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The process of filtration of non-charged, submicron particles represents :in 

example of transport in hotnogencous and heterogeneous porous media tlint C;III bc 
analyzed using the method of volume averaging. I n  this article we develop the local 
volume averaged particle transport equation for a homogeneous filter aiitl col11~>il1-e tlic 
results wil h experimental data. Tlic particle continuity equation is represented i n  ternis 01' 
tlic.fir.st con-ectioit to the Smolucliowski equation that takes into account particle inertin 
effects foi small Stokes numbers. This leads to ;i cellular efficiency that conlains ti 
niiiiiinum in  [he efficiency a s  ii function of the particle sizc. and this allo\vs us IO itlcntily 
the iiiosi yemtizzting pcwticlc~ size. Comparison o f  the theory with experiincnt;il rcsults 
indicates that the first correction to the Smoluchowski equation gives reasonable results 
for the ~iiost penetrating particle size and for snialler particles; however. resulls fo r  larger 
particles clearly indicate the need to extend the Sinoluchowski equation to include higher 
order corrections. The influence of local heterogeneities on the measured filter efficiency 
iiiay ;iccourit for some of the observed differences between theory and experiment. 

I .  Introduction 

The process of filtration takes place in an hierarchical porous media (Cushman, 
1090) arid we have illustrated this i n  Figure 1. I n  order to design a filter. one needs a 
particle transport equation in which the porosity heterogeneities have been s p ~ z r i i i l l . ~  
s i i i o o t I i ~ ? d .  This suggests the use of the first averaging volunie shown in Figure 1 along 
with the method of large-scale averaging (Quintard and Whitaker, 1987. 19S8, 1990; 

axle1 aged equations that are associated with the second averaging volume shown in  Figurc 
1 . These ccluations are sornetinies rcferred to as the Dni-cy-sctrle transport equations and 
they I-cpi escnt the point i n  the hierarchical process at which the governing dilferen~ial 

R Plumb and Whitaker, 1988, 1990). Large-scale averaging requires the use of local volume 

. 

. 



QUINTARD & WHITAKER F[LTRATION 

Figure 1 
Hierarchical View of the Filtration Process 
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I 

1 

equations and boundary conditions are joined. These boundary conditions are imposed at 
the y-o interface illustrated in the third volumevcontained in Figure 1 where we have 
identified the fibers & the o-phase and the fluid as the y-phase. The governing equation 
for the fluid velocity in the y-phase will be taken to be Stokes' equations, while the 
governing equation for the particle concentration is represented by a Fokker-Planck 
equation for the probability density function. This idea is suggested in the last volume 
illustrated in Figure 1 where we have identified the particles as the K-phase and the pure 
fluid as the P-phase. The fact that we are going to use Stokes' equations to described the 
velocity of the y-phase indicates that the volume fraction of the particles is much, much 
less than one (Russell, 1981). 

Macroscopic transport equations for filtration are often introduced heuristically in 
the form of a convective-dispersion equation with a source term accounting for the 
particle deposition. This source term requires knowledge of the filter collection efficiency 
that can be determined by experiments. The starting point for a theoretical derivation of 
the filter collection efficiency is a pore-scale description of the particle transport which 
must be subjected to both local volume averaging and large-scale averaging in order to 
obtain a filter transport equation. The particle transport equation must account for the 
various mechanisms that affect the particle deposition process such as Brownian diffusion, 
inertial deposition, electrostatic effects, etc. Results published in the literature [see 
Ramarao and Tien (1991) for an extensive review] can be classified according to the 
various assumptions made in describing the particle transport, as well as the methodology 
used in proceeding from the pore-scale equations to the macroscopic description. 

If one assumes pure Brownian diffusion, particle transport can be viewed as 
equivalent to the process of convective-diffusion in a porous medium with heterogeneous 
chemical reaction (Friedlander, 1977; Shapiro and Brenner, 1990). However, it has been 
recognized for some time that the existence of a most penetrating particle size is the result 
of a complex interaction between Brownian diffusion and inertial effects. Because of this, 
it is important to make use of a description of the particle transport process that accounts 
for particle inertia effects. 

Several approximate methods have been proposed to determine the particle 
velocity field. Deterministic particle trajectory calculations can be used in the convective- 
diffusion equation (Fuchs, 1964; Yuu and Jotaki, 1978; de la Mora and Rosner, 1981). 
More precise solutions of this stochastic process can be obtained by a continuous 
approach (de la Mora and Rosner, 1982; Yeh and Liu 1974; Banks and Kurowski 1983) 
which will be described later in this paper. More recently, direct solutions of the Langevin 
equations (the so-called Brownian dynamics calculations) have been used to simulate 
particle motions around single fibers (Kanaoka et al., 1983; Gupta and Peters. 1985, 1986; 
Ramarao, Tien, and Mohan 1994). 

