costs associated with the foregoing by using noninvasive technologies. The original proposal for PRDA included a 3-D HR seismic reflection demonstration, a two-dimensional (2-D) shear wave reflection demonstration, and a seismic inversion demonstration. The rationale for selecting these technologies to meet the aforementioned goals was as follows:

| <b>Reduction</b> | Rationale                                                                                                                                                                                |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Contamination    | Eliminate secondary drilling wastes<br>Minimize intrusive activity<br>Eliminate chances for downward migration and cross contamination by<br>contaminants due to drilling                |
| Time             | Seismic surveys are rapid compared to drilling for similar characterization                                                                                                              |
| Costs            | Seismic surveys are less expensive than drilling for similar characterization<br>and data density<br>Seismic surveys help to optimize future borehole locations saving time and<br>money |

The PRDA procurement was delayed for a prolonged period, resulting in a reduction in scope to keep the project costs within the original budget. The seismic inversion demonstration was deleted and was not included in the final contract signed on September 30, 1993.

Initially, it was proposed that the Arapahoe Formation sandstones that occur in Operable Unit 2 (OU2) be characterized to determine their potential as contaminant pathways. After the contract was finalized, the DOE Project Manager decided that although the Arapahoe Formation sandstones were sufficiently characterized by former investigations (including 2-D HR seismic reflection data), a feature identified by these former investigations, located in OU2 and known as the Bedrock Step, was of further interest as a potential contaminant pathway. The DOE Project Manager requested that the 3-D HR seismic reflection demonstration be used to image and to determine the origin of the Bedrock Step. Although the ideal location to image the Bedrock Step was located within the boundary of an individual hazardous substance site (IHSS), the 3-D seismic reflection demonstration was re-located to an area immediately adjacent to the IHSS for health and safety reasons.

Once field work had begun, EG&G requested that various changes be made to the field procedures for health and safety reasons, the result of which was a reduction in the final scope of work. Accordingly, the 2-D shear wave demonstration was deleted and the 3-D HR seismic reflection technology retained to attempt to image the Bedrock Step and to determine the origin and cause of the feature.

#### **1.2 SITE DESCRIPTION**

RFP is a DOE nuclear weapons facility managed by EG&G. RFP is located approximately 16 miles northwest of Denver, Colorado in northern Jefferson County (Figure 1-1).

OU2 is located just to the east of the plant complex. Previous remedial investigations conducted at RFP have identified potential soil, surface water, and groundwater contamination in the vicinity of OU2. OU2 consists of the following three sites: the 903 Pad, Mound, and East Trenches (Figure 1-2). The trenches, IHSSs 111.2 through 111.6, are in such close proximity to the Bedrock Step, that the importance of determining the cause of the Bedrock Step, and the potential for a contaminant migration pathway associated with the Bedrock Step, is appropriate.





# 1.3 GEOLOGIC SETTING

RFP is located along the western edge of the Denver Basin. It is bounded on the west by the Colorado Front Range and is underlain by more than 10,000 feet (ft) of Pennsylvanian to Upper Cretaceous sedimentary rocks of the Denver Basin that have been locally folded and faulted. The sedimentary bedrock is unconformably overlain by unconsolidated Quaternary alluvial sands and gravels.

The geologic section beneath OU2 consists of the Rocky Flats Alluvium and the Upper Cretaceous Arapahoe and Laramie Formations (Figure 1-3).

The Quaternary-age Rocky Flats Alluvium, deposited unconformably over the erosional surface of the Upper Cretaceous Arapahoe and Laramie Formations, occurs at the surface of OU2. This alluvium averages 20 ft in thickness in OU2 and consists of unconsolidated, poorly sorted gravel, sand, and clay deposited at the base of the Colorado Front Range (Hurr 1976). Calcium carbonate, in the form of caliche, is locally present in the unit (Rockwell International 1987).

The Arapahoe Formation consists of claystones and sandstones deposited in a fluvial-deltaic environment (Weimer 1973). The sandstones are lenticular and occasionally exceed 20 ft in thickness. The sandstones are quartzose, locally conglomeratic, and commonly silty and clayey. A medium frosted-grained sandstone is present at the surface in certain areas (EG&G 1992). The Laramie Formation comprises sandstones, siltstones, claystones, and coals deposited in fluvial-deltaic and lacustrine environments (Weimer 1973). The Laramie Formation around RFP is approximately 600 to 800 ft thick and is informally subdivided into a lower, predominantly sandstone unit and an upper, predominantly claystone unit. Both the Arapahoe and upper Laramie Formations were deposited in low-energy fluvial/deltaic systems. Sedimentation in these systems results in widespread, thick deposits of claystones and siltstones of low permeability, along with narrow, thin, and localized deposits of more permeable channel sandstones. The lower Laramie sandstones and underlying Fox Hills Sandstone collectively comprise the Laramie/Fox Hills Aquifer and are a major source of water in some parts of the Denver Basin.

5



DOE RF OU2 Rev.1.94.jb

The Cretaceous-age Pierre Shale consists of 6,000 to 8,000 ft of clayey marine shale. The lower portion of the formation is composed of massive to thin-bedded silty bentonitic claystone with a few very thin, noncalcareous siltstone beds. The upper portion of the formation is composed of thin-bedded to massive, silty, bentonitic shale with a few limestone concretions and thin, poorly cemented sandstone beds (Wells 1967).

#### **1.4 PREVIOUS STUDIES**

Task 3 of the Phase I Geological Characterization at RFP, which involved a shallow HR seismic reflection program, identified several sandstone bedrock channels in the Arapahoe or Laramie bedrock beneath the Rocky Flats Alluvium at OU2 (EG&G 1991). Where present, the uppermost bedrock channel is often in direct hydraulic contact with the alluvium. For the most part, a confirmation borehole drilling program has verified the previous seismic program results (Woodward-Clyde 1993).

The Task 3 Shallow HR seismic reflection program also identified a thickening in the Rocky Flats Alluvium due to a drop in bedrock elevation east of the trenches (EG&G 1991). In the Phase II Geologic Characterization Data Acquisition (EG&G 1992), a drop of 30 ft in bedrock elevation at OU2 is interpreted from seismic and borehole data (Figure 1-2). The Woodward-Clyde drilling program confirmed the presence of the Bedrock Step. Further, it is reported that the Laramie-Arapahoe contact drops more than 100 ft over a horizontal distance of less than 1,000 ft in the OU2 area. To explain the abrupt elevation change in the Laramie-Arapahoe contact three geologic models were proposed: folding, stratigraphic or erosional discontinuity, or faulting. This 3-D seismic reflection demonstration was conducted in a site appropriate to evaluate the hypothesized models against imaged subsurface geometry.

## 2.0 FIELD PROCEDURES AND DATA ACQUISITION

#### 2.1 3-D HR SEISMIC REFLECTION

The location of the 3-D seismic survey is shown in Figure 1-2. For 2-D HR seismic reflection profiling, the geophones (receivers) were arranged linearly. For the 3-D seismic reflection surveys, the geophones were arranged in an areal grid pattern. The geophones detect seismic energy caused by a single point source that is first directed at the ground surface and that is then reflected back from subsurface horizons. The seismic data were collected and recorded on a 9-track computer tape in Society of Exploration Geophysicists (SEG) D format and sent to a data processing center.

Subsurface data were sorted by common depth point (CDP) or common midpoint (CMP) into groups called cells or bins. Each CDP has one or more source and receiver pairs (see Figure I-1 in Appendix 1). Each source and receiver pair is called a fold; 12 source and receiver pairs are referred to as a 12 CDP fold. An increase in fold generally causes an increase in data quality because there is a reduction in random noise that results from stacking the multiple source and receiver pairs. The data acquisition parameters used for this 3-D seismic survey yielded a variable fold that ranged from 1 fold to 100 fold and averaging over 40 fold across the survey area. A discussion of the CDP technique can be found in Appendix I.

The 3-D data set represents a volume of subsurface data. The length and width of the data volume are expressed in feet. The depth dimension is expressed in units of two-way travel time, i.e., the time required for a seismic wave to travel down from the surface and reflect upward from a subsurface horizon. The length and width of the survey was 100 ft by 100 ft, yielding a total coverage of 10,000 square ft. The source-point interval was 5 ft and the receiver interval was 10 ft. Figure 2-1 shows the source and receiver layout for the 3-D survey. Seismic data was acquired using this layout, yielding a CDP cell interval of 2.5 ft by 5 ft. The entire layout was then shifted 2.5 ft laterally (east) and repeated, yielding a final CDP cell interval of 2.5 ft by 2.5 ft.

| 2087863<br>749475  | BE<br>N  |                   |             |         |          |         |   |      |   |        |     |               |    |   |     |       |           |               |                |                   |                  |            | 2087983E<br>749450N |
|--------------------|----------|-------------------|-------------|---------|----------|---------|---|------|---|--------|-----|---------------|----|---|-----|-------|-----------|---------------|----------------|-------------------|------------------|------------|---------------------|
|                    |          | ft.               |             |         |          |         |   |      |   |        |     |               |    |   |     |       |           |               |                |                   |                  |            | ★                   |
| 4 5 ft.            | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | ₩             |                | *                 |                  | *          | *                   |
|                    | *        | *                 |             | ∗       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | ٠           | ∗       | ٠        | *       | ٠ | *    | ٠ | *      | ٠   | *             | •  | * | ٠   | *     | ٠         | *             | ٠              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 |             | *       | •        | *       | • | *    | • | *      | •   | *             | •  | * | •   | *     |           | *             | •              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    |          | т<br>ч            | _           | *       | -        | л<br>   | - | *    | _ | ат<br> | _   | ч.<br>Т       | _  | * |     | т<br> | _         | 47<br>NK      | _              | л<br>ч            | _                | т<br>      | J.                  |
|                    | *        | *                 | •           | ★       | •        | *       | • | *    | • | 禾      | •   | *             | •  | ѫ | -   | *     | •         | *             | -              | ★                 | •                | 木          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | ۰           | *       | ٠        | *       | ٠ | *    | ٠ | *      | •   | *             | •  | * | ٠   | *     | ٠         | *             | •              | *                 | 1                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | •           | *       | •        | *       |   | *    | • | *      | . 🔴 | *             | •  | * | ٠   | *     | •         | *             | •              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
| 120 ft.            | *        | ¥                 | •           | ¥       | •        | *       | • | *    | • | *      |     | ¥             | •  | * | •   | *     | •         | *             | •              | ¥                 | •                | ¥          | *                   |
|                    | *        |                   | •           | -1.<br> | Ť        | -7.<br> | • | . Th | Ţ | ж<br>ч | •   | ж<br>ч        | •  |   | •   | *     | •         | т<br>ч        | •              | *                 | •                | *          | *                   |
|                    | *        | 未                 |             | *       |          | ★       |   | ★    |   | ★      |     | *             |    | ★ |     | ★     |           | ★             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | •           | *       | •        | *       | ٠ | *    | • | *      | •   | *             | •  | * | ٠   | *     | •         | *             | ٠              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | •           | *       | •        | *       | ٠ | *    | ٠ | *      | •   | *             | •  | * | ٠   | *     | ٠         | *             | •              | *                 | ٠                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | •           | *       | •        | *       | • | *    | • | *      | ٠   | *             | ٠  | * | ٠   | *     | •         | *             | •              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      | Bo  | reho<br>14491 | le | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 | ٠           | *       | ٠        | *       | ٠ | *    | ٠ | *      |     | *             | ٠  | ∗ | ٠   | *     | •         | *             | •              | *                 | •                | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
|                    | *        | *                 |             | *       |          | *       |   | *    |   | *      |     | *             |    | * |     | *     |           | *             |                | *                 |                  | ∗          | *                   |
| ¥                  | *        | *                 |             | ∗       |          | *       |   | *    |   | *      |     | ¥             |    | * |     | *     |           | *             |                | *                 |                  | *          | *                   |
| /                  | -        |                   |             |         |          |         |   |      |   | _      | _ 1 | 20 ft         |    |   |     |       |           |               |                |                   |                  |            |                     |
| 2087838<br>749357N | E        |                   |             |         |          |         |   |      |   |        | -   |               |    | - |     |       |           |               |                |                   | ~                |            | 2087958E<br>749332N |
| C                  |          |                   |             |         |          |         |   |      |   |        |     |               |    |   | Pro | epare | d for     | : De<br>Ro    | partn<br>cky F | nent d<br>Flats ( | of Ene<br>Office | ergy       |                     |
| Legend             | 1        |                   |             |         | <b>≜</b> |         |   |      |   |        |     |               |    |   | 00  | tobe  | r 199     | 3             |                |                   |                  |            |                     |
| ■ Hece * Sour      | rce Poir | cation<br>at Loca | is<br>ation | ıs      | N        |         |   |      |   |        |     |               |    |   | _   |       |           |               | Fig            | ure 2             | 2-1              |            |                     |
|                    |          |                   |             |         |          |         |   |      |   |        |     |               |    |   |     | S     | 3<br>ourc | -D \$<br>;e - | Seis<br>Rec    | mic<br>eive       | Sur<br>r Lo      | vey<br>cat | ions                |

DOE RF OU2 Rev.9.20.94.jb

the recording of seismic reflections from subsurface horizons as deep as approximately 1,500 ft below ground surface.

## 2.2 FIELD TESTS

Prior to data acquisition, field tests were conducted to determine the optimum seismic source parameters. An Industrial Vehicles, Inc. Mini-Vib T-2500 (Mini-Vib) vibratory source was tested to determine the parameters sweep frequency, sweep length, and the number of sweeps per source point. A discussion on vibratory source theory can be found in Appendix I. A total of 96 geophones were laid out linearly (2 ft spacing), with the Mini-Vib set up at the end of the geophone spread. Each parameter was tested separately while holding each of the other parameters constant (i.e., the sweep frequency and sweep length were held constant while the number of sweeps was varied). For each parameter tested, the field records were compared to determine which sweep setting provided the best signal frequency and signal amplitude content. The optimum parameters selected for data acquisition were a 3-second sweep from 40 Hertz (Hz) to 250 Hz, with 10 sweeps per source point.

The data from the Mini-Vib sweep tests were compared to an 8-gauge cartridge shot record generated from the previous 2-D seismic survey performed in OU2. In general, the 8-gauge cartridge produced more source-generated noise than the Mini-Vib. Although a spectral analysis indicated that the 8-gauge cartridge provided higher frequencies than the Mini-Vib, it is likely those frequencies were due to the source-generated noise. The amplitude of the data generated by the Mini-Vib was higher (40 to 250 Hz range) than the data generated by the 8-gauge cartridge. Based on the higher amplitude data, the repeatability, and the power of correlation, the Mini-Vib was chosen for the 3-D seismic survey source. The 3-D seismic survey data acquisition parameters used are shown in Table 2-1.

#### 2.3 EQUIPMENT

DOE's EG&G Geometrics ES-2420 digital reflection seismograph was configured to record 96 channels of data concurrently at a sampling interval of 0.50 milliseconds (ms). High-frequency

| Equipment                         | Parameters        |  |  |  |  |  |  |  |  |  |
|-----------------------------------|-------------------|--|--|--|--|--|--|--|--|--|
| Geophone Station Spacing          | 10 feet x 10 feet |  |  |  |  |  |  |  |  |  |
| Seismic Source Spacing            | 5 feet x 10 feet  |  |  |  |  |  |  |  |  |  |
| Geophones Per Station             | 1                 |  |  |  |  |  |  |  |  |  |
| Geophone Frequency                | 100 Hertz         |  |  |  |  |  |  |  |  |  |
| Number of Recording Channels      | 96                |  |  |  |  |  |  |  |  |  |
| Recording Sample Rate             | 0.5 milliseconds  |  |  |  |  |  |  |  |  |  |
| Record Length                     | 0.5 seconds       |  |  |  |  |  |  |  |  |  |
| Low-Cut Filter                    | 40 Hertz          |  |  |  |  |  |  |  |  |  |
| Alias Filter                      | 360 Hertz         |  |  |  |  |  |  |  |  |  |
| Common Depth Point Fold           | Variable (1–100)  |  |  |  |  |  |  |  |  |  |
| Sweep Frequencies                 | 40-250 Hertz      |  |  |  |  |  |  |  |  |  |
| Sweep Length                      | 3 seconds         |  |  |  |  |  |  |  |  |  |
| Number of Sweeps per Source Point | 10                |  |  |  |  |  |  |  |  |  |

 Table 2-1
 3-D Shallow HR Seismic Reflection Data Acquisition Parameters
 Page 1 of 1

RFL\0417 09/22/94 9:39 am bpw

100 Hz geophones were used to record the high-frequency energy necessary for the desired resolution (Knapp 1988). Custom geophone cables with 10-ft takeouts (geophone connectors) were used for the survey. As discussed above, the Mini-Vib was the vibratory seismic source used for the seismic survey. All equipment used for the 3-D seismic data acquisition was rigorously tested using the manufacturer's suggested procedures prior to the commencement of field activities to ensure each piece of equipment was operating properly. In addition, each piece of equipment was tested daily prior to data acquisition to ensure continued high performance. Seismic reflection equipment specifications can be found in Appendix II.

#### RFL\0416 09/20/94 4:14 pm bpw

## 3.0 SEISMIC DATA PROCESSING

Once the seismic data were acquired, they were sent to the seismic data processing center for processing, enhancement, and display. The 3-D shallow HR seismic reflection data require the use of sophisticated algorithms to reconstruct the complex cellular 3-D geometries between source and receivers. The end product is a 3-D volume of seismic data representing an acoustic image of the subsurface.

The processing sequence (Figure 3-1) included a variety of computer programs that are normally applied to CDP seismic data. Computer programs have many functions, including editing and removing unwanted noise, enhancing frequency content, sorting data traces into CDP format, applying static and velocity functions, scaling the data for presentation, migrating the data to remove raypath imaging effects, and plotting the data as well as a variety of other data analysis techniques. The proper design and use of these programs effectively enhances data presentation. The seismic data processing center's report can be found in Appendix V.

Output from seismic data processing steps was reviewed by the Processing Task Manager, Technical Manager, and Project Technical Advisor, all of whom are experienced seismic geophysicists, to ensure valid software application and quality data processing results.



## 4.0 DATA INTERPRETATION

Seismic data interpretation involves the identification of seismic events that relate to geological features. Often, particular reflections have distinctive characteristics that can be identified and correlated throughout a site. For example, well-cemented sandstone units exhibit high acoustic impedances and positive reflection events, and coals exhibit low acoustic impedances and strong negative reflection events.

The interpretation of the 3-D seismic data volume from OU2 involved the analysis of the final processed data. The analysis was enhanced by using a 3-D work station to interactively slice the data volume into vertical and horizontal profiles. The seismic data are displayed in conventional variable area wiggle trace, color amplitude, and time-slices and in true 3-D perspective with full rotation, tilt, and highlighting. The use of the 3-D work station also allows the interpreter to pick several seismic events throughout the data volume and contour them interactively. The contour maps are displayed as conventional 2-D contour, 3-D net, and color shaded.

The specific objective of the data interpretation was to identify and map the alluvial-bedrock contact. Previous investigative data in the area, including 2-D seismic reflection profiles and borehole data, were integrated to enhance the interpretation. In the case of weathering, no discontinuities should be expressed in the data volume, other than those caused by normal sedimentary deposition. The identification of a slump or a fault depends on the ability to identify discontinuities in beds and possible localized folding. Regional dip at OU2 is to the east (EG&G 1993). In the case of slumping, the bedrock will most likely slide downdip on a slump plane dipping down to the east. Previous seismic reflection investigations at RFP have demonstrated the existence of west-to-east thrust faults related to the Laramide Orogeny (EG&G 1993a). Therefore, if the Bedrock Step is caused by thrust faulting, the fault plane would dip towards the west.

Previous seismic and borehole investigations in the 3-D survey area have not identified any significant Arapahoe or upper Laramie sandstones. Sandstones were not identified during the interpretation of the 3-D data volume.

Three seismic events were interpreted and mapped across the 3-D survey area. Figure 4-1 shows an interpreted seismic profile through the center of the survey area. The interpreted seismic events are the following:

- a very shallow reflector (colored red) at approximately 25 ms that has been interpreted as the alluvial-bedrock contact
- an upper Laramie Formation reflector (colored green) at approximately 70 ms
- a deep reflector (colored orange) at approximately 245 ms that has been interpreted as the top of the Fox Hills sandstone

The alluvial-bedrock contact was mapped because one of the objectives of the seismic survey was to identify the Bedrock Step. The upper Laramie reflector was mapped to identify any possible lateral stratigraphic discontinuities, shallow faults, or folds in the upper bedrock that may have caused the Bedrock Step. The Fox Hills reflector was mapped to identify any deep faulting or folding that may have caused the Bedrock Step.

Figure 4-2 shows the relative locations of each of the in-line and cross-line seismic profiles generated through the survey area. The seismic profiles are provided as Appendix IV. On the In-line #23 seismic profile (Figure 4-1), the positive amplitude reflection immediately above (approximately 5 ms) the red line was identified as the alluvial-bedrock reflector. The red interpretation line was picked along the negative amplitude reflection underlying the alluvial-bedrock reflection since this negative reflection was more consistent throughout the survey area and easier to interpret. The small red circles along this event are the tie points corresponding to the cross-line interpretations. These circles are displayed and utilized to ensure that the interpretation is consistent throughout the survey area.



In-Lines Borehole 0 04491 **Cross-Lines** Prepared for: Department of Energy **▲** N **Rocky Flats Office** October 1993 Figure 4-2 3-D Seismic Survey Line Location Map

DOE RF OU2 Rev.9.20.94.jb

Borehole 04491, located within the survey area on the south side (Figure 4-2), encountered bedrock at 27 ft. At the borehole location, the positive amplitude reflection corresponding to the top of the bedrock occurs at 23 ms, yielding a seismic velocity of 2,350 feet per second (ft/sec) for the alluvium. Based on previous vertical seismic profiles performed in boreholes at RFP (EG&G 1993b, EG&G 1990), this seismic velocity is reasonable for the alluvium.

The positive amplitude reflection corresponding to the alluvial-bedrock contact occurs between 22 and 36 ms. Because the CDP fold and signal strength are low along the edges and corners of the survey area, the interpretation is not reliable and emphasis should not be placed on it. The interpretation shows that the bedrock reflector is generally flat, with no significant dip or discontinuities. This interpretation holds true throughout the survey area. Figure 4-3 is a cross-line seismic profile through the middle of the survey area. Similar to In-line #23, Cross-line #21 shows a flat-lying bedrock reflector with no folding or faulting present. Figure 4-4 is the horizontally compressed seismic profile for Cross-line #23 and shows subtle structure at the alluvial-bedrock contact. The alluvial-bedrock contact is at 23 ms on the south (left) side of the profile and at 29 ms on the north (right) side of the profile. This difference translates to approximately 6 ft of relief (using a seismic velocity of 2350 ft/sec for the alluvium), which corresponds to an approximate 3.5 degree dip to the north across the grid. This subtle structure is reflected in the time-structure map of the alluvial-bedrock contact shown in Figure 4-6 is a 3-D perspective of the alluvial-bedrock contact structure map.

