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ABSTRACT 

The United States of America has naturally fractured reservoirs containing many 
tens of billions of barrels of oil. When secondary and enhanced recovery methods are 
applied, fractures tend to channel injected fluids through the reservoir to production 
wells, resulting in much of the oil in the matrix blocks being bypassed and not recovered. 
This results in a low recovery efficiency from fractured reservoirs. Because of the large 
size of this resource, any new technology that improves recovery efficiency from 
naturally fractured reservoirs by as little as a few percent could result in a significant 
increase in overall oil production from existing petroleum formations. 

Oil recovery by steam injection is a proven, successful technology for non-
fractured reservoirs, but has received only limited study for fractured reservoirs. 
Preliminary studies suggest recovery efficiencies in fractured reservoirs may be increased 
by as much as 50% with the application of steam relative to that of low temperature 
processes. The key mechanisms enhancing oil production at high temperature are the 
differential thermal expansion between oil and the pore volume, and the generation of 
gases within matrix blocks. Other mechanisms may also contribute to increased 
production. These mechanisms are relatively independent of oil gravity, making steam 
injection into naturally fractured reservoirs equally attractive to light and heavy oil 
deposits. 

The objectives of this research program are to quantify the amount of oil expelled 
by these recovery mechanisms and to develop a numerical model for predicting oil 
recovery in naturally fractured reservoirs during steam injection. The experimental study 
consists of constructing and operating several apparatuses to isolate each of these 
mechanisms. The first measures thermal expansion and capillary imbibition rates at 
relatively low temperature, but for various lithologies and matrix block shapes. The 
second apparatus measures the same parameters, but at high temperatures and for only 
one shape. A third experimental apparatus measures the maximum gas saturations that 
could build up within a matrix block. A fourth apparatus measures thermal conductivity 
and diffusivity of porous media The numerical study consists of developing transfer 
functions for oil expulsion from matrix blocks to fractures at high temperatures and 
incorporating them, along with the energy equation, into a dual porosity thermal reservoir 
simulator. This simulator can be utilized to make predictions for steam injection 
processes in naturally-fractured reservoirs. Analytical models for capillary imbibition 
have also been developed. 
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EXECUTIVE SUMMARY 

This report presents the results of a number of experimental, analytical, and 
numerical studies addressed at the development of methods of modeling oil recovery 
from naturally fractured reservoirs by steam injection methods. 

The first part of the report presents analytical models for oil recovery by capillary 
imbibition into rectilinear and cylindrical matrix blocks having arbitrary aspect ratios. 
The model for rectilinear geometry can be applied to reservoirs having orthogonal 
fracture sets, each set having a different fracture spacing. The model for cylindrical 
geometry can be used for laboratory measurements on cylindrical cores. These general 
analytical models employ Darcy's law and a material balance to determine the oil 
expulsion rate. They predict the oil expulsion rate based on the petrophysical properties 
of the matrix block and need no empirical constants. All previously reported models 
have required an empirical constant to be measured in the laboratory, in addition to the 
petrophysical properties. That need for an empirical constant has prevented the 
generalization of the previous models. 

An analytical model for the gas saturation distribution in a matrix block has also 
been developed for gases generated during steam injection by high temperature chemical 
reactions. The model assumes a uniform gas generation rate from temperature-dependent 
chemical reactions everywhere in the matrix block and a fixed saturation at the edge of 
the matrix block. Gas then diffuses to the edge of the matrix block. The model can be 
used to estimate the spacing, and hence distribution, of gas bubbles following gas 
generation during thermal operations. 

A variety of experimental studies have also been completed. These studies 
include measurements of capillary imbibition, gas generation, and thermal properties. 
Capillary pressure measurements have measured imbibition rates with matrix blocks of 
different sizes and shape. These studies were used to test and validate the general 
analytical models that have been developed in this study. An experimental apparatus to 
measure the change in critical gas saturation during gas generation at high temperature 
and pressure was also completed. In addition, a steady-state experimental apparatus to 
measure thermal conductivity was designed, tested, and implemented. The apparatus is 
capable of measuring thermal conductivity at various fluid saturation conditions. The 
apparatus has also been modified for transient measurements to obtain thermal 
diffusivity. 

A new dual porosity simulation approach was developed for modeling fluid flow 
in naturally fractured reservoirs. The approach accurately and efficiently models transfer 
flow using discretized matrix blocks to enhance pressure and saturation resolution. 
Finite-difference equations for matrix blocks are treated by an IMPES approach while 
fracture equations are solved implicitly. These equations are formulated in such a way 
that they are mathematically decoupled. The new approach has been successfully 
validated against a single porosity simulator with discrete matrix blocks and fractures and 
against analytical transient solutions of dual porosity systems. Excellent agreement has 
been achieved for a variety of reservoir properties. The formulation presented in these 
studies should be able to be easily extended to other oil recovery processes in addition to 
thermal processes. 

To support the dual porosity thermal code development, a fully implicit, three-
dimensional, two-phase simulator was developed to model hot waterflooding in a single 
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matrix block with surrounding fractures. The simulator can handle one, two, or three 
fractures surrounding the single matrix block, and can also handle heat losses to the 
overburden. A study was carried out ona2mx0.1mx0. in i matrix with an open 
fracture at the end of longest axis, a2mx2mx0 .1m matrix with two open fractures at 
the ends of long axes, and a 2 m x 2 m x 2 m matrix with two fractures. Cases both with 
and without heat loss were simulated. 

A numerical model for gas generation in matrix blocks was also developed. 
Preliminary calculations show that significant volumes of gas can be generated during 
typical oil recovery times for fractured reservoirs, a result consistent with laboratory and 
field experience. The time for the gas phase to be generated decreases as temperature 
increases and increases as CO2 partial pressure decreases. The effect of gas generation 
on enhanced oil recovery is determined by the reduction of residual oil saturation due to 
gas generation. 

A new set of continuous correlation functions of saturated steam properties 
(density, enthalpy and viscosity) has been developed. The new correlations cover the 
saturation envelope from 20°C to 360°C and are highly accurate and continuous over a 
wide temperature range. In terms of simplicity, accuracy, and continuity, these functions 
offer advantages in certain applications over those previously published. 
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1.0 INTRODUCTION 

Most of the large, domestic petroleum reservoirs were discovered decades ago and 
are approaching their economic limits with existing technology. With the most promising 
locations for new field discoveries being located in high-cost, remote, and 
environmentally sensitive areas, e.g., deep offshore or Alaska, it is vital to develop cost 
effective ways to improve recovery from existing fields. Many tens of billions of barrels 
of oil are contained in naturally fractured reservoirs located in over 30 geologic 
formations and scattered over a dozen states (Nelson, 1985). Because of the number of 
naturally fractured reservoirs and the large volume of oil they contain, any new 
technology that improves oil recovery by as little as a few percent could have a 
significant impact on overall domestic oil production. 

Naturally fractured reservoirs differ from non-fractured reservoirs in that fractures 
provide flow paths with permeabilities that can be orders of magnitude higher than the 
remainder of the formation. For most reservoirs, the porosity of the fracture network is 
significantly lower than that of the matrix blocks defined by the fractures, which results 
in the oil content of the fractures being very low. 

Steamflooding is a proven enhanced oil recovery method for non-fractured 
reservoirs. Recent studies have suggested that the steamflooding can also be effective for 
oil recovery from naturally fractured reservoirs. The two most important mechanisms 
that can potentially expel incremental oil at steam temperatures are thermal expansion of 
oil, and gas generation from temperature-dependent chemical reactions. Capillary 
imbibition into water-wet matrix blocks is believed to be important at all temperatures, 
although its incremental benefits at high temperatures are not clear. 

Steamflooding of fractured carbonates has been attempted with some success 
(Wanen and Root, 1963; Chen et al, 1989). Oil recovery from heated matrix blocks can 
be significantly higher than from unhealed blocks (Sinnokrot etal., 1971; Kyte etal., 
1961), with over 60% of the oil expelled at steam temperatures (Sahuquet and Ferrier, 
1982; Dreher et al, 1986), even though steam flows primarily through fractures. A 
simulation study has indicated that thermal conduction can heat matrix blocks and 
recover oil within one year at distances up to 20 ft from a fracture (Nolan et al., 1980). 
Preliminary studies have confirmed that oil recovery at steam temperature can be 50% 
higher than that at reservoir temperatures (Reis, 1990). 

In this study, the mechanisms of thermal expansion, gas generation, and capillary 
imbibition are investigated, both analytically and experimentally. These mechanisms are 
incorporated into a dual porosity, thermal reservoir simulator to enable accurate studies of 
oil recoveries from naturally fractured reservoirs by steam injection. 
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2.0 ANALYTICAL MODELS 

In this section, analytical models for water imbibing into gas-saturated matrix 
blocks are developed. The purpose of these models is to develop simple approaches for 
investigating the primary mechanisms for expelling oil from matrix blocks. These models 
would be applicable for water imbibition into highly gas-saturated rocks, such as in 
petroleum reservoirs. This section also presents a model for estimating the distribution of 
gas within a matrix block following temperature-dependent gas generation during steam 
injection. 

2 . 1 CAPILLARY IMBIBITION INTO GAS-SATURATED RECTILINEAR 
MATRIX BLOCKS 

In this section, a closed-form analytical model for counter-current capillary 
imbibition of water into a gas-saturated rectilinear matrix block of arbitrary aspect ratio is 
derived. Capillary pressure between the water and gas is assumed to be the only driving 
force. Gravity is not considered. 

Figures 2.1 and 2.2 depict a representative matrix block for this geometry. In this 
analysis, "a" is taken to be the smallest dimension of the matrix block. Trie imbibition 
front, i.e., leading edge of the imbibing water, is shown with dotted lines in these figures. 
Water is assumed to simultaneously contact all faces of the block and imbibe uniformly into 
all faces. 

The flow rate of the gas from the two faces normal to direction Xi is given by 

n - 2 k l < r g a s A. d P g a s nn 
^ 3 S X 1 ^ a s ^ 1 dX, ' ( 2 J ) 

where 

Ax=(a-2x)(b-2x) (2.2) 

with similar equations for the X2 and X3 directions. 

Similarly, the flow rate of the water is 

n —0 ^water A "water /"> \\ 

^ lw ^^T' (2'3) 

with similar equations for the other directions. 

The total gas flow rate from the matrix block is found by summing the flow rate for 
all three directions: 

_ o k k r g a s / > d Pgas . d Pgas . d P g a 
% a s - qgasx1

+qgasx2
+qgasx3-^ ^ ^ A x , ^ + ^ ^ + Ax3 ^ 

and the total water flow rate into the matrix block is 
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qwater = 2 i^water_ / A .d f ^a te r + A _ d j ^ t e x + A dPWater\ ( 2 5 ) 

Mwater V dXi dx 2 dX3 / 

The pressure gradients in the fluids between the imbibition front and the faces of the 
matrix block are assumed to be independent of location, i.e., 

_ d ^ = _ d l P ^ = _ d ^ 3 = _ d F J H 

dx dx1 d ^ dx j 

and 

dP dP dP dP 
u 'water _ urwater _ urwater _ u "water Q 7^ 

dx dx1 dxg dx3 

Total surface area of all imbibition fronts at a distance x from the matrix block face 
can be written as 

Ax = 2[(a-2x)(b-2x)+(b-2x)(c-2x)+(a-2x)(c-2x)], (2.8) 

Substituting Eqs. 2.6, 2.7, and 2.8 into Eqs. 2.4 and 2.5 yields 

kkrgas . dPgas 
q g a S " Mgas ^ dX ( 2 - 9 ) 

and 

q w a t e r = ^ L \ - ^ f § L (2-10) 

For counter-current imbibition, the water and gas flow rates at any location are 
related through the following expression: 

Ovater = "^gas (2.11) 

Combining Eqs. 2.9 through 2.11 yields 

Kwater dPwater _ ^gas dPgas 
Mw ClX Mgas d x K - ) 

The water and gas pressures are related through the capillary pressure in the porous 
medium. This relationship is given by 

Pgas = Pwater + Pc (2.13) 

Using this expression to eliminate the gas pressure from Eq. 2.12 yields: 
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dP
water 1

 d P
-

d X
 ( 1 J W Mwater)

 d
*

 < 2
"

1 4 ) 

^rwater Mgas 

Substituting Eq. 2.14 into Eq. 2.10 yields the following expression for the water 
imbibition rate: 

L, A 1
 d P

C 

^ater = k \ - 7 r — L - ^ f (2.15) 
/Hgas t Mwater \ 
* gas "Swater 

dx 

If the pressure gradient behind the imbibition front is assumed to vary linearly with 
the position, then 

dPc _
 p

c,swi 
dx " L' (2.16) 

where Pc,swi is the capillary pressure at the leading edge of the imbibition front. With these 
assumptions, Eq. 2.15 can be rewritten as 

K A|_. ' c.swi 
Hwater" „ ■ . (2.17) 

, Hgaŝ  + Mwater \ 
*gas ^ a t e r 

The water imbibition rate can also be found from a material balance. The 
cumulative water imbibing into the matrix block before the imbibition front reaches the 
center of the block is 

■f c W e H MCSwi-SwM)^ (2.i8) 

If the saturation is assumed to be constant with position behind the imbibition front 
(piston-like displacement), then the water saturation behind the advancing imbibition front 
can be written as 

Sw(x) = SWp (2.19) 

The validity of this assumption will be discussed below. 

The total surface area of the shrinking imbibition front in Eq. 2.18 can be rewritten 
in terms of x as 

Ax = 2 ( ab + be + ac - 4(a + b + c)x + 12x
2
) (2.20) 

or 
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Ax = Ao-8( a+ b + c)x +24x2 (2.21) 

where the surface area of the matrix block is 

Ao = 2 ( ab + be + ac ) (2.22) 

Substituting Eqs. 2.19 and Eq. 2.21 into Eq. 2.18 and integrating yields 

Qvater = <f * W [ A, L' - 4 ( a + b + C ) L'2 + 8 L'3] {22?>) 

where 

ASWater = Swj-Swp (2.24) 

and ASwater is the change in water saturation during the infinite acting period. 

The water imbibition rate is found by differentiating Eq. 2.23 with respect to time. 
This rate is given by 

qWater= ^ f * = ♦ ASwate r[A0 - 8 ( a + b + c )U + 24U 2 ]&L 

Equating Eqs. 2.17 and 2.25, and rearranging yields 

(2.25) 

C.SWI _ dU 
L' § ASwater (^gas + Mwater j dt 

(2.26) 

vgas •Water 

Eq. 2.26 can be solved to yield: 

L' = 
2 k P

c,swi * 

A - L + W)^AS^ 
^■gas Mwater 

ater 

1/2 

(2.27) 

If the surface area of the matrix block, Eq. 2.22, is rewritten as 

2 / b be c . « Z / D D C C \ 
A = 2 a ( - + — + - ) 0 v a 2 a 7 

a 

(2.28) 

and a dimensionless imbibition front distance is defined as 

^ (2.29) 
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and L is the matrix block half thickness, a/2, the time that the imbibition front reaches the 
centerline of the rectangular block is found from Eq. 2.27 when L' = a/2: 

t = 
L 2 < t > A S w ( j ^ + fe 

Mwater n-c tgas 
2k P c.swi 

(2.30) 

The cumulative gas recovery after an infinite time, CL, is expressed as 

CL = a b C $ Abater (2.31) 

The normalized cumulative recovery before the imbibition front reaches the centerline can 
be obtained by dividing Eq. 2.17 by Eq. 2.31: 

Crater _ , T (ab+bc+ac) a(a + b + c ) . a2 , 2] 
~Q7 DL b^ b̂  ^"b^J (2.32) 

where 

LD = 
2 k Pc,swi * 

•Vgas 'Water 

1/2 

(2.33) 

2 .2 CAPILLARY IMBIBITION INTO GAS-SATURATED 
CYLINDRICAL MATRIX BLOCKS 

In this section, a closed form, analytical model for counter-current capillary 
imbibition into a gas-saturated cylindrical matrix block of arbitrary aspect ratio is derived. 
Capillary pressure between the water and gas is assumed to be the only driving force. 
Gravity is not considered. 

Figure 2.3 depicts a representative matrix block with a cylindrical shape. The 
imbibition front, i.e., leading edge of the imbibing water, is shown with dotted lines in the 
figure. Water is assumed to simultaneously contact all faces of the block and imbibe 
uniformly into all faces. 

The flow rate of the gas from the cyUndrical face is given by 

QgasC = 
_ k Krgas . dPgas 

M-gas dr 

where 

Ac = 2 it ( R - x ) ( h - 2 x ) 

while the flow rate from the two end faces is 

(2.34) 

(2.35) 
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q g a s L = ^ A L -
d

^ i (2.36) 
ugas OX 

where 

A L = 2 [ T C ( R - X )
2

] (2.37) 

Similarly, the flow rate of the water into cylindrical face is 

qwaterC = — ^ ^ A C
 d

^ ,
w a t e r (2.38) 

M-water dr 
and flow of water into the two end faces is 

qwaterL = ^ ^ A L
 d

^
w a t e r (2.39) 

Mwater dx 

The total gas flow rate from the matrix block is found by summing the flow rate for 
all directions; 

^-^♦^^(A^A^) (2.40) 

and the total water flow rate into the matrix block is 

qwater = qwaterC + qwaterL = k k f W a t e r ( A c
 d

^
w a t e r + A L

 dP
™«» ) (2.41) 

Mwater \ dr dx / 

The pressure gradients in the fluids between the imbibition front and the faces of the 
matrix block are assumed to be independent of location, i.e., 

d P
gas _

 d P
gas _

 dP
gas ^ 40) 

dx dr dx 
and 

dPwater _ dPwater _ dPwater /^ AO\ 
dx " dr " dx

 K } 

Total surface area of all imbibition fronts at a distance x from the matrix block face 
can be written as 

Ax = Ac + AL (2.44) 

Substituting Eqs. 2.42, 2.43, and 2.44 into Eqs. 2.40 and 2.41 yields 
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_ k k rgas A
 d P , 

qgas= ,, 'Sc J V 
Mgas OX (2.45) 

and 

n — Mwater A "water „ ._ 
^ater"^We7^~ax~ (2-46) 

For counter-current imbibition, the water and gas flow rates at any location are 
related through the following expression: 

Ovater = "Qgas (2.47) 

Combining Eqs. 2.45 through 2.47 yields 

Kwater dPwater _ . Kgas d P gas 
Mw dX Mgas d * ( 2 - 4 8 > 

The water and gas pressures are related through the capillary pressure in the porous 
medium. This relationship is given by 

Pgas = Pwater + P c (2.49) 

Using this expression to eliminate the gas pressure from Eq. 2.48 yields: 

Kwater Wgas 

Substituting Eq. 2.50 into Eq. 2.46 yields the following expression for the water 
imbibition rate: 

1 d P c 
qwater = k Ax-TT ~ " ^ f (2.51) 

/H3as | Mwater \ U A 

*gas Mwater 

If the pressure gradients behind the imbibition front is assumed to vary linearly with 
the position, then 

d P c
 pc,swi 

where Pc,Swi is the capillary pressure at the leading edge of the imbibition front. With these 
assumptions, Eq. 2.51 can be rewritten as 
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k A^, "c.swi 
Hwater- „ t . (2.53) 

/^gas t Mwater̂  
^■gas Mwater 

L' 

The water imbibition rate can also be found from a material balance. The 
cumulative water imbibing into the matrix block before the imbibition front reaches the 
center of the block is 

■i Q^ater = I Ac * ( ^ - SJxJJdx (2.54) 

If the saturation is also assumed to be constant with position behind the imbibition 
front (piston-like displacement), then the water saturation behind the advancing imbibition 
front can be written as 

Sw(x) = Swp (2.55) 

The validity of this assumption will be discussed below. 

Substituting Eqs. 2.55 and Eq. 2.44 into Eq. 2.54 and integrating yields 

Qwater - 2 * * A S * * * [ R(h+R) L' - ( K 2R ) L'
2 + L '

3
] . (2.56) 

where 

ASwater — Swj-SWp (2.57) 

The water imbibition rate is found by differentiating Eq. 2.56 with respect to time. 
This rate is given by 

qwater = ^ ^ = 2 % * ASwater [ R(h+R) - 2( K 2R ) V + 3 L ' 2 ] ^ (2.58) 

Equating Eqs 2.53 and 2.58, and rearranging yields 

k
 p

c,swi _ dLl 
U $ ASwater (^9

a s
 + Mwater.) dt 

krgas krwater 

(2.59) 

Equation 2.59 can be solved to yield: 

-11/2 

L' = ^
 k P

c,swi* 

(Mga1 + ^ w a t e L ) ^ A ^ a t e r 

n-gas nwater 

(2.60) 
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and a dimensionless imbibition front distance is defined as 

I _ L' 
LD = 7_" (2.61) 

Cumulative gas recovery after an infinite time, CL, is expressed as 

Qoo=R27th<t) ASwater (2.62) 

The normalized cumulative recovery before the imbibition front reaches the centerline can 
be obtained by dividing Eq. 2.56 by Eq. 2.62: 

Qwatex = _2_ [ R { h + R ) L' - ( h + 2R ) L'2 + L,31 (2.63) 
CL R2h L 2 J 

For tall, thin cylinders, 

and the shortest distance to the center of the cylinder is the radius, 

L=R (2.65) 

The dimensionless imbibition front distance can be defined as 

L D = R - (2.66) 

Equation 2.63 can be rearranged to yield the dimensionless form as 

Q "water 
0, 

For short, thick cylinders, 

= LD [ 2(1 +B.) - (1 + 4 E) LD + 2 f i L
2 ] (2.67) 

h <1 
2 R (2.68) 

and the shortest distance to the center of the cyhnder is half of the cyhnder height, 

L = £ (2.69) 

The dimensionless imbibition front can be defined as 
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Equation 2.63 can be rearranged to yield the dimensionless form as 

%atex=L [(-i+Jl) . _ h _ ( h + 2 R ) L n + — Lffl (2.71) 
O DV R' O R 2 V 2 } D

 4R2 DJ 2R * 4R 

2.3 GAS GENERATION 

At temperatures encountered during steam injection, temperature-dependent 
chemical reactions occur that can generate a significant amount of gas in matrix blocks. 
This gas, primarily carbon dioxide, will expel oil from the matrix blocks into the fractures 
where it can be recovered. 

The distribution of gas within a matrix block will depend on the gas generation and 
gas diffusion rates. If the generation rate is low, the bubbles will initially be disperse and 
die gas molecules will diffuse through the fluids and join existing bubbles. In this case, the 
existing bubbles will grow larger and few new bubbles will form. If the generation rate is 
high, however, a supersaturation of gas will form locally before the gas can diffuse to an 
existing bubble. In this case, many small bubbles will form. If the first case, there would 
be a few large bubbles in the matrix block, while in the second case, there would be a large 
number of smaller bubbles. 

If the gas is concentrated in a few large bubbles, then the gas will have a greater 
probability of channeling out of the matrix block at a lower overall gas saturation and 
ultimate oil expulsion. The gas may even diffuse directly to the fracture without ever 
forming gas bubbles and expelling any oil. If the gas is dispersed in a large number of 
small bubbles, then a higher gas saturation will be reached in the matrix block and the 
largest volume of oil will be expelled. The question addressed here is which case apphes to 
oil reservoirs during steam injection. 

What is desired is to determine the characteristic length over which diffusive 
transport acts on CO2 in the presence of generation. This length indicates the spacing 
between nucleation sites, which then gives an estimate of the bubble population density. 

To better predict the expulsion of oil from reservoirs by gas generation, a model is 
developed to determine when the gas saturation distribution is controlled by the generation 
rate and when it is controlled by the diffusion rate. For simplicity, the model assumes that 
gas molecules are generated uniformly in the medium and it diffuses in one-dimension 
along the x-axis to a point of zero concentration. A mass balance on the gas in solution 
yields the following equation: 

9M A = ac 
ax 9en at 

~ + C g e n = ^ (2.72) 

The mass flux can be expressed in terms of the local concentration by Fick's equation: 
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M ~ D . £ (2.73) 

Substituting Eq. 2.73 into Eq. 2.72 yields 

ax2 9en at 
D^^T + C^=^r (2-74) 

Diffusion coefficients of gas (CO2) in various hydrocarbons may be found in the 
literature. An apparent diffusion coefficient of a gas through a liquid in a porous medium 
can be estimated from the average cross-sectional area open for diffusion and the overall 
length (Perkins and Johnson, 1963). For porous media, the effective diffusion coefficient 
can be expressed as 

<J>P 

The generation rate of gas is a function of temperature and can be described through 
chemical kinetic theory. One kinetic model that has been proposed for the generation rate 
of CO2 is (Cathles etal, 1987): 

f = ( f k ^ )e - E / R T [ c e q (T ) -c ] (2.76) 

If the following definitions are made: 

B = (fk oAt>)EXP(-E/RT) (2.77) 

E = Ceq(T) (2.78) 

then Eq. 2.76 may be written as: 

^ r = B(E-C) (2.79) 
<7t 

This is the change in dissolved CO2 concentration due to generation and may be substituted 
into Eq. 2.74 to yield: 

d2C 
D—T + B(E-C) = dC/dt (2.80) 

d 

Using the conditions: 

and 

C(x,0) = 0 (2.81) 

C(L,t) = 0 (2.82) 
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ac(o,t) 
ax 

= o (2.83) 

Eq. 2.80 was solved using Laplace transforms. The solution is: 

COcO^E^C-iye^ERFC^] 

-I(-l)%)[e^ERFcf^-VBT]+e^ERFcf^+VBT 

+i(-l)V'ERFc(^) 

-|(-l)^)[e'b^ERPc(^-VBT)+e^ERFc(^+VBT^ 

-(/D)(eBt-i)} (2.84) 

where: 

H = inverse diffusion coefficient (D) 

F = BE/D (see equations 15 and 16) 

bi = [(L-x) + 2Ln](D)-°-5 

b2 = [(L + x) + 2Ln](D)-0-5 

Four cases were studied using this equation for two sets of kinetic data. In Cases 
1,2 and 3, the data of Cathles et al (1987) were used. These data were determined by 
comparing their kinetic model to the measured CO2 production rate from a steamflood pilot 
project. For those three cases, steam injection temperatures of 450, 500 and 550°F were 
used. In Case 4, pubMshed kinetic data from related laboratory studies were used (Tissot et 
al, 1987; Fassihi et al, 1990; Hayashitani et al, 1978). In this case, a temperature of 
550 °F was used. A single diffusion coefficient for CO2 was used in all four of the cases. 
Table 2.1 provides a summary of these data. 