Brownian dynamics represents the most reliable method of analyzing the particle 
transport process since the physics can be incorporated directly into the calculations for a 
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single fiber (or multi-fiber) efficiency. However, the design of a filter requires an analysis 
that faithfully transmits the physics from the particle scale illustrated in Figure 1 to the 
filter scale, and this is difficult to accomplish via Brownian dynamics. This suggests the 
development of continuum equations that can accurately simulate the phenomena 
described by Brownian dynamics. Our approach will be to derive both the macroscopic 
equation and the macroscopic coefficients from the pore-scale description. This approach 
has been used successfully in dealing with several problems of transport phenomena in 
porous media. In particular, valuable results have been obtained for the process of passive 
dispersion (Lee, 1979; Brenner. 1980; Carbonell and Whitaker, 1983; Eidsath et al., 1983; 
Rubinstein and Mauri 1986), active dispersion (Zanotti and Carbonell, 1994; Quintard and 
Whitaker. 1994a), and dispersion with chemical reaction (Mauri, 1989; Edwards et al., 
1993). In this paper, the macroscopic forms of the pore-scale equations are obtained by 
the method of volume averaging and effective transport properties are determined by two 
independent closure problems that are solved for periodic arrays of cylinders. 

PARTICLE MOTION 

Our description of the motion of the particles begins with the single particle 
Langevin equation 

in which mp is the mass of the particle and v p  is the velocity of the particle. The first 
term on the right hand side of Eq. 1.1 describes the Stokes' drag on a single isolated 
particle with cs representing the Cunningham correction factor (Tien, 1989). The use of 
this form for the force indicates that we are ignoring particle-particle interactions and the 
fluid mechanical complications that arise when a particle approaches a solid surface 
(Peters and Ying, 1991). These effects should certainly be taken into account; however, 
in this initial study it is our attention to keep the analysis as simple as possible. 

It is convenient to express Eq. 1.1 as 

in which y is inversely proportional to the Stokes' number to be defined later. 

(1.3) 

There are many particle transport processes for which the Stokes' number is small 
compared to one and this so-called highfriction limit represents an important case for 

, 
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filtration. The Fokker-Planck equation associated with the stochastic process described by 
Eq. 1.2 takes the form (Risken, Sec. 10.1, 1989) y”r 

and this result is often known as Kramer’s (1940) equation. The dependent variable 
represents a probability density function 

wp = Wp(t,r,vp) 

and the particle number density is given by 

J 

(1.5) 

The solution of Eq. 1.4 for the high friction limit is based on matrix continued fraction 
methods (Risken, Sec 10.4, 1989) which yield 

- -  3% - v . ( [ - ~ + D ~ v ] ~ ~ }  + y-’ v - ( [ ~ - v ~ - ( v . ~ ) D ~ v ] ~ ~ }  + 
at (1.7) 

+ y-3 v-{[ .......I n p }  + o@) +....... 

in which Dp is the Brownian diffusivity. It is important to keep in mind that this result 
does not take into account the complex fluid mechanics that occur when a particle 
approaches a solid surface. The first two terms on the right hand side of Eq. 1.7 were 
obtained by Titulaer (1978) and by Skinner and Wolynes (1979) using different methods. 
If only the first term on the right hand side of Eq. 1.7 is retained we have the 
Smoluchowski equation (Gardiner, Sec. 6.4, 1990) and under these circumstances the 
mean motion of the particles follows the fluid streamlines. As we shall see in Sec. 3, this 
leads to a situation that can not predict a crucial characteristic of many filtration processes, 
thus we will retain the second term on the right hand side of Eq. 1.7 so that our particle 
transport equation takes the form 

- + V . { [ v - y - ’ v - V v ] n p }  an, = V.(DpVnp) ,  in they-phase 
at 

This correction to the Smoluchowski equation has been used by Yeh and Liu (1974), 
Banks and Kurowski (1 983), and others for the study of particle transport in the filtration 
process, and derivations are available from de la Mora and Rosner (198 1, 1982) and from 



Peters and Ying (1991) in addition to the references cited above. Equation 1.8 represents 
the first smoothing process in the hierarchy of averaging processes illustrated in Figure 1. 
The next step in this process requires that we form the local volume average of Eq. 1.8. 