The upper bedrock reflector (colored green) is the upper-most reflector of a package of highamplitude reflections that range between 70 and 135 ms. This reflector is a generally flat-lying horizon throughout the survey area, as indicated by the time-structure map shown in Figure 4-7. There is approximately 5 ms of structure across the survey area, which corresponds to 6 to 7 ft (3.5 degrees northeast dip). This 3-D perspective of the upper Laramie time-structure is shown in Figure 4-8. Similar to the alluvial-bedrock time-structure map, there does not appear to be any faulting or significant folding at this horizon.













•

.

The Fox Hills Sandstone reflector (colored orange) is also generally flat across the survey area. The time-structure map and 3-D perspective map are shown in Figures 4-9 and 4-10, respectively. These maps show an approximate 3 degree dip to the east. This is consistent with previous seismic investigations in the area.

Displays that were useful as part of the interpretation process are seismic profiles with colored amplitudes displayed (Figure 4-11). These displays aided in identifying the three seismic reflectors mapped based on their characteristic amplitudes.

Time-slices were also used to identify structural features. A time-slice is an areal amplitude map of the seismic data over the entire survey area at a specific seismic time (or depth). A time-slice is similar to a level map used in the mining industry. Figures 4-12 through 4-15 are time-slices of the 3-D data at 114 ms through 117 ms, respectively. The red and yellow colors indicate positive, high-amplitude reflections, while the grays represent negative amplitude reflections. These reflections are part of the package of reflections between 70 and 135 ms discussed above. These reflections migrate to the east as time increases, which means that dip on these events is down to the east. There do not appear to be any discontinuities cutting across the time-slices, indicating gently dipping, planer reflectors across the 3-D survey area (i.e. no faults or folds). Time-slices were generated at 1 ms intervals for the entire data set, from 0 ms to 300 ms, and no significant structural features were observed.

#### RFL\0416 09/20/94 4:14 pm bpw














## 5.0 <u>CONCLUSIONS</u>

## 5.1 GEOLOGIC

Based on the interpretation of the 3-D seismic reflection data collected, there does not appear to be a step in the bedrock at the survey location. Also, there does not appear to be any faulting or significant folding in the bedrock sediments down to the Fox Hills Sandstone. The seismic reflections are generally very continuous throughout the survey area. Dip on the shallow bedrock reflectors is approximately 3.5 degrees to the north, but changing to 3 degrees to the east at the Fox Hills Sandstone reflector. The discontinuities that do exist are where the CDP fold and signal strength are low (i.e., those at the edges and corners of the survey). There are some localized converging and diverging reflections in the mid-level Laramie sediments that appear to be stratigraphic rather than structural in nature.

Because no structural features can be observed on the seismic data in the survey area, the cause of the Bedrock Step observed north of the survey area cannot be determined. Based on the borehole data to the north of the survey area, and on the depth to bedrock logged in BH 04491 (27 ft), located within the survey area, the survey area is located on trend with the Bedrock Step. The lack of evidence of any structural features at the 3-D survey area indicates that the Bedrock Step terminates abruptly to the north of the 3-D survey area. If this is the case, the Bedrock Step is a local feature and therefore likely an erosional feature or a result of localized slumping.

### 5.2 3-D SEISMIC METHOD

The data are generally very high quality and superior to the 2-D seismic data collected previously in OU2. This higher quality is likely due to the following:

• The Mini-Vib source was able to generate a larger amount of energy in the useable frequency range than the 8-gauge cartridge.

- The Mini-Vib source generates seismic energy over a period of time (3 seconds), that renders unwanted, random noise (wind, traffic, etc.) less significant. Previous 2-D seismic data at OU2 using the 8-gauge seismic source contained a large amount of noise from traffic and drill rigs.
- The Mini-Vib source was able to stack 10 sweeps at each source point, increasing the signal strength by approximately 3 times over just 1 sweep.
- The 3-D nature of data acquisition allows for better cancellation of source generated noise.
- The CDP fold was generally much higher for this 3-D seismic survey than the previous 2-D seismic data. In the middle of the 3-D survey area CDP fold reached 100, and averaged over 40 for the entire area, while the CDP fold for the previous 2-D seismic data was 24. The 3-D seismic data have an increase in signal strength of approximately 1.3 to 2 times over the 2-D seismic data.
- The weather and ground surface conditions were much better during the 3-D seismic data acquisition than during the previous 2-D seismic data acquisition, allowing for better geophone to ground coupling.

Based on the knowledge gained from the demonstration and testing, 3-D seismic reflection can be an excellent, cost-effective tool to characterize the subsurface geology at RFP. Depending on the objectives of any future geologic characterization or studies, a 3-D seismic survey can be designed to significantly reduce costs relative to this demonstration. Based on the quality of the seismic data collected during this testing, a 3-D CDP fold of 20 to 30 is sufficient to image the subsurface geology. For larger surveys, there are a variety of techniques to collect 3-D data such that the CDP fold is distributed evenly across an area. Also, by increasing the number of recording channels (by adding additional channels to the DOE's seismograph or using one of several seismographs available that have more channels), the number of source points can be reduced without reducing the CDP fold or data quality. By reducing the number of source points, data acquisition time and associated costs can be reduced, and data processing costs can be reduced.

# 6.0 <u>REFERENCES</u>

# EG&G

- 1990 Task 2, Addendum, Vertical Seismic Profile of Well 56-89BR at the Rocky Flats Plant, Final Report. Prepared for the U.S. Department of Energy, submitted by Ebasco Environmental, Fall, 1990.
- 1991 Task 3, Shallow, High-Resolution Seismic Reflection Profiling in Operable Unit 2 (903 Pad, Mound, and East Trenches) at the Rocky Flats Plant, Final Report. Prepared for the U.S. Department of Energy, submitted by Ebasco Environmental, February 1991.
- 1992 Phase II Geologic Characterization Data Acquisition, Surface Geologic Mapping of the Rocky Flats Plant and Vicinity, Jefferson and Boulder Counties, Colorado. Submitted by Ebasco Environmental, March 1992.
- 1993a Phase II Geologic Characterization Data Acquisition, Task 2, Deep Seismic, Revised Final Report. Submitted by Ebasco Environmental, April 1993.
- 1993b Phase II Geologic Characterization Data Acquisition, Task 2, Additional Shallow, High Resolution Seismic Reflection Profiling on Indiana Street, Final Report. Submitted by Ebasco Environmental, September 1993.

### Hurr, R.T.

1976, Hydrology of a Nuclear Processing Plant Site, Rocky Flats, Jefferson County, Colorado. U.S. Geological Survey Open File Report, pp. 76-268.

### Knapp, R.W.

1988 High-Resolution Seismic Data of Pennsylvanian Cyclothems in Kansas. The Leading Edge, vol. 7, no. 11, pp 24-27.

#### LeRoy, L.W., and R.J. Weimer

1971 Geology of the Interstate-70 Road Cut. Jefferson County, Colorado School of Mines, Professional Contribution No. 7.

## Rockwell International

1987 Remedial Investigation Report for 903 Pad, Mound and East Trenches Area, Volumes I-VIII, Draft Report to U.S. Department of Energy, submitted by Roy F., Weston Incorporated.

#### Weimer, R.J.

1973 A Guide to the Uppermost Cretaceous Stratigraphy, Central Front Range Colorado: Department of Geology Colorado School of Mines, Golden, Colorado.

# Wells, J.D.

1967 Geology of the Eldorado Springs Quadrangle, Boulder and Jefferson Counties, Colorado. U.S. Geological Survey Bulletin 1221-D, pp. 1-8.

# Woodward-Clyde

1993 Draft Report in Progress.

# Appendix I

Theory of Seismic Reflection Techniques

# SEISMIC REFLECTION TECHNIQUE

A seismic source generates energy that manifests itself as seismic waves. Seismic waves propagate within solids as disturbances traveling through the materials with velocities dependant upon the elastic properties and densities of the materials. Typical commercial seismic sources include simple mechanical devices, explosives, and vibrating machinery. These sources generate two types of seismic waves; body and surface waves. Body waves consist of compressional waves (P-waves) and shear waves (S-waves). The selection of an appropriate source and its directionality, and the subsequent source-detector geometry are the dominant factors in determining the type of waves generated by the source and received by the sensors. In general, most sources that are excellent generators of P-waves can be modified in concert with the sensor geometry to provide measurable S-wave motion.

Seismic wave energy attenuates with distance partly due to frictional heat loss through absorption of energy by the host material. Absorption is dependent on several characteristics of the seismic medium; based on experimental data, sedimentary materials tend to have higher absorption rates than igneous rocks. Although attenuation mechanisms are not fully understood in all earth materials, the fact remains that higher frequency energy is absorbed at a greater rate than lower frequency energy. Since seismic waves propagate as spherical wave fronts, the wave spreads out over a spherical area. Thus, the energy per unit area varies inversely as the square of the distance from the source.

A seismic wave will travel through a medium along a ray path until a discontinuity is encountered. For P-waves, the particle motion lies in a plane parallel to the direction of the wave. S-waves are characterized by particle motion perpendicular to the direction of wave travel. A discontinuity can be caused by a change in lithology or fluid content of a porous medium. At a discontinuity, part of the wave will be reflected and another part refracted in accordance with Snell's Law as illustrated in Figure I-1.



DOE RF OU2 Rev.1.94.jb

The relative amplitude of a reflected P-wave resulting from the boundary of two layers, Layer 1 and Layer 2, can be expressed in the form

$$R = \frac{d_2 V_2 - d_1 V_1}{d_2 V_2 + d_1 V_1}$$

where:

R = reflection coefficient

d = density in grams per cubic centimeter of medium

V = velocity of P-wave through medium

The product of the density and velocity is known as the acoustic impedance. If the acoustic impedance increases across an interface, then the reflected wave has a positive amplitude. Conversely, if the acoustic impedance decreases across an interface, the reflected wave has a negative amplitude.

The refracted P-wave makes an angle, r, expressed by the relation

$$\frac{\sin i}{\sin r} = \frac{V_1}{V_2}$$

where:

i = angle of incidence r = angle of refraction  $V_1$  = velocity of P-wave through Layer 1  $V_2$  = velocity of P-wave through Layer 2

When sin  $i = V_1/V_2$ , sin r becomes unity and r becomes 90 degrees. The refracted wave does not penetrate the medium, but travels along the interface between the two materials. Angles i and r are measured relative to the normal at the intersection of the interface and the incident wave.

RFL/0418 8/16/94 1:44 pm mer

The equations for the transmission and reflection of S-waves impinging upon a boundary are similar to those for P-waves. However, S-waves are characterized by two directional components; one component of motion is parallel to the ground surface (SH), and one component lies in the vertical plane (SV). Figure I-2 exhibits the resultant waves generated by surface sources oriented to produce primarily P, SV, and SH type waves.

Where seismic waves strike any irregularity along a surface, such as a corner or a point where there is a sudden change of curvature, the irregular feature acts as a point source radiating waves in all directions. Such radiation is known as diffraction. The amplitude of a diffracted wave falls off rapidly with distance away from a source.

Another seismic phenomenon, the interbed multiple reflection, is illustrated in Figure I-3. A wave reflects upward from the interface between Layer 2 and Layer 3. Returning to the surface, the wave reflects downward from the Layer 1 - Layer 2 interface, because any change in acoustic impedance at an interface boundary can cause a reflection. The wave again reflects from the top of Layer 3 and successfully returns to the surface.

Figure I-3 also shows the types of seismic waves generated by a surface source that will be detected by a geophone. The air wave travels at the speed of sound in air (approximately 1,100 feet per second. The direct wave travels from the source to the geophone within the uppermost medium. This wave is normally faster than the air wave but slower than the other illustrated waves. The refracted wave has the earliest arrival time. The reflected wave is slower than the refracted wave. A multiple reflected wave has a longer arrival time than the reflected wave because of the greater distance traveled. Because of the varying velocities of the different waves it is possible to design seismic field parameters to record the waves of primary interest.

According to signal theory, the amount of information present in a seismic reflection signal is proportional to the bandwidth. The bandwidth of a seismic signal is the range of frequencies contained within. The maximum frequency that can be recorded reliably is equal to one-half of





DOE RF OU2 Rev.1.94.jb

the sampling frequency or rate. This is known as the Nyquist frequency. At a 0.25-millisecond sampling rate, the Nyquist frequency is 2,000 hertz.

# COMMON DEPTH POINT METHOD

Seismic reflection techniques build on basic seismic principles. Development of digital recording techniques in the 1960s catalyzed great advances in seismic reflection acquisition, processing, and interpretation. Seismic noise is any unwanted signal; sometimes it is random and other times it is coherent (e.g., an operating water pump or a nearby electric powerline). To reliably interpret a seismic event, the signal-to-noise (S/N) ratio must be at least 1:1.

The common depth point (CDP) technique has enabled the recording and display of reflection events that have S/N ratios less than unity. The CDP technique records reflections from multiple offsets at different source and receiver pairs as illustrated in Figure I-4. For each CDP the number of source and receiver pairs recorded is called the fold. Six fold data, also called 600 percent stack, has six source and receiver pairs. The S/N ratio doubles for each quadruple increase in the CDP fold. The CDP fold can be calculated by the following equation:

# $CDP \ fold = \frac{receiver \ spacing}{2 \ x \ source \ spacing} \ x \ number \ of \ recording \ channels$

The processing of seismic reflection data can be an intensive procedure and requires human guidance at each step. After acquisition, the seismic reflection data are processed from source record format into CDP record format. Each CDP record will have the same number of traces equal to its fold. Because the distance between source and receiver is greater for the longer offsets of a reflection event (source-receiver 1 as opposed to source-receiver 3, Figure I-4), the recorded reflection event itself will record at a later time. The difference in time for a particular event on adjacent traces is termed normal moveout. Data are corrected for normal moveout during processing, and all traces in the CDP record are merged or summed together (stacked). This enhances the real events and cancels undesirable random noise, thus increasing the S/N ratio.



Before stacking, data are corrected for elevation variations, resulting in a static correction. After stacking, automatic statics are performed to correct for velocity variations in the near-surface weathered layer. Digital filters are applied at various steps in the processing to eliminate undesirable noise and enhance the reflection events. Post-stack filtering may include enhancing individual reflection events to improve the interpretation by statistically comparing adjacent seismic traces for continuous events versus random noise.

Seismic events recorded from a geophone appear to arrive from directly beneath the geophone. Where the reflecting horizon is dipping, the position of the event is incorrect. Dipping events migrate downdip. If necessary, these events can be migrated back to their true location. Depending on the data and objectives of the interpreter, this process can be done either before or after stacking (i.e., pre-stack or post-stack migration).

Recording shallow reflection events requires modification of standard seismic reflection techniques. In standard seismic reflection techniques 12 or more geophones are grouped together as an array. Typical distances between groups are tens to hundreds of feet. In shallow high-resolution seismic reflection work geophone arrays are eliminated and individual geophones are used. Geophone spacings are reduced to a few feet, depending on the depth to the shallowest target. Shallower targets require closer geophone spacings. The number of recording channels needed is dependent on the depth to the deepest target of interest and the geophone and source spacing. Vertical resolution is limited by the bandwidth of the recorded signal and the sampling frequency. Horizontal resolution is limited by the bandwidth of the recorded signal and the geophone spacings.

## SEISMIC DATUM

The seismic datum is an arbitrary reference surface that corrects seismic data for local topographic variations. The start time of each record is corrected to the seismic datum. In general, if this reference datum is below the ground surface then some shallow data will be lost. If the datum is above the ground surface then the earliest seismic events are recorded and

preserved on the seismic profile. Conventional seismic reflection utilizes a seismic datum below the ground surface because there is little interest in shallow events, however, the high-resolution seismic programs at the Rocky Flats Plant are targeting the early or shallow events. Therefore, a seismic datum above the ground surface is used. For example, if a borehole has an elevation of 5,900 feet (ft), the seismic line intersecting the borehole might have a seismic datum elevation of 5,975 ft. If a sandstone was encountered in the borehole at a depth of 120 ft, the seismic depth of the sandstone would be 195 ft on the seismic profile because the seismic datum is 75 ft higher than the borehole ground surface elevation.

## THE VIBROSEIS SOURCE

The energy source used in Vibroseis is a vibrator which transfers seismic energy into the ground by shaking it for several seconds. As opposed to the impulse sources which typically transfer their energy in an impulse lasting only milliseconds, the Vibroseis source transfers energy continuously for periods which typically may range from 1 second to 16 or even 32 seconds. The total energy transferred from the vibrator could be made comparable to the energy from the impulse source merely by adjusting the duration of energy release. However, the power, or rate at which the vibrator transferred energy would always be much smaller than the power of the impulse source. This means that the vibrator can provided adequate energy while exerting relatively small force on the ground surface. This small force makes the Vibroseis system eminently suitable for use where surface damage is particularly undesirable.

The vibrator actually vibrates through a predetermined frequency range in a predetermined period of time. This is called the *Vibroseis sweep*. The *duration* of the sweep (in seconds) is often referred as the *sweep length*. Change of frequency with time is linear throughout the sweep. Sweep spectra are usually described by the starting and finishing frequencies of the sweep  $(f_1 \sim f_2)$ . A 12-56 sweep then starts at 12 Hz and ends at 56 Hz and a 40-10 sweep starts at 40 Hz and ends at 10 Hz. Vibroseis sweeps typically have a bandwidth of 2 octaves.

## RFL/0418 8/16/94 1:44 pm mer

When using an impulse source, if we want to record seismic events up to say 6 seconds of 2-way travel time, we arrange for our recorder to "listen for" and record signals for 6 seconds after the start of the seismic impulse (T/O).

When using Vibroseis however, if we want to record seismic events up to 6 seconds of 2-way travel time, we must arrange for our recorder to record during the whole length of the sweep and then continue "listening" and recording for 6 seconds after the end of the sweep.

Record Length = Sweep Length + Max 2-way travel time required.

A single reflection incident to the surface of the earth lasts as long as the sweep. If we use an 8-second sweep, each reflection is 8 seconds long. The result of this is that seismic events overlap each other to the extent that the raw field trace is a composite of so many overlapping events as to be completely meaningless without undergoing special processing.

In order to become meaningful, each trace must be subjected to a method of *signal compression* which will compress each long seismic event into a wavelet comparable to the Ricker wavelet of the impulse energy source.

Each trace of a raw Vibroseis record is subjected to a process called *correlation* which serves to compress each seismic event into a single wavelet. After correlation the record looks very similar to a record obtained with an impulse energy source. The length of the correlated record is equal to the length of the original recording minus the sweep length.

Correlated record length = Raw record length - Sweep length

A 14-second raw record obtained using an 8-second sweep would therefore yield a 6-second correlated record.

RFL/0418 8/16/94 1:44 pm mer

The frequency content of a seismic record made with an impulse source can be controlled only by filtering in the recorder or in processing. However, a correlated Vibroseis record contains only these frequencies which were contained in the sweep. It follows that choice of "correct" sweep frequencies should eliminate the need for filtering either at the recorder (other than antialias filter) or in processing.

Each reflection on a raw Vibroseis trace lasts as long as the sweep and has the same frequency constant as th sweep. Each reflection (and indeed, each seismic event caused by the sweep) has exactly the same from as th sweep itself.

Correlation in Vibroseis is merely as means of measuring the degree of correlation (or similarity) between the sweep that was put into the ground and the seismic trace that was recorded. If we slide the sweep past the trace, maximum correlation will occur whenever the sweep is opposite a reflection or other event. It is therefore possible to extract events from the raw trace.

Vibroseis crews in the United States often work along busy highways or even along downtown streets. The noise generated by passing traffic would be an insurmountable problem for any system other than Vibroseis. With Vibroseis however, the correlation process extracts only those traffic noise frequencies which are contained in the sweep and rejects all others. As the traffic noise frequencies do not follow the sweep sequence of frequencies, they appear on the correlated record as relatively low-level background noise.

This "noise rejection by correlation" also applies to wind noise. However, as with any other surface energy source, we also use *multiplicity* to control wind noise.

Wind noise is essentially random in nature, so the detected wind noise will differ from geophone to geophone and tend to be reduced by mixing within the geophone array. Also, with Vibroseis, as with other surface sources, we sum records in the field. The component records of the sum have differing wind noise content, so the noise tends to be "summed down".

I-12

# Appendix II Seismic Reflection Equipment

RFL\0420 8/18/94 9:11 am tjd

# INSTRUMENT SPECIFICATIONS

- EG&G Geometrics ES-2420 Digital Reflection Seismograph
- Mark Products L-40 A2 100-Hertz (Hz) Geophones
- Input/Output RLS-240M Rota-Long Switch

In the event of unforeseen circumstances, equivalent instruments will be substituted for equipment listed below.

# EG&G GEOMETRICS ES-2420 DIGITAL REFLECTION SEISMOGRAPH

The following specifications apply to an operating environment of 0 to 40 Degrees Centigrade (°C), after a 5-minute warmup period (EG&G Geometrics 1984).

# Analog Performance Specifications

Preamplifier Gain: 32 (30.1 decibels [dB]) 64 (36.1 dB) 128 (42.1 dB)

Selected by switches on printed circuit board.

| Input Impedance:     | Differential, 20K ohms, .01 microfarads (µfd) |  |  |
|----------------------|-----------------------------------------------|--|--|
|                      | Common Mode, 5K ohms, .02 µfd                 |  |  |
| Maximum Differential | @ 30 dB 0.640 volts (v) peak to peak          |  |  |
| Input Voltage:       | @ 36 dB, 0.320 v                              |  |  |

@ 42 dB, 0.160 v

# Maximum DC Common Mode

Voltage: 10.0 v

Transient Protection: Transients with energy less than 0.75 Joule and voltage less than 200 v will not damage instrument

Alias Filters:

| 6 dB Slope<br>Cutoff Frequency | Stop Band      | Stop Band        |
|--------------------------------|----------------|------------------|
| (F <sub>c</sub> in Hz)         | Frequency (Hz) | Attenuation (dB) |
| 45                             | 125            | 80               |
| 180                            | 500            | 80               |
| 360                            | 1,000          | 78               |
| 720                            | 2,000          | 78               |
| 1,440                          | 4,000          | 78               |
|                                |                |                  |

| 6 dB corner frequency tolerance:               | 3% max      |
|------------------------------------------------|-------------|
| Time delay, constant from 5 Hz to $F_c$ within | <u>+</u> 2% |
| Time delay similarity between channels         | <u>+</u> 2% |

Low Cut Filter: Frequency: 5 to 320 Hz in 5 Hz increments

3 dB corner frequency tolerance: 3% max Type: Butterworth Attenuation slope: 18 dB/octave

Notch Filter:

50 or 60 Hz or out, selected from front panel 6 dB bandwidth 9 Hz typical Frequency of Origin (F<sub>o</sub>) <u>+</u>3.65 minute <u>+</u>6.80 max 50 dB bandwidth 0.5 Hz typical F<sub>o</sub> <u>+</u>0.1 minute

# Floating Point Digitizer

Instantaneous-floating-point amplifier with 16 gain ranges (6 dB per step) followed by a 15-bit Analog/Digital (A/D) converter. Amplifier gain range is automatically selected for each sample to maximize the precision of the mantissa value.

