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ABSTRACT 

In the process of identifying genes that are differentially regulated in cells exposed to ultraviolet 

(UV) radiation, we identified a transcript that was repressed following the exposure of cells to 

a combination on UV radiation and salicylate (a known inhibitor of NF-I&). Sequencing of this 

band determined that it had identity to lactate dehydrogenase, and Northern blots confirmed the 

initial expression pattern. Analysis of the sequence of the LDH 5’ region established the 

presence of NF-KB, Spl, and two Ap-2 elements; two partial AP-1, one partial CRE, and two 

halves of E-UV elements were also found. Electromobility shift assays were then performed for 

the AI?-1, NF-~€3, and E-UV elements. These experiments revealed that (1) binding to NF-m 

was induced by UV, but this was repressed with salicylic acid; (2) UV did not affect AP-1 

binding, but salicylic acid inhibited it alone or following UV exposure; and (3) E-UV binding 

was repressed by UV, and salicylic acid had little effect. Since the binding of no single element 

correlated with the expression pattern of LDH-J3, it is likely that multiple elements govern 

UV/salicylate-mediated expression. 
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INTRODUCTION 

During the past decade, many studies have identified genes induced in response to DNA- 

damaging agents such as UV and ionizing radiation (1-29). The collective contribution of these 

studies has led to the implication that several different transcription or regulatory elements play 

key roles in the immediate early response, including p53, AP-1, NF-KB, and others (30-43), and 

to the identification of nuclear and nonnuclear events as playing essential roles in the actual 

induction process (15,16,44-49). For some of these transcription factors, target genes in the 

transcription factor regulon have been identified (16,50-54); for example, NF-KB and AI?-1 

activation contributes to the induction of HIV-LTR following UV exposure (15,16,35,55-61). 

In addition, AP-1 and NF-KB sites have been found in a large number of UV- and ionizing- 

radiation-induced genes (7,42,62-65). Nevertheless, the precise pathway following transcription 

factor activation by UV or ionizing radiation (or both) has not yet been mapped. 



MATERIALS AND METHODS 
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Differential display - reverse - transcriptase polymerase chain reaction (dd-RT-PCR) 

The differential display of eukaryotic messenger RNA (mRNA) by means of reverse 

transcription coupled with the polymerase chain reaction (dd-RT-PCR) is a technique developed 

by Liang and Pardee (66) in order to separate and, eventually, to clone individual mRNAs 

differentially expressed in mRNA preparations from similar cells. In our laboratory, however, 

we developed an improved dd-RT-PCR approach (26) that at the same time allows one to ignore 

polyT contamination and ensures that contamination with products of random priming by 5’ 

primers will not be detected on the sequencing gel. Briefly, we are using Ol2XY end-labeled 

primer for the PCR under conditions similar to the original, except for the use of higher 

concentrations of dNTPs. 

Purification and sequencing of bands from dd-RT-PCR 

Differentially expressed cDNAS were extracted from the dried sequencing gel for 

reamplification. Bands of interest were located and released from the dried gel by cutting 

through the film. Pieces of dried gel carrying the band of interest were soaked along with the 

3MM paper (used as backing) in 100 pl of H20 for 10 min at room temperature and then were 

boiled for 15 min. After a 2-min spin in the microcentrifuge, the supernatant was transferred to 

a clean microcentrifuge tube and mixed with 0.10 volume of 3 M sodium acetate, 0.05 volume 
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of glycogen (10 mg/ml stock), and 4 volumes of ethanol. The mixture was placed at -80 "C for 

30 min and centrifuged for 10 min at +4 "C. The pellet was dissolved in 10 jd of distilled H,O 

and stored at -20 "C. The band was reamplified twice. 

Sequencing was done with the PRIZM dyedeoxy sequencing kit according to the 

manufacturer's instructions. Sequencing electrophoresis was carried out by first dissolving the 

dried sample in 4 jd of a 5:l mixture of deionized formamide and 50 mM EDTA (pH 8.0). 

Immediately before loading, the sample was heated to 90 "C and then run on a standard 

sequencing gel prepared for use with a DNA sequencer (Applied Biosystems 373A). Gene 

sequences were compared to those available in the GenBank using the BLAST search program 

(available at BLAST@NCBI.NLM.NIH.GOV). 

EMSA binding 

Electromobility shift assays (EMSA) were performed by using the consensus- containing 

oligonucleotides that were labeled with r[32P]ATp in a T4 polynucleotide kinase reaction. For 

a nonspecific competitor (negative control), we used an irrelevant recognition sequence (Sp 1). 

