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Abstract 

The process of filtration of non-charged, submicron particles is analyzed using the 
method of volume averaging. The particle continuity equation is represented in terms of 
thefirst correction to the Smoluchowski equation that takes into account particle inertia 
effects for small Stokes numbers. This leads to a cellular efficiency that contains a 
minimum in the efficiency as a h c t i o n  of the particle size, and this allows us to identifjr 
the mostpenetratingparticle size. Comparison of the theory with results fiom Brownian 
dynamics indicates that the first correction to the Smoluchowski equation gives 
reasonable results in terms of both the cellular efficiency and the most penetrating 
particle size. However, the results for larger particles clearly indicate the need to extend 
the Smoluchowski equation to include higher order corrections. Comparison of the 
theory with laboratory experiments, in the absence of adjustable parameters, provides 
interesting agreement for particle diameters that are equal to or less than the diameter of 
the most penetrating particle. 

1. Introduction 

The process of filtration takes place in an hierarchical porous media (Cushman, 
1990) and we have illustrated this in Figure 1. In order to design a filter, one needs a 
particle transport equation in which the porosity heterogeneities have been spatiaZZy 
smoothed. This suggests the use of the first averaging volume shown in Figure 1 along 
with the method of large-scale averaging (Quintard and Whitaker, 1987,1988,1990; 
Plumb and Whitaker, 1988,1990). Large-scale averaging requires the use of local 
volume averaged equations that are associated with the second averaging volume shown 
in Figure 1. These equations are sometimes referred to as the Darcy-scale transport 
equations and they represent the point in the hierarchical process at which the governing 
differential equations and boundary conditions are joined. These boundary conditions are 
imposed at the y-o interface which is illustrated in the third volume contained in Figure 1 
where we have identified the fibers as the o-phase and the fluid as the y-phase. The 
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Figure 1 
Hierarchical View of the Filtration Process 
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governing equation for the fluid velocity in the y-phase will be taken to be Stokes' 
equations, while the governing equation for the particle concentration is represented by a 
Fokker-Planck equation for the probability density hct ion.  This idea is suggested in the 
last volume illustrated in Figure 1 where we have identified the particles as the Ic-phase 
and the pure fluid as the P-phase. The fact that we are going to use Stokes' equations to 
described the velocity of the y-phase indicates that the volume fraction of the particles is 
much, much less than one (Russell, 198 1). 

Macroscopic transport equations for filtration are often introduced heuristically in 
the form of a convective-dispersion equation with a source term accounting for the 
particle deposition. This source term requires knowledge of theJilter collection eficiency 
that can be determined by experiments. The starting point for a theoretical derivation of 
the filter collection efficiency is a pore-scale description of the particle transport which 
must be subjected to both local volume averaging and large-scale averaging in order to 
obtain a filter transport equation. The particle transport equation must account for the 
various mechanisms that affect the particle deposition process such as Brownian 
diffusion, inertial deposition, electrostatic effects, etc. Results published in the literature 
[see Ramarao and Tien (1991) for an extensive review] can be classified according to the 
various assumptions made in describing the particle transport, as well as the methodology 
used in proceeding from the pore-scale equations to the macroscopic description. 

If one assumes pure Brownian diffusion, particle transport can be viewed as 
equivalent to the process of convective-diffusion in a porous medium with reaction 
(Friedlander, 1977; Shapiro and Brenner, 1990). However, it has been recognized for 
some time that the existence of a mostpenetratingparticle size is the result of a complex 
interaction between Brownian diffusion and inertial effects. Because of this, it is 
important to make use of a more complete description of the particle transport process 
that accounts for particle inertia effects. 

Several approximate methods have been proposed to determine the particle 
velocity field. Deterministic particle trajectory calculations can be used in the 
convective-diffusion equation (Fuchs, 1964; Yuu and Jota, 1978; Fernhdez de la Mora 
and Rosner, 1981). More precise solutions of this stochastic process can be obtained by a 
continuous approach (de la Mora and Rosner, 1982; Yeh and Liu 1974; Banks and 
Kurowski 1983) which will be described later in this paper. More recently, direct 
solutions of the Langevin equations (the so-called Brownian dynamics calculations) have 
been used to simulate particle motions around single fibers (Kanaoka et al., 1983; Gupta 
and Peters. 1985, 1986; Ramarao and Tien, 1992, 1994). 

Brownian dynamics represents the most reliable method of analyzing the particle 
transport process since the physics can be incorporated directly into the calculations for a 
single fiber (or multi-fiber) efficiency. However, the design of a filter requires an 
analysis that faithfully transmits the physics from the particle scale illustrated in Figure 1 
to the 
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filter scale, and this is difficult to accomplish via Brownian dynamics. This suggests the 
development of continuum equations that can accurately simulate the phenomena 
described by Brownian dynamics. Our approach will be to derive both the macroscopic 
equation and the macroscopic coefficients from the pore-scale description. This approach 
has been used successhlly in dealing with several problems of transport phenomena in 
porous media. In particular, valuable results have been obtained for the process of 
passive dispersion (Lee, 1979; Brenner. 1980; Carbonell and Whitaker, 1983; Eidsath et 
al., 1983; Rubinstein and Mauri 1986), active dispersion (Zanotti and Carbonell, 1994; 
Quintard and Whitaker. 1994a), and dispersion with chemical reaction (Mauri, 1989; 
Edwards et al., 1993). In this paper, the macroscopic forms of the pore-scale equations 
are obtained by the method of volume averaging and effective transport properties are 
determined by two independent closure problems that are solved for periodic arrays of 
cylinders. 

PARTICLE MOTION 

Our description of the motion of the particles begins with the single particle 
Langevin equation 

in which mp is the mass of the particle and v p  is the velocity of the particle. The first 
term on the right hand side of Eq. 1 .I describes the Stokes' drag on a single isolated 
particle with c, representing the Cunningham correction factor (Tien, 1989). The use of 
this form for the force indicates that we are ignoring particle-particle interactions and the 
fluid mechanical complications that arise when a particle approaches a solid surface 
(Peters and Ying, 1991). These effects should certainly be taken into account; however, 
in this initial study it is our attention to keep the analysis as simple as possible. 