Exponent:

Mantissa:

15-bit, twos-complement binary

(minimum signal)

+ 10.24 v

0.1%

0.2%

0.01%

4-bit unsigned binary number representing the gain range, where zero represents maximum gain

Full scale input voltage:

Gain step relative accuracy:

A/D converter accuracy:

A/D converter linearity:

System Response

Signal to Noise Ratio:

Frequency Response:

Gain accuracy:

Gain similarity between channels:

Total Harmonic Distortion:

Crossfeed:

Timing:

100 dB (3 to 180 Hz, 42 dB preamp gain, 600 ohm input, notch & low-cut filters out, alias filter set to 180 Hz)

Lower 3 dB frequency, 1.6 Hz  $\pm 10\%$ Upper 3 dB frequency, determined by alias filter

1%

2%

0.05% floating point average (FPA) in minimum gain, Preamp gain minimum.

Input: 0.226 voltage root mean square (Vrms) 3 to 1,000 Hz

<80 dB, 3 to 2,000 Hz

Time base accuracy 0.002%

RFL/0406 8/17/94 12:05 pm mcf

II-3

Sample skew:

**Operating Characteristics** 

Sample Interval, write-to-memory:

Real time clock:

Maximum Record Length:

Delay Start:

ES-2420 Acquisition Control Unit (ACU) Power Supply:

DP2420 Printer Power Supply:

DMT2420 Tape Drive Power Supply:

**Dimensions** 

ACU:

Expansion Module:

Within 8 channel group, 1/40 milliseconds (ms)/channel.

1/4, 1/2, 1, 2, or 4 ms Front panel selectable

Built in digital clock with time of day and day of year. Battery backup provides continuous timekeeping.

Basic accuracy 3 seconds per month at 25 °C. Time recorded on tape.

Set from front panel to maximum of 99 seconds in direct-to-tape. In stack-to-memory maximum length determined by sample interval:

| 1/4 ms | 4.096 seconds  |
|--------|----------------|
| 1/2 ms | 8.192 seconds  |
| 1 ms   | 16.384 seconds |
| 2 ms   | 32.768 seconds |
| 4 ms   | 65.536 seconds |

Postpones sampling of data by front-panel selected delay up to 9.999 seconds in 0.001 second increments.

Operates from 10 to 18 v DC

Operates from 10 to 14 v DC

Operates from 10 to 16 v DC

28 x 16 x 23.5 inches (22.5 with 71 x 41 x 60 cm cover removed)

same as ACU

RFL/0406 8/17/94 12:05 pm mcf

Portable Tape Deck:

Plotter:

Weights

Acquisition Control Unit:

Printer:

Portable Tape Deck:

Environmental:

same as ACU

15 x 15 x 18 inches 38 x 38 x 46 centimeters

110 pounds (50 kilograms [Kg]) with 4 channels 7 pounds (lbs) ( 3 Kg) for each additional 8-channel board set

40 lbs (18 Kg)

100 lbs (45 Kg)

Operating temperature, 0 to  $45^{\circ}$ C continuous operation with built-in forced air cooling. Can be operated in cyclic conditions to temperature of  $50^{\circ}$ C.

Storage temperature - 40 to 70°C

Humidity 10 to 95% noncondensing

May be operated in vertical position in light rain (cover closed on tape recorder, protection for plotter)

Weatherproof with transit lid closed

## Cathode Ray Tube (CRT) Display

512 by 512 dot matrix graphic display of seismic data and acquisition parameters. Can display at maximum expansion of one dot per sample, or compressed in 3 dB steps up to maximum of 16,196 samples on screen. Also displays a time cursor and scale lines and selected parameters (e.g, battery voltage constant, file number, and status messages).

## TAPE DATA FORMAT

Tape format:Nine-track, Society of Exploration Geophysicists (SEG) D, 2 1/2 byte,multiplexed

RFL/0406 8/17/94 12:05 pm mcf

II-5

Data density: 1,600 bits per inch

6Block size: Fixed blocking, equal to an integral number of scans, as close as possible to a user selected maximum or ungapped

Channel set descriptor: One for all channels

Sample skew: Not written to tape. For each set of Channels (usually 8) supported by a Data Acquisition Memory (DAM) board - Preamplifier Filter (PF) board pair, sample skew starts at z ...o and increased by 1/40 ms per channel. The maximum sample skew for any channel in the system is thus 7/40 ms.

Data word: Ones complement, twenty bits with a one-bit sign, four-bit binary exponent, and 14-bit mantissa. The least significant bit (LSB) is zero.

## Geophone Specifications - Mark Products L-40 A2

| Standard Frequency Range                   | 100 Hz         |
|--------------------------------------------|----------------|
| Frequency Tolerance                        | +7%            |
| Standard Coil Resistance+10% (Ohms)        | 325, 510, 780  |
| Distortion @ Resonance @ 0.7 inches/second | 0.2% MAX       |
| Transduction Constant, v/inches/second     | 0.031 Rc       |
| (Rc= circuit resistivity)                  |                |
| Open Circuit Damping                       | <u>47.9</u>    |
| (f=frequency)                              | f              |
| Coil Current Damping                       | <u>20.8 Rc</u> |
| (Rs=source resistivity)                    | f(Rc + Rs)     |
| Suspended Mass, Grams                      | 5.7            |
| Case-to-Coil Motion, peak to peak inches   | 0.080          |
| Intrinsic Power Sensitivity                |                |
| milliwatts (mw)/inches/second              | 0.96           |
| Basic Unit Diameter, inches                | 1.25           |
| Basic Unit Height, inches                  | 1.37           |
| Basic Unit Weight, ounces                  | 5.0            |

# ROTA-LONG SWITCH SPECIFICATIONS - INPUT/OUTPUT RLS-240M

The following specifications are presented in summary form from the operations manual (Input/Output Inc. 1981a).

• 240 input stations

120 recording channels

- Unlimited types of recording configurations
- Size: 20 inches wide x 20 inches tall x 6.50 inches deep
- Auxiliary connector permits diagnostic cable tests with an ohmmeter or I/O Break Check
- Weight: 40 lb

# REFERENCES

# EG&G Geometrics

1984 ES-2420 Digital Reflection Seismograph Operation Manual.

# Input/Output, Incorporated

1981a RLS-240M Manual Rota-Long Switch Operations Manual, 12 pp.

# Appendix III Glossary of Geophysical Terms

RFL\0400 8/17/94 12:05 pm mas

## **GLOSSARY**

A selection of relevant geophysical terms extracted from Encyclopedic Dictionary of Exploration Geophysics (Sheriff, 1984), Applied Geophysics (Telford et al., 1976), Geophysical Prospecting (Dobrin, 1976; Dobrin and Savit, 1988).

ACCELEROMETER - A geophone whose output is proportional to the acceleration of earth particles. For example, a moving coil geophone, with velocity response proportional to frequency (as may be the case below the natural frequency) operates as an accelerometer.

ACOUSTIC -**IMPEDANCE**  Seismic velocity multiplied by density. Reflection coefficient at normal incidence depends on changes in acoustic impedance.

## ACOUSTIC LOGGING -

A borehole logging survey which will display any of several aspects of seismic-wave propagation, i.e., a sonic, amplitude, character or 3D-log.

AIR WAVE -

Energy from the shot which travels in the air at the velocity of sound: V = 1051 + 1.1F ft/s, where F = Fahrenheit temperature, or V = 331.5 + 0.607C m/s, where C = Celsius temperature.

ALIAS -

Data in sampled form have an ambiguity where there are fewer than two samples per cycle. This creates a situation where an input signal at one frequency appears to have another frequency at the output of the system. Half of the frequency of sampling is called the folding or Nyquist frequency,  $f_N$ , and a frequency larger than this,  $f_N + Y$ , appears to have the smaller frequency f<sub>N</sub>-Y. To avoid this ambiguity, frequencies above the Nyquist frequency must be removed by an antialias filter before the sampling. Otherwise the system will react as if the spectral characteristics were folded back at the Nyquist frequency. Thus, for a system sampled over 4 ms, or 250 times per second, the Nyquist frequency is 125 cps; if, for example, 50 cps is within the pass band, then 200 cps will also be passed if an anti-alias filter is not used, appearing upon output to have a 50 cps frequency. The pass bands obtained by folding about the Nyquist frequency are also called "alias bands," "side lobes," and "secondary lobes." Aliasing is an inherent property of all sampling systems and applies to digital seismic recording

RFL\0400 8/17/94 12:05 pm mas

and also to the sampling which is done by the separate elements of geophone and shotpoint arrays.

ANALOG - (1) A continuous physical variable (such as voltage or rotation) which bears a direct relationship (usually linear) to another variable (such as earth motion) so that one is proportional to the other. (2) Continuous, as opposed to discrete or digital.

ANOMALY - A deviation from uniformity in physical properties, often of exploration interest. For example, a travel time anomaly, Bouguer anomaly, free-air anomaly.

APPARENT VELOCITY -

(1) The phase velocity which a wavefront appears to have along a line of geophones. (2) The inverse of the slope of a time-distance curve.

# ATTENUATION -

A reduction in amplitude or energy caused by the physical characteristics of the transmitting media or system. Usually includes geometric effects such as the decrease in amplitude of a wave with increasing distance from a source. Also used for instrumental reduction effects such as might be produced by passage through a filter.

## AUTOMATIC GAIN CONTROL (AGC) -

A system in which the output amplitude is used for automatic control of the gain of a seismic amplifier, usually individual for each channel, although multi-channel devices are sometimes used.

BEDROCK - Any solid rock, such as may be exposed at the surface of the earth or overlain by unconsolidated material.

BODY WAVES - P-waves and S-waves, which travel through the body of a medium, as opposed to surface waves.

CABLE - The assembly of electrical conductors used to connect the geophone groups to the recording instrument.

CAPACITANCE - The ratio of charge (Q in coulombs) on a capacitor to the potential across it (V in volts) is the capacitance (C in farads):

## C = Q/V

CHANNEL - (1) A single series of interconnected devices through which geophysical data can flow from sources to recorder. Most seismic systems are 24

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

VI-2

channel, allowing the simultaneous recording of energy from 24 groups of geophones. (2) A localized elongated geological feature resulting from present or past drainage or water action; often presents a weathering problems. (3) An allocated portion of the radio-frequency spectrum.

CHANNEL WAVE - An elastic wave propagated in a layer of lower velocity than those on either side of it. Energy is largely prevented from escaping from the channel because of repeated total reflection at the channel boundaries or because rays which tend to escape are bent back toward the channel by the increasing velocity away from it in either direction.

CHARACTER - (1) The recognizable aspect of a seismic event, usually in the waveform, which distinguishes it from other events. Usually a frequency or phasing effect, often not defined precisely and hence dependent upon subjective judgment. (2) A single letter, numeral, or special symbol in a processing system.

## COMMON DEPTH POINT (CDP) -

The situation where the same portion of subsurface produces reflections at different offset distances on several profiles.

# COMPRESSIONAL WAVE -

An elastic body wave in which particle motion is in the direction of propagation. (Same as P-waves, longitudinal wave, dilation wave).

CONVERTED WAVE -

A wave which is converted from longitudinal to transverse, or vice versa, upon reflection or refraction at oblique incidence from an interface.

CRITICAL ANGLE - Angle of incidence,  $q_c$ , for which the refracted ray grazes the surface of contact between two media (of velocities  $V_1$  and  $V_2$ ):

$$\sin q_c = V_1 / V_2$$

## CRITICAL DISTANCE -

(1) The offset at which the reflection time equals the refraction time; that is, the offset for which the reflection occurs at the critical angle (see Sheriff, 1984 p. 45). (2) Sometimes incorrectly used for crossover distance, the offset at which a refracted event becomes the first break.

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

CROSSFEED -

Interference resulting from the unintentional pickup of information or noise on one channel from another channel. Also crosstalk.

CROSS-HOLE METHOD -

Technique for measuring in situ compressional (p) and/or shear (s) wave velocities by recording transit times from a source within one borehole to receivers at the same elevation in one or more other boreholes. Sources may be explosive or directional to enhance either P- or S-wave generation.

CROSS SECTION - A plot of seismic events.

DATUM -

(1) The arbitrary reference level to which measurements are corrected.
(2) The surface from which seismic reflection times or depths are counted, corrections having been made for local topographic and/or weathering variations.
(3) The reference level for elevation measurements, often sea level.

DELAY TIME -

(1) In refraction work, the additional time required for a wave to follow a trajectory to and along a buried marker over that which would have been required to follow the same marker considered hypothetically to be at the ground surface or at a reference level. Normally, delay time exists separately under a source and under a detector; and is dependent upon the depth of the marker at wave incidence and emergence points. Shot delay time plus geophone delay time equals intercept time (See Dobrin, 1988 p. 472). (2) Delay produced by a filter.

## DIELECTRIC CONSTANT -

A measure of the capacity of a material to store charge when an electric field is applied. It is the dimensionless ratio of the capacitivity (or permittivity, the ratio of the electrical displacement to the electric field strength) of the material to that of free space.

DIFFRACTION -

(1) Scattered energy which emanates from an abrupt irregularity of rock type, particularly common where faults cut reflecting interfaces. The diffracted energy shows greater curvature than a reflection (except in certain cases where there are buried foci), although not necessarily as much as the curve of maximum convexity. It frequently blends with a reflection and obscures the fault location or becomes confused with dip. (2) Interference produced by scattering at edges. (3) The phenomenon by which energy is transmitted laterally along a wave crest. When a portion of a wave train is interrupted by a barrier, diffraction allows waves to propagate into the region of the barrier's geometric shadow.

RFL14/APP0160.RFL 8/17/94 12:05 pm pf
DIGITAL -

Representation of quantities in discrete units. A digital system is one in which the information is contained and manipulated as a series of discrete numbers as opposed to an analog system, in which the information is represented by a continuous flow of the quantity constituting the signal.

#### DOWN-HOLE METHOD -

Technique for measurement of in situ compressional and shear wave velocities utilizing a seismic source at ground surface and a clamped triaxial geophone at depth in a borehole. Shear wave energy is often enhanced by use of directional sources such as striking the ends of a weighted plank.

END LINE - Shotpoints that are shot near the end of the spread.

FIRST BREAK - The first recorded signal attributable to seismic wave travel from a known source. First breaks on reflection records are used for information about the weathering. Refraction work is based principally on the first breaks, although secondary (later) refraction arrivals are also used. Also first arrival.

FOLD - The multiplicity of common-midpoint data. Where the midpoint is the same for 12 offset distances, e.g., the stack is referred to as "12-fold".

FREQUENCY DOMAIN -

A representation in which frequency is the independent variable; the Fourier transform variable when transforming from time.

GAIN - An increase (or change) in signal amplitude (or power) from one point in a circuit or system to another, often from system input to output.

GALVANOMETER - A part of a seismic camera consisting of a coil suspended in a constant magnetic field. The coil rotates through an angle proportional to the electrical current flowing through the coil. A small mirror on the coil reflects a light beam, which exhibits a visual record of the galvanometer rotation.

GEOPHONE - The instrument used to convert seismic energy into electrical voltage. Same as seismometer.

### GEOPHONE STATION -

Point of location of a geophone on a spread, expressed in engineering notation as 1+75 taken from 0+00 at the beginning of the line.

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

GROUP VELOCITY -

The velocity with which most of the energy in a wave train travels. In dispersive media where velocity varies with frequency, the wave train changes shape as it progresses so that individual wave crests appear to travel at a different velocity (the phase velocity) than the overall energy as approximately enclosed by the envelope of the wave train. The velocity of the envelope is the group velocity. Same as dispersion.

### HYDROPHONE -

(Pressure detector) A detector which is sensitive to variations in pressure, as opposed to a geophone which is sensitive to particle motion. Used when the detector can be placed below a few feet of water, as in marine or marsh or as a well seismometer. The frequency response of the hydrophone depends on its depth beneath the surface.

### IMBRICATE FAULTING -

A series of nearly parallel and overlapping minor thrust faults, high angle reverse faults, or slides, and characterized by rock slices, sheets, plates, blocks, or wedges that are approximately equidistant and have the same displacement and that are all steeply inclined in the same direction (toward the source of stress).

### IMPEDANCE -

The apparent resistance to the flow of alternating current, analogous to resistance in a dc circuit. Impedance is (in general) complex, of magnitude Z with a phase angle g. These can be expressed in terms of resistance R (in ohms), inductive reactance  $X_L = 2pL$ , and capacitive reactance  $X_c = 1/2pnC$ :

Z = [R<sup>2</sup> + (X<sub>L</sub> - X<sub>C</sub>)<sup>2</sup>]<sup>1/2</sup>,g = tan<sup>-1</sup>[(X<sub>L</sub> - X<sub>C</sub>)/R].

Z is in ohms when frequency n is in hertz, L is inductance in henrys, and C is capacitance in farads.

IN-LINE OFFSET - A spread which is shot from a shotpoint which is separated (offset) from the nearest active point on the spread by an appreciable distance (more than a few hundred feet) along the line of spread.

INPHASE - Electrical signal with the same phase angle as that of the exciting signal or comparison signal.

LEAD - An electrical conductor for connecting electrical devices. Geophones are connected to cables at the takeouts via leads on the geophones.

A series of profiles shot in line.

LOVE WAVE - A surface seismic channel wave associated with a surface layer which has rigidity, characterized by horizontal motion perpendicular to the direction of propagation with no vertical motion.

# LOW-VELOCITY LAYER -

LINE -

A near-surface belt of very low-velocity material often abbreviated LVL; also called weathering.

## MAGNETIC PERMEABILITY -

The ratio of the magnetic induction B to the inducing field strength H: denoted by the symbol m:

#### m = B/moH

mo is the permeability of free space =  $4p10^{-7}$  weber/ampere meter or (henrys/meter) in SI system, and 1 gauss/oersted in the cgs system, so that the permeability m is dimensionless. The quantity mmo is sometimes considered the permeability (especially in the cgs system).

MIS-TIE -

(1) The time difference obtained on carrying a reflection, phantom, or some other measured quantity around a loop; or the difference of the values at identical points on intersecting lines or loops. (2) In refraction shooting, the time difference from reversed profiles which gives erroneous depth and dip calculations.

MULTIPLE - Seismic energy which has been reflected more than once. Same as long-path multiple, short path multiple, peg-leg multiple, and ghost.

MULTIPLEX -

A process which permits transmitting several channels of information over a single channel without crossfeed. Usually different input channels are sampled in sequence at regular intervals and the samples are fed into a single output channel; digital seismic tapes are multiplexed in this way. Multiplexing can also be done by using different carrier frequencies for different information channels and in other ways.

NOISE -

(1) Any undesired signal; a disturbance which does not represent any part of a message from a specified source. (2) Sometimes restricted to energy which is random. (3) Seismic energy which is not resolvable as reflections. In this sense noise includes microseisms, shot-generated noise, tape-modulation noise, harmonic distortions, etc. Sometimes

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

divided into coherent noise (including non-reflection coherent events) and random noise (including wind noise, instrument noise, and all other energy which is non-coherent). To the extent that noise is random, it can be attenuated by a factor of n by compositing n signals from independent measurements. (4) Sometimes restricted to seismic energy not derived from the shot explosion. (5) Disturbances in observed data due to more or less random inhomogeneities in surface and near surface material.

- NOISE SURVEY A mapping of ambient, ontinuous seismic noise levels within a given frequency band. As some geothermal reservoirs are a source of short-period seismic energy, this technique is a useful tool for detecting such reservoirs. Also called ground noise survey.
- OBSERVER The geophysicist in charge of recording and overall field operations on a seismic crew.
- ON-LINE Shotpoints that are shot at any point on a spread other than at the ends of the spread.
- OSCILLOGRAPH An instrument that renders visible a curve representing the time variations of electric phenomena.
- OSCILLOSCOPE A type of oscillograph that visually displays an electrical wave on the screen of a cathode ray tube type.
- PERMITTIVITY Capacitivity (q.v.) of a three-dimensional material, such as a dielectric. Relative permittivity is the dimensionless ratio of the permittivity of a material to that of free space; it is also called the dielectric constant.
- PHASE VELOCITY - The
  - 'ELOCITY The velocity with which any given phase (such as a trough or a wave of single frequency) travels; may differ from group velocity because of dispersion.
- PLANT The manner in which a geophone is placed on or in the earth; the coupling to the ground.
- PROFILE The series of measurements made from several shotpoints into a recording spread from which a seismic data cross section or profile can be constructed.

PROFILING - A geophysical survey in which the measuring system is moved about an area (often along a line) with the objective of determining how

RFL14/APP0160.RFL 8/17/94 12:05 pm pf VI-8

measurements vary with location. Specifically, a resistivity, IP, or electromagnetic field method wherein a fixed electrode or antenna array is moved progressively along a traverse to create a horizontal profile of the apparent resistivity.

RADAR - A system in which short electromagnetic waves are transmitted and the energy scattered back by reflecting objects is detected. Acronym for "radio detection and ranging." Ships use radar to help "see" other ships, buoys, shorelines, etc. Beacons sometimes provide distinctive targets. Radar is used in aircraft navigation (s - 2 Doppler-radar), in positioning, and in remote sensing.

RADIO FREQUENCY -

A frequency above 3kHz. Radio frequencies are subdivided into bands.

RAYLEIGH WAVE -

A seismic wave propagated along the free surface of a semi-infinite medium. The particle motion near the surface is elliptical and retrograde, in the vertical plane containing the direction of propagation.

RAYPATH - A line everywhere perpendicular to wavefronts (in isotropic media). The path which a seismic wave takes.

REFLECTION SURVEY -

A survey of geologic structure using measurements made of arrival time of events attributed to seismic waves which have been reflected from interfaces where the acoustic impedance changes.

**RESOLUTION** - The ability to separate two features which are very close together.

SEISMIC AMPLIFIER -

SEISMIC

MPLIFIER - An electronic device used to increase the electrical amplitude of a seismic signal. (See geophone)

SEISMIC CAMERA - A recording oscillograph used to produce a visible pattern of electrical signals to make a seismic record.

VELOCITY - The rate of propagation of a seismic wave through a medium.

SEISMOGRAM - A seismic record.

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

**VI-9** 

- SHEAR WAVE - A body wave in which the particle motion is perpendicular to the direction of propagation. (Same as S-wave, equivoluminal, transverse wave).

- SHOOTER The qualified, licensed individual (powderman) in charge of all shotpoint operations and explosives handling on a seismic crew.
- SHOT DEPTH The distance down the hole from the surface to the explosive charge, often measured with loading poles. With small charges the shot depth is measured to the center or bottom of the charge, but with large charges the distances to both the top and bottom of the column of explosives are usually given.

SHOT INSTANT - (Time Break [TB], Zero Time) - The time at which a shot is detonated.

SHOTPOINT - Point of location of the energy source used in generating a particular seismogram. Expressed either sequentially for a line (i.e. SP 3) or in engineering notation (i.e. SP 3+00).

# SIGNAL

ENHANCEMENT - A hardware development utilized in seismographs and resistivity systems to improve signal-to-noise ratio by real-time adding (stacking) successive waveforms from the same source point and thereby discriminating against random noise.

# SIGNAL-TO-NOISE

RATIO SOUNDING- The energy (or sometimes amplitude) divided by all remaining energy (noise) at the time; abbreviated S/N.

SOLE FAULT - A low-angle thrust fault forming the base of a thrust sheet; also, the basal main fault of an imbrication.