2. Volume Averaging 

At this point we are ready to express the complete transport problem under 
consideration, and we list the governing differential equations and boundary conditions as 

- an, + v {[ v - y-lv- vv]np} = V .  (DpVnp) 
at 

B.C. 1 

B.C. 2 

np = 0, atthey-ointerface (2.2) 

0 = -vp+pg+pv2v (2.3) 

v = 0 , at t h e y - o  inte$ace (2.4) 

It should be clear that we have already used Eq. 2.5 with Eq. 1.7 in order to simplify that 
result to Eq. 1.8, and we will need to use Eq. 2.5 again in our analysis of the convective 
transport term in Eq. 2.1. The boundary condition represented by Eq. 2.2 must be 
thought of as a limiting case which will create an upperbound for the filtration efficiency. 
This boundary condition has been used by Ruckenstein and Prieve (1 973), Shapiro and 
Brenner (1990), and others. 

The method of volume averaging (Anderson and Jackson, 1967; Marle, 1967, 
Slattery, 1967; Whitaker, 1967) begins by associating with every point in space (in both 
the y-phase and the 0-phase) an averaging volume that we denote by V. Such a volume 
is illustrated in Figure 2 where we have located the centroid of the averaging volume by 
the position vector x, the radius of the averaging volume by ro, and the characteristic 
length of the y-phase by t ,  . We will make use of two averages in our analysis of Eq. 2.1 
and the first of these is the supeficiul volume average which can be expressed as 

Here yy is any function associated with the y-phase and 6 is the volume of the y-phase 
contained within the averaging volume, V. In addition to the superficial average, we will 
also make use of the intrinsic volume average that is defined by 
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Figure 2 
Positions Vectors and Length Scales Associated with the Averaging Volume 
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These two averages are related by 

FILTRATION 

(2.7) 

The average velocity is often represented in terms of the superficial velocity, while the 
average particle concentration is typically represented in terms of an intrinsic average. To 
avoid confusion between these two averages we will always make use of the nomenclature 
indicated in Eqs. 2.6 through 2.8. 

When we form the volume average of Eq. 2.1 we will encounter averages of 
gradients and we will need to convert these to gradients of averages by means of the 
spatial averaging theorem (Howes and Whitaker, 1985) which we represent as 

We begin the analysis of the particle transport process by expressing the superficial 
average of Eq. 2.1 as 

and note that the first term can be written as 

(2.9) 

(2.10) 

(2.1 1) 

since Vr is independent of time. The convective transport term in Eq. 2.10 requires the 
use of the averaging theorem which leads to 

(2.12) 

on the basis of the no-slip condition given by Eq. 2.4. The diffusive term on the right hand 
side of Eq. 2.10 provides us with 
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(V-DpVnp)  = V-(DpVn,)  + - ~ nl,-DpVnpdA ' I  AP 

Use of Eqs. 2.1 1 through 2.13 along with Eq. 2.8 in the form 

(np) = q n p ) Y  

(2.13) 

allows us to express the superficial average particle transport equation as 

+ V .  (vnp)  - y - ' v  - ( (v .  Vv)np)  
particle 

inertia convection 

)y 

at , 2 - convection - accumulation 

Here we have identified the correction to the Smoluchowski equation as the particle 
inertia convection, and it is this term that plays a key role in the determination of the 
"most penetrating particle size" in the filtration process. 

In order to eliminate the point value of the particle concentration in the diffusion 
term, we use the following decomposition (Gray, 1975) for the particle density 

np = (np)Y + iP 

and later we will use the velocity decomposition given by 

v = (V)Y + v 

(2.16) 

(2.17) 

One can use Eq. 2.16 in the diffusion term and follow the type f analysis given by 
Whitaker (Sec. 2, 1986a) or Quintard and Whitaker (Sec. 11, 1993) to obtain 

This development makes use of the lemma extracted from Eq. 2.9 
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along with the two length-scale constraints given by 
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(2.19) 

2 
5L << 1 
L2 

. (2.2 1) 

Here one should think of L as the smallest characteristic length associated with a 
macroscopic quantity such as E,, ( r ~ , ) ~ ,  V ( ~ Z , ) ~ ,  etc. These length-scale constraints were 
originally developed by Carbonell and Whitaker (Sec. 2, 1984) and a more thorough 
discussion is available in the more recent work of Quintard and Whitaker (1994b). One 
can also use the decomposition given by Eq. 2.16 in order to express the particle capture 
term as 

Use of Eqs. 2.17 and 2.21 in Eq. 2.15 leads to 

+ v . ( v n , )  - y- 'V.((v .Vv)np)  = a ( q Y  
at 

(2.23) 

and in order to complete the averaging procedure we would like to express the convective 
transport in terms of and E p .  One can follow Carbonell and Whitaker (1983, 1984) 
in order to represent the traditional convective transport as 