All binding conditions for proteins (1 pg) were similar to those described by Schreiber et al. 

(67). The reactions were done in the presence of sonicated salmon sperm DNA as a nonspecific 

binding inhibitor and with 0.8-5 1.18 of unlabeled crude nuclear protein extract. The assays were 

set up to use lysate from equal amounts of protein for each experiment. The free 

oligonucleotides were resolved from protein-DNA complexes by Tis-borate polyacrylamide gel 
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electrophoresis (70). The DNA bands were resolved by autoradiography on a PhosphorImager. 

RNA analyses 

For all genes, we verified expression patterns by Northern blots. RNA was routinely 

purified in our laboratory by isolation in guanidine isothiocyanate, extraction from phenol, and 

precipitation from 3 M sodium acetate, pH 6.0, (22-24). RNA was stored as an ethanol 

precipitate at -20 "C. 

For Northern blot analysis, RNA was separated by using formaldehyde-agarose gel 

electrophoresis as described previously (22-24). Northern transfers were performed as described 

(22-24). The mass probe was an end-labeled 18s rRNA 30-nt-long probe; the LDH probe was 

labeled from dd-RT-PCR amplified with c ~ [ ~ ~ P ] ~ C T P  as the sole source of dCTP. Hybridization 

conditions were 50% deionized formamide, 0.75 M NaCl, 75 mM sodium citrate, 25-50 mM 

sodium phosphate (pH 6.5), 0.2% sodium dodecyl sulfate (SDS), 0.2% bovine serum albumin, 

0.2% Ficoll, 0.2% polyvinylpyrrolidone, and 50 pg/mL sonicated denatured herring sperm DNA 

at 43 "C. Prior to hybridization, all labeled probes were heat-denatured at 90 "C for 5 min. 

After hybridization, nonspecific binding was reduced by washing the blot three times for 1 h each 

at 65 "C in 45 mM sodium citrate (pH 7.4), 0.45 M NaC1, 0.2% Ficoll, 0.2% 

polyvinylpyrrolidone, 0.2% bovine serum albumin, 50 pg/mL herring sperm DNA (sonicated, 

denatured), and 0.1% SDS, followed by three more washings for 1 h each at 65 "C in 1.5 m M  

sodium citrate (pH 7.4), 15 mM NaC1,50 pg/mL herring sperm DNA (sonicated, denatured), and 
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0.1% SDS. The blot was then dried and exposed (to x-ray film at -70 "C with intensifying 

screens) on the PhosphorImager. 
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RESULTS AND DISCUSSION 

Previous studies by several groups have shown that NF-KB binding is inhibited in HeLa 

cells by the addition of salicylate to the medium (71,72). HeLa cells (which lack functionalp53) 

were either untreated or were exposed to UV, UV plus salicylate (UV/sa), salicylate (sa), cis-Pt, 

cis-Pt plus salicylate (cisptlsa), vinblastine (vin), vinblastine plus salicylate (vin/sa), UV plus 

indomethacin (UV/indo), or cispt plus indomethacin (cisptlindo). Concentrations and exposures 

were as previously published by our group in studies demonstrating that salicylate inhibits UV- 

and cisPt-mediated HIV-LTR transcription (72). Bands were selected by dd-RT-PCR using 

primers and sequencing protocols previously published by our group (26). 

The sequence of one dd-RT-PCR band (T102) is presented in Table 1. It was found to 

have identity with the human lactate dehydrogenase P-chain (L,DH-P) 3' region. Northern blots 

of the LDH-P probe hybridized to RNAs derived from control cells and from cells exposed to 

UV or cis-Pt, with or without salicylic acid, revealed that LDH-#3 mRNA was not affected by any 

exposures except when UV and salicylate or cisplatin and salicylate were combined; these 

treatments caused a marked reduction in LDH-P mRNA accumulation (Table 2). 

The 5' flanking region of the LDH-P gene was analyzed using sequence information 

available from GenBank. A summary of these results is presented in Figure 1, showing the 

presence of complete sites for NF-KB, Spl, and AP-2 elements as well as partial sites for AP-1 

and CRE elements. In addition, an element recently defined in our laboratory called E-UV (73) 

was also found to be present, but with several base pair changes relative to the consensus 
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sequence. This element has been found to be split in several different genes and appears to be 

split in LDH-P as well. 