- SOUNDING Measuring a property as a function of depth; a depth probe or expander. Especially a series of electrical resistivity readings made with successively greater electrode spacing while maintaining one point in the array fixed, thus giving resistivity-versus-depth information (assuming horizontal layering); electric drilling, probing, VES (vertical electric sounding).
- SPREAD The layout of geophone groups from which data from a single shot are recorded simultaneously.

### STONELEY

## RFL14/APP0160.RFL 8/17/94 12:05 pm pf

**VI-10** 

| WAVE - | A type | of | seismic | wave | propagated | along    | an | interface. |
|--------|--------|----|---------|------|------------|----------|----|------------|
|        | ~ 1    |    |         |      | 1 1 0      | <u> </u> |    |            |

SURFACE WAVE -

Energy which travels along or near the surface (ground roll).

SYNTHETIC SEISMOGRAM -

- RAM An Artificial seismic record manufactured from velocity log data used to compare with and actual seismogram to aid in identify events or in predicting how stratigraphic variations might affect seismic record. Often constructed from sonic log data alone although density data may also be incorporated.
- TAKEOUT A connection point to a multiconductor cable where geophones can be connected.
- THRUST FAULT A fault with a dip of 45 degrees or less over much of its extent, on which the hanging wall appears to have moved upward relative to the footwall. Horizontal compression rather than vertical displacement is its characteristic feature.
- TIME BREAK (TB)- The mark on a seismic record which indicates the shot instant or the time at which the seismic wave was generated.
- TIME DOMAIN 1. Expression of a variable as a function of time, as opposed to its expression as a function of frequency (frequency domain). Processing can be done using time as the variable, i.e., "in the time domain". For example, convolving involves taking values at successive time intervals, multiplying by appropriate constants, and recombining; this is equivalent to filtering through frequency-selective circuitry. It is also equivalent to Fourier transforming, multiplying the amplitude spectra, and adding the phase spectra ("in the frequency domain"), and then inverse-Fourier transforming.

2. Time-domain induced polarization is called the pulse method (q.v.)

TOMOGRAPHY - The reconstruction of an object from a set of its projections. Tomographic techniques are utilized in medical physics as well as in cross-borehole electromagnetic and seismic transmission surveys.

TRACE - A record of one seismic channel. This channel may contain one or more geophones. A trace is made by a galvanometer.

UPHOLE METHOD-Also called the Meissner technique, a method of reconstructing wave front diagrams by shooting at several depths and recording on a full surface spread of geophones. Derived wavefront diagrams yield a true picture of wavepaths and, therefore, layering in the subsurface.

WAVE TRAIN - (1) The sum of a series of propagating wave fronts emanating from a single source. (2) The complex wave form observed in a seismogram obtained from an explosive source.

RFL14/APP0160.RFL 8/17/94 12:05 pm pf

VI-12

## REFFERENCE

- Dobrin, Milton B. 1976. Introduction to Geophysical Prospecting, McGraw-Hill, New York, NY, 630 pp.
- Dobrin, Milton B., and C.H. Savit. 1988. Introduction to Geophysical Prospecting, McGraw-Hill, New York, NY, 867 pp.
- Sheriff, Robert E. (Compiler). 1984. <u>Encyclopedic Dictionary of Exploration Geophysics</u>. Society of Exploration Geophysicists, Tulsa, OK, 323 pp.
- Telford, W.M., L.P. Geldart, R.E. Sheriff, and D.A. Keys. 1976. <u>Applied Geophysics</u>, Cambridge University Press.

### RFL14/APP0160.RFL 8/17/94 12:05 pm pf

**VI-13** 

Appendix IV In-line and Cross-line Seismic Profiles

## RFL\0420 8/18/94 9:11 am tjd

|                  |                                       |                                          |                    |                      |                 | ***** |                  |
|------------------|---------------------------------------|------------------------------------------|--------------------|----------------------|-----------------|-------|------------------|
|                  | IN-LINE<br>X-LINE                     | 4                                        | 0                  | 20 3                 | 0               | I     | N-LINE<br>X-LINE |
| 0.00             |                                       | 2336625                                  | 55555555           | 235233333            | 352213222       | 22325 | .00              |
| 1.1.11           | · · · · · · · · · · · · · · · · · · · |                                          |                    |                      |                 |       | 0.010            |
| لہ؛ لہ الا       |                                       |                                          |                    |                      |                 |       |                  |
| 0.040            |                                       |                                          |                    | 33725                |                 |       | 0.848            |
| 0.0%0 ·          |                                       | 2333                                     | CEESS .            |                      | 577555          | TRE   | 0.050            |
| 3.11-3           |                                       |                                          | \$\$\$\$} <u>}</u> | {\$\${\$ <u>\$</u> } | 322272          |       | 0_060            |
| ປ. 080           |                                       |                                          | <del>233223</del>  |                      | <u> </u>        |       |                  |
| ວ.ນະຍ<br>121.124 |                                       |                                          | 333262             |                      | 57773555        | 1557  | 0.090            |
| 0.110            | · · · · · · · · · · · · · · · · · · · |                                          | STOR STOR          | SDN SS               |                 |       | . 10             |
| ə. 179           | · · · · · · · · · · · ·               |                                          | 355555             |                      | <u> XZZZZZ</u>  |       |                  |
| J. 130           |                                       |                                          |                    | 12234                |                 |       | .130             |
| 9. P.J           |                                       |                                          | 25552223           |                      |                 |       | 0.140            |
| J. 160           | ·                                     |                                          |                    |                      |                 |       | Ø. 160           |
| 0.179<br>0.120   |                                       | TRACK.                                   |                    |                      |                 |       |                  |
| J. 190           |                                       |                                          |                    |                      |                 | C335  | Ø.182            |
| 0.20             |                                       |                                          |                    |                      |                 |       | 0.20             |
| J.210            |                                       |                                          | \$\$\$\$\$         |                      |                 |       | .21Ø             |
| J. : AI          |                                       |                                          |                    |                      | DDDDDGGG        | 588_  | Ø. 220           |
| s), 2441         |                                       |                                          |                    |                      |                 |       | 0.240            |
| st. 1.0 -        |                                       | - CT- CT- CT- CT- CT- CT- CT- CT- CT- CT |                    | J.T. Bobber          |                 |       | 18.250           |
| d. / b           | · · · · · · · · · · · · · · · · · · · |                                          |                    | NEW SOL              | 1 to the second |       | 0.260            |
| 0. 244           |                                       | EPPPER                                   |                    |                      |                 |       | 0.280            |
| 17.30<br>17.30   |                                       |                                          |                    |                      |                 | KS -  | U.230            |
| 0.00             |                                       |                                          |                    |                      |                 |       | 0.30             |

•

|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         |                      | · .                     |                                         |                                       |                   |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|-----|-------|--------------|-------------------------|----------------------|-------------------------|-----------------------------------------|---------------------------------------|-------------------|
| IN                | I-LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                     |                                        |     |       |              |                         |                      |                         |                                         | TN-I TNF                              |                   |
| X-                | -LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 1                                      | 2   | i     | 20           | 3                       | Ø                    | 40                      | )                                       | X-EINE                                |                   |
| 0.00              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 1 1 1                                  |     | 1111  | 122153       | 7                       | 22355                | 5377                    | 77775                                   |                                       | 0.00              |
| ե. ելեւ 🧰         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         | 22555                |                         |                                         | -                                     | 0.010             |
| 1.11.11           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         |                      |                         |                                         | -                                     | 0.070             |
| J. J 44           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         | 5555                 | 1 Contraction           | <b>S</b> SR                             |                                       | 0.030             |
| J. P.J.           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                                        |     |       |              |                         |                      | 6555                    | 22S                                     |                                       | 0.040<br>0.050    |
| J.UNU             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              | 5555                    | 5334                 | 1225A                   |                                         | ·····                                 | 0.060             |
| a'a A -           | • ••••• • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       |                                        |     |       | 255          | 355                     |                      |                         |                                         |                                       | 0.070             |
| 1.1.1691 ···      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       | 1.50         |                         |                      |                         | 52S                                     |                                       | <b>J.</b> 083     |
| J.090             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · · |                                        |     |       | 255          |                         | डेरोर्ट              |                         | 555                                     |                                       | 0.090             |
| <b>0.10</b>       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       | $\mathbf{S}$ |                         | <u> </u>             | 522                     |                                         |                                       | 0.10<br>0.10      |
| 4.1.4             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · ·                               |                                        |     |       |              |                         |                      |                         | <u> </u>                                |                                       | 0.120             |
| .). I aj          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · · · · ·                             | · · · · · · · · · · · · ·              |     |       |              |                         |                      | $\langle \cdot \rangle$ |                                         |                                       | 0.130             |
| J. 146 ·          | ana ang taong taon | · · · · · · · · · · · · · · · · · · · |                                        |     | 25552 |              | $\overline{\mathbf{x}}$ |                      |                         | 3555                                    | · · · · · · · · · · · · · · · · · · · | 0.140             |
| 1;, 1.L.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        | 227 | 3557  | 135555       | 5.557                   | $\leq \leq 1 \leq q$ | 17                      | 232                                     |                                       | 0.150             |
| 1.194<br>1.194    | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | na processo                           |                                        |     |       |              | 2772                    | डर्ट्र्ट्र्          | 52220                   | र्रेट्रे                                | <b></b>                               | 0.160             |
| J. 1631           | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                                     |                                        |     |       |              |                         | <u> </u>             | $\leq \leq \leq$        |                                         |                                       | 0.180             |
| لزو لـلم          | a sa <u>a</u> tatan sa s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       |                                        |     |       |              |                         | 455                  |                         | S                                       | •                                     | 0.190             |
| 0.20-             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         | <u> </u>             | r et                    |                                         |                                       | 0.20              |
| J. 21J            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       | CE EEEE      |                         |                      | 35750                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | •                                     | 0.210             |
| 0. 1,10<br>1 - 10 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on in industria.                      | ······································ | 772 |       | 227722       |                         | 5555                 | 552                     | र्टाईट्र                                | ······                                | 0.220             |
| .1. 1.1           | · •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                       |                                        |     |       |              |                         |                      |                         |                                         |                                       | . 0.230           |
| J. " J            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         |                      | -55 55                  | <u> 22257</u>                           |                                       | . 0.250           |
| لمراجيل           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     |       |              |                         | 5555                 | 55.5                    | SZY                                     |                                       | 0.260             |
| al a              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 4.4                               |                                        |     |       |              |                         | R                    | 4555<br>                | 5)555                                   | · · · · · · · · · · · · · · · · · · · | 0.270             |
| 11.0 M            | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • • •                                 |                                        |     | 21715 |              | रंग्र र                 | 775                  | EST:                    | 3755                                    | ·                                     | - Ø.280           |
| 0. 16             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        |     | 5325  | 125ST        | 1215                    | 5555                 | 2221                    |                                         | •                                     | - 9.200<br>- 0.00 |
| 9. 20-            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       |                                        | L   |       |              |                         |                      |                         |                                         |                                       | . 0.30            |

| B- 30    | D. 30                                      |
|----------|--------------------------------------------|
| 0.290    |                                            |
| 0,000    | 8.2.90 ·····                               |
|          | ð. 280                                     |
| 0.270    | 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5   |
| 8.268    |                                            |
| 0.400    | N. 264]                                    |
|          | U.S.                                       |
| 6.240    | 4                                          |
| 8.230    | 200                                        |
| 0.220    |                                            |
|          | い. ささい                                     |
|          | · W. 210                                   |
| 0.20     | 0.20                                       |
| Ø. 190   |                                            |
| a. 100   | J. [1]                                     |
|          | 1. 1 M                                     |
| 0.170    | 8.179                                      |
| 0.160    |                                            |
| 001.00   | 8.160                                      |
| a<br>10  | -8.150                                     |
| 0. I -10 | U. [-]U                                    |
| 0.130    |                                            |
| a. 120   | 0.130                                      |
|          | 8.1.20 · ······                            |
| 0.110    | 8.110 ···· · · · · · · · · · · · · · · · · |
| 0.10     |                                            |
| 8.090    |                                            |
| 0.080    | 1.030                                      |
|          | 9.080                                      |
| 0.070    | 0.870                                      |
| 0.060    |                                            |
| 0.050    |                                            |
| 2.040    | 5.17.17.                                   |
|          | 0.040                                      |
| NEN.D    | J.J30                                      |
| 0.020    | 8. 8/20                                    |
| 0.010    |                                            |
| 0.00     | 3.310                                      |
|          | <br>0.00                                   |
|          | 8                                          |
|          | X-LINE                                     |
|          | IN-LINE                                    |
|          |                                            |
|          |                                            |
|          |                                            |

|              |                  | 0.00<br>a.aia         | 0.020                | 0.040<br>0.040      | Ø.Ø60       | 0.080         |      | 0.118 | 9.120 | 0+1.6 | 0.150                | 0.170   | 0.180<br>a 196 | 0.20        | 0.210   | 052°.0         | 9.250                                                                                                          | 0.260   | 0.270<br>0.280 | 0.290 |
|--------------|------------------|-----------------------|----------------------|---------------------|-------------|---------------|------|-------|-------|-------|----------------------|---------|----------------|-------------|---------|----------------|----------------------------------------------------------------------------------------------------------------|---------|----------------|-------|
|              | I<br>X<br>N<br>I |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             | Å       |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
| •<br>• • • . |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              | ă –              |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              | 7                |                       | <b>1</b>             |                     |             |               |      |       |       |       |                      |         |                |             |         |                |                                                                                                                |         |                |       |
|              |                  |                       |                      |                     |             |               |      |       | •     |       |                      | .:      |                | 4774 - 14 A |         |                |                                                                                                                |         |                |       |
|              |                  | <b>d. UO</b><br>d.dld | 1.11.10<br>(a. h. h. | 1946.1.<br>L. L. L. | J. J. W. W. | better better | 0.10 |       |       |       | d. 1+10 <sup>-</sup> | л. 1. М | J. P.J.        | <b>3.20</b> | di. Tut | 1. 11<br>1. 11 | de la compañía de la | di, yad |                | J. 26 |



|          |     |    | MAL   |  |   |  |       |  |
|----------|-----|----|-------|--|---|--|-------|--|
|          |     |    |       |  |   |  | V.V.V |  |
| 4        | Â   |    |       |  | X |  |       |  |
|          |     |    |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
| 8        |     |    | ŇĽŴ   |  |   |  |       |  |
|          |     | ŇŇ | V V V |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
| <b>R</b> |     | M  |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
|          | 2WA |    |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
| 10       |     |    |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
|          |     |    |       |  |   |  |       |  |
| თ        |     |    |       |  |   |  |       |  |
| Ш<br>ZШ  |     |    |       |  |   |  |       |  |



IN-LINE 11 X-LINE IN-LINE 10 50 30 40 0.00-0.00 3.013 0.010 0.140 0.020 4.9 31 0.030 J. (J-11) 0.040 1.00 0.050 J. A.J 0.060 3.33 0.070 J. Aral 0.080 J. J. M 0.090 0.10 0.10 3. 11. 0.110 4.1.31 0.120 J. 1 39 0.130 J. 1 M 0.140 3.150 0.150 J. Ital 0.160 0.110 0.170 J. 130 0.180 J. 1 at 0.190 0.20 0.20 J. A.J 0.210 للتقاديه 0.220 J. A. M. 0.230 2 14 12.240 4. 4. 0.250 1.00 0.260 A. 1 d 1.270 4. 191 0.280 13, 144 0.290 K > > ► 0.30 0.30



| IN-LINE 13<br>X-LINE                                                                                                                                                                                                                | 10                                                            | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                     |                             | 40     | IN-LINE<br>X-LINE |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------|--------|-------------------|
| 00                                                                                                                                                                                                                                  | 1. ( 1. 5 2 2 5 2 5 2 5 5 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · · · · · · · · · · · · · · · ·  |                             |        | ——— Ø.            |
|                                                                                                                                                                                                                                     |                                                               | S LEES C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 123232                      |        | 0.                |
| NI second de la companya de la compa<br>Na companya de la comp |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        | ø.                |
| ан с с Г.<br>• • • • • •                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        | . 0.              |
|                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37556                                  |                             |        | ø.                |
|                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 34739                       | 1222   | ø.                |
|                                                                                                                                                                                                                                     | T SPEEDER                                                     | وج و و و و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | 54436                       | + test | ø.                |
|                                                                                                                                                                                                                                     |                                                               | Sectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |                             |        | ø.                |
|                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             | 12525  |                   |
| a                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        | 0.                |
|                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 366633386                              | <u> </u>                    | arcer  | Ø.                |
| 2)<br>2)                                                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 155557                      | REECO  | Ø.                |
| al all                                                                                                                                                                                                                              |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             | 1555   | 0.                |
|                                                                                                                                                                                                                                     |                                                               | <u> 1999</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                        |                             |        |                   |
| .d                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13227                                  | 033555                      | 1335   | 0.                |
| al                                                                                                                                                                                                                                  |                                                               | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | 555555                      | 25535  | 0                 |
|                                                                                                                                                                                                                                     |                                                               | المتك والمحاج والمحاج والمحاج المحاج المحاج والمحاج ومحاج و | 22221251                               | 533722                      | 2555 B |                   |
| .l                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             | TELEE  |                   |
| 61                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        |                   |
| 20                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | <u> </u>                    |        | Ø                 |
| 1                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        | 9                 |
| al a serve 🗸                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        | • Ø               |
| a) i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                            |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                             |        |                   |
| (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b                                                                                                                                                                                          |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | 22222                       |        |                   |
| A3                                                                                                                                                                                                                                  |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | ALL APPR                    |        | Ø                 |
| al 🕴 🖡                                                                                                                                                                                                                              |                                                               | NAN A CAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | DESS S                      |        | U                 |
|                                                                                                                                                                                                                                     |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | PERFEC                      |        |                   |
| iel i i i i i i i i i i i i i i i i i i                                                                                                                                                                                             | ALDELT ADDE                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5555555                                | 55555                       | 2335   | C                 |
| h1 -                                                                                                                                                                                                                                |                                                               | S 1, 1, 1, e ∈ 1, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5 5 5 2 × 5 6 6 5 6                    | المركز الراجر المركز المركز |        |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>0.00</b> X Z | а | 0.140<br>1.141<br>1.141<br>1.141<br>1.141<br>1.141<br>1.141<br>1.141<br>1.141<br>1.141 | 0.211<br>0.220<br>0.240<br>0.240 | анана<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19<br> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|----------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3       3         3       3         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4       4         4 |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |   |                                                                                        | 5. 3. 0. 9. 9. 5                 |                                                                                                                                                                                                                                                                                                                                                                                                                            |



|                                          | 0.00                               | 6.826<br>6.836<br>6.848 | 0.050<br>0.060<br>0.070 | 0.080<br>9.150<br>0.10 | 0.120<br>0.130<br>0.140    | 0.150<br>0.160<br>0.178        | 8.188<br>6.198<br>0.20 | 4.210<br>8.220<br>8.230   | 8.250<br>8.250<br>8.260<br>11.741 | 0:2:0<br>0:2:0 |
|------------------------------------------|------------------------------------|-------------------------|-------------------------|------------------------|----------------------------|--------------------------------|------------------------|---------------------------|-----------------------------------|----------------|
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| an an thair<br>Airge agus tha thair<br>T |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| - <del>7</del>                           |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| <b>8</b> -                               |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         | ŴТ.                     |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| ର୍ଥ –                                    |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| ©                                        |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| -                                        |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        |                           |                                   |                |
| 16                                       |                                    |                         |                         | •••••••••              |                            |                                |                        |                           |                                   |                |
|                                          |                                    |                         |                         |                        |                            |                                |                        | · · · ·                   |                                   |                |
|                                          |                                    |                         |                         |                        |                            | 1                              |                        |                           |                                   |                |
|                                          | <b>3. 00</b> .<br>J.C.D.<br>J.C.D. | 0.050<br>0.040<br>1.540 | 1.1.0<br>1.1.0<br>1.1   | <b>3.10</b>            | 0.1.20<br>0.1.20<br>0.1.10 | 1. 15.0<br>.1. 15.0<br>.1.1 .0 |                        | 0,2,0<br>16,2,0<br>16,2,0 | . 1. 1.<br>Р. 24.0<br>1 – 1       | 3 € 6<br>30    |

: .

٠

. .