It is convenient to express Eq. 1.1 as 

in which y is inversely proportional to the Stokes' number 

st-' 3 w d p  y = - -  

Here St represents the Stokes' number to be defined later. There are many particle 
transport processes for which the Stokes' number is small compared to one and this so- 
called high piction h i t  represents an important case for filtration. The Fokker-Planck 
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equation associated with the stochastic process described by Eq. 1.2 takes the form 
(Risken, Sec. 10.1, 1989) 

and this result is often known as Kramer's (1 940) equation. The dependent variable 
represents a probability density function 

and the particle number density is given by 

The solution of Eq. 1.4 for the high friction limit is based on matrix continued fraction 
methods (Risken, Sec 10.4, 1989) which yield 

dn 
P = v .  {[-v+ DpV]np} + y-' V . { [ v - V v - ( V - v ) D P V ] n p }  + 
at 

+ y-3 V - { [  .......I np}  + o ( ~ - ~ )  +....... 

in which Dp is the Brownian diffusivity. It is important to keep in mind that this result 
does not take into account the complex fluid mechanics that occur when a particle 
approaches a solid surface. The first two terms on the right hand side of Eq. 1.7 were 
obtained by Titulaer (1 978) and by Skinner and Wolynes (1 979) using different methods. 
If only the first term on the right hand side of Eq. 1.7 is retained we have the 
Smoluchowski equation (Gardiner, Sec. 6.4, 1985) and under these circumstances the 
mean motion of the particles follows the fluid streamlines. As we shall see in Sec. 3, this 
leads to a situation that can not predict a crucial characteristic of many filtration 
processes, thus we will retain the second term on the right hand side of Eq. 1.7 so that our 
particle transport equation takes the form 

- y - l v  - Vv]np}  = V ( DpVnp), in the y -phase 

This correction to the Smoluchowski equation has been used by Yeh and Liu (1974), 
Banks and Kurowski (1983), and others for the study of particle transport in the filtration 
process, and derivations are available from de la Mora and Rosner (198 1,1982) and from 
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Peters and Ying (1991) in addition to the references cited above. Equation 1.8 represents 
the frst smoothing process in the hierarchy of averaging processes illustrated in Figure 1. 
The next step in this process requires that we form the local volume average of Eq. 1.8. 

2. Volume Averaging 

At this point we are ready to express the complete transport problem under 
consideration, and we list the governing differential equations and boundary conditions as 

B.C. 1 

B.C. 2 

np = 0, at the y - (r interface 

0 = -vp+pg+pv2v 

v = 0 , at they -o interface 

v - v  = 0 

It should be clear that we have already used Eq. 2.5 with Eq. 1.7 in order to simplify that 
result to Eq. 1.8, and we will need to use Eq. 2.5 again in our analysis of the convective 
transport term in Eq. 2.1. The boundary condition represented by Eq. 2.2 must be 
thought of as a limiting case which will create an upperbound for the filtration efficiency. 
This boundary condition has been used by Ruckenstein and Prieve (1 973), Shapiro and 
Brenner (1 990), and others. 

. 

The method of volume averaging (Anderson and Jackson, 1967; Marle, 1967, 
Slattery, 1967; Whitaker, 1967) begins by associating with every point in space (in both 
the y-phase and the o-phase) an averaging volume that we denote by . Such a volume 
is illustrated in Figure 2 where we have located the centroid of the averaging volume by 
the position vector x, the radius of the averaging volume by ro, and the characteristic 
length of the y-phase by ly . We will make use of two averages in our analysis of Eq. 2.1 
and the first of these is the superficial volume average which can be expressed as 

Here \vy is any function associated with the y-phase and V y  is the volume of the y-phase 
contained within the averaging volume, 
will also make use of the intrinsic volume average that is defined by 

. In addition to the superficial average, we 
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Figure 2 
Positions Vectors Associated with the Averaging Volume 
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These two averages are related by 

(Wy)  = 

The average velocity is often represented in terms of the superJciaE velocity, while the 
average particle concentration is typically represented in terms of an intrinsic average. 
To avoid confusion between these two averages we will always make use of the 
nomenclature indicated in Eqs. 2.6 through 2.8. 

When we form the volume average of Eq. 2.1 we will encounter averages of 
gradients and we will need to convert these to gradients of averages by means of the 
spatial averaging theorem (Howes and Whitaker, 1985) which we represent as 

We begin the analysis of the particle transport process by expressing the superficial 
average of Eq. 2.1 as 

(%) + (v. {[V - y-Iv - VvInp}) 

and note that the first term can be written as 

(2.10) 

since 7 is independent of time. The convective transport term in Eq. 2.10 requires the 
use of the averaging theorem which leads to 

(2.1 1) 

on the basis of the no-slip condition given by Eq. 2.4. The diffusive term on the right 
hand side of Eq. 2.10 provides us with 
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(V-DpVnp) = V-(DpVnp)  + - nyc.DpVnpd4 
T- 'I 

40 

Use of Eqs. 2.1 1 through 2.13 along with Eq. 2.8 in the form 

(np)  = &y(np)y 

allows us to express the superficial average particle transport equation as 

+ v - (vnp ) - y-% ([v vvln,) 

accumulation inertia convection convection - 7 & Y d t  v 

(2.12) 

(2.13) 

(2.15) 

Here we have identified the correction to the Smoluchowski equation as the particle 
inertia convection, and it is this term that plays a key role in the determination of the 
"most penetrating particle size" in the filtration process. 