The first step in the evaluation was to determine the time necessary for the 
dimensionless concentration to reach one at the various temperatures, i.e., the time required 
for the CO2 concentration to increase to its saturation concentration in water under steam 
injection conditions. 

A plot of the dimensionless concentration profile near the fracture as it varies with 
time for Case 1 is provided in Fig. 2.4. For this case, the effective diffusion length was 
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found to be on the order of one meter. Similar plots were obtained for the other three 
cases. For Cases 2 and 3, the effective difference in length was also on the order of one 
meter. For Case 4, however, the effective diffusion length was found to be on the order of 
0.1 mm. 

From these data, plots were obtained for the diffusion length as a function of time 
and are shown in Figs. 2.5, 2.6,2.7, and 2.8 for the four cases respectively. These plots 
were extrapolated to show the time when CO2 becomes saturated in the matrix block and 
the effective diffusion length over which CO2 will diffuse over that time interval. 

The results for Cases 1,2 and 3 indicate that the time required to reach CO2 
saturation in water is on the order of one year and the characteristic diffusion length is on 
the order of one meter. Thus, there would be no CO2 bubbles within about one meter of 
the fracture because it will all diffuse to the fracture instead of forming bubbles. 
Laboratory studies, however, have shown that CO2 can reach saturation in a day or two, 
not years (Sahuquet and Ferrier, 1982; Reis, 1992). Thus, the kinetic model proposed by 
Cathles et al may not be accurate. 

The gas generation rate for Case 4, however, allows for a CO2 saturation to be 
reached in about a day and is, therefore, considered to have superior kinetic data. The 
effective diffusion length for this case is on the order of 0.1 mm. For this length scale, the 
distribution of CO2 bubbles would result in many small bubbles, not a few large bubbles. 

It is concluded that the process of gas generation could result in a high gas 
saturation in matrix blocks and will yield good oil recovery. 

Table 2.1. Summary of input values to gas generation model. 

Case 1 
Case 2 
Case 3 
Case 4 

D 
[sq cm/s] 

1.0E-9 
1.0E-9 
1.0E-9 
1.0E-9 

E 
[kcal/mol] 

10 
10 
10 
49 

f 

0.5 
0.5 
0.5 
1 

k0 

[sec"1] 

.05 

.05 

.05 
8.44E15 

T 
[F] 

450 
500 
550 
550 

<t> 

0.2 
0.2 
0.2 
0.2 

Ps 
[g/cc] 

1 
1 
1 
1 
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Fig. 2.1. Rectilinear matrix block with imbibition front. 
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Side view 
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L': distance to imbibition front, 0 < L' < a/2 

Fig. 2.2. Imbibition front within matrix block. 
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Fig. 2.3. Cylindrical matrix block with imbibition front. 
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Fig. 2.4. Dimensionless gas concentration, 450 °F. 

18 



1000 

E o 

£ 175 
c 
0) 

c o 
« 
3 

X 
CO 

S 

100 

Time (years) 

Fig. 2.5. Characteristic diffusion length for case 1. 
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Fig. 2.6. Characteristic diffusion length for case 2. 
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Fig. 2.7. Characteristic diffusion length for case 3. 
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3.0 EXPERIMENTAL STUDIES 

The primary objectives of the experimental studies have been to obtain data for 
testing the predictive models for capillary imbibition developed in this study and for 
predicting heat transport into matrix blocks. 

3.1 CAPILLARY IMBIBITION MODELS 

Experimental studies were conducted to test both the air/water and oil/water 
capillary imbibition models. The air/water models were found to successfully predict the 
measured behavior. Testing the oil/water models was difficult because of experimental 
repeatability caused from variations in core wettability. Those difficulties have been 
resolved and additional data are being obtained. In the following discussion, only the 
air/water imbibition data are presented. 

Berea sandstone was used for these studies. Berea sandstone is known to be 
strongly water-wet. Cores with various sizes and dimensions were cut from the same rock 
block to have similar permeabiUty and porosity. Water was used for cutting to make sure 
that the wettability characteristics of the cores were preserved. The cores were also fired to 
stabilize the water-sensitive clay particles and to remove contaminating materials from the 
rock surfaces. The physical characteristics of cores are given in Table 3.1. 

The derivations of closed-form analytical models for counter-current imbibition, for 
this case are presented in Section 2 of this report. These models are summarized below: 

For a rectangular matrix block, the normalized cumulative water imbibed is given by 

For a cylindrical matrix block, however, the normalized cumulative volume of water 
imbibed is given for two different cases depending on the aspect ratio of the cylinder. 

For cylinders with a height to radius ratio of 

h 
2R 

< 1 (3.2) 

The cumulative imbibition is 

^water = LD [(1 +£) - ^ ( f + 2R ) LD + J i l l * J (3.3) 
Q» L n 2FT * 4R' 

while for cylinders with a height to radius ratio of 
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2R 
>1 

% * - L D [ 2(1+B.) - ( U 4 a ) L D + 2flL2
D] 

(3.4) 

(3.5) 

The dimensionless distance, LQ is 

2 k Pc,swi * 

*rgas 'rwater 

1/2 

(3.6) 

Expressions for two-dimensional imbibition, where one pair of core faces are 
rendered impermeable, can be found from Eqs. 3.1,3.3 and 3.5 if one of the dimensions is 
assumed to go to infinity. For example, the expression for a rectangular matrix block for a 
two-dimensional water imbibition is 

Q, water 
a, - L D L b bL°J (3.7) 

Similarly, for one-dimensional (linear) imbibition, the recovery is given as 

Q water _ i 
O T " L D (3.8) 

3.2 WATER SATURATION BEHIND THE IMBIBITION FRONT 

In developing the model for water imbibing into a gas saturated matrix block, the 
water saturation behind the imbibition front was assumed to be linear, e.g., piston-like 
displacement. To test this assumption, the location of the imbibition front was observed 
visually using cores with transparent casings on some sides. The three geometries studies 
are shown in Figs. 3.1 through 3.3. 

Since the cumulative volume of water imbibed was also measured as a fraction of 
time, an approximate water saturation behind the imbibition front was calculated. Table 3.2 
gives the water saturation just before the imbibition front, L' reaches the end of the matrix 
block, L, as well as the final average water saturation. The average saturation behind the 
front was nearly equal to the final saturation, which imphes that the average saturation was 
nearly constant at its final volume. 
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Table 3.2 also shows that the recovery was around 95% when the imbibition front 
arrived at the end. This also indicated that water imbibition was nearly piston-like. Figure 
3.4 shows that the saturation behind the imbibition front stays reasonably constant. This 
constancy further supports the assumption of piston-like displacement. 

3.3 EFFECT OF GEOMETRY ON IMBIBITION 

The effect of geometry on the imbibition rate was also studied. Figure 3.5 shows 
the recoveries from three-dimensional water-air imbibition experiments with various size 
cores. A description of these cores is given in Table 3.1. 

If the recovery is assumed to be 100% when the imbibition front reaches the end 
(rather than the measured value of 95%), the equation for the position of the imbibition 
front can be rewritten as 

Z o . . ! 1 7 3 T ZQ ^ 1 / 3 a 2
+ ab + ac .- [ i-n -I-] 

where 

Z = 
o 

L D - I ~ £ + D | + | - -£-D| - ° T a 7 q " (3.9) 
<J3 

j _ ( o/a2+ab+ac\3
 9(ab+bc+ac)(a2+ab+ac) 27/bc\Qwater| f 3 m 

'27 H a2 J a4 U 2 / ^ " 

(3.11) 

and 

Z, =1 (3|ab+bc+acjia2+ab+ac|2| (3 12) 

For a cubical core where all sides are equal, the equation further reduces to 

/ Q \1/3 
L D = 1 - 1 - ^ t e r ( 3 1 3 ) 

Equation 3.6 suggests that dimensionless penetration depth, LD, depends only on 
the shortest distance to the center for various block geometries and varies as the square root 
of time, all other factors remaining unchanged. Figure 3.6 shows the calculated 
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dimensionless penetration depth obtained by using Eqs. 3.9 through 3.13. The x-axis, -p-, 
was obtained by rearranging Eq. 3.6 as 

(3.14) L ) -

2 k Pc,swi 

f ^gas Mwater | A » e 
k k r water 

A rgas ^rwater/ 

1/2 

Vt 
L 

This figure shows that the curves collapse to a common trend line indicating that 
this model successfully scales the geometry of imbibition. Also shown in this figure is a 
straight line approximation to the data. It can be seen that the position of the imbibition 
front deviates somewhat from the predicted square root of time behavior late in the 
imbibition. An empirical model for the recovery is given by 

Ln =0.087 ^ (3.15) 

3.4 EFFECT OF TEMPERATURE ON IMBIBITION 

The temperature is another factor that can significantly affect the recovery. 
Figure 3.7 shows the recovery rate for different temperatures for a single core. As can be 
seen, the imbibition rate increases with increasing temperature. Table 3.3 gives the other 
pertinent data for the experiment. 

To examine the predicted temperature effects from the imbibition model, further 
simplifications on Eq. 3.6 are necessary. One of the unknowns in the model is the driving 
capillary pressure Pc SWj-this value can be estimated from the capillary tubes model. The 
capillary pressure in a capillary tube is expressed by 

p _2_acos9 (3.16) 

and the permeability of a bundle of tubes is given by 

k=^ 
8 

(3.17) 

The radius of the capillary tube can be eliminated by combining Eqs. 3.16 and 3.17 which 

results in the following approximation for the capillary pressure: 
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==V 2k'OC0S°' (3.18) 

If this expression is substituted into Eq. 3.6 in place of Pc swj, the resulting dimensionless 

distance is 

l1/2 
[a cos0) 

L D -

/2k (a cose) 

^ + iWeL ASu/a t I 2 
-t 

|_V rgas rwater 
water 

(3.19) 

Owens and Archer (1966) reported that the mobilities of the imbibing water and 
expelled oil on the core surface stayed equal during a counter-current capillary imbibition. 
If this conclusion is assumed to be true for water-gas imbibition, the mobility terms in 
Eq. 3.19 can be expressed in terms of only one fluid, i.e., water, as 

/2k (0 cose) 

M-water I 
k 

rwater/ 

ASwaterL 

1/2 

(3.20) 

Assuming a "zero degree" contact angle, the only parameter that is unknown is k rwater* 

Equation 3.20 can be re-casted in a such a way that the effect of temperature can be 
examined: 

L D = A w a t e r V (3.21) 

where 

V= 
(Q- cose) "|1/2 

2 * Mwater A SwaterL ' 

(3.22) 

Figure 3.8 shows a plot of LD vs. \|/ for different temperatures proving that the 
effect of temperature can be scaled if the correct viscosity and interfacial tension are used. 
Another conclusion that can be made from Fig. 3.8 is that the relative permeability, kmglter 
which is the square of the slope of curve, is essentially independent of temperature. 
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3.5 THERMAL CONDUCTIVITY MEASUREMENTS 

Thermophysical properties such as thermal conductivity and thermal diffusivity are 
key parameters for describing heat flow. The thermal conductivity and thermal diffusivity 
values are important to determination of heat transfer to matrix blocks from steam-heated 
fractures. 

Hundreds of studies have been reported on the measurement of thermal 
conductivities for metals and insulators, whose conductivity values lie at two extremes. 
However, only a few describe techniques for fluid saturated permeable media, having 
intermediate conductivity values. Both steady-state and transient methods in radial and 
axial geometries are commonly used for the measurement of conductivity. While simplicity 
has been emphasized in the design of many experiments, methods to account for heat 
losses are often complicated and have limited experimental procedures and theoretical 
calculations. In this study, specific attention is given to minimizing heat losses with the 
purpose of increasing the accuracy of the thermal conductivity and diffusivity values. 

3.5.1 Experimental Apparatus 

A steady-state axial heat flow method is commonly used to measure thermal 
conductivity. However, steady-state methods are prone to greater heat losses and therefore 
the main thrust in the design of this experiment is to minimize or account for heat losses. 
In the absolute method, the amount of heat supplied to the specimen must be measured. 
The goals in designing the steady-state apparatus are three-fold: 

1) High measurement accuracy. 

2) Capability for specified multiphase fluid saturations at various temperatures to 
450°F. 

3) Capability for transient conductivity measurements with little modification. 

A guarded hot plate method is the most widely used apparatus for determining the 
thermal conductivity of dry insulating materials (De Ponte et al, 191 A; Prats et al, 1975; 
Standard, 1976; Woodside et al, 1961; Woodside et al, 1957). In this method a hot plate 
is surrounded by a guard ring to cause heat from the hot plate to pass axially through the 
test specimen with httle or no radial heat transfer so that a one-dimensional steady-state heat 
flow equation can be applied to determine thermal conductivity. The specimen extends 
over the entire cross-section of hot plate and guard ring. The hot plate and the guard ring 
are wired such that their temperatures can be varied independently. Thermal guarding is 
achieved by maintaining the temperature of the guard ring as close as possible to the hot 
plate {i.e., test area). Despite such guarding, isotherms and heat flow lines are distorted by 
heat losses at the outer edge of the guard material. Unidirectional heat flow may not occur 
in the test section of the specimen if the radial width of the guard ring is insufficient. This 
causes the measured thermal conductivity value to differ from the true value. The 
magnitude of the enor is determined by relative heat losses, which depend on the geometry 
of the test assembly and the thermal conductivity of the test specimen. 

For test specimens whose thermal conductivity is greater than 0.1442 W/m-K the 
British Standard recommends that a hot plate can be used without a guard ring (Pratt, 
1962). This arrangement introduces a large correction for edge heat loss: approximately 
12% for a 2 in. thick specimen and 7% for a 1.5 in. specimen (Pratt, 1962). Apart from 
the transient method, this method {i.e., without a guard ring) has been widely used by the 
petroleum industry. A steady-state apparatus with guard rings to measure thermal 
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conductivity of fluid saturated reservoir rocks is new to the best of our knowledge. This 
apparatus is also different from a conventional guarded hot plate method. 

The guarded hot plate method has been standardized by ASTM (Standard, 1976) 
and British Standards (1965), and has traditionally been used for less conductive materials. 
The design criteria require the diameter of the sample to be at least twice the thickness. 
Specimens sometimes have thicknesses exceeding the maximum permissible. In these 
cases, it is recommended that additional edge insulation be used to minimize measurement 
error. However, even with the additional insulation, errors in testing thick specimens may 
be large (Woodside, 1957). 

When using a core sample from a reservoir rock, it is often inconvenient to obtain a 
sample with a diameter large enough to extend to the outer edge of the guard ring. 
Moreover, because the whole heater and specimen assembly is to be encapsulated for fluid 
pressure confinement purposes, simply adding thicker insulation at the edge may not be 
possible. One approach in improving the specimen size requirement is to reduce the overly 
conservative design criteria specified by ASTM (Standard, 1976) standards. This can be 
accomplished by using more realistic boundary conditions for the heat loss calculations. 
Such realistic boundary conditions are also essential to the overall apparatus design. 
Moreover, the standard guarded hot plate apparatus is designed for thermal conductivity of 
specimens at dry atmospheric conditions. A significant modification in design is warranted 
to accommodate fluid saturation and vacuum experiments. In this regard, this apparatus is 
very different from the standard guarded hot plate apparatus. 

It was decided that the thermal conductivity would be measured by using a 
specimen as large as a core plug obtained from the field. Using realistic boundary 
conditions alone would not allow the implementation of guarded hot plate principle for a 
specimen of such a size {i.e., diameter-to-length ratio). Therefore, a numerical 
investigation was conducted (Mohanty, 1993) to see if a separate guard material (having 
same properties as that of the specimen) could be used instead of having the specimen to 
extend over both guard and test region. The influence of using a low conducting sleeve 
was also investigated. 

The thermal properties of the materials used for constructing the apparatus play a 
very important role. Therefore, a thorough survey was conducted to obtain proper 
materials for the thermal conductivity apparatus on the basis of availability, cost, 
temperature tolerance (to 450°F), pressure tolerance (to 500 psia), and opaqueness (to 
minimize the effect of radiative heat transfer). For these experiments, the requirement of 
fluid confinement required materials that were impermeable and insulating. Most insulating 
materials do not meet these requirements and hence warranted compromises. For example, 
the pressure vessel, which ideally should have been built with insulating materials, was 
built with type-304 stainless steel. Among the commercially available alloys, type-304 
stainless steel has nearly the lowest thermal conductivity, approximately eight times lower 
than that of brass (material used to build the guard and main heater assemblies). Still, type-
304 stainless steel is typically three times more conducting than wet Berea sandstone (Roy 
et al, 1988). This is not expected to be a serious problem as the pressure vessel would not 
directly touch the heating and cooling blocks. 

The apparatus has been designed based on maintaining less than a 1% theoretical 
heat loss. The schematic of the thermal conductivity apparatus is shown in Fig. 3.9. Heat 
loss calculations are based on a specimen size of 1 in. thick and 1.25 in. in diameter. 
Although it was desirable to maintain a specimen diameter of 1 in. {i.e., the typical size of 
specimens from the field) it was decided to maintain the diameter at 1.25 in. because the 
smallest length of a heater commercially available was 1.25 in. long. Also, we would 
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normally want vertical heat losses, thus, longer cores might be possible. The test specimen 
and the heating block are surrounded by a rigid sleeve made of a low conductivity material 
(Torlon) in order to confine pressure. 

Torlon completely separates the main section and the guard sections and thereby 
acts as a heat barrier. This also serves as a guide for proper axial alignment of the heating 
blocks and the specimen. The main heating block, the specimen, and the cooling end 
heating block have corresponding concentric main guard block, guard material, and 
cooling-end guard block, respectively. Alignment is ensured in the design such that the 
main guard circumscribes only the main heating block, the guard material circumscribes the 
specimen material, and so on. A heating plate (upper guard block) extends across the 
whole assembly of the main heater block, sleeve, and the main guard block, which is 
maintained at the same temperature as that of the main guard block. A low conductivity 
material (Kinel) 0.125 in. thick separates the upper guard from the main heating end heater 
assembly. Another insulating material (G-l 1) 0.5 in. thick prevents excessive heat loss 
from the upper guard to the upper flange. The conductivity values for various materials 
used in the apparatus are presented in Table. 

A heater assembly similar to the main heating assembly is introduced at the lower 
temperature (cooling) end to maintain a low temperature gradient in the specimen. The low 
temperature gradient is required to minimize the nonhnearity in the temperature gradient and 
also permits the use of a guard material that is slightly different from the specimen material. 
A circulation chamber is attached at this end for cooling by circulating water or air. 
Radially, the cooling block extends to the edge of the lower radial guard thereby covering 
the cooling end heater block, sleeve, and the radial guard block. The cooling chamber 
consists of 1/4 in. grooves on two brass plates sandwiched together to form tube-like 
constrictions. Such constrictions uniformly distribute the coolant fluid across the whole 
cross-section flowing from the inlet to the outlet end. A 0.125 in. thick insulating material 
(Kinel) reduces heat transfer between the circulation chamber and the lower flange. 
Thermocouples, heaters, and tubing for fluid saturation pass through this chamber 
vertically and are protected from the circulating fluids using o-rings. As the cooling end 
heaters work in conjunction with fluid circulation, the experiment is not significantly 
affected by small fluctuations in the temperature of the circulation fluid. Also, by varying 
the rate of cooling water, some flexibility could be obtained in the downstream temperature. 

Two thermocouple wells are drilled in the heating and cooling end pieces at both 
ends of the specimen, allowing the tip of the thermocouple to be positioned within 0.0625 
in. from the interface. Two thermocouples are placed on each radial guard block, one near 
the outer edge and another right above the contact point between the heater and the brass 
block. One thermocouple is located at the center of the upper guard and the tip of this 
thermocouple lies very close to the insulating block that separates upper guard from the 
main heater block. 

A guard material, preferably of the same material and with the same fluid saturation 
as the specimen, is used. Care is taken to polish the ends of the specimen and guard 
materials and to make the ends parallel to each other and perpendicular to the edge. This is 
done to maximize the contact between the specimen and guard material with the 
corresponding heating and cooling blocks. 

The assembly is held together between two flanges tightened by means of three 
equally-spaced, threaded rods and nuts. The whole assembly rests on a wooden platform 
which is leveled horizontal so that it will aid in aligning the specimen as vertical as 
possible. The proper contact is ensured by tightening the bolts at opposite ends alternately 
such that the upper flange lowers uniformly from all directions. The bolts are tightened this 
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way until the insulating plate separating the upper guard and the radial guard become 
parallel with the upper edge of the radial guard, Fig. 3.10 shows the setup for the thermal 
conductivity apparatus. 

The experiments are conducted at temperatures up to 400°F, where radiation can be 
neglected owing to the fact that the core is opaque and consists of capillary pores (Luikov, 
1966). As the rock sample may contain fluid, therefore, the heater is placed on top of the 
core so that density gradients will align with the direction of the gravitational field and 
eliminate macroscopic convection. 

3.5.1.1 Heat Sources 

Four cartridge heaters and two band heaters are used for heating. A 100W cartridge 
heater embedded in the brass metering block is the main heating element. Another cartridge 
heater is embedded in the brass block at the cooling end. Two more cartridge heaters in 
parallel are embeded in a brass disc for the upper guard. Two band heaters tightly hold 
onto the brass guard blocks due to its own spring action to constitute the main guard and 
the cooling-end guards. The cooling block is identical to the metering block except that it 
uses a 80W cartridge heater. Figures 3.11 and 3.12 show the cartridge and band heaters. 
The roles played by these heaters will be discussed in the next section. Heater 
specifications are given in Appendix C. The guard heaters and the main heater are 
connected to a power supply through five relay switches. The electrical circuit diagram for 
the heater connections is shown in Fig. 3.13. The main heater is connected to a 50V DC 
power supply. The guard heaters and the cooling end heater are connected to a 110V AC 
power supply through a Variac so that more power can be supplied when larger heat losses 
are experienced. Relay switches are used for heater on-off control so that appropriate 
temperatures can be maintained. A current-measuring resistance is connected in series to 
the main heater. For experiments at higher temperature the 50V DC supply to the main 
heater is not adequate and one has to switch to AC supply. For AC supply, a redundant 
filtering device is installed parallel to the resistor to measure curcent. Room temperature is 
maintained at identical conditions for all runs. 

3.5.1.2 Fluid Saturation 

Separate provisions have been made for saturating the specimen and the guard. The 
schematic for the fluid saturation arrangement is shown in Fig. 3.14. This provides the 
capability to measure thermal conductivity at various fluid saturations. We desire to 
maintain similar thermal properties in the specimen as in the guard material. Hence while 
conducting the fluid saturated experiments, in addition to using the guard of the same 
material, we also wish to maintain the same saturating conditions as that of the specimen. 
To accomplish this, the apparatus has been arranged to simultaneously saturate the 
specimen and the guard material. Fluid is confined in the specimen by placing o-rings on 
the main heating and cooling blocks. To confine the fluid in the guard material a 304-
stainless steel casing is used. O-rings on the guard blocks at the heating and cooling ends 
at the internal as well as the external diameters confine fluid in the guard material. Stainless 
steel tubing is connected to all the blocks as fluid inlet and outlet so that the saturation can 
be conducted with the specimen in-place. Only enough casing length was used to cover the 
guard material and the o-ring in order to simplify loading and unloading of the specimen. 
This also reduces the heat losses compared to the situation with the casing running all 
across the entire assembly. 
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3.5.2 Transient Measurements 

The steady-state apparatus was modified for measurements using a transient method 
that does not need a hole to be drilled through the specimen as is needed in the widely-used 
probe method. This modification required capability for dynamically measuring the heat 
flux, which is accomplished by the use of a microfoil heat flux sensor. 

3.5.2.1 Heat Flux Sensor 

Most heat flux sensors are based on the measurement of temperature difference 
across an insulating layer. They employ the gradient layer principle used in direct 
calorimetry. The sensor uses differential thermocouples to measure the thermal gradient. 
Two dissimilar metal junctions are located across the insulating substrate material. When 
one junction is hotter than the other, a current flows in the circuit. The direction of the flow 
depends on the metals and the temperature of the junction. This is referred to as Seebeck 
effect. (CRC, 1982) The heat flow rate which is the consequence of the thermal gradient is 
then proportional to the voltage generated in the differential thermocouples. 