•.

|                          |                                       |          | <br> |     |                                |             |                 |            |                     |
|--------------------------|---------------------------------------|----------|------|-----|--------------------------------|-------------|-----------------|------------|---------------------|
|                          | ĮN-ĻINE                               | 18       |      |     |                                |             | *               | <b>* *</b> | IN-LINE             |
| 0 00                     |                                       |          | 3    | 2   | 2                              | 30          | 4               |            | X-LINE              |
| a.a.a.                   | ,                                     |          |      |     | 2322                           | 32233       | 33225           | रड्डर      | Ø.00                |
| alaad                    | ······                                |          |      |     |                                |             |                 |            | 0.020               |
| J. 131<br>J. 159         | ·<br>                                 |          |      |     |                                |             |                 |            | Ø.030               |
| J.J.at                   |                                       |          |      |     | 553555                         | 28533       | <u> </u>        | 232        | Ø.050               |
| 1.181<br>1.19            |                                       |          |      | ZZZ |                                | 52555       | 22223           | HAN T      | Ø. 950              |
| . ป.ป.ป                  |                                       |          |      | 233 |                                |             |                 | 22222      | Ø.970               |
| J.1940                   | ан сайта.<br>Стал                     |          |      |     |                                |             |                 | 23555      | U.190               |
| 0.10                     | ]                                     |          |      |     | DEUS                           |             | रत्याव          |            | . 10                |
| al. 1-141                |                                       |          |      |     |                                |             |                 |            | y. 120              |
|                          |                                       |          |      |     |                                |             | 4444            |            | ,<br>               |
| J. 15J                   | -                                     |          |      |     |                                |             | 335155          | 1333       | 0.140<br>0.150      |
| J. ital                  | <u>.</u> .                            |          |      |     |                                |             | <del>}}}}</del> |            | Ø. 150              |
| า 1 เม<br>ก. 1 เม        |                                       |          |      |     |                                |             |                 | EPS?       | d. 170              |
| J. 1-AJ                  |                                       |          |      |     | TERCE                          |             |                 |            | Ø. 190              |
| 0.20                     | )                                     |          |      |     |                                |             |                 |            | .20                 |
| J.a.yt                   |                                       |          |      |     |                                |             |                 | ESS -      | Ø.220               |
| J. 7 11                  |                                       |          |      |     |                                |             |                 | 5833       | 0.230               |
| ને કેન્દ્ર<br>ને કેન્દ્ર | · · · · · · · · · · · · · · · · · · · |          |      |     |                                |             |                 |            | 0.240               |
| J. 40                    |                                       |          |      |     |                                |             |                 |            | ► 0.260             |
| at ar                    |                                       |          |      |     |                                | P [ ] ] ] ] |                 |            | 11.1.1.41           |
| 1 . K)                   |                                       |          |      |     | <b>) ) ) ) ) ) ) ) ) ) ) )</b> |             | 20055           | 222D       | (1.,981)<br>tf.,"kt |
| 0.30                     | }                                     | <b>b</b> |      |     | 111111                         |             | 12125           |            | Ø. 3(               |



| I<br>X<br>I<br>L<br>X |  |     |  |  |  |                   |
|-----------------------|--|-----|--|--|--|-------------------|
|                       |  |     |  |  |  |                   |
| 40                    |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
|                       |  | Y Y |  |  |  | A A<br>A A<br>A A |
| 8-                    |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
| 8                     |  |     |  |  |  |                   |
| •                     |  |     |  |  |  | A A.              |
|                       |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
|                       |  |     |  |  |  |                   |
| 20                    |  |     |  |  |  |                   |

. . . . .

|                            | 0.0<br>0.0 | 358.50<br>040.00<br>0300.00<br>0300.00 | 978.0<br>989.0<br>989.0 | 0.1<br>0.12<br>0.126 | 0.140<br>0.150<br>0.150<br>0.150 | 921.0<br>981.0 | 0.20<br>015.0<br>012.0<br>0.250<br>0.250<br>0.250 | 8.256<br>8.256<br>0.260 | 97 (., 1)<br>1985. 1)<br>1985. 1) |
|----------------------------|------------|----------------------------------------|-------------------------|----------------------|----------------------------------|----------------|---------------------------------------------------|-------------------------|-----------------------------------|
| I<br>N<br>N<br>N<br>N<br>N |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
|                            |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| - <del>6</del>             |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
|                            |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| 8—                         |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
|                            |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| 8 —                        |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
|                            |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| s                          |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| -                          |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| 55                         |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
|                            |            |                                        |                         |                      |                                  |                |                                                   |                         |                                   |
| IN-X-L                     |            | (1,1)<br>(1,2)<br>(1,2)                |                         |                      |                                  |                |                                                   | t.t<br>tai              |                                   |

| IN-LINE<br>X-LINE                          | 23<br>10<br>    | 2                   | 0 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2            | IN-LIN<br>X-LIN | Ē                                      |
|--------------------------------------------|-----------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------|----------------------------------------|
|                                            |                 | <u> </u>            | 131333322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33322222     | 23284           | - 0.0                                  |
| l aj                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 0.02                                   |
| ) A)                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 |                                        |
| 340 - <sup>1</sup> .<br>                   |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | .04                                    |
| Г.) — ——————————————————————————————————   |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 0.05                                   |
| h.4)                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SSSSSSS      |                 | Ø.06                                   |
| 1.10 · · · · · · · · · · · · · · · · · · · |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cherry Start |                 | 0.07                                   |
| ] []                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | .08                                    |
| зы) — — — — — — — — — — — — — — — — — — —  |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 million 1  | \$ <u>}</u> }   | 0.05                                   |
| 10                                         | - LPPPPPP       |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 0.1                                    |
| . (1)<br>                                  |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 13_1                                   |
|                                            | <b>Rbbbbbbb</b> |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | •••••••••••••••••••••••••••••••••••••• |
| · · · ·                                    |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | U.I                                    |
|                                            |                 |                     | 111511111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | <u> </u>        | 0.1                                    |
| ( <sub>1</sub> )                           |                 | <u> </u>            | 4444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 | Ø.1                                    |
|                                            |                 | 2 - 2 1 - 2 2 3 2 3 | 666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2222222      |                 | —— Ø.1                                 |
| l-sa                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | Ø.1                                    |
| 1963 - State Constant State Constant State |                 |                     | http://www.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.com/alignedicality.co |              | 3332            | Ø.1                                    |
| 50                                         |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>     |                 | - 0.                                   |
| 40                                         |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | Ø.8                                    |
| 510                                        | I DEPEND        |                     | <b>SSS</b><br>SSS<br>SSS<br>SSS<br>SSS<br>SSS<br>SSS<br>SSS<br>SSS<br>SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                 | Ø.d                                    |
| a)                                         |                 |                     | Ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                 | V.e                                    |
|                                            |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 0.a                                    |
|                                            |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | U.2                                    |
| ing    |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 12222           |                                        |
| 5a)                                        |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                 | 0.ä                                    |
| < 61                                       |                 |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1111555555   |                 |                                        |
| 30                                         |                 | )                   | P(5(2))552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                 | Ø.                                     |

| - 40         |  |  |  |  |  |
|--------------|--|--|--|--|--|
| 8-           |  |  |  |  |  |
|              |  |  |  |  |  |
| 82           |  |  |  |  |  |
| <u> </u>     |  |  |  |  |  |
|              |  |  |  |  |  |
| INE 24<br>NE |  |  |  |  |  |

|                     |                                        |    |          |                |                  | <b>1</b>                                 | ٣                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ·         |
|---------------------|----------------------------------------|----|----------|----------------|------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                     | ~                                      |    |          |                |                  |                                          | · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |
|                     |                                        | 25 | •••      |                |                  | *                                        | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IN-LINE   |
| 0 00                |                                        |    |          |                | 3                | 30                                       | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | X-LINE    |
| 0.00                |                                        |    | S. ANA   | 5352           |                  | 2223333                                  | 52123 53253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00      |
| Jula                |                                        |    |          |                |                  |                                          | <u>ssiste</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.010<br> |
| ala a               | · · · · · · · · · · · · · · · · · · ·  |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.030     |
| 0.040               | · · · · · · · · · · · · · · · · · · ·  |    |          | S.K.K.D.       | <del>~~~</del> ~ |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø. 040    |
| J. CEA              |                                        |    | 1182     | छादर           | 5552             | হ্রব্যস্থ্য                              | 3322200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ø. 050    |
| J.J70               |                                        |    | $\Sigma$ |                | <u> </u>         |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.969     |
| 1.131               | د<br>بریون معقور و دلار در در در<br>در |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.080     |
| J.Jrid              |                                        |    |          |                |                  |                                          | A CAREANT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1330    |
| 9.10<br>9.10        |                                        |    | BPDP DD  |                |                  | <b>L'ENDON</b>                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10      |
| L.                  |                                        |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.10      |
| d. j`at             |                                        |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ŭ. 130    |
| 0.140               |                                        |    |          | संसित          |                  | <del>\$\$\${{{{{}}}}}</del>              | 1335445555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.140     |
| 3.160               |                                        |    | <<<<<    | <u>n n n n</u> | 33133            | 1111111                                  | 555555551513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.150     |
| a Ea                |                                        |    |          | 2.2.4.4.4      |                  | 12252253                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ø.176     |
| at, 1751            |                                        |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.180     |
| ് പാം<br>തിനത       | · · · · · · · · · · · · · · · · · · ·  |    |          |                |                  |                                          | Received and the second | Ø. 199    |
| <b>⊎.∠⊎</b><br>⊐.∷⊒ | ) ———————————————————————————————————— |    |          |                |                  |                                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.2       |
| J. Kal              | ··· . ····                             |    |          |                |                  |                                          | E A A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • 0.220   |
| all at              |                                        |    | PPasa    |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø.230     |
| 1.40<br>1.20        | а — а — ж. т.<br>                      |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.240     |
| dectral             |                                        |    |          |                |                  |                                          | <u> <u> </u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.250     |
| $d_{i} \geq d_{i}$  |                                        |    |          |                |                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.370     |
| di She              |                                        |    |          |                | 31333            |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1980    |
| 0.30                | ]                                      |    |          |                |                  | -1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U*W       |

· ·

|                             | ÎN-LINE 26                       |                                         |                            |                                           |                   | IN-LINE |
|-----------------------------|----------------------------------|-----------------------------------------|----------------------------|-------------------------------------------|-------------------|---------|
|                             | X-LINE                           | 10                                      | 20                         | 30                                        | 40<br>1           | X-LINE  |
| 0.00                        | )                                | 33 ( 3-E ) 3-E ) 3-E                    | 2:33 2:221                 | 2554222                                   | a construction    | .00     |
| 3.31.3                      |                                  |                                         |                            | 22/25/22                                  | 31155755          | 0.010   |
| 1.121                       |                                  |                                         |                            |                                           | REESS             | 0.020   |
| 4.340                       |                                  |                                         |                            | R. C. |                   | 0.040   |
| d. Pat                      |                                  |                                         |                            | <u> </u>                                  |                   | 0.050   |
| a. 160 '                    |                                  |                                         | STATES                     | 2222                                      |                   | 0.069   |
| 4.3 %                       |                                  |                                         | 122222                     |                                           |                   | 0.070   |
| 1.949                       |                                  |                                         |                            |                                           | <u>CERRER</u>     | 0.030   |
| 0.10                        | )                                |                                         | <u> </u>                   | 35333                                     |                   | 0.10    |
| 4.134                       |                                  |                                         |                            |                                           |                   | 0.110   |
| <b>d</b> . <sub>1</sub> /41 |                                  |                                         |                            |                                           | HARREN CONTRACTOR | Ø.120   |
| al. i at                    |                                  |                                         |                            | xxxxxxxxxxxx                              |                   | v. 130  |
| J. 14J -                    |                                  |                                         |                            |                                           | 122222222         | d. 140  |
|                             |                                  |                                         | <u>&lt; 13 145 1255</u>    | 55551555                                  | 5555542222        | 0.160   |
| ង. លេ                       |                                  |                                         | مرجعه المرجع المرجع المرجع |                                           | 5152566           | 0.170   |
| 1.1 AI                      |                                  |                                         |                            |                                           |                   | U. 180  |
| J. Pal                      | an tana tana ang 🏭 🛌             |                                         | 22222                      | 2000                                      |                   | 0.190   |
| 0.20                        |                                  |                                         |                            |                                           |                   | 0.20    |
| 44.7.940<br>                | ر است.<br>۲۰۰۰ است.<br>۲۰۰۰ است. |                                         |                            |                                           |                   | W.220   |
| ы. с <u>л</u> і             |                                  |                                         |                            |                                           |                   | 0.230   |
| 010                         |                                  |                                         |                            |                                           |                   | 0.240   |
| d. 54                       |                                  | ITTER ET (1443                          | PPPEEEE                    | ITTIM                                     | ALL STREET        | 0.250   |
| di 24at                     |                                  | الحجم المحمحم                           | राष्ट्रव                   | 11111111111111111111111111111111111111    | MULLER            |         |
| .J. 30                      |                                  | PEDATPILIA                              |                            |                                           |                   | U.280   |
| di. 50                      |                                  |                                         |                            |                                           |                   | 0       |
| 0.30                        | 2                                | V P P P P P P P P P P P P P P P P P P P | <u> </u>                   |                                           |                   | P 0.30  |

والا فالمهم بهدية للعفقة بيورقهم منيط بالالفا الالماد الا

•••

|                  | 0.00<br>0.010<br>0.010<br>0.020 | 6.040<br>0.040 | 0.050<br>0.070     | и. 290<br>И. 290<br><b>Д. 1 (Д</b> | 6.126<br>6.130<br>6.140 | 0.150<br>0.160<br>Ø.170 | 0.190<br>0.20 | 0.210<br>0.220<br>0.230 | ଷ. 248<br>ଅ. ୧୨୫<br>ଅ. ୧୫୫<br>୯ ? /ଧ | иы<br>иы<br><b>3</b> 0 |
|------------------|---------------------------------|----------------|--------------------|------------------------------------|-------------------------|-------------------------|---------------|-------------------------|--------------------------------------|------------------------|
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| <b>F1</b>        |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
|                  |                                 |                |                    |                                    |                         | F                       |               |                         |                                      |                        |
| - <del>4</del> - |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| ۱<br>میر         |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
|                  |                                 |                | ŇŇ                 |                                    |                         |                         |               |                         |                                      |                        |
| S                |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| " –<br>"         |                                 |                |                    |                                    |                         |                         |               |                         |                                      | A                      |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      | A A A                  |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| <b>%</b> —       |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| •                |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| 5                |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| 2-               |                                 |                |                    |                                    |                         |                         |               |                         |                                      | · · · ·                |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
| 1                |                                 |                |                    |                                    |                         |                         | 27.17         |                         |                                      |                        |
|                  |                                 |                |                    |                                    |                         |                         |               |                         |                                      |                        |
|                  |                                 | 1              |                    |                                    |                         |                         |               |                         |                                      |                        |
| Z<br>HX          |                                 |                | a b a              | 202                                | ्र <u>व्</u> रुद्ध      | - د ب د<br>ا            | 0             | י ב ב ני                |                                      | 30 -                   |
| (                | <b>1.1</b><br>1.1.1             | 1.1.<br>1.1.   | 4.4<br>1.1<br>20.4 | 0.1<br>1.11                        |                         |                         |               |                         |                                      | 0                      |

**...** 

|                       |               | •               |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
|-----------------------|---------------|-----------------|---------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| IN-I<br>X-L           | INE 28<br>INE | 10              | 20<br>        | 30<br>I                  | 40<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IN-LINE          |
| 0.00                  |               | 2 2221          | 55312337      | 27225 272557             | 322 32517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00             |
| J.J.9                 |               |                 | 3318172       |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.010            |
| 1.1.1                 |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.020            |
| 0.040                 |               |                 |               |                          | 355 SAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.030            |
| J.W.J                 |               |                 | -22 1 2 2 2   | <u> </u>                 | 25555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 0.050<br>0.050 |
| J. 160                |               |                 | 222233        | \$\$\$\$\$\$\$\$\$\$\$\$ | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .060             |
| 1.3.9                 |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.070            |
| J.J63                 | telet         |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.080            |
| .1)*#1                |               |                 |               | *******                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.030            |
| 0.10                  |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1              |
| J. 113                | ► P P PP      |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.110            |
| 1.1.1.1<br>1.1.1.1    |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø. 120           |
| at lotal and a second |               | 22000           | 1144444       |                          | 3766666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U. 130           |
| J. 141                |               | 2327471         |               | EESCRETTIN               | 25222232                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.140            |
| d. (ed                |               | 5 6 5 5 5 1     | 121202120     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.150            |
| .l. ; 'J              |               |                 | 222242222     | 200323222222             | 2222 (22)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| a. Fa                 |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.180            |
| J. (*91)              |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø. 190           |
| 0.20                  |               |                 |               |                          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |
| J. 21.J               |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.210            |
| a u                   |               |                 |               |                          | 455° F ( ( ; { ; { ; { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; } { ; | 0.220            |
| al. (al. 1997)        |               |                 |               |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.230            |
| .1. 1.j               |               |                 |               |                          | Cacaca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.240            |
| 1. ' )                |               |                 | <b>FELLER</b> | TERMENTER STREET         | Seeme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | لاري . 20        |
|                       |               |                 |               | र त्राहराइ राज्य         | र उड़ा रहेर                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.260            |
| d. at                 |               |                 |               |                          | 1 C D N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ₩<br>₩           |
| also ad               |               | • • • • • • • • |               | 1913113355               | SSEE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ► 11 1/16        |
| 0.30                  |               |                 | 21221515      | 11221 132855             | 555455555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |
| IN-LIN<br>X-LINE                                                                                                | E 30 |                      |
|-----------------------------------------------------------------------------------------------------------------|------|----------------------|
|                                                                                                                 |      | 0.00<br>a.aia        |
| Jaj<br>100                                                                                                      |      | 0.020<br>0.030       |
| (r.f.                                                                                                           |      | 6.040<br>G.050       |
| 21 ct<br>25 ct<br>25 ct                                                                                         |      | 0.060                |
| tadi<br>100                                                                                                     |      | 2. 1130<br>13. 1130  |
|                                                                                                                 |      | 0.10<br>8.110        |
| 6.00 · · · · · · · · · · · · · · · · · ·                                                                        |      | 0.120<br>0.130       |
| Lui de la companya de |      | 0.140                |
|                                                                                                                 |      | ช. ISG<br>ย. เหย     |
|                                                                                                                 |      | ช. 170<br>ช. 180     |
| 20<br>20                                                                                                        |      |                      |
| al.J<br>1.20                                                                                                    |      | Ø.218                |
|                                                                                                                 |      | 8.230<br>8.230       |
|                                                                                                                 |      | 0.240<br>4.250       |
|                                                                                                                 |      | ບ. 260<br>ບ. 270     |
|                                                                                                                 |      | 1852. FJ<br>1872. FJ |
|                                                                                                                 |      | 0.30                 |

| N-LII<br>(-LIN | <u>NE</u> зі<br>= | 10   | 50<br>I         | 3           | <b>8</b>    | 40<br>I  | IN-LINE<br>X-LINE                                                                                                |
|----------------|-------------------|------|-----------------|-------------|-------------|----------|------------------------------------------------------------------------------------------------------------------|
|                |                   |      | 222233          | 2112323     | 33:272      | 21333513 | <u>.</u>                                                                                                         |
| ··· ·          |                   |      |                 |             |             |          | 5                                                                                                                |
|                |                   |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             | 222555      |          |                                                                                                                  |
|                |                   |      | 22200           |             |             | 221222   | <u>}</u>                                                                                                         |
|                |                   |      | 555777          | Rec 195     | J.J.S.S.    | 777777   | 2                                                                                                                |
|                |                   |      |                 |             | <u>eecc</u> | <u> </u> |                                                                                                                  |
|                |                   |      |                 |             |             |          |                                                                                                                  |
| <u>.</u>       |                   |      |                 | A total     | 255522      |          |                                                                                                                  |
| <b>.</b>       |                   |      |                 |             |             | <u> </u> | 5                                                                                                                |
|                | <pre></pre>       |      |                 |             |             | 555<<<<  | 5                                                                                                                |
|                |                   | LINK | * * * * * * * * | <u></u>     | ((          |          |                                                                                                                  |
|                |                   |      | \$1111          | 2 3 4 4 4 4 |             |          | 3                                                                                                                |
|                |                   |      | ╔╗╗             |             | <u> </u>    |          | <u> </u>                                                                                                         |
|                |                   |      |                 |             |             |          | 5                                                                                                                |
| · · · ·        |                   |      |                 |             |             | 27222    |                                                                                                                  |
|                | F                 |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             |             | CS55557  |                                                                                                                  |
|                |                   |      |                 |             |             | 25235    |                                                                                                                  |
|                |                   |      |                 |             |             |          |                                                                                                                  |
|                |                   |      |                 |             |             |          | and the second |

|              |     |      | -<br>-<br>-<br>- |  |     | •                    |
|--------------|-----|------|------------------|--|-----|----------------------|
|              |     |      |                  |  |     |                      |
|              | Ê   |      |                  |  |     |                      |
| - 49<br>-    |     |      |                  |  |     |                      |
|              |     |      |                  |  |     |                      |
|              |     |      |                  |  |     |                      |
| -            |     |      |                  |  |     |                      |
| Ж <b>-</b> - | EMA |      |                  |  |     |                      |
|              |     |      |                  |  |     |                      |
|              |     |      |                  |  |     | ▲                    |
| 8 –          |     |      |                  |  |     | مىتىيە<br>4 م. م. 4  |
|              |     |      |                  |  |     |                      |
|              |     |      |                  |  |     | • • • •              |
| 10           |     |      |                  |  |     | ه م ه<br>مع هم<br>مع |
|              |     |      |                  |  |     |                      |
|              |     |      |                  |  |     |                      |
| 32           |     | VY V |                  |  | . V | <br>:                |
|              |     |      | -                |  |     |                      |
|              |     |      |                  |  |     |                      |

| IN-LINE<br>X-LINE |  |  |  |  |  |  |
|-------------------|--|--|--|--|--|--|
| - 40              |  |  |  |  |  |  |
| -                 |  |  |  |  |  |  |
| 8-                |  |  |  |  |  |  |
| 50                |  |  |  |  |  |  |
|                   |  |  |  |  |  |  |
|                   |  |  |  |  |  |  |
| NE<br>NE<br>NE    |  |  |  |  |  |  |

| TNL TNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| X-LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| <b>8.00</b><br>J.ii.u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0 |
| that the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| J. J. S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 1,1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| diddal and a second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| <b>d.</b> [ <b>b</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| l: i.l.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| di l'al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| d. 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| th, trait                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |
| u 1 (u 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |
| d. i wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| a. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| ductal contractions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| W. The second seco |     |
| J.24J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| J. P.A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| t di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |
| 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |
| 0.30<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |

.

|                  | 0. 00<br>0.010<br>0.020 | 0.030<br>0.040<br>0.840       | 8.858<br>8.878                   | и. изы<br><b>7.10</b> | 0.110<br>N.L.N<br>0.130 | 0.140<br>0.150<br>0.150 | 0.170<br>0.188<br>0.194 | <b>8.20</b><br>8.210 | 0.220<br>0.230<br>0.240    | 8.250<br>8.260 | 11.144<br>11.241<br>3.30 |
|------------------|-------------------------|-------------------------------|----------------------------------|-----------------------|-------------------------|-------------------------|-------------------------|----------------------|----------------------------|----------------|--------------------------|
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
| Η                |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         | YVX                     |                      |                            |                |                          |
| - <del>4</del> - |                         |                               | V XX                             |                       |                         | FA                      | Y W.V                   |                      |                            | V marka        |                          |
|                  |                         | WW.                           |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         | ÝŢŶĂ                 |                            |                | A , A A .<br>A , A A A   |
|                  |                         |                               | Ý Ý                              |                       |                         |                         |                         | ĴŇĽ.                 |                            |                |                          |
| ଞ୍ଚ -            |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                | A                        |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                | A A . A.                 |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                | A., A., A., A.,          |
|                  |                         | <b>NY NA</b>                  |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  | FRA                     | 6AIA                          |                                  |                       |                         |                         |                         |                      |                            |                |                          |
| -<br>-           |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         | ETE                     |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
| 19               |                         | N AVA                         |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         | 1AA                           |                                  |                       |                         |                         | M                       |                      |                            |                |                          |
|                  |                         |                               |                                  |                       | 11/                     |                         |                         |                      |                            |                |                          |
| ហ្គ              |                         |                               |                                  |                       | <b>Å</b> ▲ <sup>1</sup> |                         |                         |                      |                            |                | ▲ . ▲. ▲.<br>            |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         |                         |                      |                            |                |                          |
|                  |                         |                               |                                  |                       |                         |                         | :                       |                      |                            |                |                          |
| H,X,             | - 00-                   | الالا<br>1ال.ال.<br>– لــال.ا | 1, 01-01<br>1, 10-11<br>1, 10-26 | .10-                  | 5 B                     | Linu -                  |                         | <b>. 20</b> -        | 1 - 10<br>1 - 10<br>1 - 10 |                | . 30-                    |

| IN-LINE :<br>X-LINE                                                                                             | Ŭ<br>Ie | 0 <del>7</del> - | · · · · · · · · · · · · · · · · · · · | 64 | IN-LINE<br>X-LINE |                 |
|-----------------------------------------------------------------------------------------------------------------|---------|------------------|---------------------------------------|----|-------------------|-----------------|
| <b>a. 00</b><br>Julu                                                                                            |         |                  |                                       |    |                   | 0.00<br>0.00    |
| J. J. J. D. J.                                                              |         |                  |                                       |    |                   | 0.020<br>0.020  |
| 0.040<br>2.°.1                                                                                                  |         |                  |                                       |    |                   | g. g 40         |
| bab.b<br>b. t.b.                                                                                                |         |                  |                                       |    |                   | 6.060           |
| 11k. 41.                                                                                                        |         |                  |                                       |    |                   | 0.070<br>0.030  |
| a. 10                                                                                                           |         |                  |                                       |    |                   | 0.030           |
| <b>j</b> .11d                                                                                                   |         |                  |                                       |    |                   | 0.110<br>0.110  |
| al. i.v.<br>al. 1.au - Communication - Communication                                                            |         |                  |                                       |    |                   | 13.120<br>0.130 |
| <b>3.140</b>                                                                                                    |         |                  |                                       |    |                   | 0110            |
| d. 15d                                                                                                          |         |                  |                                       |    |                   | 0.150<br>0.160  |
| <b>Ji b</b>                                                                                                     |         |                  |                                       |    |                   | 0.170           |
|                                                                                                                 |         |                  |                                       |    |                   | 0.130<br>1313   |
| <b>0.20</b>                                                                                                     |         |                  |                                       |    |                   | 0.20            |
| <b>d</b> . 2 <b>d</b>                                                                                           |         |                  |                                       |    |                   | 0.220           |
| J. 21<br>1. 31                                                                                                  |         |                  |                                       |    |                   | 0.230           |
| d. a)                                                                                                           |         |                  |                                       |    |                   | 8.250<br>8.250  |
| direct of the second |         |                  |                                       |    |                   | 0.260<br>1      |
| 11                                                                                                              |         |                  |                                       |    | <b>A</b> _~-      | 6.280           |
| 0.30                                                                                                            |         |                  |                                       |    |                   | U.2.10          |

| 10 | 82 | 8. — | 40<br> | цц      |
|----|----|------|--------|---------|
|    |    |      |        | 0.00    |
|    |    |      |        | 050.0   |
|    |    |      |        | 0.040   |
|    |    |      |        | 0.050   |
|    |    |      |        | 0.070   |
|    |    |      |        | 0.080   |
|    |    |      |        | 0.1     |
|    |    |      |        | 0-1-0   |
|    |    |      |        | 0.130   |
|    |    |      |        | 0.150   |
|    |    |      |        | U.178   |
|    |    |      |        | 081.0   |
|    |    |      |        | 0.2     |
|    |    |      |        | 0.210   |
|    |    |      |        | 0.230   |
|    |    |      |        | 0.240   |
|    |    |      |        | 0.250   |
|    |    |      |        | 87.2.N  |
|    |    |      |        | 1847.52 |



| N-L INE<br>X-L INE |              |     |           |          |              |                |    |  |  |     |         |
|--------------------|--------------|-----|-----------|----------|--------------|----------------|----|--|--|-----|---------|
| Ţ                  |              |     |           |          |              |                |    |  |  |     |         |
| 40                 |              |     |           |          |              |                |    |  |  |     |         |
| 8-                 |              |     |           |          |              |                |    |  |  |     |         |
|                    |              |     |           |          |              |                |    |  |  |     |         |
| ଟ୍ଟ —              |              |     |           |          |              |                |    |  |  |     |         |
| 8                  |              |     |           |          |              |                |    |  |  |     |         |
|                    |              |     |           |          |              |                |    |  |  |     |         |
| INE 39             |              |     |           |          |              |                |    |  |  |     |         |
| IN-L<br>X-L        | d 20<br>data | ne. | 5.0<br>10 | <b>)</b> | : a <u>-</u> | 1 <b>1 1 1</b> | C. |  |  | 9 F | at<br>u |