(vn,)  = &y(v)y(.,>y + W p )  * v traditional 
convective transport dispersive transport 

(2.24) 

page 10 
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The so-called inertial contribution to the convective transport is algebraically more 
complex, and it is convenient to use only the decomposition given by Eq. 2.16 to obtain 

((v-Vv)np) = (v.Vv)(n,)Y + ((v.Vv)ii,,) 
paliicle 

inertia dispersion 
- 

inertia convection 

(2.25) 

On the basis of Eqs. 2.24 and 2.25 we can express the volume averaged particle transport 
equation as 

I " 
convection dispersion 

' d t  - accumulation 

J 

d i h i o n  particle capture 

Here we have imposed the simplification 

and the length-scale constraint associated with this restriction is given by 

(2.26) 

(2.27) 

(2.28) 

The derivation of this result requires an estimate of Zp and definitions of the various 
length scales, and the analysis is given by Quintard and Whitaker (1995). 

Before moving on to the closure problem we should list the volume average forms 
of the Stokes' equation given by Eq. 2.3 and the continuity equation that was presented 
earlier as Eq. 2.5. The volume averaged forms of these two equations have been 
developed in detail elsewhere (Whitaker, 1986b; Quintard and Whitaker, 1994b) and we 
simple list the volume averaged form of Eq. 2.3 as 

page 11 
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(2.29) 

in which (v) represents the superficial volume averaged velocity and ( P ) ~  represents the 
intrinsic volume averaged pressure. The volume averaged continuity equation can be 
expressed either in terms of the superficial average velocity 

V * ( V )  = 0 (2.30) 

or in terms of the intrinsic average velocity 

V*(EY(V)Y) = 0 (2.3 1) 

Here we have made use of the nomenclature given by Eqs. 2.6 and 2.7 and the relation 
between the two averages indicated by Eq. 2.8. 

In order to obtain a closed form of Eq. 2.26, we need to develop the boundary 
value problem for Z p  and we need to show how (v- Vv) can be determined by Darcy's 
law. In the general analysis of the filtration process we definitely need to take porosity 
variations into account via the method of large-scale averaging (Quintard and Whitaker, 
1987); however, in the development of the closure problem it is permissible to consider a 
local homogeneous region in which variations of 
circumstances we can divide Eq. 2.26 by ey to obtain 

can be ignored. Under these 

(2.32) 

With this intrinsic form of the particle transport equation we are ready to begin the 
derivation of the closure problem. 

3. Closure Problem 

In order to develop the governing differential equation for Ep we recall Eq. 1.8 

page 12 
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and remember Eq. 2.16 so that Eq. 2.32 can be subtracted from Eq. 3.1 to obtain 

-+v- 3% {[ v-y-'v.vv]np -[(v)Y -y-*(V.Vv)Y](np)Y} at 

-V.(V;;,)Y +y-'v.((v-vv)iip)Y = V.(DpV'ip)- 

-V  

A, A, 

The second and third terms in this result can be arranged as 

(" - y-lv * vv)iip - [((v)Y - v) - y-l((v. v v y  - v . Vv)](n,)Y (3.3) 

If we neglect variations of the porosity in the closure problem, we can use the various 
forms of the continuity equation to obtain 

V.((V)Y-V) = 0 

and this allows us to substitute Eq. 3.3 into Eq. 3.2 and obt 
equation for iip 

(3.4) 

in the following transport 

ajip 

at \ / c  J 

-+ v .[ (v - y-lv. vv)iip] +[ 7 - y- y v  . v v  - (v . vvy)]. V(n,)Y - {v .[y-yv. v v  - (v . vv Y)]}(n,)Y 

source source 

non-local diffusive 
transport 

page 13 
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particle" capture 

Here we see terms representing 

1. The classic effects of accumulation, local convection, and local diffusion. 
2. Non-local convection and non-local diffusion. 
3. Sources proportional to V(np)r  and (nJY .  
4. Particle capture. 

We use the word non-local to describe those terms which involve integrals of Z p ,  and one 
can draw upon previous studies (Carbonell and Whitaker, 1984; Whitaker, 1986a; 
Quintard and Whitaker, 1993; Quintard and Whitaker, 1994a) to argue that these terms 
are negligible when length-scale constraints such as those indicated by Eqs. 2.20 and 2.21 
are valid. The analysis consists of comparing the non-local terms with the associated local 
terms and demonstrating that the former are smaller than the latter by a factor of .t / L . 
This occurs because the non-local terms involve the derivatives of average quantities 
while the local terms always contain the derivatives of point quantities. Because .t / L is 
always small compared to one, the non-local terms can be neglected and Eq. 3.5 simplifies 
to 

aii, 
at \ J 

- + v . [(v - y-lv . VV)Ep] +[ i - y-l(v . v v  - (v . V,))]. V(n,)Y - {v .[ y-yv. v v  - (v . Vv)Y)]}(n,)Y 

source source 

(3.6) 

The last term in this result is also a non-local term; however, it is not negligible since it 
represents the rate at which particles are captured per unit volume. 