In order to eliminate the point value of the particle concentration in the difksion 
term, we use the following decomposition (Gray, 1975) for the particle density 

np = (np)Y + Zp 

and later we will use the velocity decomposition given by 

v = (v)Y =t v 

(2.14) 

(2.17) 

One can use Eq. 2.16 in the diffusion term and follow the type of analysis given by 
Whitaker (Sec. 2, 1986a) or Quintard and Whitaker (Sec. 11, 1993) to obtain 
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This development makes use of the lemma extracted from Eq. 2.9 

along with the two length-scale constraints given by 

2 
- << 1 
L2 

(2.19) 

(2.20) 

(2.21) 

Here one should think of L as the smallest characteristic length associated with a 
macroscopic quantity such as sYY (np)Y, V(np)Yy  etc. These length-scale constraints were 
originally developed by Carbonell and Whitaker (Sec. 2, 1984) and a more thorough 
discussion is available in the more recent work of Quintard and Whitaker (1 994b). One 
can also use the decomposition given by Eq. 2.16 in order to express the particle capture 
term as 

Use of Eqs. 2.17 and 2.21 in Eq. 2.15 leads to 

%JY + V . ( v n p )  - ~ - ' v . ( [ v . v v ] n p )  
Ey at 

(2.23) 

and in order to complete the averaging procedure we would like to express the convective 
transport in terms of (np)y and ZP . One can follow Carbonell and Whitaker (1 983, 1984) 
in order to represent the traditional convective transport as 

Ey (VY (np 

tradiiionaI 
convective transport 

+ <?Ep ) 
T traditional 

dispersive transport 

(2.24) 
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The so-called inertial contribution to the convective transport is algebraically more 
complex, and it is convenient to use only the decomposition given by Eq. 2.16 to obtain 

( ( v -Vv)np)  = (v-Vv)(np)Y + ( (v-Vv)Ep) 
pLI.;;icI. 

inertia convection inertia dispersion 

(2.25) 

On the basis of Eqs. 2.24 and 2.25 we can express the volume averaged particle transport 
equation as 

dlffi;.sion particle capture 

Here we have imposed the simplification 

and the length-scale constraint associated with this restriction is given by 

(2.26) 

(2.27) 

(2.28) 

The derivation of this result requires an estimate of iip and definitions of the various 
length scales, and the analysis is given in Appendix A. 

Before moving on to the closure problem we should list the volume average forms 
of the Stokes' equation given by Eq. 2.3 and the continuity equation that was presented 
earlier as Eq. 2.5. The volume averaged forms of these two equations have been 
developed in detail elsewhere (Whitaker, 1986b; Quintard and Whitaker, 1994b) and we 
simple list the volume averaged form of Eq. 2.3 as 
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(2.29) K 
P 

(v) = - -.(v(P>Y - pg) , Darcy s law 

in which (v) represents the superficial volume averaged velocity and ( P ) ~  represents the 
intrinsic volume averaged pressure. The volume averaged continuity equation can be 
expressed either in terms of the superficial average velocity 

V.(v) = 0 (2.30) 

or in terms of the intrinsic average velocity 

V.(Ey(V)Y) = 0 (2.3 1) 

Here we have made use of the nomenclature given by Eqs. 2.7 and 2.8 and the relation 
between the two averages indicated by Eq. 2.9. 

In order to obtain a closed form of Eq. 2.26, we need to develop the boundary 
value problem for Ep and we need to show how (v . Vv) can be determined by Darcy’s 
law. In the general analysis of the filtration process we definitely need to take porosity 
variations into account via the method of large-scale averaging (Quintard and Whitaker, 
1987); however, in the development of the closure problem it is permissible to consider a 
local homogeneous region in which variations of 
circumstances we can divide Eq. 2.26 by cy to obtain 

can be ignored. Under these 

With this intrinsic form of the particle transport equation we are ready to begin the 
derivation of the closure problem. 

3. Closure Problem 

In order to develop the governing differential equation for Ep we recall Eq. 1.8 
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and remember Eq. 2.16 so that Eq. 2.32 can be subtracted from Eq. 3.1 to obtain 

- % + v * {[ v - y -1v. vv]np - [(v)Y - y-l(v. Vv)Y](n,,Y} 
at 

- V.(VEp)Y + ~ - ' V - ( ( V . V V ) E ~ ) ~  = V.(DpVE') 

r 1 

1 
The second and third terms in this result can be arranged as 

(v-y-lv-vv)np - ((vy -y-'(V*Vv)Y)(np)Y = 

(v - y -lv - VV)E' - [((V -v) - y-l((v. Vv)Y - v . Vv)](np,Y (3.3) 

If we neglect variations of the porosity in the closure problem, we can use the various 
forms of the continuity equation to obtain 

V.((v)Y-v) = 0 (3.4) 

and this allows us to substitute Eq. 3.3 into Eq. 3.2 and obtain the following transport 
equation for E' 

8EP 
- + v . [(v - y -lv. VV)E'] + [v - y -yv.  v v  - (v - VV)Y )]. V(nJ - (v . [y - yv - vv - (v - Vv)Y)]}(np)Y at \ 

v J ,  
v I 

source source 

r 1 
- v - <viiP >Y + y-lv - ((v - VV)E~ >Y = v ( D'VS) - v - - ny,iip& 

\ I 

non-local convective transport 

non-local difisive 
transport 
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particlicapture 

Here we see terms representing 

1. The classic effects of accumulation, local convection, and local diffusion. 
2. Non-local convection and non-local diffusion. 
3. Sources proportional to V(np)y and (np)y.  
4. Particle capture. 

We use the word non-local to describe those terms which involve integrals of Ep, and one 
can draw upon previous studies (Carbonell and Whitaker, 1984; Whitaker, 1 986a; 
Quintard and Whitaker, 1993; Quintard and Whitaker, 1994a) to argue that these terms 
are negligible when length-scale constraints such as those indicated by Eqs. 2.20 and 2.21 
are valid. The analysis consists of comparing the non-local terms with the associated 
local terms and demonstrating that the former are smaller than the latter by a factor of 
t / L . This occurs because the non-local terms involve the derivatives of average 
quantities while the local terms always contain the derivatives of point quantities. 
Because t / L is always small compared to one, the non-local terms can be neglected and 
Eq. 3.5 simplifies to 

- + v .[(v - y -1v. VV)EP] + [v - y -yv .  vv - (v . VV))]. . vv  - (v. vv)q]}(np)Y 
\ I " source 

aEp 
at 

source 

The last term in this result is also a non-local term; however, it is not negligible since it 
represents the rate at which particles are captured per unit volume. 

Use of the boundary condition given by Eq. 2.2 and the decomposition 
represented by Eq. 2.16 leads to the following boundary condition 

B.C. 1 at the y - 0 interface 
+ source 
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and in order to determine the ;'-field in some local, representative region, we are forced 
to accept the spatially periodic model of a porous medium and impose the following 
periodicity condition. 