57

| - 40       |    |  |  |  |  |    |     |
|------------|----|--|--|--|--|----|-----|
| · .<br>·   |    |  |  |  |  |    |     |
| <b>8</b> – |    |  |  |  |  |    |     |
|            |    |  |  |  |  |    | (A) |
|            |    |  |  |  |  |    |     |
| <b>8</b> – |    |  |  |  |  |    |     |
|            |    |  |  |  |  |    |     |
| <u> </u>   |    |  |  |  |  |    |     |
|            |    |  |  |  |  |    |     |
| Øţ         | Si |  |  |  |  | 15 |     |
| ч<br>ХЩ    |    |  |  |  |  |    |     |

|                   | 0.00 | 0.630 | 8.050<br>8.050<br>8.050 | 0.090 | 011.0<br>011.5 | 8,130<br>6,140 | 3. 150<br>0. 179 | a. 180<br>a. 190<br>a. 190 | 0.210<br>0.220<br>0.220<br>0.230 | 0.240 |        |
|-------------------|------|-------|-------------------------|-------|----------------|----------------|------------------|----------------------------|----------------------------------|-------|--------|
|                   |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| - 49              |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| <del>ب</del> 8    |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| କ୍ଷ               |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| <u>छ</u>          |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| 4                 |      |       |                         |       |                |                |                  |                            |                                  |       |        |
| IN-LINE<br>X-LINE |      |       | 53                      | 10    |                |                | ы.<br>В          | ы<br>20-                   | 1                                |       | 30 2 2 |

| INTERPORTED AND AND AND AND AND AND AND AND AND AN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| יד-עריה, האינה אירא האינה אני היארא אירא אירא אירא אירא אירא אירא אי                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| ₽<br>₽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| <b>J. 20</b><br>L. 10<br>L. 10<br>L |  |

.

| IN-I INF        | 43       |          |                                                                                                                 | •             | · · · ·                                     |                                               |
|-----------------|----------|----------|-----------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|-----------------------------------------------|
| X-LINE          |          | 10       | 20                                                                                                              | 30            | 40                                          | X-LINE                                        |
| 0.00            |          |          |                                                                                                                 |               |                                             | <u>, , , , , , , , , , , , , , , , , , , </u> |
| J.UI0           |          |          |                                                                                                                 | 12553         |                                             | 0.010                                         |
| J. (J20)        |          |          |                                                                                                                 |               |                                             | 0.020                                         |
| J.J.%)          |          |          |                                                                                                                 |               |                                             | 0.030                                         |
| 0.440           |          |          |                                                                                                                 |               | 22252355                                    | 0.848                                         |
| 3.050           | <b>M</b> | JUCICCO  | 2755522244                                                                                                      | ৰহহহহ         | 52.14×                                      | 8.050                                         |
|                 |          | TREE CO  | 112222225                                                                                                       | 1222          | 555757                                      | 0.060                                         |
| 1. 1811         |          |          |                                                                                                                 | 12552         | <u>CIB</u>                                  | 0.07/a                                        |
| J. UN           | 15582    |          |                                                                                                                 | $\mathcal{X}$ | <<                                          |                                               |
| 0.10            | SA SSS   |          | <u> </u>                                                                                                        |               | 5 220                                       |                                               |
| ø. 11ø          |          |          |                                                                                                                 |               |                                             | 0.110                                         |
| v. 1.20         |          |          |                                                                                                                 |               |                                             | 0.120                                         |
| <b>1</b> , 1 30 |          |          |                                                                                                                 |               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     | 0.130                                         |
| J. 14J          |          |          |                                                                                                                 |               | $\leftrightarrow \leq \leq \leq >$          | 0.140                                         |
| J. 15J          |          | 12222222 | <del>\$ { { { { { { } } } } } } }</del>                                                                         |               | ₩ <u>₩</u> ₩₩                               | 0.150                                         |
| 0.160           |          |          |                                                                                                                 | ╘╁╱┾┾╤        | ┥┼╤┦┽┽                                      | Ø. 150                                        |
| J.1/J           |          |          |                                                                                                                 |               | 55155                                       | 0.170                                         |
| J. 180          |          |          |                                                                                                                 |               | ) en la | 0.189                                         |
| a. 199          |          |          |                                                                                                                 | 12222         |                                             | G. 190                                        |
|                 |          |          |                                                                                                                 |               |                                             | 0.2                                           |
| J.220           | 50000    |          |                                                                                                                 |               |                                             | 0.216                                         |
| J., ; MI        |          |          |                                                                                                                 | ED IZZ        |                                             | 9.230                                         |
| vt4#            |          |          | C C C C C C C C C C C C C C C C C C C                                                                           |               | ÉLL                                         | 0.240                                         |
| J. 350          |          |          |                                                                                                                 |               |                                             | 0.250                                         |
| ALTERNE STREET  |          |          | 463344                                                                                                          |               | 255                                         | 0.260                                         |
| MG710           |          |          |                                                                                                                 |               | <u> </u>                                    | 0.270                                         |
| (J., 20)        |          |          | 11112                                                                                                           |               | <u> </u>                                    | v.28u                                         |
| 0.230           |          | 122255   | Contraction of the second s | 15552         | FALE                                        | 0.290                                         |
| 0.30            |          |          |                                                                                                                 |               |                                             | 0.3                                           |



| 王 45<br>18 | ñ | Š | · · · · · · · · · · · · · · · · · · · |   |
|------------|---|---|---------------------------------------|---|
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       |   |
|            |   |   |                                       | 0 |

•

IN-LINE 46 X-LINE IN-LINE 10 20 30 40 0.00 0.00 ປະມານ 0.010 JALO 0.020 4.4.51 0.030 3.040 0.040 1.150 0.050 ł Julia 0.060 1.1.1 0.070 J. J&U 9.080 J. Ast 0.090 0.10 0.10 3.113 0.110 1.1.11 0.120 J. i st 0.130 1.143 0.140 J. 16J 0.150 J. 160 0.160 ativi 0.170 3.130 0.180 a. Pat 0.190 0.20 0.20 J. 14 0.210 3.253 0.220 4. 1 31 0.230 3. 44 0.240 ાત હતાં 0.250 a. 54 0.260 a. u 0.270 d. 1941 Ø.280 4. 46 1 11.294 0.30 0.30









|                    |                                       |                    |           |                                       |                                       |                   |          |                                        | 1                |
|--------------------|---------------------------------------|--------------------|-----------|---------------------------------------|---------------------------------------|-------------------|----------|----------------------------------------|------------------|
|                    |                                       |                    |           |                                       |                                       |                   | :        |                                        |                  |
|                    |                                       |                    |           | · .                                   |                                       |                   |          |                                        |                  |
|                    | X-LINE                                | 6                  |           |                                       |                                       |                   |          | X-LINE                                 |                  |
|                    | IN-LINE                               |                    | 10        | 0 a                                   | 10 <sup>1</sup>                       | 30                | 40       | IN-LINE                                |                  |
| 0.00               | ð                                     | <b>•</b>           | T P P P P | <u></u>                               |                                       |                   |          | · · · · · · · · · · · · · · · · · · ·  | a. aa            |
| J.เมล              |                                       |                    |           |                                       |                                       | KE SK             | 4343443  |                                        | 0.010            |
| a.a.d              |                                       |                    |           |                                       |                                       |                   |          |                                        | 0.020            |
| 1.1.4              | 1                                     |                    |           |                                       |                                       |                   | Ser ?    |                                        | ø.ø3ø            |
| 0.340              | · · · · · · · · · · · · · · · · · · · |                    |           |                                       |                                       | REEEE             |          |                                        | 0.040            |
| at altat           |                                       |                    |           |                                       |                                       | 100000            |          |                                        | 0.050            |
| J. 1. (17.14)      | · · · · · · · · · · · · · · · · · · · |                    |           | 537556                                | 2125155                               | 20222255          | 35555    |                                        | 9.060            |
| ايل (يىلە<br>مىرىر |                                       |                    |           |                                       |                                       |                   | 15355    | ······································ | 0.070            |
| -1. P.1            |                                       |                    |           |                                       |                                       | 221122            | 122225   |                                        | 0.080            |
| <b>0</b> 10        | a                                     | •                  |           |                                       |                                       | RECENT.           |          |                                        | 0.694            |
| J. (14             | <b>,</b>                              | <u>}</u>           |           |                                       |                                       |                   | 1355/2   |                                        | 0.10             |
| at i at            |                                       |                    |           |                                       |                                       |                   |          |                                        | 10.110<br>14.14  |
| J. I. J.           |                                       |                    |           |                                       |                                       |                   | 1372225  |                                        | 8. 130           |
| J. 140             |                                       |                    |           |                                       | 2112335                               |                   |          |                                        | 0.140            |
| 3.150              |                                       | <b>`</b>           |           |                                       |                                       |                   |          | •<br>•                                 | 0.150            |
| J. 100             |                                       |                    |           | 511551515                             | <u> </u>                              | <u>[2555555</u> ] | 455555   |                                        | 0.160            |
| J. 1 /J            | · · · · · · · · · · · · · · · · · · · |                    |           |                                       |                                       |                   | 144555   |                                        | 0.170            |
| J. 174             | · · · · · · · · · · · · · · · · · · · |                    |           |                                       |                                       |                   | 15555    |                                        | 0.180            |
| J. ( J.)           |                                       |                    | Cher      |                                       |                                       |                   |          |                                        | 0.190            |
| 0.20               | 8                                     |                    |           |                                       |                                       |                   |          |                                        | 0.20             |
| ปะสาป              | ·                                     | ; < <b>₽</b>       |           |                                       |                                       |                   |          |                                        | 8.210            |
| J. 4 U             | ····                                  | د بهترین در ا<br>و |           |                                       |                                       |                   | 1        | <u> </u>                               | 0.220            |
| .1. "1             |                                       |                    |           |                                       |                                       |                   |          |                                        | 0.230            |
| J. (44)            |                                       | ······             |           |                                       | CC-ACCAR                              |                   |          |                                        | 0.240            |
|                    | 1                                     |                    |           | A A A A A A A A A A A A A A A A A A A | 21442344                              |                   |          |                                        | 0.250            |
|                    | 3                                     |                    |           |                                       |                                       | The second        | THE T    |                                        | 0.260            |
| J. 54              | 1                                     | •                  |           |                                       | PPAIRE                                | 15FFEC            | 1111     |                                        | 10.270<br>11 WAY |
|                    | t                                     |                    |           |                                       | A A A A A A A A A A A A A A A A A A A |                   | ND SYSTY |                                        | 11               |
| Ø.3                | 0                                     |                    |           | PP's still Pp                         |                                       | 413663133         | SIZZE -  |                                        | 0.30             |

X-LINE IN-LINE 7 IN-LINE 10 **20** 30 40 0.00 0.00 ง. มันง 0.010 1.1.1 0.020 0.030 0.030 0.343 0.040 J. . Pat 0.050 J. Und 0.060 a.u-u 3.878 J. Jead 6.684 J.DEM 0.090 0.10 0.10 3.113 0.110 4.1.4 ኈ 0.120 J. i M > 0.130 J. 140 0.140 J. Lat 9.150 3.1-3 **J**\_ 16Ø J. 17J 0.170 J. Fat 0.180 4, 150 9.190 0.20 0.20 a, na ជ.20 ليرجيك 0.220 al. 254 0.230 J. 34 0.240 J. Cak 0.250 J., 64 6.590 a... 'a 0.270 J. (41 ઇ.સઇ • 41 . 141 0.290 0.30 0.30

i





|          |             | 030<br>040           | 050<br>070                  | 10          | 011<br>821<br>821 | 14ď<br>150<br>160 | 170<br>180<br>190   | 230<br>230<br>230                                                                                  | 222<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>222<br>22 | nc?<br>VC |
|----------|-------------|----------------------|-----------------------------|-------------|-------------------|-------------------|---------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------|
|          | <b>0</b>    |                      | डे हो हो र<br>। । ।         |             | ട്ട്ട്<br>പ       |                   | 55<br>111           |                                                                                                    |                                                                   | i s       |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| ×Z       |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| н        |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             | MAA                  |                             |             | Ann               |                   | AAA                 |                                                                                                    | AAnana                                                            |           |
|          |             | MAN                  | h                           |             | AAA               | Ant               |                     | AAAA                                                                                               |                                                                   |           |
| ÷        |             | ŴM                   |                             | MĂV         |                   | A AA              |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     | MAM1                                                                                               |                                                                   |           |
| 64<br>10 |             |                      | Y W                         |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             | WWV                  |                             | VŇ          |                   |                   |                     |                                                                                                    |                                                                   |           |
|          | FAM         |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             | <b>VĂŽA</b> |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   | MM                  |                                                                                                    |                                                                   | 1         |
| 8-       |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          | <b>L</b> AN |                      | VXX/                        |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| _        |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| - 59     |             |                      | ŶĮ.VĮ.V                     |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| •        |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      | VAVA                        |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| 0        |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             | <b>X</b> A  |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| 10       |             |                      |                             |             |                   |                   | - <u>VI¥¥</u> ¥     |                                                                                                    |                                                                   | · · · ·   |
|          |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
| Z        |             |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   |           |
|          |             |                      |                             |             |                   |                   |                     | :                                                                                                  |                                                                   |           |
| ×        | 0           |                      |                             |             |                   |                   |                     |                                                                                                    |                                                                   | _ 0       |
|          | 0.0<br>J.J. | 2015<br>1960<br>1115 | л.ња<br>Л. Ц. Г.<br>Л. Б.З. |             |                   |                   | 1 <u>5</u> <b>(</b> | <b>1</b><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                                                                   |           |



X-LINE IN-LINE 12 IN-LINE 10 20 30 40 0.00-0.00 لياليها 0.010 1.0.0 0.020 0.000 0.030 J. 144 0.040 3. . 7.41 0.050 a.ana 0.060 3.3.0 0.078 J. Jak 0.080 1.090 0.090 0.10 0.10 d. i i d 0.110 J. 1. U 0.120 1.1.33 0.130 J. 14d 0.140 1.150 0.150 3.50 0.160 .1 : .1 10.140 1.1 41 11. 1183 4.1.44 14.1984 0.20 0.20 J. 21 J 0.210 J.384 0.220 J. .: a) 0.230 J. 30 0.240 J. 7.1 0.250 al., +at 0.260 J. . . J 11.2M 3. 941 6.,510 J. C 83 0.200 ` 0.30 0.30

| I X-L INE         |  |  |  |  |  |  |
|-------------------|--|--|--|--|--|--|
|                   |  |  |  |  |  |  |
| 64                |  |  |  |  |  |  |
|                   |  |  |  |  |  |  |
| <b>8</b> —        |  |  |  |  |  |  |
| <br>              |  |  |  |  |  |  |
| R                 |  |  |  |  |  |  |
| 6                 |  |  |  |  |  |  |
|                   |  |  |  |  |  |  |
| NE 13<br>INE 13   |  |  |  |  |  |  |
| X-LINE<br>IN-LINE |  |  |  |  |  |  |

| •<br>• | I X-L INE                 | 0.00<br>a.aia | 0.020 | 0.848 | 898.9 | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.10           | 0.120 | 0.140             | 0.150     | 6/1.6  | 1891 .C | 0.20<br>a.sia | 8.220                           |        | 0.260    | 875.0<br> | 965.5          |
|--------|---------------------------|---------------|-------|-------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------|-------------------|-----------|--------|---------|---------------|---------------------------------|--------|----------|-----------|----------------|
|        | 64 —                      |               |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |                   |           |        |         |               |                                 |        |          |           | <u> </u>       |
|        | 8                         |               |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |                   |           |        |         |               |                                 |        |          |           | 11111111111111 |
|        | g                         |               |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |                   |           |        |         |               |                                 |        |          |           |                |
| •      | ~ e                       |               |       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |       |                   |           |        |         |               |                                 |        |          |           |                |
|        | X-LINE<br>IN-LINE<br>2 22 | 2000          |       | 0,0,0 | 0.068 | been 10 and 10 a | 0.110<br>0.118 |       | u. 148<br>1 158 - | 8.18<br>1 | M. I.W |         | 6.218         | 04.2.10<br>1.1.2.20<br>1.1.2.20 | 2. 240 | N. child |           | 0.30           |



| ¥                    | -LIŅE                                 | 16                                    |                  |              |               |                 |                |               |                  | •                                     |               | •           | X-LINE                                 |                    |
|----------------------|---------------------------------------|---------------------------------------|------------------|--------------|---------------|-----------------|----------------|---------------|------------------|---------------------------------------|---------------|-------------|----------------------------------------|--------------------|
| 1                    | N-LINE                                |                                       | · 10             | 0            | ê             | 20              |                | 30<br>1       | •                | •                                     | 40            |             | IN-LINE                                |                    |
| 0.00-                |                                       |                                       |                  |              | 1422          |                 | 1225           | 536           | 2223             | 22252                                 | 1555          | 1333        |                                        | 0.00               |
| 1.1.1                |                                       |                                       |                  |              |               | 1333            | 1252           | 335           |                  | SS SS                                 | SSE.          | SE -        |                                        | 0.010              |
| .11 at               |                                       |                                       |                  |              |               |                 |                |               | <u> </u>         |                                       |               |             | •                                      | 0.030              |
| 0.040                |                                       |                                       |                  |              |               | SS -            |                |               | 1555             | 5553                                  |               |             |                                        | 8.040              |
| J. J. J              |                                       |                                       |                  |              |               | 555             | 305            | 374           |                  |                                       |               | 222         | <u> </u>                               | 0.050              |
| at, akat<br>at, akat | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · |                  |              | <u> </u>      | 122             | ZZŹ            | 22            | S.S.S.           | रिटर                                  | 1227          | 3555        |                                        | 0.060              |
| d. draf              |                                       | <b></b>                               |                  |              |               | <u> </u>        |                |               | $\leq \leq $     |                                       | 1555          | 2221        | ·····                                  | 0.070              |
| J. J. M              |                                       |                                       |                  |              |               | 555             | $\mathbf{S}$   | 555           | <b>S</b> S       | <u> </u>                              | \${{\$        | 555         |                                        | 0.090              |
| 0.10-                |                                       | 7                                     |                  |              |               |                 |                |               |                  | $\rightarrow$                         | $\mathcal{H}$ | 211         | <u></u>                                | 0.10               |
| 1.1.1                |                                       |                                       | PDDP             |              |               |                 |                |               |                  |                                       | 557           | 7555        |                                        | 0.110              |
| .1                   |                                       | سر سرا<br>فرينا                       |                  |              |               |                 |                |               |                  |                                       | <b>55</b>     |             |                                        | • 10. 1.eM         |
| .1.140               |                                       | ·····                                 |                  |              |               | <b>↓</b> ► ► ►  | • • • • •      | <b>}</b>      | <u>}</u>         | 2223                                  | 1335          | $\geq > >$  |                                        | - 0.140            |
| J. 150 -             |                                       |                                       |                  | $\mathbf{b}$ |               | <del>{\}}</del> | <del>}}}</del> | <u> </u>      | <del>}}}}</del>  | $\frac{1}{2}$                         | 45}5          | 1135        |                                        | - 0.150            |
| a. 16a               |                                       |                                       | 5-7-5-           |              |               |                 | $\rightarrow$  | <del>}}</del> | <del>₹</del> ₹₹} | >>>                                   | 142           | 5355        |                                        | - 0.160            |
| 3.1.53<br>1.1.24     | · · · · · ·                           |                                       |                  |              |               |                 |                |               |                  | - Alexandre                           |               |             |                                        | - 0.170            |
| J.130                |                                       |                                       | 35550            |              | <u> </u>      | 223             |                | 533           |                  |                                       |               | 32          |                                        | - U.180<br>- C.190 |
| 0.20-                |                                       |                                       |                  | PPPP         | <u>P</u> PPPP |                 | <u> </u>       |               | <u> </u>         | S S S S S S S S S S S S S S S S S S S | 555           | 5555        |                                        | 0.20               |
| J.Lid ··             |                                       |                                       |                  |              |               |                 |                | 220           |                  |                                       |               |             |                                        | - Ø.21Ø            |
| J. 4.11              |                                       |                                       |                  |              |               |                 | 555            |               | 555              |                                       |               | 522         |                                        | - 6,220            |
| .1.1.33<br>.1.1.1    |                                       |                                       |                  |              |               |                 |                |               |                  |                                       |               |             | ······································ | - 0.230<br>- 0.240 |
| a. e.a               |                                       |                                       |                  |              |               |                 |                |               |                  |                                       |               |             |                                        | - 0.250            |
| <b>.)</b> , 9.a)     |                                       |                                       |                  |              |               |                 |                |               |                  | Z                                     | 444           |             |                                        | - 0,260            |
| a                    |                                       |                                       | 11555            |              |               | FIT             |                |               | 111              | <del>555</del>                        |               | 555         |                                        | - 0.270            |
| .d. <33              |                                       |                                       | > \$ \$ > 5      |              |               | 155             | 3.53           | \$35          | 3755             | <u> </u>                              | 1755          | \$ <u>}</u> |                                        | - 0,280            |
| 0.30-                |                                       |                                       | <b>&gt; &gt;</b> | EE 2.3       |               |                 |                |               |                  | ) <u>&gt; ( )</u>                     |               | 2125        |                                        | - 0.290            |

•

|   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |
|---|---------------------------------------|
|   |                                       |
|   |                                       |
|   |                                       |
|   | 0 2 2 2 2                             |
|   | 222                                   |
|   | 8 2                                   |
|   | 2                                     |
|   |                                       |
|   |                                       |
|   | 23                                    |
|   | 50                                    |
|   | 2                                     |
|   | 83                                    |
|   | 8                                     |
| 0 | 20                                    |
|   | BI                                    |
|   | R                                     |
|   | R                                     |
|   | <b>8</b>                              |
|   |                                       |
|   |                                       |
|   |                                       |
|   | 2                                     |
|   | 30                                    |

|              | 0.0 | 8-9-9-<br>6-9-9- | 0.0<br>0.0<br>0.0 |  | 0.11 | 0.2<br>0.2<br>0.2 | <b>6</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>7</b><br><b>6</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> |
|--------------|-----|------------------|-------------------|--|------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XZI          |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •            |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 64 —         |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <del>۳</del> |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 87 —         |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8            |     |                  |                   |  |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8            |     |                  |                   |  |      | <b>A A A</b>      |                                                                                                                                                                                                                                                                                                                                                                                                                      |
| INE          |     |                  |                   |  |      | 4                 |                                                                                                                                                                                                                                                                                                                                                                                                                      |

· .