Use of the boundary condition given by Eq. 2.2 and the decomposition represented 
by Eq. 2.16 leads to the following boundary condition 

B.C. 1 (3.7) 
- np = - (n,)Y , at they -0 interface 

+ source 
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and in order to determine the Ep-field in some local, representative region, we are forced 
to a%cept the spatially periodic model of a porous medium and impose the following 
periodicity condition. 

Periodicity: EP(r+t i )  = iip(r), i =  1,273 (3.8) 

In addition, when the length-scale constraints indicated by Eqs. 2.20 and 2.21 are valid, 
Carbonell and Whitaker (1984) have shown that the average of the spatial deviation can be 
set equal to zero and we express this idea as 

Average: ( i P ) Y  = 0 (3.9) 

Strictly speaking, we need an initial condition for Ep to complete our problem statement; 
however, both the volume averaged equation given by Eq. 2.26 and the closure equation 
represented by Eq. 3.6 can be treated as quasi-steady, thus the initial condition for both 
(np)y and Ep can be ignored. This means that the closure problem takes the quasi-steady 
form given by 

QUASI-STEADY CLOSURE PROBLEM 

- B.C. 1 np = - (np)y , at the y - ointe$ace 
+ source 

Periodicity: ZP(r+ t i )  = i ip(r),  i =  1,273 

(3. loa) 

(3.10b) 

(3.10~) 

Average: ( i iP )Y  = 0 (3.10d) 

The form of this boundary value problem suggests a representation for Z p  given by 

(3.1 1) - 
IZP = b.V(np)Y - s(QY 

page 15 
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in which b and s are referred to as the closure variables or the mapping variables since 
they map the sources onto the spatial deviation concentration. Onwan draw upon a 
series of studies associated with the closure problem (Eidsath et al., 1983; Nozad et al., 
1985; Crapiste et al., 1986; Ochoa et al, 1986; Quintard and Whitaker, 1993 and 1994a) 
to conclude that the vector b and the scalar s are determined by two boundary value 
problems that are analogous to the problem given by Eqs. 3.10. The first of these 
problems determines the vector, b, and this problem is given by 

PROBLEM I 

V -[( v - y-*v - Vv)b] + [ V - y-'(v Vv - (v - VV)~)]  = 

(3.12a) 

B.C. 1 b = 0 , at the y-ointe$ace (3.12b) 

Periodicity: b(r + e i )  = b(r), i = 1,293 (3.12~) 

Average: (b)y = 0 (3.12d) 

For the process of filtration, the second problem is much more important than the first 
since it is used to determine the capture coefficient, ke8. This problem is given by 

PROBLEM II 

v .[(v - y-'v. vv)s] + v *[y-l(v. v v  - (v.  v v y  )] = 

= V.(D,vs) - ~ ~ n p - ~ p v s ~  v (3.13a) 

Rp 

B.C. 1 s = 1 , at they-o inte$uce (3.13b) 

Periodicity: s ( r + t i )  = s(r) , i = 1,2,3 (3.13~) 

Average: (S)Y = 0 (3.13d) 

These two closure problems can be solved using the numerical methods described by 
Quintard and Whitaker (1993), and their solution allows us to determine the mapping 
variables for the spatial deviation particle concentration represented by Eq. 3.1 1. 

page 16 
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Substitution of Eq. 3.1 1 into the volume averaged transport equation given by Eq. 2.26 
leads to the c b e d  form of that equation which contains effective transport and capture 
coefficients which are determined by Problems I and II. 

I 
CLOSED FORM 

The closed form of Eq. 2.26 can be expressed as 

+ V.[((v) - y-' (v- Vv))(np)'] - (d + u) .V(n,)Y = 
at 

E 

and it is important to recognize that this is a supeficial average transport equation. This 
means that each term represents a certain quantity per unit volume of the porous medium 
and not per unit volume of the fluid phase. This is obvious for the accumulation term; 
however, it can be confusing for the particle capture term. The various coefficients that 
appear in Eq. 3.14 are defined as 

(3.15) 

d = - D  pv [ L j % s & ]  + [(?s)-y-'((v-Vv)s)] (3.16) 

Aya 

- (?b) - y-'((v.Vv)b) (3.17) 

(3.18) 