Gel shift analyses of the AP-1, NF-KI~, and E-UV sequences were performed using 

extracts of cells exposed to UV, salicylic acid, UV/salicylic acid, etc. An example of one such 

gel shift is presented in Figure 2, in which E-UV (Fds = full-length, double stranded) and AP-1 

elements were examined. The results (Table 2) revealed that no single element showed precisely 

the same binding pattern as the expression pattern of LDH-P mRNA. Therefore it is likely that 

several of these elements (and perhaps some working in concert) govern regulation of LDH-P 

following UV/salicylate exposure. It has been documented in the literature that salicylate inhibits 

NF-KB binding to its element. The experiments in Figure 2 demonstrate that AP-1 binding is 

also inhibited by prior exposure of cells to salicylate. This suggests that UV-induced responses 

that are affected by salicylate may involve either the NF-KB or AP-1 pathways. 
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FIGURE LEGENDS 

Figure 1. Diagram of LDH-P 5' flanking region with sites for complete elements (NF-KB, Spl, 

Ap2) and partial elements (Ap-1, CRE, E-UV) indicated. 

Figure 2. Gel shifts were performed as described by Schreiber et al. (67) and Lederer et al. (69). 

For each experiment, HeLa cell extracts and consensus elements were purchased from Promega 

Biotech. The + and - strand oligonucleotides of the E-UV elements, annealed to create full- 

length double-stranded (Fds) sequence, were synthesized on a "gene synthesizer" (Applied 

Biosystems) according to the manufacturer's conditions. Reactions were performed in the 

presencc of sonicated salmon sperm DNA, nonspecific binding inhibitor, and with 0.8 pg of 

HeLa unlabeled crude nuclear protein extract, or 5 pg HeLa nuclear extract purchased from 

Promega Biotech (comm. extract). Free oligonucleotides were resolved from protein-DNA 

complexes by Tris-borate polyacrylamide gel electrophoresis. The dried gel was exposed on the 

Phos p ho rIm ager screen. 
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20 CTACANCCTAGANCTCACTA 1 

186 CTACAGCCTAGAGCTCACTA 205 
I I I I I  1 1 1 1 1 1  I I I I I I I  

TI02 VS. huLDH-B 
95 % identity 

J 

Table 1. Sequence Comparison: Band T102 vs. Human LDH-B 

T102 200 TCACACNACAATAGTTAATTTTATTTGTTCAAGAGCTCAGCTCAGATTGCAAGCATT~CC~G 

hULDH-B 6 TCACACTACAATTCACATATAGTTAATTTTATTTGTTCAAGAGCTCAGCTCAGATTGC~GCATT~CC~G 
I 1 1 1 1 1  1111111111111111111111111111111111111111ll11111111111 

140 CATAGGCTTTGATTCTGTGAGCCCCAATTCACATATTCACATATTGNAGNAGATCN~GCN~CTGTG 

66 CATAGGCTTTGATTCTGTGAGCCCAAATTCACATATTCACATATTG~G~GATC~GC~CTGTG 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  l l l l l l l l l l l l l  I I  I I I I I  I I I I  I I I I I I  

86ATCCATGTACATGGNTGACTAAAGGCTCGAGTTAATCACATTGTAGTTTTTAAATTT 

126 ATCCATGTACATGGATGACTAAAGGCTCGAGTTAATCGAGTT~TCACATTGTAGTTTTT~TTT 
1 1 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
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Table 2. Summary of Effects of Various Treatments on LDH-P mRNA 
and Transcription Factor Binding 

Control W sal W/sal C i s  Cis/sal vin 

LDH-P mRNA 0 

AP-1 binding 0 

NF-KB binding 0 

E - W  binding 0 

0 0 1 0 1 0 
0 L 1 0 1 ND 

7. 0 1 7. - 1  7. 
3. 0 0 *1 0 '  ND 



. 

Spl SplSpl AP2 AP2 NF-KB AUG ... 
1/2E 1/2E CRE API API 

7 ? ? ?  ? 
1kb I 

. .  



(A) (B) 
I 

.. 

Gel Shift of HeCa cells nuclear extract after cells were treated 
with , UV (1 6 joule/rn2/sec), and cis platinum (cis) 50 PMlrnl with or without 
salicylic acid (5 rng/rnl). Labeled Fds (double stranded C1 oligonucleotide) and 
AP-1, a transcriptional element were reacted with nuclear proteins in a gel 
shift assay. Protein concentrations were standardized so each sample 
had 175 rng/ml. Sample volume was 5 p1 (final concentration, 0.8 mg). 