-

| <u>o</u><br>Lu |                            |    |            |
|----------------|----------------------------|----|------------|
|                | 96<br>50<br>50             | 66 | I N-L I NE |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                | \$\$\$\$\$\$\$\$\$\$\$\$\$ |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    | -          |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    |            |
|                |                            |    | 3          |

Г

|              | 0.00<br>0.010<br>0.020 | 0.030<br>0.040<br>0.050 | 0.050<br>0.070<br>0.070 | 0. 10<br>0. 10 | 6. L20              | a. 15a<br>9. 15a<br>9. 17a | 0. 194<br>0. 194 | 615.0<br>855.8<br>012.0 | 6.246<br>0.256<br>0.256<br>0.270<br>0.270<br>0.270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------|------------------------|-------------------------|-------------------------|----------------|---------------------|----------------------------|------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 X X        |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        | htt                     |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         | RM.                     |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| - 40         |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8-           |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 82           |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ğ.—          |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ø            |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ъ<br>Ш<br>ДШ |                        |                         |                         |                |                     |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|              |                        |                         |                         |                | :                   |                            |                  |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ×<br>I<br>XI |                        | 6.1.<br>1.1.1.          |                         | • 10 -         | ыны<br>1. м<br>1. м | 1.1 20                     | - 20             | 2 7 7 7 2<br>2 2 3 3    | La contra la contra<br>Contra la contra la contr |

L
| I<br>XX<br>I       |   |  |   |   |      |   |          |                   |   |  |            |   |                                      |                  |
|--------------------|---|--|---|---|------|---|----------|-------------------|---|--|------------|---|--------------------------------------|------------------|
|                    |   |  | X |   |      |   |          |                   |   |  |            |   |                                      |                  |
|                    |   |  | M |   |      |   |          |                   |   |  |            |   |                                      | ▲,)<br>▲,)<br>~~ |
|                    |   |  |   |   |      |   |          |                   |   |  |            |   |                                      |                  |
|                    |   |  |   |   |      |   |          |                   | M |  |            |   |                                      |                  |
| 8-                 |   |  |   |   |      |   | FX<br>FX |                   |   |  | M M<br>N M |   |                                      |                  |
|                    |   |  |   |   |      |   |          |                   |   |  |            |   |                                      | · · · · ·        |
|                    |   |  |   |   |      |   |          |                   |   |  |            |   | ه م هم<br>م م هر<br>م م هر<br>م م هر | А<br>А.,-        |
| 82 —               |   |  |   |   |      |   |          | VV<br>VV          |   |  |            |   |                                      |                  |
|                    |   |  |   |   |      | · |          |                   |   |  |            |   |                                      |                  |
| 0                  |   |  |   |   |      |   |          |                   |   |  |            |   |                                      | A                |
|                    |   |  |   |   |      |   |          |                   |   |  |            |   |                                      |                  |
| 51                 |   |  |   |   |      |   |          | VE<br>VI <u>V</u> |   |  |            |   |                                      | •                |
| - I NE<br>- L I NE |   |  | 4 |   |      |   |          |                   |   |  |            |   |                                      |                  |
| J_N<br>N_N<br>N_N  | 5 |  |   | 6 | <br> |   |          |                   | 0 |  | -          | ; |                                      |                  |

| -<br>-                                   |      |          |                  |                   |                                                |
|------------------------------------------|------|----------|------------------|-------------------|------------------------------------------------|
| X-LINE<br>IN-LINE                        | E 22 | 50       | <b>8</b> 0<br>46 |                   | IX-LINE                                        |
| <b>0.00</b>                              |      |          |                  | \$ \$ \$ \$ \$ \$ |                                                |
| <b>J. . .</b>                            |      |          |                  |                   |                                                |
| J.J.M                                    |      |          |                  |                   |                                                |
| J. 17:12<br>J. 20:40                     |      |          |                  |                   |                                                |
| d. d |      |          |                  |                   |                                                |
| b. bu                                    |      |          |                  |                   |                                                |
| <b>6.</b> 16                             |      |          |                  |                   |                                                |
| A. 1 (d)                                 |      |          |                  |                   |                                                |
| A. 1.43                                  |      |          |                  |                   |                                                |
| 1. 1. 2. 1                               |      |          |                  |                   |                                                |
| u. I di                                  |      |          |                  |                   |                                                |
| J. 150                                   |      |          |                  |                   |                                                |
| r<br>r                                   |      |          |                  |                   |                                                |
|                                          |      |          |                  |                   |                                                |
| 1. 'AU<br>                               |      |          |                  |                   |                                                |
| d. Ad                                    |      |          |                  |                   | an a that have a second a to the second second |
| al al<br>da el                           |      |          |                  |                   |                                                |
| 0.30                                     |      | <u> </u> |                  | 112212            |                                                |

÷

| N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N<br>N | ° ° °      |     |       | 66 | <b>0</b> . |       |     |    |    |         |    |  |
|---------------------------------------------------------------------------------------------|------------|-----|-------|----|------------|-------|-----|----|----|---------|----|--|
|                                                                                             |            |     |       |    |            |       |     |    |    |         |    |  |
| - <del>6</del>                                                                              |            |     |       |    |            |       |     |    |    |         |    |  |
| 8                                                                                           |            |     |       |    |            |       |     |    |    |         |    |  |
|                                                                                             |            |     |       |    |            |       |     |    |    |         |    |  |
| κ                                                                                           |            |     |       |    |            |       |     |    |    |         |    |  |
| 18                                                                                          |            |     |       |    |            |       |     |    |    |         |    |  |
| INE 23                                                                                      |            |     |       |    |            |       |     |    |    |         |    |  |
| IN-L                                                                                        | 000<br>039 | 030 | 17.03 | DE | 1 ld       | 6. 77 | 5.0 | /N | 50 | 10<br>1 | 44 |  |



|                  |                                                                                                                                                                                                                                    |           |       |   |          |                         |          |                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · · |                                                                                                   |                                       |                  |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|---|----------|-------------------------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------|------------------|
|                  | X-LINE                                                                                                                                                                                                                             | 25        |       | 0 | 20       |                         | ~        |                                                                                                                                                                                                                                        |                                       |                                                                                                   | -X-LINE                               |                  |
| 0.00             |                                                                                                                                                                                                                                    |           |       |   | 20       |                         |          | 3                                                                                                                                                                                                                                      |                                       | <b>3</b> *                                                                                        |                                       |                  |
| 3.20             |                                                                                                                                                                                                                                    |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | 0.00<br>0.010    |
| لاستلغانا        | ··· ··· ··· ··· ··· ··· ··· ··· ···                                                                                                                                                                                                |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   | ·                                     | 0.020            |
| 1.1141<br>1.1141 |                                                                                                                                                                                                                                    |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | 0.030            |
| J.J.J.J          |                                                                                                                                                                                                                                    |           |       |   |          | <u> </u>                | 2223     | ĘŢŢ                                                                                                                                                                                                                                    |                                       | 333455                                                                                            |                                       | 0.040            |
| J. A.J           | · · · · ·                                                                                                                                                                                                                          |           |       |   |          |                         | ŚŚŚ      | <i>\$</i> }}}                                                                                                                                                                                                                          | <u>}</u>                              | 22232555                                                                                          | •                                     | 0.060            |
| - J.J.J.J.       | · · · · · <u>-</u> …·                                                                                                                                                                                                              |           |       |   |          |                         |          | $\rightarrow \rightarrow $ |                                       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                            |                                       | 0.070            |
| J. 190           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                              | 5         |       |   |          |                         | <u>i</u> | 2253                                                                                                                                                                                                                                   | र्रदेख                                | ZZZ                                                                                               |                                       | 0.080<br>0.000   |
| 0.10             | )                                                                                                                                                                                                                                  |           |       |   |          |                         |          | 5555                                                                                                                                                                                                                                   | 5555                                  |                                                                                                   | · · · · · · · · · · · · · · · · · · · | 0.10             |
| 4.110            | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -<br>1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | 0.110            |
| J. 1 82          |                                                                                                                                                                                                                                    | -         |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       | 3555555                                                                                           | • • • • • • • • • • • • • • • • • • • | 0.120            |
| J. 143           | · ···· · ····· · ···· · ··· · ··· · ··· ·                                                                                                                                                                                          | <u>}?</u> |       |   | <u>}</u> | <u>&gt;&gt;&gt;&gt;</u> |          | • <u>&gt;&gt;&gt;</u> >>>                                                                                                                                                                                                              |                                       | $\langle \langle \rangle \rangle \rangle$                                                         |                                       | - 0.140          |
| J. Gal           |                                                                                                                                                                                                                                    |           |       |   |          |                         |          | <u> </u>                                                                                                                                                                                                                               |                                       | $\langle \langle \langle \langle \rangle \rangle \rangle \langle \langle \rangle \rangle \rangle$ |                                       | - 0.150          |
| J. 16J           | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                              |           |       |   |          |                         | 55       | 377                                                                                                                                                                                                                                    | 112                                   | 2253                                                                                              |                                       | Ø. 160           |
| J. i Al          |                                                                                                                                                                                                                                    |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | 0.140<br>- 0.180 |
| a, i st          |                                                                                                                                                                                                                                    | 53        |       |   |          | DEDI                    |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | · 0.190          |
| 0.20             | ]                                                                                                                                                                                                                                  |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | · 0.20           |
| J.A.U            |                                                                                                                                                                                                                                    |           |       |   |          |                         | $\sim$   |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | 0.210<br>- 0.220 |
| <b>J</b> ., at   |                                                                                                                                                                                                                                    |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | - 0.230          |
| J. 1J.           | · · · · ·                                                                                                                                                                                                                          |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | - 0.240          |
| at rat           | •                                                                                                                                                                                                                                  |           |       |   |          |                         |          |                                                                                                                                                                                                                                        |                                       |                                                                                                   |                                       | - 0.250          |
| a. Sat           | •                                                                                                                                                                                                                                  | 1 4. :    |       |   |          |                         |          |                                                                                                                                                                                                                                        | <u> </u>                              |                                                                                                   |                                       | - 0.370          |
| at at            |                                                                                                                                                                                                                                    |           |       |   |          |                         |          | 2254                                                                                                                                                                                                                                   |                                       |                                                                                                   | -                                     | હામહ             |
| 0.30             | ]                                                                                                                                                                                                                                  | • }       | 33.×> |   |          | 1                       | 115      |                                                                                                                                                                                                                                        |                                       | 53555                                                                                             | •                                     | aa<br>- 0.30     |

ł

| I X-L INE         | 00.00         | 0.038<br>U.U.U<br>U.U.Su | 0.060   0.070   0.070   0.070   0.070 | 0.10<br>0.11 | 05.1.0<br>05.1.0             | 0.140                   | 0.1.0<br>0.150<br>0.150<br>0.150<br>0.150 | 0.20<br>8.210<br>8.228<br>8.228 | 0.250<br>9.250   | 0.250<br>612.0<br>945.10<br>945.0 |
|-------------------|---------------|--------------------------|---------------------------------------|--------------|------------------------------|-------------------------|-------------------------------------------|---------------------------------|------------------|-----------------------------------|
| <b>6</b> —        |               |                          |                                       |              |                              |                         |                                           |                                 |                  |                                   |
|                   |               |                          |                                       |              |                              |                         |                                           |                                 |                  |                                   |
|                   |               |                          |                                       |              |                              |                         |                                           |                                 |                  |                                   |
| <b>R</b>          |               |                          |                                       |              |                              |                         |                                           |                                 |                  |                                   |
|                   |               |                          |                                       |              |                              |                         |                                           |                                 |                  |                                   |
| X-LINE<br>IN-LINE | atala<br>duku |                          |                                       | . 10         | 14.1 ()<br>11.1 al<br>1.1 al | 1.131<br>5.162<br>1.103 |                                           |                                 | 1. 1.1<br>1. 1.1 |                                   |

÷.,

| 8-     |  |  |  |  |    |  |
|--------|--|--|--|--|----|--|
| •      |  |  |  |  |    |  |
|        |  |  |  |  | IF |  |
| 82 —   |  |  |  |  |    |  |
| •      |  |  |  |  |    |  |
| 91<br> |  |  |  |  |    |  |
|        |  |  |  |  | IF |  |
| 5      |  |  |  |  |    |  |

| X-L                         | INE_ 2                                | B      |          |                                         |           | 1000 P            | X-LINE         |
|-----------------------------|---------------------------------------|--------|----------|-----------------------------------------|-----------|-------------------|----------------|
| IN-                         | LINE                                  | l I    | 8 2      | Ø                                       | 30<br>I   | 40                | IN-LINE        |
| 0.00                        |                                       |        |          | 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | +5000520  |                   | .00            |
| ə.ənə —                     |                                       |        |          | 3333                                    |           |                   | .819           |
| J. J.23                     |                                       |        |          |                                         | 202023    |                   | 0.020          |
| 3.44                        |                                       |        |          |                                         |           |                   | .040           |
| J. , P. 43                  |                                       |        |          |                                         |           |                   | .050           |
| ป.ป.<br>                    |                                       |        |          |                                         | 1228 ACC  | 1212225121        | .Ø60           |
| 4.4.4.4                     |                                       |        |          |                                         |           | 33332             | 0.070          |
| 3 1 11                      |                                       | TEPE   |          |                                         |           |                   | 0.890          |
| 0.10                        | -                                     | 2722   |          |                                         |           | 1122225           | . 10           |
|                             | ····· · · · · · · · · · · · · · · · · | 227722 |          |                                         |           |                   | G. (18         |
| ي.<br>ايمياني               | •                                     |        |          | THE STREET                              |           |                   | 0.120          |
| J. i 4J                     |                                       |        |          |                                         |           |                   | Ø.140          |
| .t. : .t                    | · · ·                                 | ****** |          |                                         |           | 1255222           | Ø. 150         |
| به باله من الم<br>الم يا ال | · · · · · · · · · · · · · · · · · · · |        |          |                                         | 202222    |                   |                |
| 3.1 50                      |                                       |        |          |                                         |           |                   | Ø. 180         |
| J.1 W                       |                                       |        |          |                                         |           |                   | Ø. 190         |
| 0.20                        |                                       |        |          |                                         |           |                   | .20            |
|                             |                                       |        |          |                                         |           |                   | N.339          |
| .ii                         |                                       |        |          |                                         |           |                   | 1! K)          |
| al. na                      | •*<br>• • • • • • •                   |        |          |                                         |           |                   | 0.240          |
| a, "al                      | 1                                     | PPPLPP | PIEEDENE |                                         | THE PARTY | ESCRIP.           | 0.250<br>0.260 |
| a. 17a                      |                                       |        |          |                                         |           | \$ <u></u> }}}{§] | Ø.210          |
| al Pat                      | · · · · · · · · · · · · · · · · · · · | PPER   |          |                                         |           |                   |                |
| 0.30                        |                                       | LILLE  |          |                                         | 11122558  | 15552             | u.2%           |
| 0.00                        |                                       |        |          |                                         |           |                   | 0.30           |

\*

**;**,

| -Z<br>ZI             |  |  |                                        |   |  |            |   |       |           |
|----------------------|--|--|----------------------------------------|---|--|------------|---|-------|-----------|
|                      |  |  |                                        |   |  |            |   |       |           |
| <b>6</b><br><b>1</b> |  |  |                                        |   |  | ŴУ.        |   | Ŭ.    |           |
|                      |  |  |                                        |   |  |            |   |       |           |
|                      |  |  |                                        |   |  |            |   |       |           |
| <u> </u>             |  |  |                                        |   |  |            | Â |       |           |
|                      |  |  |                                        |   |  |            |   |       |           |
|                      |  |  |                                        |   |  |            |   |       | • • • • • |
| 8                    |  |  |                                        |   |  |            |   |       |           |
|                      |  |  |                                        |   |  |            |   |       |           |
| •                    |  |  |                                        |   |  |            |   |       |           |
| S                    |  |  |                                        |   |  | <b>A</b> A |   | E     |           |
| -                    |  |  |                                        |   |  |            |   |       |           |
| •                    |  |  |                                        |   |  |            |   | Ei    |           |
| К<br>Ш               |  |  | •••••••••••••••••••••••••••••••••••••• | • |  |            |   | 4<br> | • • • •   |

-

| -L INE<br>N-L INE | - 9<br>9<br>9<br>9<br>9 | I X-L INE                        |              |
|-------------------|-------------------------|----------------------------------|--------------|
|                   |                         | 0.0<br>0.10                      | 00           |
|                   |                         | 19.03<br>19.04<br>19.04<br>19.04 | 82           |
| •                 |                         |                                  |              |
|                   |                         | 0.05                             | ភូស<br>សូស   |
|                   |                         | 8.07                             | 7.0          |
|                   |                         | 2.08                             | 20 · 75      |
| -                 |                         |                                  | 0 3          |
|                   |                         |                                  | 2            |
|                   |                         | 0.13                             | R 9          |
|                   |                         | 9.15                             | 20           |
|                   |                         | 0.16                             | 9 <u>9</u> 2 |
|                   |                         | 9.13                             |              |
|                   |                         |                                  | 3            |
|                   |                         | 112.0                            | . 812        |
|                   |                         | 47-70<br>11-70                   | 2            |
|                   |                         | 0.24                             |              |
|                   |                         | 9.25                             | 20           |
|                   |                         | 0.26                             | 50           |
|                   |                         |                                  | 0            |
|                   |                         |                                  |              |
|                   |                         |                                  |              |

|                                          | -111  |  |       |  |     |  |
|------------------------------------------|-------|--|-------|--|-----|--|
|                                          |       |  |       |  |     |  |
| 94                                       |       |  |       |  |     |  |
| n an |       |  |       |  |     |  |
|                                          |       |  |       |  |     |  |
|                                          |       |  |       |  |     |  |
| <b>8</b> —                               |       |  |       |  |     |  |
|                                          |       |  |       |  | TAL |  |
|                                          |       |  |       |  |     |  |
| 82 —                                     |       |  |       |  |     |  |
|                                          |       |  |       |  |     |  |
|                                          |       |  |       |  |     |  |
| :                                        |       |  |       |  |     |  |
| <u>9</u> —                               |       |  | .11 - |  |     |  |
|                                          | - 311 |  |       |  |     |  |

•

-

•

| X-LINE 35                                                                  |                                |                |                                          |         | -X-LINE               |
|----------------------------------------------------------------------------|--------------------------------|----------------|------------------------------------------|---------|-----------------------|
| 1 N - L 1 NL 1                                                             | 0 a                            | 10 3<br>       | 8 40                                     |         | IN-LINE               |
|                                                                            |                                |                |                                          |         |                       |
| J. J. A.                                                                   |                                |                |                                          |         | 0.020                 |
| 3.340                                                                      |                                |                |                                          |         | 0.030<br>0.040        |
| J.J.J.                                                                     |                                |                |                                          | 232     | 0.050                 |
|                                                                            | ┝╶┢╶┢╶ <mark>┝╶╞╶╞╶</mark> ┝╶┝ | <u> ZERZEZ</u> | <u>addata</u>                            | 1222225 | 0.950                 |
| ير کې کې الا الا الله کې د.<br>مېرې کې د دې کې د د د د د د د د د د د د د د |                                |                |                                          |         |                       |
| 0.10                                                                       |                                |                |                                          | 7322255 | 8.090                 |
| J. Halls                                                                   |                                |                | $\sim$                                   |         | <b>U.</b> 10<br>9.110 |
|                                                                            |                                |                |                                          |         |                       |
|                                                                            |                                |                | <b>SPECIAL</b>                           |         |                       |
| J. 1937                                                                    | <del>Stattet</del>             |                |                                          |         | 0.150                 |
|                                                                            |                                | 0.1.2522.00    | 253723388                                | 255555  | 0.160                 |
|                                                                            |                                |                |                                          |         | Ø.1868                |
|                                                                            |                                |                |                                          |         | Ø. 190                |
| J. 34                                                                      |                                |                |                                          |         | 0.210 0.210           |
|                                                                            |                                |                |                                          |         |                       |
|                                                                            |                                |                |                                          |         | 0.238<br>0.240        |
| J. 3.4                                                                     |                                |                | La L |         |                       |
|                                                                            | PPPPPPPPPP                     | 1669694999     |                                          | 52222   | 0.260                 |
|                                                                            |                                |                |                                          |         | 9.24b                 |
| 0.30                                                                       | PENERLAP                       |                | 17755528                                 | 12225   | U*W                   |

.

| I N-L I<br>I N-L I                                 |                |
|----------------------------------------------------|----------------|
| 0.00<br>J.n.                                       | 0.00           |
| 1, 1, 1)<br>                                       | 0.010<br>8.020 |
| dulut errore                                       | g. g3g         |
| fr.l(                                              | 0.040<br>0.050 |
| diatal contractions<br>diata                       | 0.050          |
|                                                    | 0.090<br>0.080 |
| 0.10                                               | 90.0           |
| 6.11.L                                             | <b>0.10</b>    |
| ult 1.80 (construction)<br>ult 1.81 (construction) | 0.120          |
| di i tul                                           | 0.130          |
| J. 15.0                                            | 0.150          |
| 4                                                  | ø. 160         |
| J. i al                                            | 0.170<br>0.180 |
| 0.20                                               | u. ise         |
| J. 1 J.                                            | 0.20<br>8.20   |
|                                                    | 8.2.8          |
| J 540                                              | 0.5.0<br>AAC D |
| J. P.J.                                            | d. 250         |
| E. T                                               | 0.030          |
|                                                    | M40            |
| 0.30                                               | ur             |
|                                                    | 8. JG          |

••••

| I<br>X<br>I |  |  |  |  |     |      | :                 |
|-------------|--|--|--|--|-----|------|-------------------|
|             |  |  |  |  |     |      | اری<br>در ا       |
| <b>4</b> –  |  |  |  |  |     |      | الم<br>الم<br>الم |
|             |  |  |  |  |     |      |                   |
| 8-          |  |  |  |  |     |      |                   |
|             |  |  |  |  |     |      | م<br>بر م<br>س    |
| <b>R</b> —  |  |  |  |  |     |      |                   |
|             |  |  |  |  |     |      |                   |
|             |  |  |  |  | Â   |      |                   |
| 2           |  |  |  |  |     |      |                   |
| 37          |  |  |  |  | 1.1 | ···· | A<br>A            |

. .