The last of these coefficients represents the principle objective of this study, thus it is 
Problem II that will provide results that can be compared with Brownian dynamics and 
laboratory experiments. In order to determine keg it is convenient to transform Eqs. 3.13 
by means of the following representation 

page 17 
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s = 1+kegS 

Here the quantity S has units of time and the boundary problem for this new variable is 
given by 

PROBLEM 11 

V.(vS) - v.[(y-lv.vv)s] = V.(DpVS) - E;' (3.20a) 

B.C. 1 

Periodicity: 

Average: 

S = 0 ,  a t they-o  inte$ace (3.20b) 

S(r+ei) = S(r), i=1,2,3 (3.20~) 

(3.20d) 

In deriving this result from Eqs. 3.13 we have used the continuity equation given by Eq. 
2.5, and we have also made use of the simplification indicated by 

V-(V-VV)Y = 0 (3.21) 

This is consistent with the simplification used in the closure problem that variations in the 
porosity can be neglected. 

In order to complete the closure of Eq. 3.14 we must represent the term (v . Vv) in 
a form that can be determined by the use of Darcy's law as given by Eq. 2.29. From the 
closure problem for Darcy's law (Whitaker, Sec. 4, 1986b) we know that the point 
velocity is given in terms of the intrinsic average velocity by (Barrkre et al., 1992) 

= -(D.K-').(v) (3.22) 

Here D is a second order mapping tensor that is determined by a modified closure 
problem that has been solved by a variety of authors (Sangani and Acrivos, 1982; Snyder 
and Stewart, 1966; Zick and Homsy, 1982), and K is the Darcy's law permeability tensor 
that appears in Eq. 2.29. In order to use this result with the convective transport term in 
Eq. 3.14, we make use of the continuity equation, the averaging theorem, and the no-slip 
condition to obtain 

(v-VV) = (V*(vv)) = V.(vv) (3.23) 

Use of Eq. 3.22 in Eq. 3.23 leads to 

page 18 
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(v Vv) = V . [ (DD) : (K-'K-') : ( v>(.)] (3.24) 

in which the proper dyadic multiplication can be inferred from Eq. 3.22. When this result 
is used in Eq. 3.14 we obtain the completely closed form of the volume averaged particle 
transport equation given by 

+ V * {( (v) - y-'V -[ (DD):(K-'K-'): (v)(v)])(~,)~} - (d + u) -V(np)Y = 
a(n,P 

at 
E 

V-(D* - V(nPy)  - kefi(n,}y 

For simplicity we define a volume averaged particle velocity according to 

so that Eq. 3.25 takes the form 

+ V - ( (v,)(n,) y, - (d + u) V(n,) I' = V - (D* V(n,)') - keg (n, )' 
at 

E 

(3.25) 

(3 -26) 

(3.27) 

In order to understand the filtration process, we need to examine the effective coefficients 
in Eq. 3.27; however, it is the capture coefficient, ke8, that dominates the filtration 
process, and the details concerning d, u, and D* can be found in Appendix B of Quintard 
and Whitaker (1995). Solution of the closure problem to determine kef is described in the 
next section. 

4. Determination of the Capture Coefficient 

The simplest model of a fibrous porous medium is a regular array of cylinders such 
as that shown in Figure 3. For most practical cases, the Reynolds number for flow in 
fibrous filters is less than one, thus we can use Stokes' equations to determine the fluid 
velocity field. For the case of a macroscopically unifomflow one can justify the use of 
spatially periodic boundary conditions (Sanchez-Palencia, 1 SSO), and the fluid mechanical 
problem to be solved is given by (BarrGre et al., 1992) 

B.C. 1 

v . v = o  

0 = -vp + pg+ pv2v 

v = 0 ,  at the y - CY inte$ace 
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Figure 3 
Spatially Periodic Array of Cylinders 
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Periodicity: v(r+l i )=v(r)  , i = l ,  %*and3 (4.4) 

Here we have imposed the no-slip condition with the thought that slip will be unimportant 
when the fiber diameter is larger than several micrometers. It is well known that the 
entrance length for the Stokes’ flow problem is on the order of the characteristic length, 
e, , thus the velocity field determined by Eqs. 4.1 through 4.4 is representative of the 
conditions essentially everywhere in the uniform array shown in Figure 3. However, the 
particle velocity field need not have the same entrance region as thefEuid velocity field, 
and it is of some interest to know how many unit cells are required in order to develop a 
spatially periodic particle velocity since this is required in order that the periodicity 
conditions represented by Eqs. 3 . 1 0 ~ ~  3 . 1 2 ~ ~  and 3 .13~  be valid. The entrance region 
associated with the particle concentration field has been explored by Quintard and 
Whitaker (1 995) and their results indicated that the entrance length for the particle 
velocity field is on the order of ten unit cells. This represents a small portion of any 
fibrous filter, thus the entrance region for the particle velocity field can be neglected and 
we can make use of spatially periodic conditions (Shapiro and Brenner, 1990) in order to 
solve the two closure problems given by Eqs 3.12 and 3.20. This will provide us with 
theoretical values of the effective coefficients in the volume averaged particle transport 
equation which we list here as 