The thermal resistance of the insulating substrate of the heat flow meter ought to be 
low to minimize the disturbance to the heat flow. Therefore the operation of such devices 
at very small temperature differences is desirable. In most cases a high-voltage output is 
also desired. This is accomphshed by using a large number of differential thermocouples at 
the expense of heat flow efficiency. A series anangement of the thermocouple junctions 
are formed by winding thin constantan wire around a mesh-like substrate and plating one 
half of each loop with copper or by soldering contacts between two dissimilar elements. 
Applying very small temperature difference across the substrate strip produces a voltage 
difference at each bimetallic junction. The more junctions, the smaller the temperature 
gradient is needed to generate a measurable voltage. A flux of 500W/m^ typically 
generates a signal of 1000fj.V (Shallcross and Wood, 1986). These thermocouple 
anangements are protected with silicone rubber sheets on both of its sides. An additional 
thermocouple is present to measure the overall temperature of the sensor. The heat flux 
through the sensor q is represented by 

^ = t (3.23) 
s 

where e is the output voltage and k is the sensor constant (Shallcross and Wood, 1986) 
or sensitivity (Herin and Thery, 1992). From this definition, the sensor sensitivity value 
does not depend on the measuring surface area and has units of U-V/W/m2. Sensitivity also 
depends on the amount of heat that deviates from the normal direction (Herin and Thery, 
1992). 

A schematic of the heat flux sensor is used in this study shown in Fig.3.15. The 
specifications for the sensor used in this experiment are shown in Table 3.5. The heat flux 
sensor is attached to the end of the metering block facing the specimen using RTV silastic, 
a high-temperature silicone rubber material. The sensor consists of about forty 
thermocouple pairs are ananged in four rows of ten in an area of 14x18 mm. The sensor is 
about 0.2 mm thick including the thickness of the protective silicone rubber sheet and is 
19.2x22.2 mm. The manufacturer states that the sensor constant is a function of the sensor 
temperature, though the change is relatively small (about 1% change with 20°C temperature 
change). 
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3.5.3 Steady-State Experiments 

In order to minimize the heat losses, initial experiments were conducted with the 
temperatures at the upper guard and the radial guards at exactly the main heater temperature. 
The cooling end guard and the cooling block are maintained at the same temperature. The 
temperatures at each face of the specimen and the guard material were maintained at their 
respective set values by turning heaters ON and OFF. A temperature tolerance to trigger 
the heater ON or OFF was determined by trial and error in order to maintain the average 
temperature as close as possible to the set-point temperature. Since the metering block is 
sunounded by heaters on all but one side, precise temperature control becomes crucial for 
proper heat flux control and measurement. Problems arose when the radial temperature 
difference was set at zero, especially when the guard heater voltage was set at relatively 
high values. There are two probable reasons for this. 

1. Since heat losses take place from the guard heaters, those heaters turn ON-OFF 
more frequently than the heaters in the metering system. There are thus occasions 
when the guard temperature is higher than the metering system temperature. 

2. The guard temperatures have large amplitude and cycle lengths during heating and 
cooling cycles. 

With the purpose of avoiding the above effects, the apparatus was then tested by 
maintaining the upper two guard heaters at a specified temperature less than the set 
temperature. Thermal conductivity was calculated for each such radial temperature 
difference. This was done first with the pressure vessel removed and fiberglass wrapped 
around the guard assembly. Figure 3.16 is a plot of X vs. ATra(jjai for ATaxjaj=22°F at a 
specimen midpoint temperature of 134°F. As expected, a straight line was observed. 
Extrapolating the straight line to a zero radial temperature difference thus yields a theoretical 
zero value of radial heat loss. This method of linear extrapolation gives much more 
accurate results than when it was attempted to maintain ATTasM=0. 

Through a diagnostic check, it was found that all the points on Fig. 3.16 may not 
fall on the straight line if the temperature of the guard heaters exceeds the temperature of the 
main heater. By plotting the conesponding temperature histories (Figs. 3.17 to 3.19) at all 
the thermocouples, it was seen that there was significant interference of guard heating in the 
metering system {i.e., temperature of the guard exceeding the temperature of the metering 
section). The amplitude of these temperature cycles and the cycle lengths increased with 
the increase in Variac setting. In all cases shown in Figs. 3.17 through 3.19, two hours 
time was allowed for the system to reach steady-state. The upper three curves are for the 
upstream end temperatures {i.e., main heater, main guard, and the upper guard) and the 
bottom two lines are for the downstream end temperatures {i.e., cooler and cooler guard), 
respectively. The three plots are for upstream end radial temperature differences of 5.00T, 
2.50T, and 1.25°F, respectively, with a Variac setting of 50%. In all cases the cooling 
end guard- and the cooling end heaters are maintained at the same temperature. In 
Fig. 3.17, where the radial temperature difference is 5.00°F, it can be seen that the guard 
temperatures do not interfere with the temperature of the main heater, implying that the 
metering process is not affected by backflow of heat from the guard to the metering block. 
However, in Figs. 3.18 and 3.19, the temperature of the main guard heater clearly 
interferes with the temperature of the metering system. This corresponds to the observation 
that the heat flux value conesponding to a radial temperature difference of 1.25°F does not 
fall on the same straight line connecting values at 2.5°F and above. 
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Therefore it is recommended that if nonlinear behavior is observed in flux vs. radial 
temperature difference, then the temperature history should be plotted to ensure that the 
metering system is not influenced by the external heaters. Ideally, one should choose a low 
Variac setting for the guard heaters unless the experiments are run at high temperature 
where the heat loss is very high. In that case, to avoid the temperature interference, large 
ATiadiai values should be used so that the crest of the temperature cycle does not exceed the 
trough temperature of the metering block, thereby ensuring linearity of the A T ^ ^ vs. heat 
flow rate (q) plot. The main guard temperature variation has an amplitude of approximately 
4°F and a cycle of 8 minutes at a Variac setting of 50%. A relationship between the 
amplitude and various Variac settings should be established to be used as a guideline for 
maintaining proper radial temperature differences in this apparatus. For example, at a 
Variac setting of 50% a minimum radial temperature difference of 4°F is needed to be 
maintained. Once such details are taken care of, then the extrapolation at various Variac 
settings should have the same intercept at a zero radial temperature difference. This is 
evident from Fig. 3.20 in which the extrapolation to zero radial temperature at Variac 
settings of 40% and 50% for dry limestone lead to the same intercept The plots are 
obtained by using actual rather than the set radial temperature difference to obtain conect 
intercepts. The slope of the straight line changes with Variac settings. 

It is established above that the large amplitude and the wavelength of the 
temperature cycles {i.e., temperature overshoot) from heater ON-OFF are responsible for 
the guard heater temperatures exceeding the main heater temperature. Such large 
amplitudes are due to three reasons: 

1. The distance between the body of the heaters and the tip of the thermocouple. 

2. The large heat capacity of the material constituting the body of the guard heater. 

3. The large mass of the brass materials that hold the guard heaters in place. 

A careful study was done to ensure that these large amplitudes and temperature 
cycles are not due to improper contact between the heaters and the brass body or due to 
excessive heat losses either from the brass block or from the thermocouples themselves. 
This problem of large amplitude and temperature cycles is typical of band heaters because 
of their large mass and heat capacity. The band heaters are used as radial guards, and 
cartridge heaters are used as main heaters, cooling end heaters, and upper guard heaters. 
We attempted to ensure proper contact between the band heaters and the brass blocks by 
using aluminum foil between them. No change in the amplitude was noticed, indicating 
that contact between the band heater and the brass block was adequate. This problem was 
not observed for the upper guard heaters where two cartridge heaters were used. These are 
very small in size and have very low heat capacity {i.e., the heat transfers instantly from the 
heaters to the brass block). 

To reduce the effect of temperature overshoot at the radial guards, two additional 
thermocouples were placed on the bodies of the band heater (to measure "guard heater 
temperature"). This indeed reduced the size of the temperature cycles, but then the 
temperature at the guards were consistently lower than obtained before. Although this may 
have affected the calculation of the thermal conductivities by contributing to larger heat 
losses from the guard heater block than actually used in the design calculation, still it 
allowed the maintenance of smaller amplitudes of temperature cycles. 

Approximately half an hour was needed to heat the apparatus from room 
temperature to 245°F. However, the system was allowed to heat for two hours before data 
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acquisition was started. The initial heat-up period and the total length of the experiment 
may depend on the supplied power. However, the power must be supplied cautiously, as 
long as ON-OFF type controlling is used, to avoid inaccuracy in the heat flux 
measurements. The data acquisition was done over two hours for each radial temperature 
unbalance. A lesser time span could be used for more routine measurements. 

3.5.4 Transient Experiments 

The capability of this apparatus was extended to measure thermal conductivity 
under transient condition and diffusivity with some minor modification. The theoretical 
derivation for the transient experiment using above steady-state apparatus has been 
presented by Trevisan in Miller et al. (1992). In this method, a microfoil heat flux sensor 
is used to measure the heat input into the sample. The main advantage in using a heat flux 
sensor is that dynamically varying heat inputs can be measured. Along with the 
temperature readings by thermocouples, these data form the history of the test. The data 
treatment involves deconvolving the temperature and heat flux as functions of time, so that 
simpler models can be generated for the same physical configuration. 

The experimental arrangement for the transient measurement is identical to the 
steady-state apparatus except that a heat flux sensor is attached to the end of the metering 
block facing the specimen. Contact resistance problems are reduced, since the sensor is 
sandwiched between the specimen and the metering block. However the possibility of 
compressing the sensor too much to the extent that substrate material is deformed cannot be 
ruled out. Therefore, it is recommended that the sensor is calibrated more frequently. 

One way of obtaining the relationship between q0(t) and T0(t) is to treat the 
problem as two independent problems. Details of the method for solving the coupled 
differential equation with appropriate initial and boundary conditions can be found in Miller 
et al. (1992). When solved in Laplace space, the basic solutions are obtained as functions 
of s*» the Laplace variable in dimensionless space. The problem is solved as two 
independent problems, as if they were simply two different interpretations of the same 
physical problem, and the two solutions are equated to obtain 

Oo^tanhd^) 
qT" f ? ( } 

where ®o ,and Qo are the dimensionless temperature and flux, respectively, in the Laplace 
space conesponding to time t. The limit for small values of s* (t—>«>) of the previous 
function is: 

(3.25) 

While for large values of s* (t—»0), 

l i n v _ J % =^= (3.26) 
Wo/ Vs 
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Figure 3.21 shows the characteristic curve of the functions in Eq. 3.24 vs. s*. At 
large s* (small t), the curve becomes a straight line of slope -1/2, conesponding to the 
transient period of heat conduction. The steady-state regime is characterized by the flat 
portion of the curve (small s* values). A type-curve match could be used by using 
Fig. 3.21 to verify the transition between regimes and to estimate both parameters of 
conductivity and diffusivity. The scale on the vertical coordinate of the real data plot would 

be (To-Tj/ q"c7, which is related to the conesponding scale of the type-curve by 

%> XA \QoJ 
(3.27) 

Once the steady-state plateau in Fig. 3.21 is reached, the thermal conductivity is determined 
by 

X = J* — ^ - (3.28) 
A (To-Ti) 

As can be seen from Fig. 3.21, the steady-state regime is fully established for s* values 
less than 2.5 x 10~3. In terms of real data calculations, the conesponding criterion for the 
Laplace variable in dimensional space, s, is 

s = -CL s* < 2.5 xlO"3 -«- (3.29) 
L2 L2 

Thermal diffusivity may be obtained from data gathered at earlier times, in other 
words for higher values of s. This is accomplished by observing that as s*—><», 

6o _ f„*Vl/2 

qo 
- (s*)"1/2 (3.30) 

or, in terms of dimensional data, 

HkJiLia s-i/2 (331) 
3° AA 

The coefficient on the right side of Eq. 3.31 can be determined from the slope of the plot 
of (To-Ti) / q0 versus s 1 / 2 . If the slope of the curve is B, then 

B = &- (3.32) 
XA 

The main advantage of the above method is that it allows one to conduct steady-
state and transient runs using the same apparatus. This method avoids the use of a probe 
and therefore avoids problems due to poor thermal contact and machining. The heat 
capacity of the heating source need not be known as the heat flux is measured directly at the 
interface. As the heat flux and the temperatures are dynamically measured, the boundary 
condition restrictions such as constant heat input or constant temperature are not necessary. 
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3.5.4.1 Experimental Procedure 

While conducting the experiments, the voltage leads from the heat flux sensor were 
connected to the voltage module of 2400B FLUKE data acquisition system, and the 
readings were directly recorded and then converted to heat flux values. The fastest rate at 
which the data acquisition could be accomplished by the Fluke system was around 0.8 sec 
per reading. Fast data acquisition was essential at the beginning of the temperature 
transient. 

The transient method was tested at various operating conditions. In all cases, the 
system was maintained at a specified temperature until it reached a uniform temperature. 
This was done by allowing a one-hour stabihzation time after all the thermocouples reached 
the designated base temperature. After that, the temperatures at the main heater as well as 
the upper guard heaters were raised 10° to 20°F above the stabilized uniform temperature. 
After the transient period has begun, the cooling end is maintained at the same temperature 
as the initial stabilized uniform temperature. The thermocouple readings and the heat flux 
meter readings were recorded at 0.8,10,20, and 30 seconds intervals for time period of 
100, 500,1000, and 7200 seconds, respectively. Sufficient time was allowed for the 
system to reach steady-state. 

When the heaters were operating independently to reach the set temperatures, the 
heating rate was different by different heaters. For this method, however, it was desirable 
for the temperature of the guards and the metering block to increase at the same rate. 
Therefore the computer control program was modified to ensure that the temperature at the 
guards never exceeded the temperature of the main heater. When the guard temperature 
was used for the control, the guard temperature during its transient intermittently exceeded 
the main heater temperature because of the distance between these thermocouple locations 
and the band heater. Therefore, the guard heater temperature was used for control instead 
of the guard temperature. In the transient calculations, although this modification allowed 
the temperatures at all the heaters to rise at the same rate, it also prolonged the time needed 
to heat the system. As a typical example, with the temperature tracking option off, it takes 
about 30 minutes to reach the steady-state upstream temperature of 150°F at a Variac setting 
of 50%, whereas with this option ON, it takes about 1.25 hours to reach this temperature. 
Therefore, it is recommended that, to conduct a transient test, the option of the guard 
temperature tracking the metering system temperature should be engaged and while 
conducting steady-state experiments, it can be turned off. 

At low temperatures, the use of a proper cooling fluid seems to play an important 
role. Most experiments can be run without having to run any cooling fluids. But because 
the transient model requires that the downstream end temperature be maintained at a 
designated temperature, a proper cooling fluid plays an important role. Test cases have 
been run without a circulating fluid, and with air and water as circulating fluids. 
Figure 3.22 shows the transient experiment with a set temperature 10°F above the room 
temperature with no fluid circulation. In Fig. 3.23, the experiment was run at 130°F as the 
base temperature. In Fig. 3.22, it is seen that the cooling end temperature rises because of 
the main heater and main guard heater, even while the cooling end heaters did not turn ON. 
In 1,800 seconds the cooling end temperature increased by 1.25°F above the cooling end 
set temperature without air circulation, whereas the temperature rose by 0.5°F with air 
circulation at 100 psia. In both cases it is apparent that the cooling system is not adequate 
for such runs. This is due to insufficient heat transfer between the brass block at the 
cooling end and the circulating air. Circulating water is the obvious next step, as water has 
much higher conductivity and heat capacity than air. To avoid the temperature build-up at 
the cooling end, the overall specified temperature of the system was increased to 130°F 
such that there is a large temperature difference between the cooling end and ambient 
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temperature or the circulating air temperature. This allowed us to maintain the experiment 
at a steady specified cooling end temperature. This is reflected in Fig. 3.23. 

3.5.4.2 Calculation Procedure 

The procedure to determine 1 and a via Eqs. 3.27 and 3.30 involves first recording 
the time evolution of (To - Ti) and qo from the very beginning of the experiment The 
Laplace transform needed to deconvolve the temperature and heat flux functions is 
calculated numerically from both history data. This calculation yields the values necessary 
to plot a curve similar to Fig. 3.21. The Laplace transform is obtained by numerical 
integration of: 

fTTTol{s)= e-st(T0-Ti)tdt (3.33) 
;o 

This integral equation was evaluated numerically by using a Simpson adaptative 
numerical scheme (Cheney and Kincaid, 1980). A cubic-spline method of second order 
(Press et al, 1989) was used for interpolation purposes. The upper limit of the integral in 
Eq. 3.33 depends on s and, for the purpose of this work, its numerical value is taken high 
enough so that there will be no alteration greater than 1 x 10"3. 

Figures 3.24 and 3.25 are plots of temperature and heat flux respectively vs. time 
with a heating end temperature of 145°F. The cooling end was maintained at 22°F below 
the heating end temperature. The upper and radial guards are maintained at the metering 
block temperature. The Laplace transform of the data presented in Figs. 3.24 and 3.26 are 
plotted in Figs. 3.26 and 3.27. The conductivity is calculated from the intercept of the flat 
portion of the log-log plot on Fig. 3.26 on the vertical axis. Diffusivity is calculated from 
the Cartesian plot of early time data presented in Fig. 3.27. The following intercepts for 
the flat region and slope of the early time regime are obtained, and then the conductivity and 
diffusivity values are determined. 

^J^=12.3°K/W 
Qo 

k = 2.31W/mK 

B = 0.5896 °K/WVs 

a = 1.04 x 10"6 m2/s 
Due to the non-smooth nature of the temperature and flux history data, the cubic 

spline may not always give a correct interpolation. Therefore, if the interpolation gives 
unreasonably large positive or negative values of 60 / q0 at a given s* compared to the 
neighboring points, then that value is discarded. The initial temperature that is needed by 
the program should be judiciously selected. In the above calculations, the temperature data 
was first sorted to find the minimum temperature value and this temperature value was later 
used as the starting temperature. Otherwise, it was difficult to obtain the straight line 
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behavior at early time. Also, it is helpful to start with very large and very small s* values 
to bracket the values of ®o / Qo which conespond to early time and late time. This 
facilitates the determination of values in between these two extremes.. 

3.5.5 Fluid Saturation Experiments 

Fluids saturation experiments were conducted by steady-state only because for the 
transient experiment, the apparatus was not pressure tight. The experiments were run 
under vacuum conditions, air saturation, and water saturation. For the vacuum 
experiments, the specimen was evacuated using a vacuum pump for one hour due to the 
small pore volume of the specimen. The vacuum pump was kept running throughout the 
experiment. The high pressure runs were conducted with air at 100 psia and with nitrogen 
at 300 psia. For tests with water as the saturating fluid, the specimen was evacuated for 
one hour before saturating with deionized water. Water was then injected by only using the 
gravity feed. The system was further evacuated for some time in a water-saturated 
condition. Then the system was heated up to the temperature at which the experiment was 
to be conducted and water circulation was resumed again, very slowly, for a short period 
of time. This was done to drive out any air bubble that would have been trapped 
accidentally and which expanded with increasing in temperature. This also eliminated the 
pressure build-up in the system that would have taken place due to thermal expansion. In 
all fluid experiments the safety valve was adjusted to bleed at pressures exceeding 350 
psig. For the residual water saturation experiments, air at pressure less than 10 psig was 
injected from the top of the specimen. Air was then injected at high rate to reduce the water 
saturation to a reasonably lower value. The residual water saturation was determined 
volumetrically. 

3.5.6 Error Analysis 

The accurate determination of heat flux is crucial to the steady state experiment. 
Whether the data acquisition system is accurately computing the heat flux or not was 
verified by using the chart recorder. The voltage drop across the cunent measuring resistor 
was recorded vs. time over a 90 min interval. The last 26 temperature ON-OFF cycles 
were used for data analysis purposes. Ideally, periodic ON-OFF cycle is expected after 
steady-state has been reached. The data show no systematic deviation, but rather reflect 
random fluctuation. The fraction of time the heater was ON in an average ON-OFF cycle 
(Wtcycie)was 0.075. The voltage drop across the cunent measuring resistor was 
essentially the same in all cycles considering the accuracy of the chart recorder. With the 
average voltage drop of 47.968 volts across the heater and a drop of 2.6656 volts across 
the resistor, the heat flow rate from the chart data was calculated to be 1.198 W compared 
to the average over 7200 seconds by the data acquisition system of 1.225 W, a difference 
of only around 2%. 

In the standard guarded hot plate method, investigations have been conducted in the 
past to quantify the effects of radial temperature unbalance. While using an 8"x8" hot plate 
and testing 1" thick cork specimens, Gilbo (1951) observed that a 0.2°F temperature 
difference between the metering section and the guard caused an enor in the conductivity of 
3%. He attributed the disagreement among results for the same standard material by 
various investigators to such a possible temperature imbalance in the radial direction. 
Pascal (1955) reported that the enor due to the unbalance is a function of the specimen 
conductivity, being greater with the decrease of conductivity. Though Woodside and 
Wilson (1957) tested the effect of temperature imbalance only at room temperature, still 
they found that a linear relationship does exist between temperature unbalance and the 
measured thermal conductivity for various thickness of the specimen. The purpose of their 
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unbalanced temperature experiment was only to determine the enor in guarded hot plate 
method that has been standardized by ASTM. But in our case, we deliberately use the 
unbalance as an accurate way of measuring thermal conductivity such that the temperature 
fluctuation due to ON-OFF control will not interfere with the heat flux measurement. In the 
standard guarded hot plate method, temperatures in the meter and the guard were 
maintained at the desired level by gradually and carefully adjusting the power supply either 
manually or automatically, which can be quite cumbersome. Woodside and Wilson (1957) 
suggested that the unbalance enor decreases as the size of the plate is increased. 

The following is an approximate calculation to demonstrate the effect of temperature 
unbalance. The total heat flow from the metering block in the directions other than the 
specimen can be represented as 

qt = qr + qau (3.34) 

where q is the radial heat flow rate from the metering block to the radial guard, q is the 
axial heat flow rate toward the upper guard, and qt is the total heat loss. Under the steady-
state heat transfer assumption, 

2JC (1 meter " 1 radial guard) ^-Kinel A (1 meter " 1 upper guardj / 0 ~ C s 
q t - - - + (J. 35; 

_Lin2. + X i n I 3 L 
%i r i X2

 Xl 

where ^l and X2 are conductivities of sleeve and brass blocks respectively, r i , x<y, and r3 

are the radii of the metering block, external sleeve, and the radial location of the guard 
thermocouple, respectively. The above equation calculated nearly 20% higher heat loss 
than what truly is experienced. This may be due to the complicated surface area of the 
metering block in the radial direction. In addition, the thickness of the layer of air at all 
interfaces and also the location of the o-rings in the radial direction were not taken into 
account that certainly offer more resistance to heat flow. 

An enor analysis was done for the above run by incorporating all available 
information. The length and diameter were measured using a slide calipers with a precision 
of 0.0005". The cunent measuring resistor was heated to 450°F and the change in its 
resistance was within its accuracy at the room temperature. The Fluke Manufacturing Co. 
has suggested the thermocouple accuracy at the data acquisition speed of 30 readings/sec to 
be ±0.5°C after one year of calibration. This includes all enor sources: reference junction, 
conformity, A/D conversion. As the relationship between temperature vs. emf generated in 
the thermocouple is linear for the J-type thermocouple in the temperature range of interest, 
therefore, the linear extrapolation using the boiling and freezing point temperatures of water 
is not expected to include any additional enor. In that case, the precision of the mercury 
thermometer, which is 0.1° C, can be used as the thermocouple enor in the enor analyses. 

The resolution for voltage measurements is l|iV when the voltage range 0-0. IV is 
used and lmV when the range 0-100V was used. For the steady-state experiments, the 
wider voltage range and for the transient experiment the nanower range was used. The 
time used for integrating the power supply for calculating the heat flux had a precision of 
±10 milliseconds. For integration purposes, the voltage drops across the cunent 
measuring resistor and the heater are sampled as fast as possible by the 2400B. The 
average sampling interval was 0.8 seconds, which is essentially the time it takes to go 
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through one loop in the control program. Therefore, it is quite probable that the actual 
heater ON-OFF time is not accurately recorded. This amounts to a systematic enor which 
eventually approaches zero at long time because this time lag influences the heater on time 
and off time equally. In the above experiment, more than 660 ON-OFF cycles were 
recorded, and therefore, the effect of the time lag is expected to be minimal. The average 
ON time covers approximately 8% of the ON-OFF cycle time, but the ratio of heater ON-
OFF time increases with the increase of the conductivity of the specimen. 

3.5.7 Results and Discussion 

In this section, experimental results on thermal conductivity and thermal diffusivity 
obtained by using steady-state and transient methods are presented. 

As discussed in previous sections, Austin limestone and Berea sandstone were used 
in this study as typical carbonate rock and sandstone specimens. On the other hand, the 
Berea sandstone is relatively clean from complex clay structures, has relatively simple 
structures, and is mineralogically well defined. Berea sandstone has also been widely used 
for measuring other petrophysical properties, so that the thermal properties can be related to 
those properties. 

3.5.7.1 Steady-State Measurements 

Steady-state thermal conductivity values for dry limestone and sandstone were 
obtained by using the extrapolation technique discussed in previous sections. In almost all 
cases a temperature gradient of 22°F/inch was imposed in the axial direction. The results 
have been reported here at the midpoint temperature of the specimen. The results for 
experiments with atmospheric air reported here have been obtained by averaging five runs 
whereas other results have been obtained by averaging two to three runs. Data were 
reproducible to within ±4% of the mean value. 