Periodicity : Ep(r+li) = Ep(r), i =  1,233 , (3.8) 

In addition, when the length-scale constraints indicated by Eqs. 2.20 and 2.21 are valid, 
Carbonell and Whitaker (1 984) have shown that the average of the spatial deviation can 
be set equal to zero and we express this idea as 

Average: (EJ = 0 (3.9) 

Strictly speaking, we need an initial condition for E' to complete our problem statement; 
however, both the volume averaged equation given by Eq. 2.26 and the closure equation 
represented by Eq. 3.6 can be treated as quasi-steady, thus the initial condition for both 
(np)Y and E' can be ignored. This means that the closure problem takes the quasi-steady 
form given by 

QUASI-STEADY CLOSURE PROBLEM 

N B.C. 1 np = - (np)y , at the y - ainterface 
+ source 

Periodicity: Ep(r+lj) = Ep(r), i =  1,293 

(3. loa) 

(3.1 Ob) 

(3.1 Oc) 

Average: (Z')Y = 0 (3.10d) 

The form of this boundary value problem suggests a representation for Ep given by 

N = b.V(np)Y - s(np)y (3.1 1) nP 
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in which b and s are referred to as the closure variables or the mapping variables since 
they map the sources onto the spatial deviation concentration. One can draw upon a 
series of studies associated with the closure problem (Eidsath et al., 1983; Nozad et al., 
1985; Crapiste et al., 1986; Ochoa et al, 1986; Quintard and Whitaker, 1993 and 1994a) 
to conclude that the vector b and the scalar s are determined by two boundary value 
problems that are analogous to the problem given by Eqs. 3.10. The first of these 
problems determines the vector, b, and this problem is given by 

PROBLEM I 

V - [ (v - y-lv Vv)b] + [ V - y -' (v - Vv - (v - V V ) ~ ) ]  = 

-1 
V.(DpVb) + 0-y nYo D,VbdA (3.12a) 

B.C. 1 b = 0 , at the y-ointerface (3.12b) 

Periodicity: b ( r + l i )  = b(r), i = 1,2,3 (3.12~) 

Average: (b)y = 0 (3.12d) 

For the process of filtration, the second problem is much more important than the first 
since it is used to determine the capture coefficient, kef .  This problem is given by 

PROBLEM I1 

v . [ (v - y -'v . VV),] + v . [y - '(v . vv - (v . vv,Y)] = 

= V.(D~VS)  - (3.13a) 

B.C. 1 s = 1 , at they-0  interface (3.13b) 

Periodicity: s ( r + l i )  = s(r) ,  i=1,2,3 (3.13~) 

Average : (S)Y = 0 (3.1 3d) 

These two closure problems can be solved using the numerical methods described by 
Quintard and Whitaker (1993), and their solution allows us to determine the mapping 
variables for the spatial deviation particle concentration represented by Eq. 3.1 1. 
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Substitution of Eq. 3.1 1 into the volume averaged transport equation given by Eq. 2.26 
leads to the closed form of that equation which contains effective transport and capture 
coefficients which are determined by Problems I and 11. 

CLOSED FORM 

The closed form of Eq. 2.26 can be expressed as 

+ V ~[((v) - y-'(v - V V ) ) ( ~ ~ ) ~ ]  - (d + u) - V(np)y = 
d(np >y 

E at 

V - (D* - V(np)y ) - k e , ( n p ) y  (3.14) 

and it is important to recognize that this is a super$ciaZ average transport equation. This 
means that each term represents a certain quantity per unit volume ofthe porous medium 
and not per unit volume of the fluid phase. This is obvious for the accumulation term; 
however, it can be confusing for the particle capture term. The various coefficients that 
appear in Eq. 3.14 are defined as 

* DpVbd4 u = -J 1 
cy7 

4 

(3.15) 

f 

+ [(vs)--y-l((v (3.16) 

D* = I+- n,bd4 - (Tb) - y-'((v.Vv)b) vr 'I I 
A, I 

(3.17) 

(3.18) 

The last of these coefficients represents the principle objective of this study, thus it is 
Problem I1 that will provide results that can be compared with Brownian dynamics and 
laboratory experiments. In order to determine kef it is convenient to transform Eqs. 3.13 
by means of the following representation 
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s = l+kegS (3.19) 

Here the quantity S has units of time and the boundary problem for this new variable is 
given by 

PROBLEM I1 

V-(vS) - v.[(y- lv*vv)s]  = V-(DpVS) - "1 (3.20a) 

B.C. 1 S = 0, ut the y-o interface 

Periodicity: S(r + -ti) = S(r) , i = 1,2,3 

Average: keH = - ((S)y)-l 

(3.20b) 

(3.20~) 

(3.20d) 

13 deriving this result from Eqs. 3.13 we have used the continuity equation given by Eq. 
2.5, and we have also made use of the simplification indicated by 

V.(V.VV)Y = 0 (3.2 1) 

This is consistent with the simplification used in the closure problem that variations in the 
porosity can be neglected. 

In order to complete the closure of Eq. 3.14 we must represent the term (v Vv) in 
a form that can be determined by the use of Darcy's law as given by Eq. 2.29. From the 
closure problem for Darcy's law (Whitaker, Sec. 4, 1986) we know that the point velocity 
is given in terms of the intrinsic average velocity by (Barrkre et al., 1992) 

v = -(D.K-')-(v) (3.22) 

Here D is a second order mapping tensor that is determined by a modified closure 
problem that has been solved by a variety of authors (Sangani and Acrivos, 1982; Snyder 
and Stewart, 1966; Zick and Homsy, 1982), and K is the Darcy's law permeability tensor 
that appears in Eq. 2.29. In order to use this result with the convective transport term in 
Eq. 3.14, we make use of the continuity equation, the averaging theorem, and the no-slip 
condition to obtain 

(VVV) = (V*(w) )  = V-(W) (3.23) 

Use of Eq. 3.22 in Eq. 3.23 leads to 
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(v. Vv) = V-[(DD):(K-'K-'):(v)(v)] 

QUINTARD & WHITAKER 

(3.24) 

in which the proper dyadic multiplication can be inferred from Eq. 3.22. When this result 
is used in Eq. 3.14 we obtain the completely closedform of the volume averaged particle 
transport equation given by 

E a(n >y + V-{((v) - y-'V-[(DD): (K-IK-'): (~)(v)])(n,)~} - (d + u) - V(n,)y 
at 

For simplicity we define a volume averaged particle velocity according to 

(v,) = (v)-y-l~.((~~):(~-l~-l):(v)(v)) 

so that Eq. 3.25 takes the form 

a(n >y 

at E + V-((vp)(np)r) - (d + u).V(np)y = V e (D' -V(np)y) - k,rr(np)y 

(3.25) 

(3.26) 

(3.27) 

In order to understand the filtration process, we need to examine the effective coefficients 
in Eq. 3.27; however, it is the capture coefficient, kef ,  that dominates the filtration 
process, thus the discussion of d, u, and D* will be relegated to Appendix B. Solution of 
the closure problem to determine ke8 requires a knowledge of the point velocity field and 
our results for the velocity and the capture coefficient will be presented in the next 
section. 