One must remember that the velocity, (v,) , does not represent the volume average of the 
particle velocity that appears in the Langevin equation, but instead it represents the inertia 
corrected average velocity defined by EQ. 3.21 which can also be expressed as 

(v,) = (v) - y-l (v VV) (4.7) 

For the special case of a macroscopically u n i f o ~ f l o w ,  Eq. (3.24) requires that; 

however, this need not be the case for heterogeneous filters and in future studies we will 
examine this matter more carefully. The non-traditional contributions to the convective 
transport represented by the “velocities”, d and u, are the result of the particle capture 
process, and this effect has been thoroughly documented by Paine et al. (1983) for the 
case of adsorption and chemical reaction in capillary tubes. The values of d and u are 
determined by Eqs. 3.15 and 3.16 and it is important to know the magnitude of these two 
terms relative to (v,) . Calculated values of the x-components of d and u are given by 
Quintard and Whitaker (1995) and they show that these terms may contribute as much as 

page 21 



QUINTARD & WHlTAKER FILTRATION 

10% to the convective transport in Eq. 4.6. While this is not negligible, it is not a key 
issue in terms of the comparison of the theory with laboratory experiments. Thus we will 
discard these terms, along with the dispersive transport so that our superficial volume 
averaged transport equation takes the form 

a<np >Y 
E - + v . ( ( v ) ( n p ) Y )  = - keff(np)Y 

at 

This result will be quasi-steady when the following constraint is satisfied 

k e . t  >> 1 

(4.9) 

(4.10) 

and for incompressible flows one can use the continuity equation given by Eq. 2.30 in 
order the express Eq. 4.9 as 

(v) .V.(np)Y = - kefl(np)Y (4.1 1) 

One should think of this result as being a reasonable approximation for homogeneous 
filters; however, real filters are heterogeneous and the terms that have been discarded in 
going from Eq. 4.6 to Eq. 4.1 1 will be retained in future studies of heterogeneous porous 
media. 

CELLULAR EFFICIENCY 

In order to present our results for keff in a traditional form, we will write Eq. 4.1 1 
as 

(4.12) 

and note that for our unit cell calculations, or any homogeneous porous filter, we have 

(4.13) 

We can solve Eq. 4.12 in order to represent the change in particle concentration that takes 
place across a unit cell as 

(4.14) 
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It is convenient to define the left hand side of this result as the cellular efficiency, qc , in 
order to distinguish it from the singleJiber eficiency, and this l eds  to 

-- 

, cellular eficiency (4.15) q c = l - e  (v,) 

The closure problem given by Eqs. 3.20 was solved using numerical methods similar to 
those described by Quintard and Whitaker (1993, 1994b). To illustrate the general nature 
of the solutions for the cellular efficiency, qc, calculations were carried out for the 
parameters listed in Table 1. 

Table 1 Physical Properties 

particle diameter dp = 0.5 and 0.1 pm 
fiber diameter 2a = 0.5 pm . 

particle density pp = 4.0 g/cm3 
temperature 283.0 K 

viscosity 1.8x10-~ Pas 
porosity = 0.95 

The illustrative values for qc are shown in Figure 4 as a function of the particle diameter. 
The Stokes is defined by 

and the curve for St = 0 represents the purely diffusive case and does not exhibit a 
minimum. This means that the Smoluchowski equation for the particle concentration 
cannot be used to determine the most penetrating particle size. The curve for finite Stokes 
numbers, which range from 1 O4 to almost lo-', indicates a minimum cellular efficiency 
for particle diameters on the order of 1 to 2 micrometers. In thinking about the results 
shown in Figure 4, one must be careful to remember that the additional convective 
transport represented by the coefficients u and d has been neglected along with the 
dispersive transport. Inclusion of these effects would change the values presented in 
Figure 4 but not the conclusion that the corrected Smoluchowski equation exhibits a 
minimum in the cellular efficiency as a function of particle diameter. 