The steady-state experiments were conducted with the limestone and sandstone 
specimens under vacuum conditions, air saturation, and water saturation. For the vacuum 
experiments, the specimen was evacuated using a vacuum pump for one hour before 
starting the experiment. The vacuum pump was kept running during the measurements. 
For measurements with air at atmospheric pressure, all valves were kept open. The flanges 
were adequately tightened by using the bolts so that the vertical strain caused by air in the 
high pressures experiments would not cause loss of contact between the specimen and the 
cooling/heating ends. In the case of water saturation, the specimen was evacuated for one 
hour before saturating with deionized water and the evacuation process was continued for 
some more time to allow the air bubbles that may have been accidentally trapped to escape. 

The thermal conductivity of limestone at various conditions is presented in 
Table 3.6. As expected, the thermal conductivity with vacuum was less than that with air 
at atmospheric pressure. A few runs were also conducted at 100 psia air saturation 
pressure using limestone specimen. One run was conducted at 300 psia with nitrogen as 
the saturating fluid. The observed change in thermal conductivity with the above change in 
pressure was within the expected enor margin of +6.1%. This is consistent with data 
available in the literature (Woodside and Messmer, 1961). One test was done with water as 
the saturating fluid. 

Similarly, the experiments were conducted on Berea sandstone with air at vacuum 
condition, 110 psi air pressure, 100% water saturation and ineducible water saturation. 
Results are presented in Table 3.7. The expected enor for the results reported here is 
±6.1%. 
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The thermal conductivity of Berea sandstone has been measured by many 
investigators in the past (Somerton and Boozer, 1960; Woodside and Messmer, 1961, 
Kunii and Smith, 1961). Berea sandstone is relatively clean and the grains are well sorted. 
However, there is still a wide variation (nearly 20% from the mean) in the conductivity 
values reported in the literature. Results from this study for Berea sandstone with 
atmospheric air and water as saturating fluids are compared against some of the published 
data in Tables 3.8 and 3.9, respectively. 

It is difficult to quantify the significant variation in these data as numerous factors 
may have influenced the measurements. It is possible that the variation was due to normal 
petrophysical variability. 

The effect of temperature on the thermal conductivity was studied using air-
saturated Berea sandstone at atmospheric pressure. The effect of temperature was also 
studied at vacuum condition. Results are presented in Fig. 3.28. The decrease in thermal 
conductivity of Berea sandstone in vacuum condition is monotonic compared to with air. 
The trend of the conductivity with air at atmospheric pressure is different from the data 
presented in the past in the sense that in this study, the conductivity of sandstone with 
atmospheric air is a stronger function of temperature than has been reported in the past. 
This study also shows that the thermal conductivity of porous sandstone under vacuum 
conditions can be a strong function of temperature. There is no published data available 
which shows temperature behavior of sandstones in vacuum. Experiments need to be 
conducted at higher temperature to see if the rate of decrease in conductivity slows down at 
higher temperatures. 

The thermal conductivity of Berea sandstone with 100% water saturation is almost 
twice that of the case where atmospheric air is the saturating fluid. The conductivity of air 
saturated sand is about 33% more than that of at vacuum condition. In case of limestone, 
the increase in conductivity with 100% water saturation is not as dramatic as that of 
sandstone. 

Results for the dry limestone have been compared with the data published in the 
literature (Roy et al, 1988) as shown in Fig. 3.29. The limestone used has a porosity of 
nearly 30% compared to <10% for the published data presented in this figure. This may 
explain why the results fall in the lower range of this figure. 

3.5.7.2 Transient Method 

The thermal diffusivity values measured by using the transient method are reported 
in Table 3.10 for limestone and sandstone specimens. The thermal conductivity value 
obtained from the heat flux sensor was 1.8 W/m-K for dry limestone at atmospheric 
pressure and 134°F average temperature compared to 1.6 W/m-K calculated by the steady-
state method. The thermal conductivity values were first obtained from the late time data. 

Our method of calculation of thermal diffusivity avoids knowing the specific heat, 
but instead requires the thermal conductivity value to be known. Trie measured thermal 
conductivity from the late time data seems to be higher than the value measured using the 
steady-state method. Differences between thermal conductivity data from steady-state and 
transient methods have been reported by previous investigators (Somerton, 1992). There 
has been a continuing effort to explain these difference. For the calculation of thermal 
diffusivity, we have used the thermal conductivity value obtained from the steady-state 
measurement which is considered to be more accurate than the value obtained from the 
transient method. 
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The conductivity value obtained for Berea sandstone with air at atmospheric 
condition is very close to the value presented by Messmer (1965) using a probe technique. 
However, the steady-state thermal conductivity is less than this value. In the hterature most 
investigators have conected their steady-state results to match this value. We believe that 
our steady-state method gives more accurate results, therefore, the thermal conductivity 
from the steady-state experiment was used to calculate thermal diffusivity data. 

Similar to thermal conductivity, a wide variation in the thermal diffusivity is 
reported in the literature. In Table 3.11, results of some of the previous investigations are 
reported for comparison purposes. 
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Table 3.1. Physical characteristics of the cores. 

Core 

SS#1 

SS#2 

SS#3 

SS#4 

SS#5 

SS#6 

SS#7 

SS#8 

SS#9 

SS#10 

S S # 1 1 

SS#12 

k, md 

980 

980 

115 

115 

115 

115 

115 

115 

115 

115 

115 

115 

Porosity, % 

24.6 

24.6 

20.63 

19.04 

18.28 

18.05 

20.6 

20.63 

19.04 

19.28 

20.28 

20.00 

Geometry 

Cylinder 

Cylinder 

Cylinder 

Rectangular 

Cylinder 

Rectangular 

Rectangular 

Rectangular 

Rectangular 

Rectangular 

Cylinder 

Cylinder 

Core 
dimensions 

Diameter=l" 
L=3.65" 
Diameter=2" 
L=l" 
Diameter=2" 
L=3" 
Dimensions 
a=0.3" 
b=2" 
c=4" 
Diameter=l" 
L=2" 
Dimensions 
a=2.25" 
b=2.25" 
c=2.25" 
Dimensions 
a=2" 
b=2" 
c=2" 
Dimensions 
a=2" 
b=2" 
c=4" 
Dimensions 
a=2" 
b=2" 
c=3" 
Dimensions 
a=l" 
b=2" 
c=2" 
Diameter=2" 
L=l" 
Diameter=2" 
L=3" 

Type of imbibition 
Experiments 

1-D through one face 

2-D through 
cylindrical face 

2-D through 
cylindrical face 

2-D through four faces 

1-D through one face 

3-D through all faces 

3-D through all faces 

3-D through all faces 

3-D through all faces 

3-D through all faces 

3-D through all faces 

3-D through all faces 
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Table 3.2. Fluid saturation data. 

Core 

SS#1 
SS#2 
SS#3 
SS#4 
SS#5 

Average 
Sw behind L ' 
when L'< L 

0.65 
0.60 
0.61 
0.61 
0.59 

Final 
Average 

Sw 
0.72 
0.66 
0.64 
0.64 
0.66 

Recovery at 
the time of L'=L, 

% 
93 
95 
94 
95 
83 

Table 3.3. Data on effect of temperature on imbibition. 

Temperature, C 

1 
23 
43 
60 
81 

IFT (Water-air), 
dyne/cm 

75.83 
72.43 
69.50 
66.97 
62.50 

Water viscosity, 
cp 

1.728 
0.9325 
0.6178 
0.4665 
0.3503 

A 5 _ 

0.64 
0.64 
0.63 
0.63 
0.65 

Table 3.4. Thermal conductivity of materials used in this study. 

Material 

Brass 

G-ll composite 

Teflon 

Kinel-5504 

Dry Air 

Fiberfrax 

Water (liquid) 

Berea sandstone (air-
filled (approx.) 

Temperature 
(°Q 

20 

140 

27 

27 

27 

204 

27 

127 

227 

27 

Thermal 
Conductivity 

(W.m-°K) 

111 

0.259 

0.25 

0.499 

0.0263 

0.06 

0.613 

0.688 

0.642 
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Table 3.5. Heat flow sensor specifications. 

RdF Part No. 

Output at 70°F 

Polarity: (For heat flow 
into surface) 

Temperature Multi
plication Factor: 

Thermal resistance 

Heat Capacity 

Response time 

Thermocouple 

20457-2(SP) 
Serial No. 91D0100 

3.31 uvolts/Btu-Ft^-Hr"1 

White - Positive (+) 
Red - Negetive (-) 

See attached graph 

0.005 °F/Btu-Ff2-Hr"1 (Typ) 

0.02 Btu-Ft"2/°F (Typ) 

0.06 sec (62% response to step 
function) (Typ) 

Type T (Copper-Constantan) 

Table 3.6. Thermal conductivity values with various pore fluids in hmestone at a 
midpoint temperature of 134°F. 

Saturating fluid 

Vacuum 
Atmospheric air 
Air @ 100 psig 
Nitrogen @ 300 psig 
Deionized water 

Thermal conductivity at 134°F 
(W/m-K) 

1.147 
1.577 
1.524 
1.485 
2.208 
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Table 3.7. Thermal conductivity values with various pore fluids in Berea sandstone at a 
midpoint temperature of 134°F. 

Saturating fluids 

Vacuum condition 
Atmospheric air 
Air(llOpsi) 
Deionized water (Sw=0.29) 
Deionized water (Sw=1.0) 

Thermal conductivity 
(W/m-K) 

1.62 
2.13 
2.35 
3.90 
4.25 

Table 3.8. Comparison of thermal conductivity measurements of Berea sandstone with 
atmospheric air by various investigators. 

Investigator(s) 

Somerton & Boozer (1960) 
Kunii & Smith (1961) 
Woodside & Messmer (1961) 
Messmer (1965) 
Somerton & Gomma (1973) 
This study 

Temperature 
CF) 

200 
— 
— 
165 
68 

134 

Thermal 
conductivity 

(W/m-K) 

1.575 
1.731 
2.39 
2.357 

2.33 and 2.09 
2 . 1 3 ± 6 . 1 % 

Table 3.9. Comparison of thermal conductivity values for Berea sandstone saturated 
with 100% water by various investigators. 

Investigators 

Woodside and Messmer (1961) 
Ozbek (1972) 
This study 

Temperature (°F) 

— 
— 

134 

Thermal conductivity 
(W/m-K) 

4.48 
4.10 

4 .25±6 .1% 
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Table 3.10. Thermal diffusivities and conductivities from transient method. 

Medium 

Austin limestone 

Berea sandstone 

a (irr/sec) 

0.49xl0"6 

1.04xl0"6 

X (W/m-K) 

1.8 

2.31 

Table 3.11. Comparison of thermal diffusivity values for Berea sandstone with 
atmospheric air by various investigators. 

Investigators 

Somerton & Boozer (1960) 
Edmondson (1960) 
Somerton (1972) 
This study 

Temperature (°F) 

200 
— 

— 

134 

a (m2/s) 

0.8825 x 10'6 

0.800 x 10"6 

1.414 x 10"6 

1.04 x 10"6 
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Fig. 3.1. Core geometry for one-dimensional linear imbibition. 
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Fig. 3.2. Core geometry for two-dimensional linear imbibition. 
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Fig. 3.7. Countercunent imbibition at various temperatures. 

53 



Q 
-J 

0.2-

\|/, cm-1 

Fig. 3.8. Effect of temperature on imbibition. 

54 



s 

Upper insulator 

Upper guard heater 

Insulator 

Conduit for fluid flow 
or electrical wires 

Guard material 

304 SS casing 
Specimen material 

Cooling end guard 
heater 

Cooling end main 
heater 

Cooling block 

W \ l End plate 

Clamp rod 

Fig. 3.9. Detailed schematic of steady-state thermal conductivity cell. 

55 



Fig. 3.10. Apparatus for steady-state thermal conductivity measurements. 
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Fig. 3.11. Cartridge heaters used as the main heater, upper guard heaters, and coohng end 
heaters. 

Fig. 3.12. Band heaters used as the main guard and cooling guard heaters. 
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Fig. 3.13. Electrical circuit diagram for the thermal conductivity apparatus. 
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Fig. 3.15. Heat Flux Sensor Schematic (Shallcross and Wood, 1990). 
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Fig. 3.17. Temperature history of steady-state run for ATradiai=5.0°F at a Variac 
setting of 50% of full scale. 
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Fig. 3.18. Temperature history of steady-state run for ATradial=2.50°F at a Variac 
setting of 50% of full scale. 
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Fig. 3.22. Temperature history of the transient measurement at the set axial temperature 
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temperature. Air was used as the circulating fluid. 
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Fig. 3.27. Early transient solution from the data collected at 145°F after data 
deconvolution. 
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Fig. 3.28a. Contour map of the flux values on a thin section of Berea sandstone reduced 
from 512x512 pixels to 128x128 pixels. 

Fig. 3.28b. Superposition of contour maps of the flux values on the rock matrix with 
water (cond ratio=. 103278) and air (cond. ratio=0.00426) respectively. 
The field is a reduced field from 512x512 to 128x128 pixels. The white 
region represents grains. 
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4.0 NUMERICAL STUDIES 

Numerical studies on this project included five main activities. First, a new dual 
porosity simulation approach was developed as a means to easily implement dual 
porosity behavior in existing (e.g., thermal) single porosity model. This appproach was 
tested on isothermal water imbibtion. Second, studies were conducted to investigate 
matrix-fracture transfer flow with a fine-grid model of a single matrix block. Third, a 
method of easily modeling gas generation effects was developed and tested. Fourth, an 
investigation of methods to calculate over- and underburden heat losses was conducted. 
And lastly, a new dual porosity thermal simulation was developed and preliminary testing 
conducted. 

4.1 A NEW DUAL POROSITY SIMULATION APPROACH 

In this section, the development of an accurate and computationally efficient 
isothermal dual porosity simulator (UTDUAL) for naturally fractured reservoirs and its 
applications to modeling fluid flow in fractured reservoirs are described. This work 
formed the basis for development of an efficient technique for implementing dual 
porosity effects into an existing single porosity simulator. Implementation of this 
approach in a thermal (steam) model is given in Section 4.4. This work can provide the 
basis for others to implement dual porosity behavior into any existing thermal simulation 
model. 

In UTDUAL, the basic assumption of dual porosity model is adopted, namely, 
that fracture networks can be modeled by a continuous porous medium and matrix blocks 
act much like sources or sinks. The finite-difference equations for the fracture system are 
treated implicitly and solved using Newton's method. 

Three different options were developed for UTDUAL to model flow within 
matrix blocks and matrix/fracture transfer flow: (1) an IMPES method, (2) diffusion 
methods, and (3) results from single matrix block studies. In the first two options, the 
matrix blocks are discretized into subgrids to enhance pressure and saturation resolution. 
The equations for matrix/fracture transfer flow are formulated in such a way that they are 
mathematically decoupled, and the resulting fracture equations are the same as for a 
single porosity model except for explicit matrix source and/or sink terms for each fracture 
gridblock. This option allows an existing single porosity model to easily be made into a 
dual porosity code. The third option requires fine-grid simulation studies of a 
representative matrix block under totally immersed conditions, but with computation time 
almost the same as for a single porosity system. 

4.1.1 General Descriptions and Assumptions 

This section presents a general description of the new dual porosity simulator 
(UTDUAL) developed for naturally fractured reservoirs including its capabilities and 
limitations. Basic assumptions are also described. 

UTDUAL can simulate oil recovery by fluid expansion, displacement, and 
capillary/gravity imbibition mechanisms in naturally fractured reservoirs. Some typical 
field production problems which can be handled by UTDUAL include primary depletion, 
pressure maintenance by water injection, evaluation of secondary recovery waterflooding, 
and displacement operations. The main improvements of UTDUAL over existing dual 
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porosity simulators in the literature are the accuracy and efficiency of the matrix/fracture 
transfer flow calculations, and the availability of three different options. 

Technically, UTDUAL is a multidimensional, isothermal, black oil, dual porosity 
simulator. Therefore, all basic assumptions for black oil simulators apply. Usually, 
water is the wetting phase and oil is the nonwetting phase. Oil and water are assumed to 
be immiscible and they do not exchange mass. Furthermore, it is assumed that fluids are 
at constant temperature and in thermodynamic equilibrium throughout the system. 

In UTDUAL, fractured reservoirs are idealized as a set of discontinuous 
parallelepipeds within a continuous fracture system. The fracture system can be modeled 
much like a single porosity reservoir. Since matrix blocks are usually small compared to 
the finite-difference gridblocks of the fracture system, each fracture gridblock may 
encompass a number of matrix blocks. Another assumption is that the matrix blocks in a 
fracture grid can be modeled by a representative block. Therefore, the total 
matrix/fracture transfer rate is the summation of contributions from each of these matrix 
blocks. Figure 4.1 shows a schematic of the assumptions of the dual porosity model and 
the relationship between matrix blocks and fracture gridblocks. 

UTDUAL was developed on the VAX-6520 in the Dept. of Petroleum 
Engineering. With minor modifications it also runs on the Cray Y-MP/8 at the UT 
System Center for High Performance Computing. The fracture part of the simulator and 
all PVT and rock property calculations are largely vectorized. 

The following is a partial list of UTDUAL's capabilities: 

(1) Multiple sets of PVT and rock data are allowed within different reservoir regions. 
However, at least two sets of data, one for matrixes and another for fractures, are 
required. 

(2) Variable numbers of gridblocks, with either point-centered or block-centered grid 
distributions are allowed. A radial flow option is also available for single well 
studies. 

(3) Constant time step size and automatic time step size selection are available. 

(4) Constant reservoir parameters, such as permeability and porosity, or distributions 
of these parameters, can be chosen. 

(5) Both compressible and incompressible systems can be modeled. 

(6) Tabular relative permeability or fitted equations of relative permeability can be 
used. Capillary pressure data is tabular. 

(7) PVT properties are tabular. 

(8) Various well control schemes, such as total oil production rate, total liquid 
production, constant injection rate, constant bottomhole pressure production and 
constant pressure injection, can be chosen. 

(9) Matrix option can be turned on and off to simulate fractured and unfractured 
reservoirs. Detailed formulations for some of these capabilities are covered in the 
following sections. 
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4.1.2 Fracture Equations and Solution Method 

In this section, the implicit finite-difference fracture equations are described, 
including the initial and boundary conditions. The Newton-Raphson method is used to 
linearize these equations. For the convenience of following discussions, the transfer flow 
rates, xam.f, are treated much like source/sink terms. 

c4.4.1.2.1 Implicit Fracture Equations 

The standard dual porosity flow equations for modeling naturally fractured 
reservoirs in finite-difference form can be written as 

Fracture equations: 

A [T«f (A p a f - Yaf A Df)] - W f + q«f = V b A t ^ M (4.1) 
5.615 At l B«f ' 

Matrix flow equations: 

Vb A|<t>mSam| 
Xam-f = ~ A t — 

5.615 At * B«m / (4.2) 
where a denotes either oil or water phase, and other terms are defined in Chapter 1 and 
the Nomenclature section. UTDUAL is cunentiy for oil and water flow only. However, 
inclusion of a gas phase flow equation is straightforward. Transmissibility for fracture-
fracture flow, Taf, is defined as 

Tafi+i/2jk = 0.001127kxf i+/ /2^kAYJAZfXaf i+1 /2 jk (4.3a) 
0.5(AXi + AXi+i) 

for flow in the x-direction, where the mobility, XKf i+i/2> is 

^afi+l/2=0)af(-^-) + ( 1 - M ( T ^ - ) (4.3b) 
\M-BJafi hJ-B/afi+i 

Similar terms can be defined in the y- and z-directions. The term coaf is the upstream 
weighting factor and is either one or zero depending on the flow direction of phase a. In 
UTDUAL, only one-point upstream weighting is evaluated. 

The first term on the left-hand side of Eq. 4.1 can be expanded to 

ATA (p - y D) = AxTxAy (p - y x) + AyTyAy (p - y y) + AZTZAZ (p - y z) (4.4) 

where, for example, 
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AZTZAZ (p - y z) = Tz k+1/2 [pk+i - pk - 7k+i/2 (zk+i - zk)] 
(4.5) 

+ Tz k-l/2 [P k-1 " Pk " Yk-1/2 fck-l - Zk)] 

Similar expressions can be written for the x- and y-directions. Figure 4.2 illustrates the 
coordinate and node locations used in the three-dimensional formulation. Yk+1/2 is the 
average specific gravity between neighboring gridblocks 

_ Yk+i+Yk (A ~ 
Yk+1/2 = 5 ' •"' 

A radial coordinate of system is also implemented in UTDUAL. This option is 
useful for single well studies. Figure 4.3 illustrates a radial grid geometry. Normally, 
smaller grid increments are necessary near the well in order to maintain uniform accuracy 
(Aziz and Settari, 1979). 

Inter-grid transmissibility is calculated by 

Tcci+1/2 = 27C 4+1/2 r . , Z.r. ^ai+1/2 (4-7) 
1+1 1 

and the bulk volume of a gridblock is: 

Vbi = rc(i?+m-i?_1/2)Az (4.8) 

where, 

li+l/2 - / r . 1V? £1/2 - li±i1^ (4.9) 

and 

*«-Sg (4-10> 
Aziz and Settari (1979) provide detailed derivations of the above formulations. 

4.1.2.2 Initial and Boundary Conditions 

Initial conditions are set by specifying two independent variables (p0f and Swf) at 
each gridblock node throughout the solution domain (the reservoir) at time zero. Since it 
is assumed that the reservoir is initially at static equihbrium throughout the domain, it is 
only necessary to specify the oil-phase pressure at one elevation (datum) in the domain. 
Values at other points are calculated from hydrostatics: 

Pafk = P° + Yakk-z°) (4-lD 

where p° is the pressure specified at datum z°. 
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Initial water saturation can be obtained by gravity and capillary pressure 
equilibrium: 

Swfk = Pc1(Pofk-Pwfk) (4.12) 

In the case of zero capillary pressure in the fracture system, initial fluid segregation is 
assumed. 

No-flow boundary conditions for the mass conservation equations (Eq. 2.1) are 
given by: 

n»i% = 0 (4.13) 

For finite-difference equations (Eq. 4.1), the no-flow boundary conditions (Eq. 
4.12) are implemented by setting transmissibilities to zero. 

4.1.2.3 Solution Method 

The linearization of Eq. 4.1 using the Newton-Raphson method is described in 
this section. Equation 4.1 can be expressed in terms of residuals: 

R(X) = 0 (4.14) 

where X and R are anays, and xyk, the ijkth gridblock in the X anay has two components: 

(4.15) xijk = Pof 
Swf ijk 

and the conesponding residual Ryk is a two-component vector: 

Ro 
Rw ijk 

(4.16) 

Roijk and Rwijk are functions of pQf and Swf in gridblock ijk and the six sunounding blocks 
(Fig. 4.2), and take the following forms: 

Oil: 

Ro ijk = AXTXAX (pof - y0 xf) + AyTyAy (pof - y0 yf) + AzTzAz (pof - yo zj 

bijk 

At ;̂ r#: (4.17) 

" % ijk + Xo m-f 
ijk 

Water: 

Kijk = AXTXAX(pwf-ywxf) + A T A (pwf-ywyf) + AJZAZ(pwf-ywz f) 

' b i jk 

At 

y y y 

B„ B.. 

(4.18) 

ijk 
"w ijk w m-f 
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Equation 4.14 can be linearlized using Newton-Raphson method. If Xc is an 
approximation to Xt+At, the approximation to AX = Xt+At - Xc is 

AX = -J"1R(XC) 

where each element of the Jacobian J is a 2 x 2 submatrix: 

(4.19) 

j _ * R L 
3poj 9swj 

*Ki ^ i 
9Poj a S wjJ 

(4.20) 

(1) 

(2) 

(3) 

(4) 

(5) 

A summary the procedure for obtaining the solution at time t + At follows: 

Obtain an estimate of the solution Xc at time t + At. 

Solve Eq. 4.19. 

Update the solution vector Xc <- Xc + AX. 

Compute the new residual R(XC). 

If the residual in Step 4 is sufficientiy small, set Xt+At = Xc; otherwise resolve Eq. 
4.19 with the new value of Xc . 

4.1.3 Special Topics 

In this section, several special topics are described including well models, 
automatic time step size selection, material balance calculation, solvers, and vertical 
equilibrium capillary pressure curve. 

4.1.3.1 Well Models 

Wells in a fractured reservoir are assumed to be connected to the fracture system 
only. Well models are used to set the source/sink terms to mimic actual well operations. 
The relationship between flow rate, flowing bottomhole pressure and gridblock pressure 
can be expressed as 

Qak = PIk W (Pwf k " Pak) 

where PIk is the productivity index for layer k and can be calculated by: 

(4.21) 

PT _VkxfkyfAzk 
r i k ~ r 

49-InPM + S 
w 

(4.22) 

where r0 is determined by the method suggested by Peaceman (1983): 
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ro = 0.28 &'^W* 
fe)"4+fcr 

1/2 

— (4.23) 

where gridblock indices are omitted for convenience. To use Eq. 4.23, a well is assumed 
to be located at the center of the gridblock. 

A variety of well control schemes are implemented in UTDUAL. Details of all 
these options are described in the next section. Similar formulations can be found in a 
paper by Fanchi et al. (1982). 

4.1.3.2 Rate Constraint Representations 

In these representations, rates are specified for producers and injectors. These can 
be oil production rate or total liquid (oil plus water) production rates for producers, and 
water injection rates for injectors. 