4. Determination of the Velocity Field and the Capture Coefficient 

The simplest model of a fibrous porous medium is a regular array of cylinders 
such as that shown in Figure 3. For most practical cases, the Reynolds number for flow 
in fibrous filters is less than one, thus we can use Stokes' equations to determine the fluid 
velocity field. For the case of a macroscopicah'y uniformflow one can justify the use of 
spatially periodic boundary conditions (Sanchez-Palencia, 1980), and the fluid 
mechanical problem to be solved is given by (Barr6re et al., 1992) 

v * v  = 0 

2 o = - v p + p g + p v  v 
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Figure 3 
Spatially Periodic Array of Cylinders 
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B.C. 1 

Periodicity: 

v = 0 ,  at the y - 0 interface 

v(r+lj)=v(r), i = l ,  2, and3 

(4.3) 

(4.4) 

Here we have imposed the no-slip condition with the thought that slip will be 
unimportant when the fiber diameter is larger than several micrometers. The 
dimensionless velocity profile (v, /( v, )y as a function of y) at the entrance of a unit cell 
is illustrated in Figure 4, and there we see that the velocity profile is not uniform as is 
sometimes assumed in particle tracking calculations associated with the determination of 
single fiber efficiencies. The center of the cell associated with the profile shown in 
Figure 4 is at y / l y  = 0.5, thus we see that the entrance velocity at the edge of the cell is 
about twice as large as the entrance velocity at the center of the cell. While the model 
shown in Figure 3 is clearly an oversimplification, it does contain some of the general 
features of a fibrous filter. 

It is well known that the entrance length for the Stokes' flow problem is on the 
order of the characteristic length, tr , thus the velocity profile illustrated in Figure 4 is 
representative of the conditions essentially everywhere in the uniform array shown in 
Figure 3. However, the particle velocity field need not have the same entrance region as 
thefluid veZocity field, and it is of some interest to know how many unit cells are required 
in order to develop a spatially periodic particle velocity since this is required in order that 
the periodicity conditions represented by Eqs. 3.1 Oc, 3.1212, and 3,13c be valid. The 
entrance region associated with the particle concentration field can be determined by the 
solution of Eq. 1.8; however, it is much easier to examine the velocity field on the basis 
of Eq. 1.2 with the Brownian or random force set equal to zero. This deterministic 
particle trajectory can be easily calculated on the basis of the special form of Eq. 1.2 
given by 

dVp 
dt 
- = -y-1(vp-v), particle tracking equation (4.5) 

and it is interesting to examine V p  for several Stokes numbers where the Stokes number 
is defined as 

Here p p  is the particle density and dp is the particle diameter. This definition of the 
Stokes number involves the characteristic length of the unit cell, ly , and is therefore 
different from other definitions that are found in the literature. To be precise about the 
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Figure 4 
Velocity Profile at the Entrance of a Unit Cell 
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particle tracking calculations that were carried out, we summarize the algorithm as 
follows: 

1. The porous medium is discretized by using a regular grid of 
blocks assigned to either the fluid phase of the solid phase. 

2 Stokes' equations are solved by using a classical Uzawa 
algorithm. 

3. The fluid velocity field required in Eq. 4.5 is obtained from 
step 2 by linear interpolation. 

4. Equation 4.5 is solved by using a sixth order Runge-Kutta 
algorithm available in the IMSL library. 

For the first unit cell shown in Figure 5 there is a wake region that contains no 
particle trajectories, and for subsequent unit cells there is an upstream region that is also 
devoid of trajectories. This is to be expected because of the deterministic nature of Eq. 
4.5. The characteristic of the particle trajectories that is most interesting is the evolution 
of the V,-field which is illustrated in Figure 6. There the dimensionless x-component of 
V, is shown for several Stokes numbers, and for a Stokes number of 0.155 we see that 
approximately ten cells are required before a stationary state is reach. In general, ten unit 
cells represents a small portion of any fibrous filter, thus the entrance region can be 
neglected and we can make use of spatially periodic conditions (Shapiro and Brenner, 
1990) in order to solve the two closure problems given by Eqs 3.12 and 3.20. This will 
provide us with theoretical values of the effective coefficients in the volume averaged 
particle transport equation which we list here as 

a(nJ 
E - + V - ( ( v p ) ( n p ) Y )  - (d + U ) - V ( ~ , ) ~  = V -(D* . V(np)Y)  - ke , (np)y  (4.6) at 

One must remember that the velocity, (v, ) , does not represent the volume average of the 
particle velocity that appears in the Langevin equation, but instead it represents the inertia 
corrected average velocity defined by Eq. 3.21 which can also be expressed as 

(v,) = (v) - y-l(v-vv) (4.7) 

For the special case of a macroscopicali'y uniformflow, Eq. (3.24) requires that; 

( V p )  = (v) (4.8) 

however, this need not be the case for heterogeneous filters and in future studies we will 
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Figure 5 
Particle Trajectories in a Spatially Periodic Porous Medium 
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Figure 6 
Evolution of Particle Trajectories 
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examine this matter more carefully. The non-traditional contributions to the convective 
transport represented by the “velocities”, d and u, are the result of the particle capture 
process, and this effect has been thoroughly documented by Paine et al. (1983) for the 
case of adsorption and chemical reaction in capillary tubes. The values of d and u are 
determined by Eqs. 3.15 and 3.16 and it is important to know the magnitude of these two 
terms relative to (v,) . Calculated values of the x-components of d and u are presented 
in Appendix B where it is shown that these terms may contribute as much as 10% to the 
convective transport in Eq. 4.6. While this is not negligible, it is not a key issue in terms 
of the comparison of the theory with calculations based on Brownian dynamics or with 
laboratory experiments. Thw we will discard these terms, along with the and the 
dispersive transport so that our superficial volume averaged transport equation takes the 
form 

This result will be quasi-steady when the following constraint is satisfied 

k e , t  >> 1 (4.10) 

and for incompressible flows one can use the continuity equation given by Eq. 2.30 in 
order the express Eq. 4.9 as 

( v ) -V . (np)v  = - k e & , ) y  (4.1 1) 

One should think of this result as being a reasonable approximation for homogeneous 
filters; however, real filters are heterogeneous and the terms that have been discarded in 
going from Eq. 4.6 to Eq. 4.1 1 will be retained in future studies of heterogeneous porous 
media. 