,

|             |                                                     | <b>0.00</b><br>4.418<br>8.028    | 6.636<br>6.648<br>6.658   | 0.060<br>0.070<br>0.080 | 8.030                       | 0.120<br>0.120<br>1.130 | 0.140<br>2.150                | 6.188 | e. 196      | 015.0<br>1925.0 | 0.240<br>6.258          | 0 | 0.30  |
|-------------|-----------------------------------------------------|----------------------------------|---------------------------|-------------------------|-----------------------------|-------------------------|-------------------------------|-------|-------------|-----------------|-------------------------|---|-------|
|             | I X-L I NE                                          |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             |                                                     |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             | - <sup>6</sup>                                      |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
| ,<br>,<br>, | 8-                                                  |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             | ≈                                                   |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             | ğ.—                                                 |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             | NE 38<br>I NE                                       |                                  |                           |                         |                             |                         |                               |       |             |                 |                         |   |       |
|             | X<br>I<br>N<br>I<br>N<br>I<br>N<br>I<br>S<br>G<br>G | <b>d. dd</b><br>J.J.J.<br>J.J.D. | 0.010<br>1.12 0<br>1.16 1 | tr t, t, t<br>Uxá., t   | 1.1.1.0<br>1.1.0<br>1.1.1.0 | д. 1. д<br>Д. 1. д      | d. 1 40<br>d. 1 50<br>d. 1 51 |       | <b>0.20</b> | duniat<br>di 30 | - 40- 60<br>- 1. : 1. : |   | N. 30 |

|                | <b>0</b> . | 0.6  | 0.6 | 9.6 | 0.6 | 9.6 |    | 0.1 | <b>G</b> .1 |   | 0.1 | G. 1 | .0  |   |   |     | 279<br>279 | 5.8<br>9.8          |       |
|----------------|------------|------|-----|-----|-----|-----|----|-----|-------------|---|-----|------|-----|---|---|-----|------------|---------------------|-------|
| XZ             |            |      |     |     |     |     |    |     |             |   |     |      |     |   |   |     |            |                     |       |
|                | V          |      |     |     |     | -   |    |     |             | A |     |      | ~~~ |   |   |     |            |                     | A-1-4 |
|                |            |      |     |     |     |     |    |     |             |   |     |      |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     |      |     |   | K | У.V |            |                     |       |
| <b>4</b> –     |            |      | VV  |     |     |     |    |     | ¥.          |   |     |      |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     | Ň.   |     | A |   | 1 M | M          |                     |       |
|                |            |      | Ŵ   |     |     |     |    |     |             |   | M   |      | V   |   |   |     |            |                     |       |
|                |            |      |     | X   |     | A   |    |     |             |   | Ā   |      | M   |   |   |     |            |                     |       |
| <b>8</b>       |            | Ŭ.   |     |     |     |     |    |     | ¥.<br>∀     |   |     | V    |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   | 1   |      |     |   | A |     |            |                     |       |
|                |            | XAV. |     | ХŊ  |     |     |    |     |             |   |     |      |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     |      | 1   |   | 1 |     |            |                     |       |
| - <sup>1</sup> |            | MM   |     |     |     |     |    |     |             |   |     |      |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     |      | A   |   |   |     |            |                     | • • • |
|                |            |      |     |     |     |     |    |     |             |   | ĪĪ  |      | ]]  | V |   |     |            |                     |       |
|                |            |      | A,  |     |     |     |    |     |             |   | 71  |      |     |   |   |     | 17         |                     |       |
|                |            |      |     |     |     |     | ÂÂ |     |             |   |     |      |     | 7 |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     |      | Â   |   | 1 |     |            | • • • • · · · · · • |       |
| ĝ              |            |      |     |     |     |     |    |     |             |   |     |      |     |   |   |     |            | - <b></b>           |       |
|                |            |      |     |     |     | -   |    |     |             |   |     |      |     | 1 |   |     |            |                     |       |
|                |            |      |     | •   |     |     |    |     |             |   |     | •    |     |   |   |     |            |                     |       |
|                |            |      |     |     |     |     |    |     |             |   |     | -    |     |   |   |     |            |                     |       |

|                   | 0.00<br>8.810<br>8.828 | 0.038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.050.0<br>050.0<br>078.0 | 969.D | 0.10<br>9.10 | 0.130<br>ULU | 0.150<br>0.160 | 0.170<br>6.130 | 0.20        | 6,226        | 0.240 | 0/7°0   | arc.u<br>M.S.u<br>0.2.0 |
|-------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|--------------|--------------|----------------|----------------|-------------|--------------|-------|---------|-------------------------|
| IN                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       | ā            |              |                |                |             |              |       |         |                         |
| 9 -<br>1          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |              |              |                |                |             |              |       |         |                         |
|                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |              |              |                |                |             |              |       |         |                         |
|                   |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |              |              |                |                |             |              |       |         |                         |
| ଝି —              |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |              |              |                |                |             |              |       |         |                         |
| 40                |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |       |              |              |                |                |             |              |       |         |                         |
| X-LINE<br>IN-LINE | . 00<br>1              | literies in the second s |                           | 10    |              | 1.1.40       | . (            | Lead           | . <b>20</b> | L taul<br>ta | L1 11 | 7. († 1 | . 30                    |

••••••

.

|                                         |            | $\sum_{i=1}^{n}$                                                                                                 |                                       |                                          | an an an an Araba an Araba.<br>An Araba |                         |
|-----------------------------------------|------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-------------------------|
| (-LIŅ                                   | E_ 42      |                                                                                                                  |                                       |                                          |                                         | Y-L THE                 |
| N-LI                                    | NE         | 10                                                                                                               | 20                                    | 30                                       | 40                                      | TN-FTNF                 |
|                                         |            |                                                                                                                  |                                       |                                          |                                         | an I I tana da I I haga |
|                                         | <u></u>    |                                                                                                                  | 52125352                              | 22132155                                 | 55553232                                | 2                       |
|                                         |            |                                                                                                                  | <u> </u>                              | 5125223                                  |                                         | 2                       |
|                                         |            |                                                                                                                  |                                       |                                          |                                         |                         |
| · .                                     |            |                                                                                                                  |                                       |                                          |                                         |                         |
|                                         |            |                                                                                                                  | 7355555                               | 355555                                   | <u> </u>                                |                         |
|                                         | DESS       | 1235512                                                                                                          | 2222222                               | 222233                                   | 2212R                                   | 2                       |
|                                         |            | 15 COSS                                                                                                          | 3133222                               |                                          |                                         |                         |
| ••••••••••••••••••••••••••••••••••••••• | SPRP.      |                                                                                                                  |                                       |                                          |                                         | 2                       |
|                                         |            | مرد مراجع المراجع المراج |                                       |                                          | 2559777222                              |                         |
|                                         |            | 12222217                                                                                                         |                                       |                                          |                                         | <u>S</u>                |
|                                         |            |                                                                                                                  |                                       |                                          |                                         | 3                       |
|                                         |            |                                                                                                                  |                                       |                                          |                                         |                         |
|                                         |            |                                                                                                                  |                                       |                                          |                                         | <u>&gt;</u>             |
|                                         |            |                                                                                                                  |                                       |                                          |                                         |                         |
|                                         |            |                                                                                                                  | <u> </u>                              |                                          |                                         |                         |
|                                         |            |                                                                                                                  | $\leq 1 \leq 1 \leq 1 \leq 1$         | <u> </u>                                 | 5229555525                              | <u> </u>                |
|                                         |            |                                                                                                                  | 37222223                              | 2222225                                  | 2511522153                              |                         |
|                                         |            | 4<<<                                                                                                             | 24 2222                               | 5022                                     | See 203                                 | ≥                       |
|                                         |            |                                                                                                                  |                                       |                                          | STI SS                                  | 2                       |
|                                         |            |                                                                                                                  |                                       | <u> </u>                                 |                                         | 5                       |
|                                         |            |                                                                                                                  | < 2322444                             |                                          |                                         |                         |
| -                                       |            |                                                                                                                  |                                       |                                          | 555555                                  |                         |
| ·                                       |            |                                                                                                                  | 505555                                | 55755                                    |                                         |                         |
|                                         |            |                                                                                                                  |                                       |                                          |                                         |                         |
| · · · · · · · · · · · · · · · · · · ·   |            |                                                                                                                  |                                       |                                          | SCOLER                                  | 2                       |
|                                         |            | The second                                                                                                       |                                       | CISS CAL                                 | SSSCREEK                                |                         |
|                                         |            |                                                                                                                  |                                       | 2223223                                  |                                         |                         |
|                                         |            | 2512223                                                                                                          | VILLE V                               | 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5 |                                         | 3                       |
|                                         | C 3 3 5 14 |                                                                                                                  | रारराज                                | 2120313                                  | 57777777                                | •                       |
|                                         |            | 1517222                                                                                                          | 515171255                             | 1125250                                  | 351255                                  |                         |
|                                         | 1.5.125-   | ग्तरराख्य                                                                                                        | < < < < < < < < < < < < < < < < < < < |                                          | >><++++++++++++++++++++++++++++++++++++ | >                       |

•

|                       |      | •<br>•<br>• |        |                   |          |        |         |
|-----------------------|------|-------------|--------|-------------------|----------|--------|---------|
| X-LINE                | 43   |             |        |                   |          |        | -X-LINE |
| 111-L 111             |      | 10          | 20     | 30                | 40       |        | IN-LINE |
| J. J. J. J.           |      |             |        |                   | 2222.22  | 333    |         |
| J.4J.20               |      |             |        |                   |          |        |         |
| 3.4743                |      |             |        |                   |          | 225    |         |
| 1.17.47               |      |             |        |                   |          |        |         |
| J. LAHAR              |      |             |        | the second second |          |        | ย       |
| alial governmente com |      |             |        | <u> </u>          | <u> </u> |        |         |
| J                     |      |             | 26445  |                   |          |        | (j      |
| 10                    |      |             |        |                   |          |        |         |
| .1.0                  | 3162 |             |        |                   |          |        |         |
| ta significana.       |      |             |        |                   | 300255   |        |         |
| 1 4.)                 |      |             |        |                   | 55554366 |        | ø       |
| i ")                  |      |             | 15315  |                   | 2725222  | 12755  | (2      |
| 1.18                  |      |             |        | PERSONAL PROPERTY | 37222    | No set |         |
| lau constanta         |      |             |        |                   |          |        |         |
| 20                    |      |             |        |                   | TTTS:    |        |         |
| 210                   |      |             |        |                   | 3533 S   | 555    | Ø       |
| 1 <b>11</b>           |      |             |        |                   |          |        |         |
| - <b></b>             |      |             |        |                   |          |        |         |
| 63<br>1.a)            |      |             |        |                   | 5555526  | 225    |         |
| rat e e               |      |             |        | <u>usens</u>      |          | 1332   | (2      |
| . а .                 |      | ELEVEN      |        |                   |          |        |         |
| , 1,3<br>L spl        |      |             |        |                   |          |        | 1       |
| . 30                  |      | PINPHAPP    | PALIPA |                   |          |        | (i      |

|            | 0.00 8 8.010 8.020 8.020 8.020 | 0.030<br>9.040   | 8.010 | 6140°.0 | 0.10<br> | 0r1.0     | 0.150<br>9.160 | 3.1 /J             | 0.20         | 0.2.90 | 0.250 | N.2.30<br>U.2.10 | 0.510<br>0.510                |
|------------|--------------------------------|------------------|-------|---------|----------|-----------|----------------|--------------------|--------------|--------|-------|------------------|-------------------------------|
| Π          |                                |                  |       |         |          |           |                |                    |              |        |       |                  |                               |
| <b>9</b> – |                                |                  |       |         |          |           |                |                    |              |        |       |                  |                               |
| 8          |                                |                  |       |         |          |           |                |                    |              |        |       |                  |                               |
| 8          |                                |                  |       |         |          |           |                |                    |              |        |       |                  |                               |
| 44<br>18   |                                |                  |       |         |          |           |                |                    |              |        |       |                  |                               |
| X-LINE     |                                | 01.0.0<br>16.0.0 | 1     |         | 6.1.6    | A. I. al. | 1. 1. 4        | J. 1 2)<br>J. 1 40 | <b>1. 20</b> | а      |       |                  | л. ы.<br>ы. ы<br><b>). 30</b> |

| X                   | -I INE                                                                                                          | 15                                             |            |                |                | •<br>•     |       |            | - N - 12                               |          |            | NZ I TAIM |                  |
|---------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------|----------------|----------------|------------|-------|------------|----------------------------------------|----------|------------|-----------|------------------|
| Î                   | N-L'INF                                                                                                         | 40                                             | 10         | •              |                | 20)<br>20) |       | <b>3</b> 0 |                                        | <b>A</b> |            |           |                  |
| 0.00                |                                                                                                                 |                                                | Ĩ          |                | •              |            |       |            | 4.4<br>1.1<br>1.1<br>1.1<br>1.1        |          |            |           |                  |
| 0.00-               | •                                                                                                               |                                                |            |                | 3.2 C.         | 13212      | 27225 | 133555     | ंडरदेदेव                               | दररर     | 251        |           | 0.00             |
| 9.919               |                                                                                                                 |                                                |            |                |                |            |       |            |                                        |          |            |           | - 0.010          |
| 1.0.3               |                                                                                                                 |                                                |            |                |                |            |       |            |                                        |          |            |           | 0.020            |
| J.J.J               |                                                                                                                 |                                                |            |                |                |            |       | 2555       | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |          |            |           | - Ø.030          |
| J. 13463            | •                                                                                                               |                                                |            |                |                |            |       |            | <u>es</u>                              | 2200     | 32-        |           | - Ø.040          |
| J:U:U               | · · · ·                                                                                                         |                                                |            |                |                |            |       |            |                                        | 33322    |            |           | 0.050            |
| 3.000               | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |                                                |            |                |                |            | 1235  |            | 1552                                   | 252      | $\leq -$   |           | - 0.060          |
| *1*2.9 ···          | ·····                                                                                                           |                                                |            |                |                |            |       |            |                                        |          | 55T-       |           | - 0.070          |
| പ. <del>വ</del> ഷം  |                                                                                                                 | · · · · · · · · · · · · · · · · · · ·          |            |                |                |            | -     | (dees      |                                        |          |            |           |                  |
| <br>                |                                                                                                                 |                                                |            |                | SSI            |            |       |            |                                        | 555      | -123       |           | - 0.090          |
| 0.10-               |                                                                                                                 |                                                |            | 5139           |                |            |       |            | 335                                    | 553 5    | 521        |           | - Ø. 10          |
| J. 114              |                                                                                                                 |                                                |            |                |                |            |       |            |                                        |          | $\leq$     |           | · Ø. HO          |
| المنابية            | · •                                                                                                             |                                                |            |                |                |            | 55555 | 15655      | 25/22                                  | 5758     | $\leq$     |           | - 0.120          |
| .1. (. %) ·         |                                                                                                                 |                                                |            |                |                |            |       |            | 3                                      | 1355     | 55-        |           | - Ø.13Ø          |
| -L 140              |                                                                                                                 |                                                |            |                |                | 中心下方       |       |            | 3.35                                   | 5555     |            |           | - 0.140          |
| - 1.1°.41           |                                                                                                                 | - <u>,                                    </u> |            | 20             |                |            | 2111  | 35123      |                                        | 1213     | 25         |           | - Ø.150          |
| J. 17 J             | ······································                                                                          |                                                |            |                | 2015           |            | 2122  |            | 5573                                   | 353      |            |           | - 0.160          |
| .1.1.1              |                                                                                                                 |                                                |            |                |                |            |       |            |                                        | 855      |            |           | - 0.170          |
| d, i di             |                                                                                                                 |                                                |            |                |                |            |       |            | 2852                                   | 122 C    | 20-        |           | - 0.180          |
| <b>0.</b> 190       |                                                                                                                 |                                                |            |                | 225            |            | 22551 | 11455      |                                        |          |            |           | - Ø.19Ø          |
| 0.20-               | ······                                                                                                          |                                                |            |                |                |            |       |            |                                        | 5252     | 22         |           | - 0.20           |
| J. 21.J             | · · · · · · · · · · · · · · · · · · ·                                                                           |                                                |            |                |                |            |       |            |                                        |          |            |           | - 0.210          |
| •1. ··•1            |                                                                                                                 |                                                |            |                |                | <b>}</b>   | 1112  |            |                                        | 13555    | $\lesssim$ |           | - 0.220          |
| al 143              |                                                                                                                 |                                                |            |                | and the second |            |       |            |                                        |          | 231-       |           | - 4.3.14         |
| 41. (141<br>4. (141 |                                                                                                                 |                                                |            |                |                |            |       |            |                                        |          | 32         |           | - 0.240          |
|                     |                                                                                                                 |                                                | 4112       |                |                |            | स्याम |            | 325                                    |          |            | <u> </u>  | 0.250            |
|                     |                                                                                                                 |                                                |            | <b>L P B P</b> | • • • •        | A PPSA     |       |            |                                        |          |            |           | - Ø.260          |
| • • •               |                                                                                                                 |                                                | <b>DEL</b> | TPH            | >>\$\          |            | 721   | PPP 5      |                                        |          |            |           | - 0.2 <i>1</i> 0 |
| 1 (a)               |                                                                                                                 | <b>.</b>                                       |            | <b>B</b>       |                |            |       |            | 137                                    |          | 51         |           | - 0.280          |
| 0 20 -              |                                                                                                                 |                                                |            |                | おく             |            |       |            |                                        | STAT S   | 2          | <u></u>   | - 0.230          |
| 0. JO-              |                                                                                                                 |                                                |            |                |                |            |       |            |                                        |          |            |           | - 0.30           |

۰ła

•

# Appendix V Seismic Data Processing Report

# **PROCESSING REPORT FOR ROCKY FLATS 3D**

This dataset was processed on a SUN Sparc 10 workstation, containing four CPU processors, 320 MB of RAM, and 20 GB of disk space. The software used was Geotrace Technologies, Inc. proprietary 3D high resolution processing package. Quality control of intermediate and final results was performed on a GeoQuest Interpretation workstation, loaded on a SUN Sparc II.

#### PROCESSING SEQUENCE

#### DEMULTIPLEX

SEG D format 9 track tapes

0.5 msec sample rate

96 data channels

3.0 second sweep

3.5 second uncorrelated record length

Vibroseis correlation-minimum phase correlation using auxillary channel 1 (ground force) 0.5 second correlated record length

#### GEOMETRY DEFINITION

The surface group intervals were 5 ft. X 5 ft. Therefore a CDP area was defined to accommodate 49 LINES (west to east) and 49 TRACES (south to north).

#### EDIT BAD TRACES

#### FK FILTER

Surgical fan belt FK filter to remove coherent, linear noise: ground roll and refractor reverberation.

# SURFACE CONSISTENT DECONVOLUTION

Wavelet shaping deconvolution on shots and receivers.

Parameters are selected from running a wavelet analysis program. Operator length was 140 ms. Design window was beneath the first arrivals, extending down 220 ms. Autocorrelation functions are averaged for each shot and receiver. This program results in a constant phase output section.

# GAIN FUNCTIONS

A spherical divergence correction was applied to compensate for the decrease in seismic wave amplitude due to geometrical spreading of the wavefront.

An automatic gain function was then applied with a sliding window of 150 msec.

# DECONVOLUTION

A spiking deconvolution was applied to collapse the wavelet and whiten the spectrum. A 15 ms operator was used, with a design gate of 40 - 400 ms.

# SPECTRAL BALANCE

The frequency spectrum is whitened and balanced by individually scaling, and then stacking, a sequence of bandpass-filtered data panels. The data was whitened from 40 to 350 Hz, using 70 Hz. frequency strips. This is a zero phase operation.

# **3D REFRACTION STATICS**

The purpose of refraction statics is to correct for lateral fluctuations in the generally unconsolidated and variable near surface area, or weathering zone. A Generalized Linear Inversion method was used. A three dimensional near surface geological model is input to the program. Inverse modeling is performed by ray tracing first arrivals. The modeled picks are compared to the real first break picks. A discrepancy in slope is an error in velocity, and a discrepancy in time is an error in depth. Velocities and depths are solved simultaneously via least squares matrix inversions. This process is iterated several times, and the subsurface model is updated after each iteration. This process is performed interactively on a SUN workstation, with color contour displays and cross sections to evaluate the results. For this project, the refractions statics removed some long period structure from the time sections. The time shifts were not dramatic, however, because the "weathering", or alluvial deposits overlying the bedrock, were relatively shallow.

### VELOCITY ANALYSIS

Constant velocity stacks alongside color coherency semblance plots and power spectrums, picked interactively.

#### 3D SURFACE CONSISTENT RESIDUAL STATICS

Solution of high frequency shot and receiver statics from cross-correlation functions.

## VELOCITY ANALYSIS

Repick NMO velocities as before, but with the benefit of the increased resolution from the automatic statics application.

### 3D SURFACE CONSISTENT RESIDUAL STATICS

Solution of high frequency shot and receiver statics from cross-correlation functions.

#### 3D NMO

Three dimensional interpolation of results from second velocity analysis.

#### NMO MUTE

First arrival and NMO stretch suppression.

#### SHOT ORDERED RANDOM NOISE REDUCTION

Spatial filter (XT domain) applied to shots records to attenuate random, ambient noise.

#### CDP SORT/STACK

Sort data into common depth point gathers and stack.

# 3D SIGNAL ENHANCEMENT

Signal to noise ratios are estimated in TAU-P domain. For each output sample, a suite of data planes extending radially (inline & crossline directions) are examined: signal is defined by the radial plane of maximum semblance; noise is determined through the use of an amplitude median/trim process within each plane. Samples surviving this median/trim process are exponentially weighted using their radial distance from the output point.

# **3D ONE PASS MIGRATION**

FK migration using 85% of RMS stacking velocities.

### BAND PASS FILTER

A filter of 35/50 - 230/260 Hz applied to the data.

#### SCALING

A 150 ms AGC was applied to the migrated stacked section.