Case 1-Oil Production Rate Specified 

Assuming that a well is completed in K layers, the production rate of layer k can 
be calculated by 

qok = Qo_teO_ (4.24) 
INU, 

k = i 

The water production rate for layer k is determined according to the mobility ratio: 

qWk = qok^k- (4.25) 
^ o k 

Case 2-Total Production Rate Specified 

In this case, total mobility ratios are first computed, followed by calculation of 
flow rates for each layer: 

(4.26) 

Oil mobility ratio 

Water mobility ratio 

a0T=t U 

k = 1 Aok + Awk 

CCwT=i ^ 
k = 1 A,wk + ^ok 

(4.27) 
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Based on OCWT and a0x, the total oil rate for a well can be calculated by 

Qo= a ° T Qi (4.28) 
a0x + awx 

Once Q0 is known, the oil and water production rates (qok, qwk) for each layer can be 
determined by Eqs. 4.24 and 4.25. 

Case 3-Injection Rate Specified 

If a well is a water injector, the water injection rate, Qw, must be specified. The 
injection rate for each layer is allocated as follows: 

qwk=Qw_^jk±yk_ (429) 

£ [Wlkta + ^wi] 
k = l 

It is important that the allocation of injection fluids be based on total mobilities, and not 
simply injected fluid mobility. This is necessary for the following reason. If an injector 
is placed in a block where the relative permeability to the injected fluid is zero, then using 
the injection fluid mobility would prohibit fluid injection, even though a real well would 
allow fluid injection into a block containing oil and irreducible water. To avoid these 
unrealistic cases, the total mobility of the block should be used. For most cases, the enor 
in this method only persists for a few time steps. The mobile fluid saturation in the block 
will be dominated by the injected fluid after these few steps (Fanchi et al, 1982). 

Case 4-Bottomhole Well Pressure Specified 

In this case, the source/sink terms in the fluid flow equations are: 

qak = Pn>Wr(p«+1-Pwf) (4-30) 
where 

PID = PI, p£+1 > pwf for a producer 

and 

PID = WI, p£+1 < pwf for a injector 

Thus, the source/sink terms, qak, can be replaced by an implicit pressure term. 

4.1.3.2 Automatic Time Step Selection 

Two options for time step size control are implemented in UTDUAL: manual and 
automatic time step size selections. Proper selection of time step size will ensure stability 
of the solution and acceptable truncation enors. Manual selection during a simulation 
study can be frustrating, particularly when well rates change drastically during a 
simulation run. 
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Since UTDUAL is an implicit simulator, theoretically it is unconditionally stable. 
However, to ensure acceptable truncation enors, the following algorithm is implemented 
for the automatic time step size selection (Aziz and Settari, 1979): 

1. 

4. 

Input maximum allowable pressure and saturation changes over a time step: Apjim 

and ASiim, 

Compute 

Calculate Atn+1 as 

where, 

ASgiax = maxj|AtSfjk|) 

ApfKax = max{|Atpfjk|j 

Atn+1 = min{Ats, Atp} 

A t ^ A t " - ^ ^ -
A<5n 

(4.31a) 

(4.31b) 

(4.32) 

and 

Atp = At" -*B 
Ap& max 

After time step n + 1 is completed, calculate Ap&kx and ASmti. The step is 
accepted if: 

Apffi&SCiApfon (4.33a) 

ASm
+ai<C2ASUm (4.33b) 

where Ci and C2 are constants greater than one. Otherwise, calculate At* as: 

At* = min(Ats,Atp) (4.34) 

where 

Ats=Atn+1-A^ta-
ASmaf 

and 
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A t p = A t ^ 1 ^ m -
Ap8& 

Set Atn+1 to At* and resolve the equations for time step n+1. 

This algorithm will maintain pressure and saturation changes close to Apiim and 
ASiim, but will not exceed Ci Apiim or C2 ASiim. 

4.1.3.3 Material Balance 

In UTDUAL, two levels of material balance calculations are performed. The first 
level is differential material balance calculation. The volumes of oil and water in place at 
the beginning of a time step are compared to their respective values at the end of the time 
step with injected and produced fluids, being taken into account. The percentage change 
over the time step is calculated for each phase. The second level is cumulative material 
balance. This calculation compares the initial amount of oil and water to their respective 
values at the end of the time step, considering cumulative production. 

4.1.3.4 Solvers 

In UTDUAL, the linear system of equations (Eq. 4.19) can be solved by one of 
two solvers: an iterative, the bi-conjugate gradient method by Oppe etal (1988), or a 
direct symbolic factorization of Gaussian Elimination by Cotner (1990). Details of this 
method can be found in Woo et al. (1973). 

4.1.3.5 Vertical Equilibrium Capillary Pressure Curves 

Laboratory rock capillary pressure (Pc) curves reflect the relationship between 
capillary pressure and saturation at a point (e.g. the gridblock center). The vertical 
equilibrium (VE) (1971) curve relates Pc at the point to the average saturation over the 
entire gridblock height encompassing the point. The VE capillary pressure curve can be 
obtained be integrating the laboratory curve over a capillary pressure increment equal to 
the product of block height times water-oil density difference. Thus each gridblock has a 
different VE capillary pressure curve, and the curve changes with time reflecting changes 
in fluid densities. 

Coats (1989) and Coats et al (1971) have extensively studied the effects that VE 
capillary pressure curves have on initialization and simulation results. In the 
equilibration of reservoirs having initial water-oil contacts, the VE capillary pressure 
curves give the exactly conect initial volumes in places while use of rock capillary 
pressure curves result in enors in these quantities which increase with the ratio of block 
thickness to transition zone thickness increases. Under dynamic conditions, the VE 
capillary pressure curves reflect the underlying equihbrium state without assuming that 
the dynamic fluid distribution is segregated, or, in any sense, in equihbrium (coats, 1989). 

In the dual porosity case, the capillary pressure is usually assumed to be zero in 
fractures. The VE capillary pressure for each fracture gridblock can easily be derived. 

Fluid potentials for the oil and water phases are defined as 

^of = Pof-zYo (4.35a) 
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and 

^wf=Pwf-zYw (4-35b) 

Since potentials are equal at equihbrium, differentiating Eq. 4.35 with respect to z gives 

HP 
- H f + (Yw-Yo) = 0 (4.36a) 

The integration of Eq. 4.36a over gridblock thickness, assuming fluid segregation, gives 
the VE capillary pressure: 

Pcf = ( i -2Sw f)(yw-y0) | (4.36b) 

This fracture VE capillary pressure curve is used for equilibration and interblock flow 
and plays no role in matrix/fracture transfer calculations. 

4.1.4 Decoupling Method 

In this section, a mathematical method for decoupling the fracture equation from 
the matrix equation is described using single-phase flow as an example. This numerical 
technique was first used by Douglas et al (1989) to simulate two-phase, incompressible 
fluid flow in a dual porosity system. This formulation requires that the matrix flow 
equation in finite-difference form be linear over a time step. To demonstrate the concept, 
the following assumptions are made for the single phase finite-difference equations: (a) 
diffusivities are constant, and (b) the gravity is negligible. With these assumptions, the 
finite-difference equations for a slightly compressible, single-phase dual porosity model 
are 

Fracture equation: 

kf At (4.38) 

Matrix equation for each fracture grid: 

ATmAPr' J l e ! kY t o A t p m 
km At (4.39) 

with a pressure continuity boundary condition: 

Pm+1=P?+1 (4.40) 

The transfer flow term, xmf, is calculated as 

N b 

xm-f = NMXTm. fi(p!ri1-p?+1) 
1=1 (4.41) 
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where N M is the total number of matrix blocks within a fracture gridblock, and N b is the 
number of matr ix grids which have surfaces exposed to fractures. T h e T m f j are the 
transmissibilities depending on the matrix subgrid geometry. T m f j is not pressure-
dependent in this case. 

One obvious way to solve Eqs. 4.38 and 4.39 coupled by Eq. 4.41 is to solve them 
simultaneously. This approach may require large computer resources, especially for 
multiphase flow problems. Alternatively, the matrix equation can be decoupled from the 
fracture equation by recognizing that Eq. 4.39 is hnear in p^+1. Equation 4.39 can be 
solved by finding a particular solution without satisfying of Eq. 4.40, and then adding a 
solution to the problem not containing the term pj^1 , but satisfying the boundary 
conditions. Therefore, the matrix equations can be solved by the following two steps. 

First, solve forp"+1 from: 

_(<t>^ct), 
m — 

with boundary condition given by: 

A T A-n+i_l<l>lic tjmvb 
AtmApm A tpm 

k™ At (4.42) 

Pm + 1 =Pf (4.43) 

and then solve for p " * satisfying: 

foncjm AT An"+ 1 - W **• C t ^ Vbm n"+l 

with boundary condition: 

k«> At (4.44) 

Pm+ - 1 at boundary (4.45) 

Both of these problems can be solved without knowing Pf . Clearly, w e have 

r ,n+ l — tsn+1 4. Ir>n+1 _ r » n | « n + l , . . , N 

Pnii -Pm +\Pf Pf/Pm (4.46) 
It is simple to show that the solutions of Eqs. 4.42 and 4.44 with Eq. 4.46 satisfy Eqs. 
4.39 and 4.40. However, p^+1 cannot be obtained without knowing Pf from the fracture 
equations. 

In terms of p^+ and p^4" , the matrix/fracture transfer rates (Eq. 4.41) can be 
expressed as 

Vf = NM t Tm.fi k + 1 (FUi - l) + tm1 ~ P? C/ ] (4-47) 
i = l 
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For time level n+1, the only unknown in Eq. 4.47 is p"+1. Substituting this into the 
fracture equation (Eq. 4.38) results in a fracture equation with fracture unknowns only, 
which can be solved implicitly. In summary, solving the coupled fracture and matrix 
equations can be done by solving two small systems (Eqs. 4.42 and 4.44) once. Equation 
4.38 can then be solved with Eq. 4.47 without knowing the matrix pressures at the new 
time level. After the fracture pressures are known, the matrix pressures can be updated 
according to Eq. 4.46. As noted, the key to this decoupling approach is that the matrix 
equations are linear over a time step. The fracture equations, however, do not necessarily 
have to be linear. If the fracture equation is nonlinear, iterations are required. 

4.1.5 IMPES Formulation for Matrix Blocks 

In this section, the first of the three options of matrix/fracture transfer flow 
calculations is described. This method involves the subgridding of matrix blocks and 
solving the resulting finite-difference equations using an IMPES method. The equations 
are first derived in terms of flow potentials following the formulations used in BOAST 
simulation model (Fanchi et al, 1982) since in this formulation no iterations are required 
to solve the pressure equations. A subgrid system is described followed by a derivation 
of the finite-difference equations. The decoupled equations are also described. 

4.1.5.1 Fluid Flow Equations 

The two-phase flow equations in terms of flow potentials can be written for each 
phase as 

v^V* J = !(♦!*) (4.48) 
U l v "aim 

where the phase potentials are defined as 

^ a m = P a m - Y a m Z m (4.49) 

No source or sink terms are included in the above equations since wells are assumed to be 
connected only to the fracture system. 

The derivation of the finite-difference equation for this IMPES formulation 
follows Fanchi et al. (1982). The right-hand sides of Eq. 4.48 can be expanded for each 
phase as: 

! d(j) ! dBa 8P<xm A 4>m a S a m 
at

 +
C - i T

 (4
-
50) 

4> dPa
 Ba dPa 

Multiplying the oil equation by B0 and adding the water equation multiplied by Bw yields 

where Ct is the total compressibility defined as 

Ctm = "om Com + "wm Cwm "*"Cim (4.52) 
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In Eq. 4.52, c0, cw, and ^ are the oil, water, and rock compressibihties, respectively, and 
are defined as follows: 

dB 

'am a Pam 

and 

c„m = - S
J - ^ f i m

5 (4.53) a m B dp ' 
" a m " r a m 

c™ = J - # ^ (4.53c) 
♦ m * om 

Finally, the final equation can be derived by multiplying Eq. 4.48 for oil by BQ and 
adding Eq. 4.48 for water multiplied by Bw: 

Bo m V. [Xom V<Dom] + Bwm V. [Xwm (V^0m - V ^ J ] = (<|> Ce)m ^2SL (4.54) 

where <J>cowm accounts for the interplay of capillary pressure and gravitational forces, and 
is given by 

d> = p +(y -v Iz C4 55") 
cowm cowm V ' T O 'om-' m \-r.~>~>j 

and 

Cem = . v
C t !" n (4.56) 

l - yom zm Com 

The initial condition for matrix blocks is simply uniform phase potentials 
throughout. Initial saturations are determined according to gravity/capillary pressure 
equilibrium. 

The boundary condition for matrix blocks is continuity of flow potentials between 
matrix blocks and fractures: 

$am = *af (4.57) 

which also leads to capillary potential continuity: 

3>cowm = 3>cowf (4.58) 

4.1.5.2 Subgrid System 

Before deriving the finite-difference equations for matrix blocks, the subgrid 
system will be described. In the discussion of the decoupling method (section 4.4), there 
are no specific requirements as to how matrix blocks are discretized. In fact, the only 
requirement is that the matrix equations be linear over a time step. 

We adopted Beckner et al. (1991) approach to discretize parallelepiped matrix 
blocks into rectangular rings and layers as shown in Fig. 4.4. The lateral subgrid system 
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is similar to the MINC (multiple interacting continua) approach (Pruess and Narasimhan, 
1985; Wu and Pruess, 1986). In the vertical direction, matrix blocks are sliced into 
layers. In the lateral direction, the model partitions a matrix block into subgrids in such a 
way that interfaces between volume elements in the block are parallel to the nearest 
fracture. This choice of gridding assumes that the equipotential surfaces are 
characterized by having a constant distance from the nearest fracture. This subgrid model 
in the lateral direction is adequate for modeling uniform boundary problems, which is 
normally the case in a fracture gridblock. Subgrids in the vertical direction are designed 
to model gravitational effects. This approach also models fluid segregation in 
sunounding fractures by imposing different boundary conditions at different elevations. 
Therefore, a three-dimensional problem is modeled by a two-dimensional problem to 
reduce computer resources while at the same time maintaining adequate accuracy. 

4.1.5.3 Finite-Difference Equations 

The basic assumptions are those of a standard IMPES model (Chen, 1993). 
However, in this formulation, iterations are not required since all coefficients are 
evaluated at the old time level. Using the sub-grid system described above, detailed 
transmissibility calculations, especially those related to geometry, are described as 
follows. 

The discretized matrix equations can be written as: 

([B0 ATH0 + Bw ATHw]m AOom }jk + {[B0 ATV0 + Bw ATVw]m A0&1 }jk 

- Qwm jk + W* ce]m jk At<I>om j k 
5.615 At 

(4.59) 

THa and TVa are the horizontal and vertical transmissibilities, respectively. For flow 
between matrix subgrids, one-point upstream weighting is used: 

THaj+i/2k= THj+i/2k % a 
M-B/maj+lk 

+ (1 - COma) 
M- B/majk 

(4.60) 

For flow between the matrix block surfaces and fractures, the transmissibilities are 
defined by 

THm.f a = Swf THm.f ©m-fa 
M-B/maNU-1 

+ (l-C0m-fa) km ray^m wJJ 
(MlmaN* 

(4.61) 

where THm.f is the geometrical part of the transmissibility. The modification by Swf is 
for the partial coverage of a matrix by water in the fracture (Thomas et al, 1983). 0)m-fa 
is the upstream weighting factor. 0)m-fa is equal to one for flow from matrix to fracture, 
and normal matrix mobility is used. com.fa is equal to zero for flow from fracture to 
matrix, and relative permeability is evaluated at Smwj. In the vertical direction, the 
transmissibilities TVm.fa are calculated similarly. 

gravity: 
The first term on the right-hand side of Eq. 4.59, Cowm» is due to capillarity and 
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Cowm = [ B W A T H W AOCOW + B w ATVW AOcowJm (4 62) 

The boundary conditions for Eq. 4.59 can be obtained by requiring matrix/fracture 
potential continuity along the matrix surfaces: 

-jj+l An+1 
<&om =*of (4.63) 

where <J>0f is the fracture potential. Since fluid equilibrium is assumed within a fracture 
gridblock, fracture potentials are constant along the matrix surfaces. This is another 
reason why the matrix equations are expressed in terms of potentials rather than 
pressures. 

Once the potentials for matrix subgrids are known, water and oil saturations for 
each subgrid can be calculated according to the following equations: 

Water saturation: 

Vbmjk 

5.615 At 

Oil saturation: 

R w " m I w 

U5W/ \ rsw / 
= {[ATHW + ATVW]%DW

+1 }m jk (4.64) 
mjk 

So m jk ~ ! " S w m jk (4.65) 

The matrix/fracture fluid transfer rates can be computed from: 

Tm-f a = NM £ TVm-f a j 1/2 (*m+o jl " <&af / 
j=l 

+ NM X TVra^ a j M^H+1/2 l * m ajM«* " ̂ a f ) 

+ N M S T H m - f a NSub+V2 k (<I>a+m hUk - ^>af ) 
k=l 

(4.66) 

where NM is number of matrix blocks in a fracture gridblock, and Nsub and Msub are the 
number of subgrids in the lateral and vertical directions, respectively. The first term on 
the right-hand side of Eq. 4.66 represents the summation of matrix/fracture flow through 
the top face of a block. Similarly, the second term is the summation of matrix/fracture 
flows through the bottom faces, and the last term is for the four vertical faces of each 
layer. 

4.1.5.4 Geometrical Part of Transmissibilities 

As discussed, the subgrid geometry reduces a three-dimensional problem to a 
two-dimensional problem (see Fig. 4.4). Therefore, the formulations for the lateral 
transmissibilities are different from those for the vertical direction. The internal subgrid 
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transmissibilities within the matrix blocks are slightly different from those between 
matrix subgrids and fractures. 

Figures 4.5 and 4.6 show the subgrid indices and dimensions for the lateral and 
vertical directions, respectively. In UTDUAL, the input data required are the matrix 
block dimensions (Lx, Ly, and Lz), the number of subgrids in the lateral and vertical 
directions (Nsub and Msub), and volume fraction (fj) of each subgrid in the lateral 
direction. 

The volume fraction, fjk, for the jth ring and kth layer is defined by 

f j k = ^ ^ j = l, . . . ,N s u b 
v b m 

where Vbm is the bulk volume of the matrix block. We have: 

X fjk = Lk= 1,..., Msub 
j = i 

(4.67) 

(4.68) 

From Eqs. 4.67 and 4.68, the dimensions for each subgrid can be computed by 

Lx j+l/2k - Lx X fik 
L i= l J 

1/2 
k = 1,..., MSub (4.69a) 

and 

Lyj+l/2k- Ly I fik 
.1 = 1 

1/2 
k = 1,..., Msub (4.69b) 

The geometrical part of the transmissibilities for subgrid jk in the lateral direction can be 
calculated as: 

For the innermost subgrid: 

T H ^ = 8 x 0.001127 fc* hk kf1/2k + *?* hk kfm) 
\ Ljcj+Uc-Lx^ Lyjf-llj-Ljrjlj / 

TH1/2k = 4x0.001127 ^ h k k i ^ + L ^ h k k y l / 2 k | 
\ Lxi/ac Lyi/zic / 

For the outmost subgrid, Nsub (i.e., between the matrix subgrid and fractures): 

THM 1 - 8 x 0 001127 I ̂ i s ' l b k ^k kxNaAk ^N ûbk nk kyNsabk 
I Lx-LxN^-lk Ly-LyN^-llc 

(4.70a) 

(4.71b) 

(4.71c) 

in which fracture aperture is assumed negligible. 
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The geometrical part of the internal subgrid transmissibilities in the vertical 
direction are relatively simple (Fig. 4.6): 

TVjErt/z = 0.001127 2fi^Ly k 7 k + " 2 

hk+i + hk (4.72a) 
For top and bottom subgrids, the transmissibilities are: 

TVa/a = 0.001127 2 fj U ^ k m y l / 2 (4.72b) 
hi 

and 

TVjMsub+1/2 = 0.001127 2 fi^LykmyM-* (4.72c) 
hM,ub 

Again, in Eqs. 4.72a and 4.72b, fracture aperture is assumed to be negligible compared to 
hk/2. 

4.1.5.5 Decoupled Equations 

Equation 4.59 can be rewritten in the form of a linear system of equations: 

TTjk <&om j k _ ! + TIjk 3>om j . l k +TCjk<I>omjk +TOjkOomj+lk +TBjk^>omjk+1 

= C«ow + (+ Ceft -¥=**- ( ^ j k . O L jk) 

5.615 At (4.73) 

where 

TC = - TI - TT - TB - TO (4.74) 

The transmissibilities, Tl, TT, TB, and TO, can be computed by 
^ k = BomjkTVojk-l/2 + BwmjkTVwjk-l/2 , (4.75a) 

TBjk = B"mjk TV£jk+1/2 + B^mjk TV^^+i/2, (4.75b) 

TIjk = B "m j k TH" j . 1 / 2 k + B£m j k TH£, j . 1 / 2 k , (4.75c) 

T Ojk = Bomjk TH" j+l/2k + Bwmjk T H w j+l/2k (4.75d) 

Since the coefficients in Eq. 4.73 are treated explicitly, the decoupling idea 
discussed in Section 4.4 can be applied to solve for the matrix variables. The following 
two systems of equations can be solved independent of the fracture potential or 
saturations at the new time level: 
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h+1 h+1 n+1 n+1 n+1 
TT jk * o m j k , + TI jk * o m , l k + TC j k < W + TO* 4>om j+ik + TB j k * o m j k + i ( 4 ^ 

= Q o w + (<> Ce)jk m b j k ( < C j k " ^omjk) 
5.615 At 

with boundary conditions 

and 

h+1 n 

^om jk = <I>ofj = N s u b , k = 1,..., M s u b (4.77) 

j = 1, N s u b , k = l , M s u b 

~n+l ~n+l ~n+l ~n+l ~n+l 
TTjk ^om jk-1 + TIjk ^om j-lk + TCjk 3>omjk + TOjk 3>om j+lk + TBjk <J>0mjk+l 

5.615 At 

with 

~n+l 
^om jk = lj = N s u b , k = !»•.., M s u b 

j = 1, N s u b , k = l , Msub (4.79) 

Once the fracture potentials are known, the matrix potential for each subgrid can be 
updated by: 

n+l n+* I n+1 n \ ~ n + 1 

3>om = <2>om +l^>of -^of)^om (4.80) 

This is hoe the matrix potential, <J>om, is related to the fracture potential, <J>0f • 
Substituting Eq. 4.80 into 4.66, we arrive at equations for the matrix/fracture transfer 
rates (tm.f a) with only fracture unknowns. 

4.1.6 Formulation for Matrix Subgrids Using Diffusion Equation 

In this section, the second of the three options of matrix/fracture transfer flow 
calculations is described. This approach involves numerically solving the capillary 
diffusion equation for matrix blocks. The subgrid system for the IMPES method (Section 
4.5) is also adopted here. The major issue is to implement physically conect boundary 
conditions for the matrix blocks. Partial immersion of matrix blocks is taken into account 
by modifying the diffusion coefficient at matrix/fracture interfaces. 

4.1.6.1 General Formulation 

The capillary diffusion equation in finite-difference form using the subgrid system 
shown in Fig. 4.4 can be easily derived as 
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TT1 cn+1 I TT cn+1 . T P cn+1 , Tf\ cn+1 , T D cn+1 
1 \jk *wmjk-l + 1Jjk awmj-lk + IL-jk ^wmjk + l u j k awmj+lk + l i 3 jk ^wmjk+1 

_ 9m Vmbjk (cn+1 on \ 
Wwmjk " ^wmjk; 

5.615 At 

where TC is the summation of TT, TI, TO, and TB. Calculation of these coefficients is 
fairly straightforward, for example, TT can be computed by 

TTjk = TVjk.i/2 D(SWm)jk-i/2 (4.82) 

The remaining coefficients, TI, TO, TB, can be calculated similarly. The geometrical 
parts of the transmissibilities are exactly the same as those given by Eqs. 4.70 through 
4.72. In Eq. 4.82, D(Swm)jk-i/2 is computed by 

D(Swra)jk-i/2 = k = ^ f w j l c - i / 2 ( ^ ™ ) (4.83) 
Mom \ d b w m /jk-1/2 

To evaluate D(Swm)jk-i/2, one-point upstream weighted relative permeability is used. 
Since fluid potential is not solved for, capillary pressure is used instead to determine the 
upstream weighting. 

The initial condition for matrix blocks is fairly simple. If a matrix subgrid is 
below the oil-water contact, the subgrid has a water saturation of one. For those subgrids 
above the oil-water contact, the water saturation is distributed according to capillary 
pressure. 

The physically conect boundary condition for matrix blocks is potential 
continuity, which results in water saturation equal to 1 - Sor (= Swj) at the matrix/fracture 
interface if no capillarity is assumed for fractures: 

Swm jk = SWm Jj = Nsub. k = 1,..., Msub 

j = 1, Nsub, k = l , Msub (4.84) 

To take the partial immersion of matrix blocks into account, the diffusion coefficient at 
matrix block surfaces is modified by Swf: 

Dm.f j k = Swf k D(Swm)jk (4.85) 

where Swfk = SWf if no fluid segregation is assumed in the fractures. Details of the SWQC 
calculations due to fluid segregation in fractures will be given later in this section. 
Verification of the modified diffusion coefficient will be described in Section 4.10, where 
the results of modeling an ideal fractured reservoir are described. 

Matrix/fracture transfer flow rates can be computed by: 
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Njnb C C 

Xw m-f = NM SwfiT D(Swm)jl/2 W1"u . ^ 
j -1 h l / 2 

Nsub c c 

NM SwfMrt+lS ^SwmljM^b+l/Z-^V—TT—~ 
j = 1 hMsub/2 

+ N M x Swf kD(sWmkub+i/2kSwmJ: s r n N""- 1 

k=l h ^ 

(4.86) 

The three terms on the right-hand side of Eq. 4.86 are for matrix/fracture transfer flow 
through top, bottom, and vertical faces, respectively. Specifics about the implicitness of 
the diffusion coefficients are presented in the following two sections. 