CELLULAR EFFICIENCY 

In order to present our results for kef in a traditional form, we will write Eq. 4.1 1 
as 

(4.12) 

and note that for our unit cell calculations, or any homogeneous porous filter, we have 

i . ( v p )  = i.(v) = (v,) (4.13) 
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We can solve Eq. 4.12 in order to represent the change in particle concentration that takes 
place across a unit cell as 

(4.14) 

It is convenient to define the left hand side of this result as the cellular eficiency, qc , in 
order to distinguish it from the singlefiber eficiency, and this leads to 

-- kef 

q c = l - e  (v,) , cellular eficiency (4.15) 

The closure problems given by Eqs. 3.13 and 3.20 were solved using numerical methods 
similar to those described by Quintard and Whitaker (1993, 1994b). To illustrate the 
general nature of the solutions for the cellular efficiency, qc, calculations were carried 
out for the parameters listed in Table 1. 

Table 1 Physical Properties 

particle diameter 
fiber diameter 

particle density 

dp = 0.5 andO.l pm 
2a = 0.5 pm 

p p  = 4.0 gkm3 
temperature 283.0 K 

viscosity 1.8~10'5 Pas 
porosity sy = 0.95 

The illustrative values for qc are shown in Figure 7 as a function of the particle diameter. 
The curve for St = 0 represents the purely diffusive case and does not exhibit a 
minimum. This means that the Smoluchowski equation for the particle concentration 
cannot be used to determine the most penetrating particle size. The curve for finite 
Stokes numbers, which range from 0-4 to almost 0-', indicates a minimum cellular 
efficiency for particle diameters on the order of 1 to 2 micrometers. In thinking about the 
results shown in Figure 7, one must be careful to remember that the additional convective 
transport represented by the coeEcients u and d has been neglected along with the 
dispersive transport. Inclusion of these effects would change the values presented in 
Figure 7 but not the conclusion that the corrected Smoluchowski equation exhibits a 
minimum in the cellular efficiency as a function of particle diameter. 

Although laboratory experiments are not available for the cellular efficiency, we 
can compare our results with the Brownian dynamics calculations of 
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Figure 7 
Cellular Efficiency as a Function of Particle Diameter 

(2a = 0.5 pm, pp = 4000 kg/m3 
T=283 K, p=1.8 10-5 Pa s, ~,=0.95) 
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Tien and Ramarao (1992) and this comparison is illustrated in Figure 8 for a fiber 
diameter of 10 micrometers and a wide range of particle diameters. The conditions are 
representative of air flowing in a typical fibrous filter, and our calculated results resemble 
those of Tien and Ramarao but are lower by about a factor of two for particle diameters 
that are equal to or less than the diameter of the most penetrating particle. For larger 
particles the theory predicts values of qc that are significanti'y Zower than those 
determined by Brownian dynamics, and this would appear to indicate that the higher 
order terms in Eq. 1.7 need to be included in the theory. One should keep in mind that 
the boundary condition given by Eq. 2.2 is an ad hoc representation of the true physics of 
the particle capture process; however, it represents an upperbound in the particle capture 
process and therefore cannot be responsible for the differences observed in Figure 8. 

Brownian dynamics calculations can be thought of as numerical experiments 
based on Eq. 1.2 and are therefore not subject to the errors associated with: (1) the 
derivation of Eq. 1.7, (2) the approximations contained in Eq. 1.8, and (3) the 
simplifications imposed on an analysis that began with Eq. 2.1 and ended with Eqs. 3.20. 
Because of this, any reliable continuum theory should agree with Brownian dynamics 
calculations. Since Tien and Ramarao used the Kuwabara unit cell to determine their 
velocity field, we should not expect their results to be exactly the same as those 
determined by the continuum particle transport equation. However, the velocity field 
generated from the Kuwabara unit cell is not greatly different from that calculated using 
the spatially periodic model shown in Figure 3. What is different between the two 
approaches is the boundary condition imposed at the entrance to the unit cell, and this 
difference is significant. In Brownian dynamics calculations the particles are uniformly 
distributed over the entrance to the unit cell, whereas this is not the case for the spatially 
periodic model shown in Figure 3. From Eqs 2.14 and 3.1 1, we have the following 
representation of the point particle concentration in terms of the closure variables 

np = ( l - ~ ) ( n , ) ~  + b-V(np)Y (4.16) 

If the gradient of is sufficiently small, we can extract an approximation that gives 
us the point particle concentration in terms of the average particle concentration. This is 
obviously given by 

(4.17) 

and the calculated values of ( 1  -s) at x = 0 are used to produce the results shown in 
Figure 9. The fully three-dimensional representation for the s-field is shown in Figure 10 
where 
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Figure 8 
Comparison with the Cellular Efficiency fiom Brownian Dynamics 
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Figure 9 
Concentration Profile at the Entrance to a Unit Cell in a Spatially Periodic Model of a 