If a filter can be thought of as a series of unit cells, the cellular efficiency 
determined on a theoretical basis can be determined with the filter efficiency determined 
on an experimental basis. This approach neglects the heterogeneities illustrated in Figure 
1 and the inclusion of the effects of those heterogeneities will be the subject of future 
studies. In Figure 5 we have shown a comparison with the work of Lee and Liu (1982) 
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Figure 4 
Cellular Efficiency as a Function of Particle Diameter 
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Figure 5 
Comparison with Laboratory Experiments 

. - 2 4  

(2a = 1 1 pm, pp = 1000 kg/m3 
T=278 K, p=1.83 10-5 Pa s, ~ 0 . 8 4 9 )  

(v)' 0.1 m / s  - (v)' 0.1 m / s  ( S M )  

---IC - -. 

Lee & Liu, 1982 

0.001 I I I I I I I l l  I I I I I I I L  

0.01 0.1 
Particle Diameter (pm) 

1 

page 25 



QUINTARD & WHITAKER FlLTRATION 

Figure 6 
Comparison with Laboratory Experiments 
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Figure 7 
Comparison with Laboratory Experiments 
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for an average velocity given by (v) = 0 . h  / s, and there one can see attractive agreement 
between theory and experiment for particle diameters that are equal to or smaller than the 
diameter of the most penetrating particle. For larger particles, the agreement diminishes 
and this would appear to confirm our suspicions concerning the importance of the higher 
order terms in Eq. 1.7. In Figure 6 the comparison between theory and experiment in 
shown for (v) = 0.03m / s and we again see reasonable agreement for the smaller particles. 
The comparison for an even smaller velocity given by (v) = 0.01m / s is shown in Figure 7 
and here it becomes apparent that the theory is less reliable at lower velocities. We have 
no explanation for this observation; however, one must remember that the model 
illustrated in Figure 3 cannot possibly capture all the characteristics of a real filter and 
further studies using more complex unit cells are certainly in order. In addition, the 
influence of local heterogeneities must be determined and that is the objective of a 
subsequent study. 

5. Conclusions 

In this work we ..ave used the first correction to the Smoluchowski equation to 
describe the effects of particle inertia, and the resulting particle transport equation has 
been used to develop a local voZume average transport equation that includes the effects 
of non-traditional convective transport, dispersion, and particle capture. A spatially 
periodic model of a fibrous filter has been used, along with two closure problems, to 
calculated the effective coefficients that appear in the volume averaged transport equation. 
This leads to a direct calculation of the cellular efficiency and results were determined for 
a unit cell containing a single fiber that is orthogonal to the mean flow field. The results 
are in reasonably good agreement with experiments for the most penetrating particle size; 
however, higher order corrections need to be included in the Smoluchowski equation in 
order to predict the behavior of large particles. 
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7 Nomenclature 

Roman Letters 

a fiber radius, m. 

b 
area of the y-y-0 interface contained within the averaging volume, m2. 
a closure variable that maps V(np)Y onto iip, m. 
particle diameter, m. 

d a velocity-like coefficient, m/s 

A ,  

4 
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Brownian diffusivity, m2/s. 
dispersion tensor, m2/s 
Brownian or random force, N. 
gravity vector, m/s2 
effective rate coefficient for particle capture, s-l 
characteristic length for a unit cell, m. 
characteristic length for the o-phase (= h), m. 
i = 1,2, and 3, lattice vectors, m. 
characteristic length for the porosity, m. 
characteristic length for (np)y, m. 
generic characteristic length for volume averaged quantities, m. 
mass of a particle, kg. 
particle density, number/m3. 
spatial deviation of the particle of the particle, number/m3. 
intrinsic average particle concentration, number/m3. 
unit normal vector pointing from the y-phase toward the o-phase. 
fluid pressure, N/m2. 
intrinsic average pressure in the y-phase, m3. 
position vector, m. 
a closure variable that maps (np)y onto Ep. 
( ~ , ) ~ p ~ d ~ c ~ / l 8 p ~ ~  , the Stokes number. 
time, s. 
a velocity-like coefficient, m/s. 
averaging volume, m3. 
volume of the y-phase contained in the averaging volume, m3. 
fluid velocity vector, d s .  
intrinsic average fluid velocity, m/s. 
ey ( v ) ~ ,  superficial average fluid velocity, d s .  
v - (v)y, spatial deviation fluid velocity, d s .  
particle velocity, m/s. 
deterministic particle velocity, m/s. 
(v) - y-'(v - Vv) , inertia corrected volume average velocity for the particles, m/s. 
position vector relative to the centroid of the averaging volume, m. 
position vector locating the centroid of the averaging volume, m. 

Greek Letters 

P 
'x: 

fluid viscosity, Ns/m2. 
3.1416 ....... 
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sy porosity. 

P fluid density, kg/m3. 
pp particle density, kg/m3. 

-1 Y 3 z w p p p  3 s 

FLTRATION 
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