4.1.6.2 Explicit Diffusion Coefficient 

The easiest way to solve Eq. 4.81 with boundary conditions given by Eq. 4.84 is 
to evaluate D(SWm) at the old time level. Subsequently, we have a linear system of 
equations with (Nsub x Msub) unknowns, which can be solved easily. No iterations are 
necessary if Swf at the old time level is used in the D(Swm)m-f calculations. Otherwise, 
iterations are required. 

In order to ensure stability, this option of solving diffusion equation require 
somewhat smaller time step sizes compared to those of the implicit method described 
below. 

4.1.6.3 Implicit Diffusion Coefficient 

A more stable approach is to implicitly solve Eq. 4.81 using the Newton-Raphson 
method. Equation 4.81 can be rewritten in terms of residuals: 

R(Sw m)=0 (4.87) 

where R and Swm are arrays with Nsub x MSUb elements. Applying the Newton-Raphson 
method to Eq. 4.87, we have the following linear system of equations: 

ASwm=J-1R(Swm) (4.88) 

where J is the Jacobian matrix. Each element of J is evaluated as: 

Jij = J^~ (4-89) 

Since the number of subgrids used for matrix blocks is usually small to moderate, 
a direct solver is prefened to solve Eq. 4.88. 
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4.1.6.4 Gravitational Effect 

Compared to capillary pressure, the gravitational effects are normally small in a 
oil/water countercunent imbibition process (Chen, 1993). However, gravity has a larger 
effect on the fluid segregation within fractures, which consequently affects the oil/water 
imbibition through the boundary conditions. 

The first option in UTDUAL is to assume that oil and water in the fracture system 
are dispersed and that there is no sharp fluid interface within the fracture grid. Therefore, 
all surface subgrids experience the same imbibition process, and only one value of 
fracture water saturation is needed in Eqs. 4.85 and 4.86. 

The second option is that fluid segregation is assumed to occur in the fracture 
system and that there exists a sharp fluid interface within the fracture. To implement this 
option, we first calculate the oil-water contact in a fracture gridblock: 

hW0C = SwfLz (4.90) 

The water saturation in a fracture at an elevation conesponding to a matrix subgrid can be 
determined by: 

Swfk = « 

1 Lz - 2_. hj > hwoc 

? ( 4 . 9 1 ) 

0 Lz - 2_. hj < hwoc 
j=i 

With this option, surface subgrids in the vertical direction experience a different 
imbibition processes, and imbibition takes place only in those subgrids below the oil-
water contact. 

4.1.7 Results from Single Matrix Block Studies 

In UTDUAL, the third option of calculating matrix/fracture transfer flow is to 
incorporate the results from single matrix block studies. The motivation to this approach 
is that any single porosity simulator can easily be modified to model a dual porosity 
system, and very accurate results (analytical or numerical) can be obtained from single 
matrix block studies. Details of this option are described in this section. 

In Chapter 3, the average water imbibition into a matrix block under totally 
immersed condition is analyzed in terms of elapsed time. Two flow periods are identified 
to characterize the imbibition process. To incorporate these flow characteristics into 
UTDUAL, the average water imbibition rate is instead expressed in terms of average 
water saturation in the matrix block: 

Uwm-f = f{SWmave) (4.92) 

To account for the partial immersion of a matrix block, uwm.f is conected by SWf: 

Xw m-f = N M A m . f S w f f(SWm ave) (4.93) 

where Am.f is the total surface area of a matrix block exposed to fracture flow. 
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Additional flow rate due to compressibility can be calculated by assuming that the 
matrix pressure changes at the same rate as that in the fracture. In other words, 
instantaneous pressure equilibrium between matrix blocks and fracture is assumed. Dutra 
and Aziz (1991) calculated the time required to reach pressure equilibrium to be less than 
a minute for a matrix block with dimension of 10 ft, compressibility of 10"5 psr1, porosity 
of 0.30, permeability of 10 md, and fluid viscosity of 1.0 cp. For most simulation 
purposes, this can be considered instantaneous. 

4.1.8 Model Verification 

In this section, several test cases are shown to verify the mathematical 
formulations derived earlier in this chapter. These cases are also used to ensure the 
conectness of coding. The first case is the Buckley-Levenett (1942) problem. This case 
is to ensure the accuracy of the single porosity part of UTDUAL. For a single phase 
problem, the results of UTDUAL are compared with Wanen and Root's (1963) analytical 
solution in which pseudosteady-state matrix/fracture transfer flow is assumed. The new 
transient solution developed in Appendix D is also used to test UTDUAL for the 
accuracy of the subgrid geometry for transient flow in matrix blocks. 

4.1.8.1 Single Porosity Waterflooding 

Without capillary pressure, the one-dimensional incompressible waterflooding 
case is the well-known Buckley-Levenett (1942) problem. To simulate this problem, 
only the fracture system of UTDUAL is used. Table 4.1 lists the input data for the 
simulation run. Figure 4.7a shows the fractional flow curve and its derivative with 
respect to water saturation used to generate the analytical solution. The comparison 
between the Buckley-Levenett solution and the simulation results is shown in Fig. 4.7b 
for dimensionless time equal to 0.1 and 0.175. Using 500 gridblocks, the simulation 
results match the analytical solution well except at the displacement front, where 
numerical smearing occurs. 

4.1.8.2 Wanen and Root (19631 Solution 

Wanen and Root (1963) were first to introduce the dual porosity model to the oil 
industry. All subsequent models (Gringarten, 1982; Kazemi et al, 1976) for both 
pressure transient analyses and simulation have been modifications of this model. In 
Wanen and Root's model, fluid flow between matrix blocks and fractures is treated by a 
pseudosteady-state model. A detailed derivation of this analytical solution is given in 
Chen (1993). In additional to permeability and skin, two parameters defined by Warren 
and Root to characterize transient flow in a dual porosity reservoir are called the 
storativity ratio (co) and interporosity parameter {X) defined by 

(<t> c)f 

(<1> c)m + (<|> c)f 

and 

A. = 0 ^ 2 (4.95) 
kf 

97 



where rw is the wellbore radius. According to Eq. 4.94, co equal to one represents that 
single porosity reservoir with only fracture properties, and zero with only matrix 
properties. The value of X is usually very small because km is usually several orders of 
magnitude smaller than kf. Both co and X have large effect on the performance of a dual 
porosity reservoir. Figure 4.8 shows a typical pressure drawdown curve of Wanen and 
Root's (1963) model in dimensionless space. The skin factor and wellbore storage are set, 
to zero. As shown in Fig. 4.10, the two parallel straight lines represent the early and late 
time behavior of a dual porosity system. During the early flow period, only fractures 
affect reservoir behavior, while contributions from the matrix blocks are minimal. After 
a transition time, the reservoir again behaves as a single porosity reservoir with total 
system properties. 

Table 4.2 lists the variables used in Wanen and Root's pressure buildup studies. 
To obtain proper parameters for simulation runs, the following assumptions are made: the 
matrix blocks and fracture have equal compressibilities (cm = Cf), and the matrix blocks 
have dimensions of 10 x 10 x 10 ft3. Based on these assumptions, calculated matrix and 
fracture porosities are listed in Table 4.3. The shape factor, c, is calculated according to 
Eq. 2.10 to be 0.12 ft-2 and the matrix permeability is 0.0167 md from Eq. 4.95. 

Figure 4.10 shows a comparison between Wanen and Root's solution and the 
results of UTDUAL with the radial flow option. No matrix subgridding was used in 
order to mimic Wanen and Root's model. As shown, excellent agreement is reached for 
storativity ratios ranging from 0 to 1. The agreement between the analytical and 
numerical solutions for the case of co = 1 further proves the accuracy of the single 
porosity part of the simulator. 

4,1,83 New Analytical Solution 

It has long been known (Gringarten, 1982) that Wanen and Root's (1963) model 
is not capable of modeling transient flow within matrix blocks. Gringarten (Gringarten, 
1982) summarized some of the analytical solutions which account for transient matrix 
flow within one-dimensional and spherical matrix blocks. A general form of the 
analytical solution for a dual porosity model with matrix blocks of any geometry is 
derived in Chen (1993). This solution reduces to Wanen and Root's model if their 
assumptions are made. It can easily be proven that the solution also reduces to those of 
Gringarten (1982) for the same matrix geometries. 

The average pressure in matrix blocks is first expressed in terms of a convolution 
integral between the solution of the diffusivity equation for matrix blocks with unit 
boundary condition and rate of the pressure change in the fractures. The diffusivity 
equation for a slightly compressible for the fracture system is then solved using Laplace 
transform. The solution is expressed in the general form for two different cases: infinite 
and finite reservoirs with no-flow or constant outer pressure boundary conditions. 
Stehfest's (1970) algorithm is used to convert the solution in Laplace space to real time. 

In the case of square matrix blocks, the diffusivity equation for a matrix block 
with unit boundary condition is solved using separation of variables (Chen, 1993). 
Coupling with the general solution of the fracture equation results in a solution for an 
infinite reservoir with no wellbore storage and skin effects. Figures 4.10a and 4.10b (X = 
10-3 and 10-6) show comparisons of the dimensionless pressure drawdown between 
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Wanen and Root's model and those with transient flow in square matrix blocks. The 
curves between co = 0 and co = 0.001 are not distinguishable because in those cases 
fracture storativity is extremely small and matrix transient flow dominates the early time 
flow period. The long transition flow period dominates the pressure drawdown curve. 
After a transition flow period, the reservoir behaves as a homogeneous system with the 
total reservoir property [(0 ct)m+f]- The pressure derivative curves shown in Fig. 4.10c 
also support these observations. 

Figure 4.11 compares the analytical solution with transient flow in matrix blocks 
and the results from UTDUAL. In the UTDUAL runs, the properties listed in Tables 4.2 
and 4.3 are used. To model transient flow in matrix blocks, eight matrix subgrids are 
used. As shown in Fig. 4.11, excellent agreement between the analytical solution and 
that of UTDUAL is achieved. The small difference at small horner time is due to finite 
time step and gridblock sizes. However, these differences disappear after a very short 
period of time. 

4.1.8.4 The Sixth SPE Comparative Solution Project 

UTDUAL is also applied to the Society of Petroleum Engineers (SPE) 
Comparative Solution Project for the simulation of a naturally fractured reservoir, and for 
the case of waterflooding. This is a five-layer cross-sectional problem with 10 horizontal 
grids and two wells (one producer and one injector). The basic rock and fluid data are 
given in Firoozabadi and Thomas (1989). 

Figure 4.12 shows a comparison of the results of UTDUAL and those of 
simulation of the participating companies. In this case, no matrix subgrid is used because 
the majority of the simulators used by the participating companies did not have this 
option. As shown in Fig. 4.12, UTDUAL's results fall within the band of the SPE results 
except for a small discrepancy at late time. 

4.1.8.5 Comparison with Commercial Simulator. VIP-DUAL 

VIP-DUAL is a black oil, dual porosity model by Western Atlas. The problem 
tested was Kazemi et al.'s (1976) quarter of five-spot reservoir (Section 4.10.2). Since 
VIP does not allow matrix subgridding, only no matrix subgridding is used in UTDUAL 
runs. Figures 3.13a to 3.13c show the comparisons of producing water-oil ratio and water 
saturation profiles (for both matrix and fracture) among three models. As expected, 
results are identical. 

4.1.9 Simulation Studies of an Ideal Fractured Reservoir 

In this section, the results of simulation studies of an ideal fractured reservoir are 
presented. The ideal fractured reservoir is configured in such a way that the properties of 
individual fractures are known. Two different methods are used in the simulation studies. 
The first method used is the IMPES model developed for single matrix block studies to 
conduct fine-grid simulations by discretizing both the fractures and matrix blocks. This 
study also serves as a comparison standard for verifying the dual porosity concept for 
modeling fractured reservoirs. The second method is to model the same reservoir using 
UTDUAL. Sensitivity studies describing the effects of different parameters have on 
fractured reservoir are also presented. 
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4.1.9.1 Problem Description 

Figure 4.14 shows the configuration of the ideal fractured reservoir, in which two 
sets of fractures with known properties are orthogonal. This resembles a quarter five-spot 
reservoir with two wells (one injector and one producer). 

Matrix blocks are assumed to be uniform throughout the whole reservoir and have 
dimensions of 10 x 10 x 10 ft. The fracture capillary pressure is assumed to be zero, and 
the relative permeability curves are straight lines with zero residuals. Other reservoir data 
are listed in Table 4.4. All data are adopted from Beckner et al. (1988) except for the 
fracture permeability and reservoir size. 

In this reservoir, 97.4% of the pore volume is in the matrix, typical of a fractured 
reservoir. The system is assumed to be incompressible. Therefore, the main oil recovery 
mechanism is countercunent imbibition. Since the reservoir size is fairly small, the 
injection rate is set to 0.25 STB/D. Constant bottomhole pressure equal to the initial 
pressure is assigned to the production well. 

4.1.9.2 Fine-Grid Simulation Results 

The reservoir is first simulated using a single porosity model by discretizing both 
the fractures and matrix blocks (so-called fine-grid single porosity simulation). The 
IMPES model developed for single matrix block studies is used for this purpose. This 
simulation serves as a comparison standard for dual porosity results since all recovery 
mechanisms are taken into account. However the major disadvantage of this simulation 
approach is the amount of detail required, as well as a large cost in computer time. 

In all fine-grid simulation runs, the fractures are only discretized in the 
longitudinal direction while matrix blocks are discretized into a two-dimensional grid 
system. Figure 4.15 illustrates a typical grid anangement in which each matrix block is 
discretized into 3 x 3 grids. 

To ensure accuracy, grid refinement studies are first conducted. The simulation 
result (oil recovery) is shown in Fig. 4.16 for matrix grids ranging from 1 x 1 to 7 x 7. 
The total number of grids used for the reservoir ranges from 121 to 1681. As shown in 
these figures, there is significant improvement from 121 grids to 441 grids while only 
small changes occur in the oil recovery between 441 and 1681 grids. 

The case with a 1 x 1 matrix grid conesponds to a conventional dual porosity 
model with no matrix subgridding. Oil recovery and water cut are shown in Figs. 4.17a 
and 4.17b for matrix permeabilities ranging from 0.02 to 20 md. These figures 
demonstrate the effect that matrix permeability has on oil recovery and water 
breakthrough time of a fractured reservoir. These results are also used for comparing 
results with the dual porosity (UTDUAL) runs. 

4.1.9.3 Dual Porosity Studies 

The same reservoir as in the previous section with identical matrix subgridding is 
simulated using UTDUAL. The equivalent permeability (kf, see Table 4.4) for the 
fracture system is calculated using Parsons' (1966) formulation, and an equivalent 
porosity ((|>f) is computed by dividing the fracture pore volume by the reservoir bulk 
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volume. No modification of matrix block properties was made. In all runs, 5 x 5 fracture 
grids are used to ensure that each gridblock encompasses at least one matrix block. All 
three options of calculating matrix/fracture transfer flow are used. 

IMPES Option 

The IMPES method option to calculate matrix/fracture flow is first used to model 
the ideal fractured reservoir. 

For the case of one matrix subgrid, UTDUAL reduces to a conventional dual 
porosity model. Figures 4.18a and 4.18b show comparisons of oil recovery and water cut 
from runs made using UTDUAL vs. fine-grid single porosity simulations for matrix 
permeabilities ranging from 0.02 to 20.0 md. The water saturation profiles along a line 
between the production well and the injection well are shown in Figs. 4.18c and 4.18d. 
As shown in these figures, excellent agreement between the two approaches is obtained. 
Similar results are shown in Figs. 4.19a to 4.20b for runs conesponding to with 3 x 3 and 
7 x 7 matrix grids in fine-grid simulations, respectively. Again, excellent agreement is 
achieved between runs by UTDUAL and fine-grid ones for the same level of accuracy. 

Diffusion Methods 

UTDUAL with the diffusion equation option is also used to model the ideal 
fractured reservoir. Figures 4.21a and 4.21b show comparisons between results of the 
IMPES option and the diffusion equation option, for cases with one and four matrix 
subgrids. Again, the case with one matrix subgrid conesponds to a standard dual 
porosity model. The case with four subgrids produces more accurate results. As shown 
in these figures, excellent agreement is obtained. 

If saturation continuity between matrix blocks and fractures is used as the matrix 
boundary conditions, considerable differences in oil recovery and water cut are 
introduced as shown in Figs. 4.22a through 4.23b for different numbers of matrix 
subgrids. With this method, the water relative permeability at the matrix/fracture 
interface is equal to Swf which is considerably smaller than kwm at Swmj at early time. 
Consequently, water imbibition rates into the matrix blocks are small, which results in 
earlier water breakthrough and low recovery. 

Results from Single Matrix Block Studies 

The third option in UTDUAL, using the results of single matrix block studies to 
calculate matrix/fracture transfer flow, is also applied to model the ideal fractured 
reservoir. Before describing the simulation results, we will examine the water saturations 
and matrix/fracture transfer rates calculated by UTDUAL with the capillary diffusion 
option. Figure 4.24a shows the fracture water saturation for each gridblock along the 
diagonal line connecting the injector and producer as a function of the displaceable pore 
volumes injected. Note that the saturation in each gridblock increases in a similar pattern. 
The matrix/fracture transfer rate (qWm-f) in each fracture gridblock divided by the fracture 
water saturation (Swf) in that grid versus the average water saturation in matrix blocks is 
shown in Fig. 4.24b. The agreement of all curves in Fig. 4.24b proves that every 
gridblock experiences a similar imbibition process. A comparison of the transfer rate in 
grid (1,1) with that of a single matrix block under totally immersed conditions is shown 
in Fig. 4.24c. As expected, both agree very well. 
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Results of the UTDUAL simulation with this option are shown in Fig. 4.25 in 
terms of water cut versus displaceable pore volumes injected. Two different runs with 
results from single matrix block studies using 40 grids are shown in this figure. 

Further Results 

For the rest of this section, we turn our attention to the accuracy and efficiency of 
UTDUAL in further modeling the same ideal fractured reservoir. The results of grid 
refinement studies (for subgrids ranging from 1 to 8) are shown in Figs. 4.26 to 4.27 for a 
matrix permeability of 2.0 md. Oil recovery and water breakthrough time converge 
rapidly as the number of subgrids increases. The curves for oil recovery and water cut 
with 4 and 8 subgrids are almost indistinguishable (Figs. 4.26 and 4.27). Note that the 
fine-grid simulation requires finer subgridding to achieve the same level of results as the 
dual porosity model. 

In the fractured reservoir under consideration, each matrix block experiences three 
different flow periods. The first period is single phase flow before injected water reaches 
the matrix block. The number of matrix blocks undergoing this flow period decreases as 
the water front advances from the injector to the producer. The second flow period is 
from the time when the injected water first contacts the block surface to the time when 
the water front within the matrix block reaches the block center. This flow period 
conesponds to the infinite-acting flow period in single matrix block studies. A large 
number of grids is needed to obtain good accuracy. The last flow period corresponds to 
late flow in the matrix block. It can be observed that the water saturation within the 
matrix block during the late flow period changes fairly uniformly throughout the whole 
block. Therefore, only a small to moderate number of grids are needed to reach accurate 
results. The number of matrix blocks undergoing the second flow period is relatively 
small compared to the other two flow periods. Therefore, overall accuracy is controlled 
by those matrix blocks undergoing the first and third flow periods, during which only a 
small to moderate numbers of matrix subgrids are required. 

However, matrix subgridding may still be necessary for low permeability 
reservoirs. Figure 4.27 shows the relative difference between UTDUAL runs with matrix 
subgrids and without subgrids. It is noted that the difference decreases as matrix 
permeability increases. For a matrix permeability of 0.02 md, the maximum enor 
without matrix subgrids is over 30%. 

As shown in Fig. 4.29, computer time increases linearly as the number of subgrids 
increases. Figure 4.30 shows the computer time comparison between two different 
options in UTDUAL. The diffusion option is about one-third faster than the IMPES 
option while using single matrix block results is almost as fast as single porosity 
simulation. 

4.1.9.4 Sensitivity 

In this section, we study the effects of several variables on the performance of 
fractured reservoirs. These variables include Coats' (1989) pseudo-capillary pressure for 
the fracture system, fracture porosity and permeability, matrix permeability and capillary 
pressure, matrix block size, matrix boundary conditions, and injection rate. The effects of 
some of the variables, such as matrix permeability and matrix block boundary conditions, 
were studied earlier. For the following studies, the base case is the ideal fractured 
reservoir described in Section 4.1.9.1. Two matrix subgrids are used to minimize 
computational cost. 
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Coats' (1989) pseudo-capillary pressure curve for the fracture system is used to 
account for phase segregation due to gravity. Figures 4.31a and 4.31b show differences 
with and without the pseudo-curves in terms of the oil recovery and water cut. As shown, 
there are no substantial differences between the two. 

The effect of matrix block size on fractured reservoir performance is similar to 
those of matrix permeability. Since permeability and gridblock size are inversely 
proportional in the calculation of transmissibilities, higher recovery and later 
breakthrough time result from smaller matrix block sizes, as shown in Figs. 4.32a and 
4.32b. 

Normally, higher injection rates result in lower recovery and faster water 
breakthrough. These situations are more drastic in fractured reservoirs. As shown in 
Figs. 4.33a and 4.33b, an injection rate of 25 STB/D results in nearly instantaneous water 
breakthrough and a lower recovery curve. Clearly, for fractured reservoirs, low injection 
rate is desired to reach high oil recovery since all injected water is imbibed into matrix 
blocks to displace oil. 

The effect of fracture porosity on reservoir performance is obvious. Higher 
porosity results in higher recovery and slower water breakthrough (Figs. 4.34a and 
4.34b). 

To study matrix capillary pressure effects on fractured reservoir behavior, the base 
case capillary pressure is multiplied by 10 and 0.1, which results in two different Pcm 
curves. Oil recovery and water cut with these Pcm curves are shown in Figs. 4.35a and 
4.35b. It is obvious that higher Pcm results in higher oil recovery and slower water 
breakthrough, since more water is imbibed into matrix blocks with higher Pcm. 

In general, to waterflood a fractured reservoir, it is desirable that the reservoir has 
high matrix permeability and capillary pressure, and small matrix block size. To 
maintain a long water-free production period, a lower injection rate is desired to ensure 
that all injected water is imbibed. 

4.1.10 Simulation Studies of Fractured Reservoirs 

In this section, the results of modeling Kleppe and Morse's (1974) waterflooding 
experiments on a fractured core and Kazemi et al. (1976) quarter five-spot reservoir are 
presented. 

4.1.10.1 Kleppe and Morse's Experimental Data 

Kleppe and Morse (1974) reported imbibition oil recovery data for a single 
cylindrical matrix block with an annular vertical fracture. The matrix block was 9.87 cm 
in diameter and 122.8 cm in height. Table 4.5 lists the rest of their data. The relative 
permeability and capillary pressure data in Kleppe and Morse's paper are tabulated in 
(Beckner et al, 1987). The constant water injection rate at the bottom of the core was 3.3 
and 35 cm3/min for their low- and high-rate tests, respectively. 

Kleppe and Morse's experimental data have been modeled by several researchers 
using either fine-grid single porosity simulation or the dual porosity models. Beckner et 
al (1987) simulated these experiments using a single porosity simulator. Straight-line 
relative permeability and zero capillary pressure were assigned to fracture gridblocks. No 
specifics about the matrix/fracture interface condition were given. Their results agreed 
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well with the low-rate experimental data but showed almost none of the rate dependency 
necessary to match the high-rate test. Coats' (1989) fine-grid simulation results, on the 
other hand, showed significant rate dependency. Theoretically, the imbibition process is 
independent of the flow rate in the adjacent fractures as long as there is sufficient water 
available for imbibition. However, the availability of water in the fracture depends on the 
injection rate. Dual porosity models were also used by Beckner et al. (1988) and Coats to 
model the experimental data. The results did not agree with the experimental data except 
for the early time results of the low-rate case reported by Coats. 

Before presenting the results of modeling these experiments using UTDUAL, a 
brief discussion of flow characteristics is in order. It is obvious that matrix/fracture 
transfer flow is capillary-dominated, and the gravity contribution is negligible for such a 
small system. If piston-like displacement (at the critical rate defined by Mattax and Kyte 
(1962)) in both the matrix and fracture is assumed, the water advance velocities are 0.236 
cm/min (11.1 ft/D) for low injection rate case and 2.508 cm/min (118.5 ft/D) for high 
injection rate, respectively. These velocities would be constant before injected water 
breaks through at the top of the core. For the low-rate case, the velocity is close to that 
calculated by Coats from Kleppe and Morse's data (11.0 ft/D). However, there is a 
considerable difference for the high injection rate (118.5 vs. 140 ft/D calculated by 
Coats). The water advance velocity in the matrix block is thus lower than that in the 
fracture for the high-rate case. However, from the straight line of Kleppe and Morse's 
data (Fig. 4.36a), one could easily conclude that a stationary saturation profile is 
developed as the injected water progresses along the fracture for both cases. Beckner et 
al (1987) also reached the same conclusion from single porosity modeling. 