Fibrous Filter 
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Figure 10 

Three-Dimensional Representation of the +Field 
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one can observe the non-uniformity at the entrances and exits in addition to the boundary 
layer that exits around the fiber. The variation of np/(np)Y shown in Figure 9 is 
reminiscent of the velocity profile shown in Figure 4 and it represents a very significant 
particle concentration nonuniformity at the entrance (and at the exit by periodicity) of a 
unit cell. The fact that the concentration is smaZZer at the center of the entrance to the unit 
cell naturally gives rise to a rate of particle capture that is less than one would calculate 
using a uniform concentration at the entrance to the unit cell. We believe that this non- 
uniformity, that naturally arises because of the spatially periodic conditions associated 
with the model illustrated in Figure 3, is the source of the difference between the 
continuum theory and the Brownian dynamics calculations shown in Figure 8 for particle 
diameters that are equal to or less than the diameter of the most penetrating particle. For 
larger particle diameters, it is difficult to make a judgment since the rate of capture of 
larger particles will be very sensitive to the manner in which they are distributed over the 
entrance to the unit cell 

In addition to comparing the theory with numerical experiments, it is important to 
compare our results with laboratory experiments. In Figure 11 we have shown a 
comparison with the work of Lee and Liu (1 982) for an average velocity given by 
(v) = O.lm / s, and there one can see attractive agreement between theory and experiment 
for particle diameters that are equal to or smaller than the diameter of the most 
penetrating particle. For larger particles, the agreement diminishes and this would appear 
to confirm our suspicions concerning the importance of the higher order terms in Eq. 1.7. 
In Figure 12 the comparison between theory and experiment in shown for (v) = 0.03m / s 
and we agin see reasonable agreement for the smaller particles. The comparison for an 
even smaller velocity given by (v) = 0.01m / s is shown in Figure 13 and here it becomes 
apparent that the theory is less reliable at lower velocities. We have no explanation for 
this observation; however, one must remember that the model illustrated in Figure 3 
cannot possibly capture all the characteristics of a real filter and further studies using 
more complex unit cells are certainly in order. In addition, the influence of local 
heterogeneities must be determined and that is the objective of a subsequent study. 

5.  Conclusions 

In this work we have used the first correction to the Smoluchowski equation to 
describe the effects of particle inertia, and the resulting particle transport equation has 
been used to develop a local volume average transport equation that includes the effects 
of non-traditional convective transport, dispersion, and particle capture. A spatially 
periodic model of a fibrous filter has been used, along with two closure problems, to 
calculated the effective coefficients that appear in the volume averaged transport 
equation. This leads to a direct calculation of the cellular efficiency and results were 
determined for a unit cell containing a single fiber that is orthogonal to the mean flow 
field. The results are in reasonably good agreement with numerical experiments 
performed by means of Brownian dynamics and with laboratory experiments. Both 
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Figure 11 
Comparison with Laboratory Experiments 
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Figure 12 
Comparison with Laboratory Experiments 
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Figure 13 
Comparison with Laboratory Experiments 
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comparisons indicated that higher order corrections need to be included in the 
Smoluchowski equation in order to predict the behavior of large particles. 
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7 Nomenclature 

Roman Letters 

nP 

nP 
N 

fiber radius, m. 
area of the y-o interface contained within the averaging volume, m2. 
a closure variable that maps V(np)y onto Ep, m. 
particle diameter, m. 
a velocity-like coefficient, m / s  
Brownian difisivity, m2/s. 
dispersion tensor, m2/s 
Brownian or random force, N. 
gravity vector, m/s2 

effective rate coefficient for particle capture, s-l 
characteristic length for a unit cell, m. 
characteristic length for the o-phase (= 24, m. 
i = 1,2, and 3, lattice vectors, m. 
characteristic length for the porosity, m. 
characteristic length for (np)y , m. 
generic characteristic length for volume averaged quantities, m. 
mass of a particle, kg. 
particle density, number/m3. 
spatial deviation of the particle of the particle, number/m3. 
intrinsic average particle concentration, number/m3. 
unit normal vector pointing from the y-phase toward the o-phase. 
fluid pressure, N/m2. 
intrinsic average pressure in the y-phase, m3. 
position vector, m. 
a closure variable that maps (np)y onto E’’. 
( v , ) ~  ppd;c, /lSpty , the Stokes number. 
time, s. 
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a velocity-like coefficient, d s .  
averaging volume, m3. 
volume of the y-phase contained in the averaging volume, m3. 
fluid velocity vector, d s .  
intrinsic average fluid velocity, d s .  
sy ( v ) ~ ,  superficial average fluid velocity, d s .  

v - ( v ) ~  , spatial deviation fluid velocity, d s .  
particle velocity, m/s.  
deterministic particle velocity, d s .  
(v) - y -' (v - Vv) , inertia corrected volume average velocity for the particles, d s .  
position vector relative to the centroid of the averaging volume, m. 
position vector locating the centroid of the averaging volume, m. 

Greek Letters 

c1 fluid viscosity, Ns/m2. 
7c 3.1416 ....... 
E? porosity. 

P fluid density, kg/m3. 
PP particle density, kg/m3. 

Y 3vdp/mp, s-l 
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APPENDIX A 
ESTIMATES AND CONSTRAINTS 

In order to develop the constraints associated with the volume averaged particle 
transport equation and with the closure problem, we need to estimate the spatial deviation 
particle concentration. In the boundary value problem for Ep given by Eqs. 3.6 through 
3.9 we see two volumetric sources in the transport equation, and one surface source in the 
interfacial boundary condition. It is these sources that give rise to non-zero values of Ep, 
and in order to estimate the magnitude of the spatial deviation particle concentration we 
simply need to estimate the contributions of these three sources. The surface source 
contribution is straightforward and is obviously given by 

= o((np>Y) 
source 

The estimate of the contribution due to the volume sources is based on the idea that the 
diffusive term in Eq. 3.6 is one of the dominant terms. It is easy to show that the 
diffusive term is the same order of magnitude as the capture term 

1 

and it may be more appealing to think of this latter term as the dominant term in a 
filtration process. The contribution of the first volume source is based on 

v . ( DpVZp) = o([v - y - '(v . vv - (v ' v v y  )]V(np )Y ) 

and in order to extract something comparable to Eq. A1 we need to estimate the gradients 
of both Zp and 
on the right hand side of Eq. A3. We begin by noting that the particle inertial 
contribution, in a general sense, will be constrained by 

In addition, we need to estimate the terrns involving the velocity 

y-'v.vv I O(v) 

This leads to the simplification 

r;-y-'(v.vv-(v*vv)~) = O(7) 

and allows us to write Eq. A3 as 
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since V is on the order of (v)r because of the no-slip condition given by Eq. 2.4. We 
now deJine a characteristic length for El according to 