The results of UTDUAL modeling Kleppe and Morse's data are shown in Fig. 
4.36a using 1 x 1 x 20 fracture grids and one matrix subgrid for both the low- and high-
rate cases. As shown, good agreement is reached for both cases. The slight difference 
between the simulation and experimental data for the high-rate case is believed to be the 
effect of transient flow in the matrix block. The comparison between the high-rate data 
and the results with two matrix subgrids is shown in Fig. 4.36b. Better agreement is 
achieved. Figures 4.36c and 4.36d illustrate the stationary saturation profiles from the 
simulation results, which agree with the observations of the experimental data 
(cumulative recovery from cure is a hnear function of injection rate). 

4.1.10.2 Modeling of Kazemi et al. (1976) Quarter Five-Spot Reservoir 

The results of modeling Kazemi et al. (1976) quarter five-spot reservoir are 
described in this section. The matrix and fracture relative permeability and capillary 
pressures are given in (1976) along with the relevant fluid properties. Matrix blocks are 
10 x 10 x 30 ft. A total of 64 (8 x 8) fracture gridblocks are used with Ax = Ay = 75ft. 
Water is injected into the fracture at 200 STB/D at the injector and oil is produced at 210 
STB/D at the producer. 

With one subgrid and using the dispersed fracture fluid option, the formulation of 
UTDUAL with the IMPES matrix option reduces to that used by Kazemi et al. Figures 
4.37a and 4.37b show comparisons of the producing water-oil ratio and water saturation 
profiles (matrix and fracture) for the results of UTDUAL and Kazemi et al. (1976). As 
expected, the results are essentially identical. 

The effect of matrix subgrids on this five-spot simulation is shown in Figs. 4.37c 
and 4.37d. There are substantial differences in the water breakthrough time and oil 
recovery between run with one matrix subgrid and two subgrids. However, not much 
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improvement is observed when increasing number of subgrids from two to four. This 
conclusion agrees with that made from the results of the ideal fractured reservoir in 
Section 4.9. This field scale modeling of fractured reservoir also suggests that matrix 
subgrid is absolutely necessary to accurately model matrix/fracture transfer flow, but only 
small to moderate number of subgrids is required. 

4.1.11 Summary 

A dual porosity simulator (UTDUAL) has been developed to model fluid flow in 
naturally fractured reservoirs. Applications of UTDUAL to this type of reservoir are also 
described. 

UTDUAL is a two-phase, three-dimensional dual porosity simulator designed to 
model waterflooding in fractured reservoirs. UTDUAL can also be used to model 
nonfractured reservoirs without code modification. Numerous well control schemes and 
automatic time step selection are implemented. The simulator is largely vectorized to 
take advantage of vector computers such as the CRAY at the Center for High 
Performance Computing at the University of Texas at Austin. 

Three different options were developed to model matrix/fracture transfer flow. 
The first option models fluid flow in matrix blocks using an IMPES method. The 
resulting matrix equations are mathematically decoupled from the implicit fracture 
equations, while implicitness between the matrix pressure and fracture variables is 
retained. This scheme greatly reduces the coding and computational effort. The second 
option employs a diffusion equation in which the primary variable is the matrix water 
saturation rather than pressure. The matrix equation is also decoupled from the fracture 
equations. For these two options, a subgrid system for matrix blocks is adopted to model 
a three-dimensional problem as a two-dimensional one. The third option uses the results 
of single matrix block studies, and is useful when such results are available. An 
instantaneous pressure equilibrium between matrix blocks and fracture is assumed for this 
option as well as for the option using the diffusion equation. These two options are most 
applicable for cases with high matrix permeability and/or small matrix block sizes. 

This section also presented model verification results. These included the single 
porosity Buckley-Levenett (1942) waterflooding case, Wanen and Root' (1963) single-
phase dual porosity solution, and a new analytical solution developed in this study that 
include transient flow in matrix blocks. UTDUAL was also compared to the SPE Sixth 
Comparative Project and commercial simulator (VIP-DUAL). Favorable results were 
obtained. 

An ideal fractured reservoir with known individual fracture properties was 
designed to test the accuracy of UTDUAL comparing fine-grid single porosity simulation 
results in which both matrix blocks and fractures are discretized. Sensitivity studies were 
also performed to study the effects of several variables on fractured reservoir behavior. 
These variables include fracture permeability and porosity, matrix capillary pressure and 
permeability, matrix block size, pseudo-capillary pressure, and injection rate. 

UTDUAL was also used to model Kleppe and Morse's (1974) waterflooding 
experimental data on fractured cores. For the first time, these experiments were 
successfully modeled by a dual porosity model for both the low- and high-rate cases. The 
results of modeling Kazemi et al. (1976) quarter five-spot reservoir showed that 
UTDUAL reduces to their model without matrix subgridding. 
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4.2 MATRIX-FRACTURE TRANSFER DURING STEAMFLOODING 
NATURALLY FRACTURED RESERVOIRS 

The purpose of the study presented in this section of the report was to perform a 
preliminary investigation of the rate of oil expulsion from matrix blocks by thermal 
expansion and capillary imbibition, in order to determine the apparent dominant transfer 
mechanism for inclusion into the dual porosity thermal model. 

4.2.1 Single Matrix Model 

The physical system considered in this study is formed by a parallelepiped matrix 
block swrounded by fractures on all sides. Only two phases, oil and water, are 
considered in this first approach. Both matrix and fractures are initially at equilibrium, 
with the matrix block at a given connate water saturation and the fractures completely oil-
filled. Oil-phase pressure is constant throughout. Water pressure in the matrix is lower 
than the oil pressure by the level of capillary pressure conesponding to the connate water 
saturation. Capillary pressure in the fracture is assumed to be zero at all times, as the 
characteristic capillary length for the fracture is much larger than that for the matrix. 

At time zero, the fractures are totally flooded by hot water and steam. Because of 
the high permeability of the fracture network, the hot fluid invasion is assumed 
instantaneous. The pore volume of the fractures is filled with hot fluid and the 
temperature is uniform along the fracture. The temperature difference at the fracture-
matrix interface will cause thermal energy to diffuse into the matrix, thus beginning to 
heat this portion of the system. Water only imbibes from the fracture into the matrix 
block, aided by the viscosity reduction from the temperature increase. Convection at this 
point augments the heat flow to the matrix. At the same time, oil is displaced to the 
fracture by both thermal expansion and capillary imbibition. 

4.2.2.1 Mathematical Formulation 

The single matrix study is carried by a fine-grid simulation on a regular geometry with 
fracture and matrix represented by two regions with different petrophysical properties. 
Figure 4.38 shows a schematic of the physical configuration considered. 

The governing equations from the conservation laws are 
Oil: 

a 
V - [ U V P 0 - Y O V Z ) ] = -

' ♦ s 0 ^ 

Water: 

+ £lo (4.96) 

V . [ X w ( V P w - Y w V z ) ] = -
3t 

r*s *\ 
w 

V Bw J 
+ clw (4.97) 

Energy: 
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V(XoBopoh0(VPo-YoAz) + X«B»p,hiVTVYwVz)] = 

v(<t>[poS0u0] + (H)prur} - V(?itVT) + qh (4.98) 
at 

where the mobility terms are given by 

* k r a k 

^ a = — — (4.99) 
l^aBa 

applied to both the matrix and the fracture systems. In writing the above equations the 
following assumptions were implicitly assumed: 

1. The flux of each phase is given by the multiphase extension of Darcy's law. 

2. Dispersion of mass and heat are negligible. 

3. Energy contributions from kinetic, gravitational, and viscous dissipation are 
negligible. 

4. Local thermal equilibrium between phases is reached instantly. 

5. No radiative heat transfer is present. 

6. No chemical reactions occur. 
The normal constraint equations must also be satisfied to complete the flow 

description: 

s o + s w = 1 

P c 0 W = P 0 - F w (4-100) 

As stated in Eqs. 4.96 through 4.98, the primary variables in the formulation adopted are 
oil pressure, water saturation, and temperature. Fluid and petrophysical properties do 
vary with these variables. Table 4.6 summarizes the property dependence used in this 
model. 

The boundary conditions applied to the governing differential equations are 

P0 (fracture) = Poi 

Sw (fracture) = Sw f 

T(fracture) = Th (4.101) 

aP0 aS w 8T 
= = — = 0 in the center of the block. (4.102) 

3n 3n Bn 
Initial conditions are 
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P o( t = 0) = Poi 

S w ( t = 0) = Sw i 

T(t = 0) = Ti (4.103) 

where P0i is the constant pressure in the fracture and initial pressure in the matrix. SWf is 
the saturation of the water-invaded fracture and SWi is the water saturation in the matrix 
when the flooding process begins. Swf will be typically 100% while Swi will conespond 
to the ineducible water saturation. Ti is the initial reservoir temperature, prior to any 
thermal activity, and Tn is the temperature of the injected hot water and steam. The 
boundary conditions in terms of derivatives are due to the lines of symmetry within the 
block. Symmetry is such that only one-quarter of a parallelepiped need to be considered 
for the solution of the entire block. 

Equations 4.96 through 4.98 along with the boundary conditions and constitutive 
relations presented in the previous section were solved numerically. The finite-difference 
versions of the equations were derived using a fully implicit formulation. The 
discretization in space was obtained using a first-order finite-difference in a point-
distributed grid. Discretization in time was carried out by a forward-difference first-order 
scheme. The interblock permeabilities, in the transmissibility terms, were calculated 
using a harmonic average, while the interblock conductivity was obtained by arithmetic 
average. Relative permeabilities are evaluated at upstream gridblock saturations. 

Since a fully implicit solution technique is employed, all terms were calculated at 
the new time level except for part of the accumulation terms. Solution is accomplished 
by Newton's method. 

Other features of the simulator include: 
• Both compressible and incompressible systems can be modeled, including 

thermal and mechanical compressibilities. 
• It accepts boundary conditions of constant potential or specified flux. 
• Both constant timestep and optimized variable timestep schemes can be used. 
• Petrophysical properties like porosity and permeability can be entered by field 

distributions. 
• Number of gridblocks is variable and block sizes can be entered in both point-

distributed or block-centered grid distributions. 
• The code is largely vectorized, so as to improve computation performance in 

computers equiped with vector facilities. 

4.2.2 Results 

The numerical simulator was tested on a unidimensional base case. A 
parallelepiped matrix block of 1 x 0.1 x 0.1m (3.2 x 0.32 x 0.32 ft) is considered in the 
preliminary simulations. The matrix block is open along the longest direction to fracture 
flow. The fracture open surface is represented by a constant potential boundary, 
regarding temperature, saturation and pressure. No-flow boundaries are imposed on the 
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symmetry planes and the remaining two surfaces are held at constant potential. The 
petrophysical and fluid PVT data used are summarized in Tables 4.7 and 4.8. 

A first set of runs was conducted to find out the proper mesh for the grid. 
Figure 4.39 illustrates the influence of the grid size on the accuracy of the solution. The 
curves show the distribution of water saturation along the matrix, which is the most 
sensitive of the primary variables. Results shown in the remainder of this report were 
obtained using a 150 x 1 x 1 grid. This mesh was found to yield solutions reasonably 
insensitive to further refinement. 

In order to investigate the interplay between different recovery mechanisms, runs 
were made according to the presence or absence of thermal expansion, capillary 
imbibition and convective flow of energy. 

Figure 4.40 shows the oil production rate at the block-matrix interface. All cases 
in the graph were run taking into account the expansion of oil, water, and rock. The four 
curves come from the combination of effects caused by heat convection and capillary 
imbibition. It is clear from Fig. 4.40 that heat convection does not affect oil production. 
The difference between the two curve-envelopes is caused by water imbibition. 
Imbibition was inhibited in the simulator by setting capillary pressure values to low 
levels. We arbitrarily set the capillary pressure curve as the values given in Table 4.7 
multiplied by a factor of 10~8. Not too suprisingly, convection does not seem to play a 
significant role in the recovery process. Its effects as a heat transfer mechanism are not 
significant, as illustrated in Fig. 4.41. The conclusion that convection does not affect the 
matrix-fracture interaction is important as it allows the development of heat transfer 
functions based entirely on heat conduction. The results in Figs. 4.40 and 4.41 were 
obtained for a particular set of property values, as specified before. More case runs are 
needed to support the above conclusion, as well as to state the range of its validity. 

In the next set of runs we separate the effects of expansion and imbibition as oil 
recovery mechanisms. Figure 4.42 depicts the oil production rate at the surface of our 
1x0.1x0.1 matrix block for possible combinations of these mechanisms. No oil 
production is possible if none of these mechanisms is active. The curve at the bottom of 
the graph reflects the fact that we used a very low (but not zero) capillary pressure to 
simulate lack of imbibition. All the other curves fall closely together, meaning that the 
two recovery mechanisms have overall effects that are of the same order of magnitude. 
This is less true for the late-time period, where imbibition seems to take over as the 
dominant mechanism. 

Since energy transfer is dominated by conduction and neither expansion nor 
imbibition interfere significantly with conduction, the energy flux will remain the same as 
in Fig. 4.41. Water invasion into the matrix presents a pattern very similar to oil 
production. As Wolff (1987) has pointed out, the pressure compressibility has little 
significance in these flows since pressure differences are relatively small. Figure 4.43 
shows the water inflow rate history according to the combination of expansion/imbibition 
mechanisms. Expansion contributes negatively to water invasion, being responsible for 
the difference in the two upper curves. The difference in volume alteration expels both 
oil and water from the matrix block to the fracture. Otherwise the curves in Fig. 4.43 
closely follow the oil production curves. 

Another interesting point to address is how much the imbibition process is 
affected by matrix heating. This question is important since imbibition and expansion 
have similar impact on oil recovery. Figure 4.44 shows the rates of water imbibition into 
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the matrix for three cases. For comparison purposes, we simulated imbibition-only drive 
with cold water injected into cold matrix (cold case), with hot water imbibing into a hot 
matrix (hot case), and with hot water brought in contact with a cold matrix (process case). 
It appears that imbibition drive in the normal hot water-cold matrix situation can be 
handled as if the process had occuned with a completely hot matrix. This can be 
explained by the higher characteristic time that imbibition presents compared to the heat 
diffusion time. Given this, it appears that the imbibition-driven oil flux can be calculated 
by the schemes used to estimate cold water imbibition with properties evaluated at the 
hot fluid temperature. 

4.2.3 Analytical Approximations 

The simplicity of the heat-driven mechanism suggests that some approximate 
analytical approaches can be used to estimate matrix-fracture transfer flow. Considering 
only conduction in the matrix, the energy equation can be written as 

V(\tAT) = -[<)) (p0s0u0) + { H )prur] (4.104) 
3tL 

which can be approximated by 

v 2 T = J_dT (4.105) 
a t 3t 

where v (4.106) 
ttt" <Kp0S0C0+pwswcw) + (1 ~ 4>)PrCr 

Boundary conditions to Eq. 4.105 in the matrix are as stated in Eqs. 4.101 through 
4.103. The temperature distribution resulting from the mathematical problem stated in 
Eq. 4.105 can be expressed in two different ways (Carslaw and Jaeger, 1959): 

TKtrT _ i 4 y W e ^ n - f i y n * 
Th-T - ^ n ^ f ^ l f 4/ cos 

(2n+l)TIx 
2/ (4.107) 

or 

M = i(-1)4erfcWx>+erfc(2n+ffix> 
T H - T , n=0 ifad 2VaJ (4.108) 

The energy transfer rate between the matrix and the fracture is given by 

aT 
qh = "X t Aax~x_! (4-109) 

where A is the matrix-fracture interface area. Notice that in order to be used as heat 
transfer functions in the energy governing equation for the fracture system, q^ in Eq. 
4.109 needs to be volume specific. 

qh = q/v (4.110) 
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From Eqs. 4.107 through 4.110 

qh — 7 , — 2 - e 4i2 

or 

-T 

l2 
n=0 (4.111) 

2 0 0 / I 2~\ + 24?w"Tvi) 
(4.112) 

The series in Eq. 4.111 converges rapidly for large values of oCtt/12, while the series 
in Eq. 4.112 converges for small values of the same group. Figure 4.45 illustrates the 
convergence of the series in Eq. 4.111 for the transport properties values used in the 
simulation. Similarly, Fig. 4.46 shows the convergence for Eq. 4.112. The first term in 
each series is sufficient to accurately represent the solution in different ranges , i.e., where 

f i s e i tne rmore than or.ess.han one. For this corresponds «o the time for .emperatu, 
diffusion to reach the center of the matrix block. This early time, the heat transfer 
function can be described by 

Qh = 
- XtAT 

l2 
l+2e" a,t<i 

l2 (4.113) 

while for times after the heat front reaches the center of the block, 

qh = ^ e -n
2att 

4 1 2 > 
(Xtt >1 

For tD^O.l Eq. 4.113 can also be simplified to 

qh l 1 \ l2 I 

(4.114) 

(4.115) 

with accuracy within 0.01%. 

Figure 4.47 shows a comparison in terms of heat flux rate between the analytical 
solution given by Eqs. 4.114 and 4.115 and the numerical results obtained from 
simulation. All parameters in the analytical expressions were evaluated at the initial 
temperature of the matrix block. The agreement between the solutions is remarkable, 
given that no adjustments were made in either the analytical model or the simulator. 

4.2.3.1 Oil Transfer Functions 

Expansion is one of the most important mechanisms of oil recovery from the 
matrix. Upon heating, the matrix block is pressurized by the differential thermal 
expansion between the fluids and the rock. The fluids are then expelled to the fracture 
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because of the pressure difference that is generated. Two transport processes occurs as 
this mechanism acts: heat diffusion into the matrix and the oil flow out of the block. For 
the range of parameters usually found in field applications, hydrodynamic diffusivity is 
much higher than thermal diffusivity. It is thus reasonable to assume that the pressure 
increases from heating are essentially instantaneously propagated throughout the matrix. 
Figure 4.48 illustrates the evolution of pressure profiles along the block as the heat 
advances. At early times there is a pressure buildup close to the boundary. The pressure 
increase is quickly propagated to the entire block. After this short buildup period, the 
pressure profiles show a diffusion pattern with a much slower rate. In fact, the 
characteristic time for the pressure depletion is the same as the characteristic time for the 
heat diffusion. This is a definite indication that oil expulsion is controlled by the slower 
transport process, which is heat transport. 

Assuming instantaneous propagation of thermally-created pressure differences, 
the oil expelled from the matrix is locally given by 

^ 0 = 1 ^ (4.116) 

For the whole matrix block, we integrate in space 

d%=Pv<i>-dr (4-U7) 

where 3 is an effective differential thermal expansion coefficient for the matrix block. 
From Eq. 4.107, the average temperature in the matrix is 

Th - T xf ~ (2n+lf 

and the expulsion rate for the expansion mechanism becomes as 

,°o -(2n+l)Tfatt 
qo = 8 ^ vAT X e ip (4.119) 

The expression given in Eq. 4.119 is adequate for the late-time solution. As 
before, an alternative expression can be used for the early-time period. 

There is a relation, implicit in the model, between the energy input into the matrix 
and the oil output: 

q . ( t ) = ^ f q k ( t ) (4.120) 

Associated with the oil production is a pressure gradient in the system. The 
overall pressure difference necessary to drive the oil out can be estimated from the 
expulsion rate, and is related to the temperature difference by 

AP = ̂ l ( T h - T i ) (4.121) 
K 
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Figure 4.49 shows a comparison between the analytical solution and the 
simulation results for the case when expansion is allowed only in the matrix block. 

4.3 MODELING GAS GENERATION BY CHEMICAL REACTION 

Gas generation can be an important mechanism of oil recovery from naturally 
fractured reservoirs by steam injection. The significance of gas generation lies in that it 
can recover oil that otherwise cannot be recovered by capillary imbibition and thermal 
expansion. 

Gas can be generated in several ways: solution gas vaporization, in-situ steam 
generation and gas generation by chemical reaction (Reis, 1990). Generally, gas 
generation by chemical reaction occurs after solution gas vaporization and before in-situ 
steam generation. If solution gas vaporization does not happen during a recovery process, 
gas generation by chemical reactions will have increasing importance. Hence, gas 
generation by chemical reaction should be considered in the modeling of oil recovery 
from naturally fractured reservoirs by steam injection. The following sections describe 
how gas generation by chemical reactions is treated in the single matrix thermal recovery 
model. This same approach can be used for dual porosity modeling. 

4.3.1 Kinetics of Gas Generation 

Akstinat's study (1983) shows that many reactions concerning gas generation 
happen in reservoir fluids and between reservoir fluids and rocks during steam flooding. 
The reactions that happen in reservoir fluids are aquathermolysis of oil and thermal 
cracking of heavy hydrocarbons (Meyer et al, 1982; Monin and Audibert, 1984). In 
water, the primary reaction is the dissolution of reservoir rocks. In both the cases, C0 2 is 
the major product. But these reactions happen at different conditions. Aquathermolysis 
and thermal cracking of heavy hydrocarbons proceed at relatively high temperatures, in 
most cases above 300°C. Dissolution of reservoir rocks can proceed at an appreciable rate 
at temperature as low as 200°C in acidic environments (Briggs et al, 1989). At thermal 
recovery conditions, C0 2 is more likely produced by reactions between reservoir water 
and rocks (Cathles et al, 1987; Gunter and Bird, 1988). 

4.3.2 Rate of Gas Generation 

Chemical reactions in geothermal systems convert unstable reservoir minerals to 
stable minerals. The stability of a reservoir mineral depends on temperature and other 
minerals existing in the system (Giggenbach, 1981). Carbonates, kaolinite and quartz 
become unstable at high temperature and low C0 2 pressure when they exist 
simultaneously in a geothermal system. Carbonates dissolve in water to produce C0 2 and 
quartz dissolves to buffer the pH. The reaction proceeds until one of the reactants is 
consumed completely. 

Gunter (1988) conducted the experiment of C0 2 production in tar sand containing 
calcite at 265 °C, he got maximum C0 2 concentration of 0.15 mole/kg water. In Dreher's 
(1986) experiment, approximately one mole of C0 2 was produced for each mole of water 
injected at 150°C. These studies suggest that the rates of reactions are high compared to 
fluid flow in reservoirs. 

Gunter (1988) proposed a kinetics to interpret his experiment results. He assumed 
the dissolution of quartz to be the rate controlling reaction and obtained a rate equation 

113 



for quartz dissolution. Cathes et al. (1987) developed a rate law for C 0 2 generation 
during steamflooding of Chevron's Buena Vista Hills reservoir. This rate law takes a 
similar form as Gunter's, and a complete set of kinetic parameters was given. We use 
their model to calculate the rates of gas generation in matrix blocks during steam 
injection into a naturally fractured reservoir. 

The reaction is assumed to be a first-order reversible reaction. The rate of reaction 
is calculated by: 

facoa = Pwko exp( -E/RT) (Ceqi -C) (4.122) 

The activation energy, E, given by Cathles is 15,000 cal/mole. The kinetic pre-
exponential coefficient, ko ranges from 0.025 to 0.3 sec1. 

The solubility of reservoir rocks, Ceql) is originally given by Giggebach (1981): 

log C^i = 6.491 - 6332.3/T + 0.00745 T (4.123) 

4.3.3 Gas Saturation 

The C0 2 concentration in water at chemical equilibrium generally increases as 
temperature increases. However, the solubility of C0 2 gas in water decreases as 
temperature increases and increases as pressure increases. At relatively high temperature 
and low pressure, the sum of C0 2 partial pressure at chemical equilibrium and saturated 
water vapor pressure can be greater than the reservoir pressure. In this case, a gas mixture 
of C 0 2 and steam will exist in the matrix blocks. To calculate gas saturation, the 
following assumptions are made: 

1. During formation of the gas phase, reservoir fluids are at phase 
equilibrium. 

2. C0 2 and steam form an ideal mixture. 

3. The oil vapor pressure is zero. 

In a given time interval, At, the change of amount of CO2 in a unit volume is 

Amoo2= A[C(pwSw + fowpoSo)] +rco2Ax (4 124) 

Where C is the concentration of CO2 in water, fow is the equilibrium 
concentration ratio of C02 in oil and water. fow can be estimated to be in the range of 1.0-
5.0 (Sayegh, 1990; Chung, 1986). 

At vapor-liquid phase equilibrium, the partial pressure of C0 2 in the gas phase, 
PC02> is 

Pco2 = Pg-P s (4.125) 

where steam vapor pressure, Ps, can be approximated by (Elder, 1981) 

114 



Ps = 0.085 - 0.794(T/100) + 2.203(T/100)2 

' \ (4.126) 
-1.976(T/100)3 + 1.503(T/100)4 

At vapor-liquid phase equilibrium, the concentration of C0 2 in water is related to 
the partial pressure of C0 2 in the gas by Henry's law: 

Ceq2 = Pco2/KH (4.127) 

where Henry's constant, KH, is given by 

log KH = 8.769 - 0.00745 T - 1517.7/T (4.128) 

At vapor-liquid equilibrium, the amount of C0 2 in water and oil can be calculated 
by 

m l = Ceq2(Pw Sw + f owPo SQ) (4 129) 

The amount of C0 2 in the gas phase, mgj is then 

mg = mco2 - mi (4.130) 

If mg < 0, the gas phase does not exist: 

Sg = 0 (4.131) 
When mg > 0, the gas phase saturation is: 

Sg = mg zRT/Pco2 (4.132) 

If the gas saturation exceeds its critical value, the gas phase will flow. However, 
since the rate of gas generation is slow and its viscosity is much lower than water or oil, 
gas saturation will not be appreciably higher than its critical value, Sgc. We have thus 
assumed that the maximum gas saturation attainable is Sgc. 