Here one should think of !bl as the boundary layer thickness associated with the particle 
adsorption process (Banks et al., 1991) and we know that !bl is constrained by 

!bl ty 

The characteristic length for (np)Y is defined by 

and when this result, along with Eq. A7, is used in Eq. A6 we obtain the estimate 

Here we have defined the Peclet number by 

and since the boundary layer thickness can be estimated by (Banks, et al., 1991) 

we can express Eq. A10 as 
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For typical values of Pe, e,, and L, this contribution to Ep will be much less than that 
resulting fi-om the surface source represented by Eq. A1 . An examination of the second 
volume source in Eq. 3.6 leads one to a similar conclusion, thus we can represent our 
order of magnitude estimate of gP as 

One should be careful to note that while the volume sources in the closure problem can be 
neglected relative to the surface source, this is not necessarily true in the volume averaged 
transport equation. Simplification of these two equations must be carried out separately 
and one can not make the generic statement that a particular term is small. 

At this point we are ready to return to the development in Sec. 2 and justify the 
simplification represented by Eq. 2.27. We begin by deJning the length scale associated 
with the porosity by 

and then estimating the left hand side of Eq. 2.27 as 

In order to estimate the right hand side of Eq. 2.27, we note that the area per unit volume 
can be expressed as 

and make use of Eqs. A7 and A14 to obtain 

Use of Eqs. A16 and A18 in Eq. 2.27 leads to the inequality 
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and one can make use of Eq. A12 in order to express this result as 

For homogeneous filters LE + 00 and this constraint is automatically satisfied. Real 
filters are heterogeneous, thus LE will have some finite value; however, representative 
values of the parameters that appear in Eq. A20 indicate that this constraint is generally 
satisfied for cases of practical interest. 

APPENDIX B 
EFFECTIVE COEFFICIENTS 

In Sec. 4 we described the velocity fields that were calculated on the basis of the 
spatially periodic model shown in Figure 3, and we presented solutions for the effective 
capture coefficient, kef .  Cellular efficiencies were calculated on the basis of Eq. 4.12 
which neglects the contribution of the non-traditional “velocity-like” terms, u and d, and 
the dispersive transport characterized by the dispersion tensor, D* . The values of u and d 
are determined by Eqs. 3.25 and 3.26 and calculated values of the x-components of 
u and d, made dimensionless by the magnitude of (v) , are shown in Figures B 1 and B2 
as a function of the interstitial velocity for the conditions listed in Table 1. The closure 
problems were solved using numerical methods similar to those described in Quintard 
and Whitaker (1993,1994b) The Stokes number is calculated on the basis of Eq. 4.5 and 
in Figures B 1 and B2 we have shown results for the actual Stokes number based on the 
data listed in Table 1 and the interstitial velocity, along with results for which the Stokes 
number is arbitrarily set equal to zero. The results presented in Figures B 1 and B2 
indicate that u and d provide a contribution to the convective transport that is non- 
negligible, and should be taken into account in a thorough analysis of the filtration 
process. The values for a Stokes number of zero represent the purely diffusive case ( 
y -* = 0 in Eq. 1.8) and the increase in the convective transport for this case occurs 
because the slow moving particles near the solid surface are removed thus leading to a 
larger overall velocity (Paine et al., 1983). For the finite Stokes numbers associated with 
the conditions listed in Table 1, we see that the sign of the eflect changes for a velocity of 
about 0.05 m / s  when dp = 0.1 pm, and for a velocity of about 0.01 m/s when dp = 0.5 
pm. For the larger particle size the effect itself becomes very significant when the fluid 
velocity is greater that 0.01 m/s.  The diminished convective transport at larger Stokes 
numbers presumably results from the fact that the high velocity particles are more 
effectively removed by inertial capture and this leads to a reduced convective transport. 
At the highest velocity represented in Figure B2, we see an abrupt change in the behavior 
of u and d and this may be due to numerical difficulties or due to the fact that at the 
larger Stokes numbers we need to include more of the terms in the expansion indicated in 
Eq. 1.7. 
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Velocity Coeficients as a Function of the Interstitial Fluid Velocity 

(dp = 0.1 pm, 2a = 0.lpm) 

--c-- 4=0.1pm - d,= 0.1 pm (St=O) 

0.0001 0.001 0.01 0.1 

Intrinsic Fluid Velocity (m/s) 
1 



FILTRATION QUINTARD & WHITAKER 

Figure B2 
Velocity Coefficients as a Function of the Interstitial Fluid Velocity 

(dp = 0.5 pm, 2a = 0.5 pm) 
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In general, one can neglect dispersive transport relative to convective transport for 
many one-dimensional transport processes, and this is especially true for homogeneous 
media. In subsequent studies Eq. 4.6 will be used to develop a large-scale averaged 
transport equation for heterogeneous filters and in that case the dispersive transport may 
play an important role. Calculated results for the longitudinal dispersion coefficient, 
made dimensionless by the Brownian diffusivity, are shown in Figures B3 and B4 for the 
physical properties listed in Table 1 and a range of interstitial velocities. Once again, the 
case for St = 0 represents the diffusive case and the results are representative of the 
original calculations of Eidsath et al. (1983) and the more recent calculations of Sahroui. 
and Kaviany (1 994) and of Quintard and Whitaker (1 994b). For the finite Stokes 
numbers the dispersion coefficient diminishes slightly at the higher velocities for dp = 

0.5 ym and no influence of particle inertia is seen for dp = 0.1 ym. The results shown 
in Figures B3 and B4 suggest that the classical dispersion coefficients obtained for 
species having negligible inertia represent an upperbound for the longitudinal dispersion 
of aerosol particles. 
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Figure E33 
Longitudinal Dispersion Coefficients 

(dp = 0.5 pm, 2a = 0.5 pm, pp = 4000 kg/m3 
T=283 K, p=1.8 10-5 Pa s, ~,=0.95) 
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Figure B4 
Longitudinal Dispersion Coefficients 

(ap = 0.1 pm, 2a = 0.1 pm, pp = 4000 kg/m3 
T=283 K, p=1.8 10-5 Pa s, cy=0.95) 
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