4.3.4 Single Matrix Block Thermal Recovery Model 

With the formation of gas phase, gas expels liquid to the sunounding fractures 
and fluid in matrix blocks becomes three-phase. Equations describing fluid flow in 
matrix blocks should consider gas flow when the gas phase is formed. However, because 
the matrix blocks are heated from a fracture, the gas begins to be generated from the 
fracture first. So, gas flow does not influence oil and water at the centers of matrix blocks 
where a gas phase has not yet been generated. Furthermore, due to the slow rate of 
generation and high mobility of the gas, gas flow has negligible influence on the flow of 
oil and water after the gas saturation reaches its critical value. Practically, it may thus not 
be necessary to consider flow of the gas phase. The flow equations for two phase flow 
can still be used in case of gas generation. The effect of gas generation can be treated by 
including the gas saturation in a three-phase relative permeability relationship. 

4.3.5 Equations of Fluid Flow and Heat Transfer in A Single Matrix Block 

The equations for oil and water flow are: 
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VWVP0-Y0VZ)] = | ( ^ ) 
3t\B0 / (4.133) 

and 

V{MVPw-YwVz)] = | { f ^ ) 
at\Bw / (4<134) 

The energy equation is: 

V{A„hop0Bo(VP0 - YoVz) +XwhwPwB^VPw - YWVZ)] 

= ^{^PoSoUo + PWSWUW] + (l-<|))prUr} - V ^ V T ) + qh 

Where mobihty A,a is: 

Xa = 

p • 
L cow 

Hofia 

Oil and water pressure are related by capillary pressure between oil and water 

p = p . P COW" *0 " *w (4.136) 

The heat of vaporization for gas is not included in the equation because the rate of 
gas generation is slow and the rate of heat transfer is high. 

4.3.6 Three-Phase Relative Permeabilities 

Three-phase relative permeabilities are calculated by Stone's model I (Stone, 
1970): 

krw = krw(Sw) (4.137) 

where, 

^ro("w?^ 

S0 = 

o w = 

Sg = 

-j ^ o Krow ^rog 

* (i-s;)(i-s;) 

^o " ^om 
1-owc " "om 

" w °wc 
l - o w c - bom 

Sg 
l - o w c - 5 0m 

(4.138) 

(4.139) 

(4.140) 

(4.141) 
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Two phase permeabilities krw, krow and krog are calculated by the following 
correlations: 

The three saturations 

4.3.7 Results 

krw 

Kfow= 

krog= 

c* _ o w — 

s* -
°ow — 

°og ~ 

— t-° Q* n w 

— J"L W>-> W 

. V-0 Q* now • fi. o w a ow 

. b-o o * nog 
- K o g O 0g 

^w " ^wr 
1 " ^wr " b 0 rw 

" o " ^>orw 
t " bwr " b 0 rw 

i>o " ^org 
1 - Og r - b o r g 

obey the relation: 

Sw + •S0 + Sg= 1 

(4.142) 

(4.143) 

(4.144) 

(4.145) 

(4.146) 

(4.147) 

(4.148) 

Equations 4.122 through 4.132 are used to calculate example times for gas to 
reach the critical saturation in the matrix blocks as a function of temperature at C0 2 
partial pressure of 2 bars, 5 bars and 10 bars, respectively. Initial C0 2 concentrations are 
assumed to be zero. Results are plotted in Fig. 4.50. Parameters used in the calculations 
are listed in Table 4.9. 

Figure 4.50 clearly shows that the time for the gas phase to be generated is very 
sensitive to temperature. At temperatures below 250aC, the gas phase cannot be 
generated, even at a C0 2 partial pressure of 2 bars. The three curves at different pressures 
indicate that the time increases greatly as C0 2 pressure increases. 

Equations 4.122 through 4.141 are used in our single matrix block thermal 
recovery model to simulate the process of gas generation in a single matrix block. The 
fractures are one dimensional with a fracture spacing of 4 m. 

Figure 4.51 shows the oil recovery for residual oil saturation of 0.1,0.15, and 0.2. 
The enhanced recovery is nearly proportional to the decrease of three phase residual oil 
saturation. 

Figure 4.52 shows oil recovery and gas saturation in the matrix blocks vs. time for 
gas generation in a single matrix block at temperatures of 275,280 and 290. Although the 
rate of gas generation strongly depends on temperature, the final recoveries are the same. 
Comparing the recovery and gas generation curves, it is easy to find that the rates of 
recovery are slower than the rate of gas generation. This means that gas phase expels both 
oil and water out of the matrix blocks. When oil saturation is high, gas primarily expels 
oil into the fractures. When oil saturation is low, gas primarily expels water into the 
fractures, and then oil is imbibed by water into the fracture. In both the cases, gas 
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occupies the pore volume originally occupied by residual oil and makes a fraction of 
residual oil flowable. 

Similar to Fig. 4.52, Fig. 4.53 indicates that the final recovery is not influenced by 
pressure but by the rate of gas generation. 

4.4 HEAT LOSSES TO OVERBURDEN AND UNDERBURDEN 
In thermal reservoir simulation, the energy balance equation is solved over the 

entire overburden-reservoir-underburden system. Heat losses to the overburden and 
underburden are by conduction only. Computing energy transfer for this entire system, 
however, can be very computationally expensive, as the temperature profile extends for a 
long distance from the reservoir. 

To solve this problem, Weinstein (1972) introduced a semianalytic method for 
thermal coupling of the reservoir and overburden, and extended this method for 
increasing and decreasing boundary temperature (Weinstein, 1974). Chase and O'Dell 
(1973) applied variational principles for heat loss calculations to the overburden and 
underburden. Incorporating this method into a thermal simulator, only a system of two 
nonlinear ordinary differential equations must be solved for each gridblock at the 
interface of the reservoir and overburden. Vinsome and Westerveld (1980) presented a 
simpler method by using a fitting function for the temperature profile into the overburden 
or underburden. This method is used extensively in cunent thermal simulation models. 

Although the Vinsome and Westerveld method has been shown to work very well 
for steamflooding applications, these applications have high rates of convective energy 
transfer within the reservoir. However, in the case of naturally fractured reservoirs, 
energy transfer through the reservoir is primarily by conduction, at a much slow rate than 
convection in conventional steamflood operations. We were thus concerned that the 
relative amount of heat conduction to the overburden and underburden would be high, 
and that perhaps the Vinsome and Westerveld method might not work as well. 

To test this out, we modeled two separate cases. Both were of a constant 
temperature fracture conducting heat into a reservoir (Fig. 4.54). The first model was a 
complete heat conduction calculation, numerically solving the thermal diffusivity 
equation in 2D for the combined reservoir, overburden, underburden system. The second 
model did a thermal diffusivity calculation into the reservoir, but used the Vinsome and 
Westerveld method to calculate heat transfer from the reservoir to the overburden and 
underburden. 

Figures 4.55 and 4.56 show the results of these runs. In these figures heat 
efficiency is defined as the amount of heat remaining in the reservoir as a fraction of the 
total amount of heat conducted from the fracture. Figure 4.55 shows cumulative heat 
efficiency vs. time. Figure 4.56 shows an instantaneous rate efficiency vs. time. Note 
that the complete finite difference result and the Vinsome and Westerveld method give 
essentially identical results. 

It should be noted that this test included heat conduction in both the longitudinal 
and transverse directions. The Vinsome and Westerveld method has often been 
compared against the Marx and Langenheim (1959) result, which neglected heat 
conduction parallel to heat flow in the reservoir. This test was thus more rigorous than 
has usually been applied to the Vinsome and Westerveld method. 
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4.5 NEW DUAL POROSITY THERMAL SIMULATOR 
A new 3D dual porosity simulator has been developed in this research. Both 

single porosity reservoirs and fractured reservoirs can be simulated using this simulator. 
Different options in handling fluids and heat transfer between matrix and fracture are also 
included in the new simulator. 

The new simulator can simulate typical field production problems such as primary 
depletion, pressure maintenance, evaluation of oil recovery by waterflooding, 
steamflooding, and steam stimulation. The oil recovery mechanisms of fluid 
displacement, capillary imbibition, gravity drainage, mechanical and thermal expansion 
of fluids in naturally fractured reservoirs, heat losses to the overburden and underburden 
all can be handled by the simulator. 

Using the dual porosity concept, a fractured reservoir is idealized as a 
discontinuous matrix system and a continuous fracture system. The fracture system is 
modeled much like a single-porosity reservoir. The difference is that there are fluids and 
energy source/sink terms for each gridblock that reflect the fluids and heat transfer from 
and to the matrix. 

Numerical instability is often encountered in simulating thermal processes in 
petroleum engineering. Therefore, a fully implicit scheme is used in both the fracture 
system and matrix systems in order to ensure stability. 

4.5.1 Mathematical Formulation 

The dual porosity concept assumes that the fractured reservoir is represented by a 
continuous fracture system and a discontinuous matrix system. The fracture system and 
the matrix system occupy the same computational grid-block. Applying material and 
energy balances to these two systems yield two groups of equations which are coupled by 
so-called transfer functions. The transfer functions characterize fluid and energy flow 
between the fracture and matrix blocks. 

The following are major assumptions incorporated into the simulator: 

1. Darcy's law applies to all fluids. 

2. Injection and production wells are all in the fracture system. 

3. Heat losses to the overburden and underburden are from the matrix 
system. There is no heat loss directly from the fracture system due to the 
small area in contact with the overburden and underburden. 

4. There is no steam generation in the matrix system, i.e., there are only 
water and oil phases in matrix. 

Applying material balance and Darcy's law to each phase in a 3D control volume 
of the fracture system, the following continuity equations for each phase are obtained: 
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Oil: 

.Mo 
{VP0-p0Vz) + a0-xomS=-

M 
B„ 

(4.149) 

Water: 

a B -(VPW -Pyz) + a +q — T f — 
d 
dt 

(4.150) 

Steam; 

J** ■(VP.-p.Vz) ~ Hs Hws ~\, M 
B, 

(4.151) 

where the terms %omf and zwn^ are the oil and water transfer rates between the fracture 
and matrix. The terms q^ and qws represent the volumetric rates of condensation of 
steam per unit of reservoir volume. These two terms are canceled by the multiplication of 
the water and steam continuity equations by the water and steam densities respectively 
and adding the two equations in solving the fracture system. This approach has been 
shown to improve stability in the modeling of steam injection processes. 

For the same control volume in the fracture, the energy conservation equation 
accounts for energy transfened and stored in the fluids and in the porous medium. 
Convection and conduction of thermal energy are two main mechanisms of energy 
transfer. 

Irlr Irk kk 
2*-pA{VP. - P . V Z ) + ^ P A ( V P „ -p.Vz) + ̂ p A ( V P s -p.Vr) 
H'o H'w r^s 

+khfV Tf+Qh- zhmf = f [<t>{S0p0Uo + Sj>wUw + SsPsUs) + (1- <t>)prUr]f 
(4.152) 

where pa is the density, ha is the enthalpy and Ua is the internal energy with a = o (oil), 
w (water), s (steam), and r (rock). 1chf is the thermal conductivity of rock and fluids and T 
is the temperature. Qhis the injected or produced energy. T^is the energy transfened 
between the fractures and matrices. 

Another governing equation is an equation of state for the steam/water mixture. 

T = T{PsJwhtnp = Psi (4.153a) 
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Ss = 0 and ^ = 0 when T < T^ 
dr 

(4.153b) 

These equilibrium equations state that the temperature of saturated steam is 
dependent upon the saturation pressure and that there is no steam phase when the 
temperature is lower than the saturation temperature. 

Using the same method as for the fracture system, we can obtain similar equations 
for the matrix system. In naturally fractured reservoirs, the matrix permeability is very 
low in comparison with the fracture. As before, the convection terms in the matrix system 
are neglected. Therefore the simplified equations become 

Oil: 

Tomf dt B„ 
(4.154) 

Water: 

Twmf dt (4.155) 

Neglecting the contribution of convection to energy transfer yields the simplified 
energy balance equation: 

^ V T m + a + V = f k ( ^ c /
o

+ 5 w P ^ + ̂ c 7 J ) + (l-0)prC/r]m (4.156) 

where Q, is the heat loss to the overburden and underburden. The Vinsome and 
Westerveld (1980) method is used to calculate heat losses. 

The initial values of pressure, saturation and temperature are specified at each 
point in the reservoir. Also we assume that the reservoir is initially at static equilibrium 
throughout the reservoir. Therfore we only need to specify the oil phase pressure at one 
elevation. Values of oil pressure at other points are then calculated from hydrostatics: 

Pofk=P°+pog{zk-z°) (4.157) 

where P°is the pressure specified at elevation z". 

The basic boundary conditions are given by 

n-ua =0 a = o,w,s (4.158) 

where n is the unit vector normal to the boundary. Equation 4.158 assumes that there is 
no mass flow through impermeable boundaries. 
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For the heat loss calculations, the boundary is at infinity with the condition being 

r ~ = r (4.159) 

where V is the initial reservoir temperature. 

To complete the governing equations for the fracture and matrix, the following 
constraints must be added to the system: 

^ = 1 (4.160) 

where j = f (fracture) or m (matrix), / = o, w, s (oil, water, steam). 

rcio=Ps-Po (4.161) 

PCoW=Po-Pw (4.162) 

where Pcg0 and Pcow are gas-oil and oil-water capillary pressures. 

4.5.2 Finite Differencing 

The Cartesian coordinate system is used to describe the simulated spatial domain. 
A block-centered finite-difference grid is employed and is numbered from (1,1,1) to 
(Nx,Ny,Nz) or from 1 to NxNyNz, where Nx,Ny,and Nz conespond to the number of 
gridblocks in each direction. The discretization in space is obtained using first-order finite 
differencing. Thus for the node i,j,k: 

^ / = / ; H M - / ; _ f M (4.163) 

The delta operator in the y and z directions are similar to that for the x direction. 
The descretization in time is carried out using a first-order forward difference scheme: 

A / = / u i - / T M (4.164) 

Employing the above operators to the oil conservation equation: 

[ATX fA P +ATY fA P +ATZfA {P -yZ)],+a - T , 
l * of x o y of y o i of :V 0 lo'-'tif Ho "omf si \f.K\ 

V A 0SO 
: A, J-2-
At ' B 
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For the mass balance of water and steam, the equations are similar, simply 
replacing the subscripts o with w or s. The transmissibilities for fracture-fracture flow, 
7X^,ry^,rZ^, are defined as: 

_AYjAZkr 1 

■+i 

_ AX{AZk r . i 

TZ. 

:,j+i,t A Y 

ri 

AX-AY 
*>>>•*+* AZ 

ri 
H.Wth. *+i 

where a denotes w, o, or s . 

The mobility X^. L is: 

x«»r°>«{%l;«-*4k 

(4.166a) 

(4.166b) 

(4.166c) 

(4.167) 

Similar equations for mobility in the y and z directions are straightforward. The 
paramete co^ is the upstream factor and is either one or zero depending on the flow 
direction of phase a. 

The energy conservation equation discretizes as: 

AxTXH0fAxP0+AyTYH0fAyP0+AzTZH^Az{Po - yoZ) 
+AxTXHofAxPw+AyTYHofAyPw + AzTZHofAz{Pw - ywZ) 
+AxTXHofAxPs + AyTYHofAyPs + AzTZHofA2(Ps - ysZ) 
+AxTXCfAxTf + AyTYCfAyTf + AzTZCfAzTf +Qh-XhH 

(4.168) 

= — [4>(pjs.u. +pwswuw+psssus) HI- <t>)prur\ 
At 

The transmissibilities of energy by convection are: 

AY:AZk , 
TXH*. , . =—J-—-kx 

(O, of 

fkrph" 
+(i-«»^) 

rkrph" 
V /* Ji+i,j,k 

(4.169a) 
af 
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= AXIAZJL 

*>.j+i* AY , yi>rii* 
ri 

co„ 
k£h 

< f A M 
+ (1-0)*) 

rK£h 
i,j+l,k 

(4.169b) 
of 

TZH. = ^IAYlk 
"fi.sri £z !ij,k+y2 

ri 

fl,~L\ 
(O, 

V 
k£h 

+ (l-coof)\ 
krph 

Ju* V JiJMlJaf 
(4.169c) 

One-point upstream weighting is also used in calculating heat transfer by 
convection. The transmissibilities of energy by conduction are calculated by: 

_ AT.AZ, 
AX. . hfri>* 

ri 
'f 

f AY , v<ri-k 

ri 

_ AX,A7. 
TZCf~~AZ~~khfi^ 'f 

(4.170a) 

(4.170b) 

(4.170c) 

The arithmetic average is used to calculate the interblock thermal conductivity. 

There are four finite-difference equations and one equihbrium equation at each 
gridpoint. The water condensation term can be canceled by adding the water and steam 
equations together. The auxiliary relationships help us to reduce the number of primary 
variables to four. We choose P0,SW,SS and Tf as primary variables. The remaining 
variables are all dependent variables. 

4.5.2.1 Solution Method 

By moving the right hand side of the governing equations, the finite-difference 
equations can be expressed in the form of residuals: 

R(X) = 0 

where X is vector of the primary variables: 

(4.171) 

xijk — 

»f 

V 
■V 

(4.172) 

•jk 

The nonlinear equations can be linearized and solved using the Newton-Raphson 
method. The iteration is defined by: 

JAX = - R (4.173) 
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where J is the Jacobian matrix formed by differentiating the nonlinear residual equations 
with respect to the primary variables: 

Ju = 

dRn! <?/?,. <?/?.. dR„ 

< 

dPoj 

dKi 
< 
dRTi 

dP-
oj 

Msi 

dSwj 

dKi 

dRTi 

Mf, 
dRwi 

dRTi 

dRsi 

ds. 

ds. 

ds. 
BR, 

dSL BTr. dS. ~W) fj 

(4.174) 

The Jacobian matrix and the residual equations are updated after each iteration. 
The iteration continues until the relative changes in primary variables are smaller than 
given tolerance criteria. 

An iterative solver is recommended here in solving the problem because the 
Jacobian matrices in multidimensional problems have large bandwidth. Even though 
direct solvers can also be employed in such problems, the low efficiency of calculation 
makes the application of the simulator limited. 

4.5.2.2 Time Stepping Algorithms 

Two time step options are implemented in the simulator — automatic time step 
control or constant time step size can be specified in the input data file. Although fully 
implicit solution techniques make the numerical solution stable under general conditions, 
there are, however, other limitiations that should be considered. In some thermal 
processes, arbitrary time step sizes may not ensure solution stability, or even 
convergence. Truncation enor is also controlled by time step size. Also, some important 
physical phenomena may be missed by using arbitrarily large time steps. 

The automatic time step algorithm implemented in the simulator uses the relative 
changes in primary variables to determining the time step size. The time step size is 
calculated from the most recent iteration and user-specified maximum time step size 
(Atmax) minimum time step size (Atmin), and allowable changes in primary variables 
(APotim,ASwlim,ASsUm,ATflim). The time step procedure is as follows. First calculate the 
maximum changes in the primary variables from the previous time step: 

AP;max=max{\AtP:iJk\} (4.175a) 

AS:max = max{\A1S:ijk\} 
ijk 

AS" ax - max 
s max .jk 

{Ks"4 

(4.175b) 

(4.175c) 
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XTf^T^f^ (4.175d) 

Then adjust the cunent time step size for the next time step by: 

AP,. AS ,. AS.,. A7\. 
ohm ^^whm shm Sim At"+=Atn-max\ 

AP" AS" AS" AT" 
o max wmax ^^s max f max 

(4.176) 

The new time step size is further checked after the cunent time step is finished. The new 
time step size and the results of iteration are accepted if the following conditions hold: 

AP^ZQAP^ (4.177a) 

AS::L<C2ASw?im (4.177b) 

A S r i ^ Q A S ^ (4.177c) 

AT-^C.ATflim (4.177d) 

where CX,C2,C3 and C4 are given constants greater than one. Otherwise, the time step 
size is recalculated using the same equations but with the cunent values of the primary 
variables. 

A constant time step size requires a smaller time step size to guarantee 
convergence. And although smaller time steps take more computer time, sometimes 
readjusting the time step size takes even more time. 

4.5.3 Matrix System Formulation 

Fluids and energy flow between matrix blocks and the fracture within the same 
grid. This flow is expressed in terms of the flow from a representative matrix block 
multiplied by the number of matrix blocks in the grid. The representative matrix block 
can either be treated as a single block or divided into small cells (subgriding). Only the 
outer cells of the block exchange fluid and energy with the fracture system. 

4.5.3.1 Subgriding 

Matrix blocks are discretized in such a way that the matrix block can be divided 
into rectangular rings in ther lateral direction and layers in the vertical direction as shown 
in Fig. 4.57. In the lateral direction, the interfaces between volume elements are parallel 
to the nearest fracture. This choice of gridding assumes that the equipotential surfaces are 
characterized by having a constant distance from the nearest fracture. In the vertical 
direction, the matrix block is sliced into layers to model gravitational effects. Fluid 
segregation can also be simulated by imposing different boundary conditions at different 
elevations around the fracture. This scheme is the same as Beckner et al.'s (1991) and has 
features similar to the MINC (multiple interacting continua) approach (Pruess and 
Narasimhan, 1985; Wu and Pruess, 1986). 
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4.5.3.2 Transfer Flow Using Diffusion Equation 

The two-dimensional diffusion equation can be used to describe the mass and 
energy flow in the matrix: 

d_ 
dX SfM^Mr ( 4 m > 

where Df and DT are diffusion coefficients defined respectively by: 

K K dP 

£>r*= — (4.181) 
mr 

mr = {\- <j>m)prmCm + <pm{SwmpwCwm + S0mpoCom) (4.182) 

No-flow boundary conditions are along the centerline of the block. The continuity 
of capillary pressure implies saturation along the matrix surface equal to SwJ. Heat 
conduction within the matrix is assumed to be the controling method of energy transfer. 
Thus the temperature at the matrix surface is equal to the temperature of the fluids Tf. 

The finite-difference form of the diffusion equation in a subgrid can be easily 
derived as 

[7T;>* %,k-i + TI>,k *Pi-i,k + TCi,k *Piyk + TOi,k *Pi+i,k + TBi,k *PiMi\ 

At 

where *F represents Swm and Tm. TC is the summation of 7T, TI, TO, and TB which are 
calculated as follows: 

TT^-TV.^D.^ (4.184a) 

^=ViM < 4 1 8 4 b > 

Thk-TH^P^ (4.184c) 

TOi.k-TH^D^ (4.184d) 
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where TH and TV are geometrical coefficients and are given below. 

The subgrid system reduces a 3D problem to a 2D problem. Therefore the 
formulations for the transmissibilities are different from the common form. 

The volume fraction, fik, for the i^ ring and kft layer is defined by: 

U: L hk 
k y,'k i = 1 A/ /.,* = xi,k 

sub (4.185) 
bm 

where V^ is the bulk volume of the matrix block with dimensions of Lx,Ly, and Lz, We 
thus have: 

£ / , , = ! k=l,..., Msub (4.186) 
i = i 

The dimensions for each subgrid then can be computed by: 

Lxi+±,k - Lx I/;.. 
,/'=1 

k=l, . . . , M, sub (4.187) 

and 

Lyi+±k ~ Ly Ifj, 
J=l 

k=l, . . . , M sub (4.188) 

The geometrical part of the transmissibilities for subgrid (i,k) in the lateral direction can 
be calculated by: 

l+i,k 

L„,A t kiA \ 

Lxi+i,k Lxi,k LyM,k Lyi: kj 

(4.189) 

For the innermost subgrid: 

THi,k=* 
'LyiA Lxi,kK 'i<K | *?•' 

v
 L*\* H,* t-K J 

(4.190) 

For the outermost subgrid: 

THN * = 8 

LW,-A , LxN^,khk 
L -L 

\ 
L-L x xN^-hk y yN^-l,k j 

(4.191) 
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In the vertical direction, the geometrical part of the internal subgrid 
transmissibilities are computed by: 

For the top subgrids: 

^ - = 2/,-
LL 

x y 

Vl+At 

LL 
7V.,=2/,.-H^ 

(4.192) 

(4.193) 

For the bottom subgrids: 

LL 
TV =2f ■ x y 

'«_ 
(4.194) 

The diffusion coefficient D can be either Df or D 

D. Tmi,k-$ 

k 
Khmj,k-\ 

mri,k-i 

(4.195) 

_ kmkromi<H fdPa 

*•* <t>mHom IWi'k-\dS, «"« Ji,k-\ 

(4.196) 

where DTi k_, .is arithmetically averaged. One-point upstream weighted relative 
permeability is used to evaluate Df. . Since fluid potential is not solved in the matrix 
system, capillary pressure is used to determine the upstream weighting. 

If no capillary pressure is assumed in the fracture, the saturation boundary 
condition is simply: 

Swm = l~Sor (4.197) 

Since partial immersion of matrix blocks is possible, the diffusion coefficient at 
the block surface is modified by fracture water saturation: 

Dt 
\surface 

= DfS 
f »wf (4.198) 

The finite-difference equations are solved implicitiy using a scheme similar to that 
discussed for the fracture system. The matrix-fracture tiansfer flow can then be computed 
by: 

T =7V 
sub 3M& 

IJ^i^hmi^f ~Tmi,^ + 2-lTViMsul>^khmi,Msub^iTf ~Tmi,M^+l) 
i = l i'=l 
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M„ 
+ 2^THNmb+\,kkhmNal>^k(Tf TmNab+^,k) 

*=1 
(4.199) 

T , = N 
"wmf m 

AL 
2.JV .jD^^S^ SM,mi.̂ ) + 2-TVi.J(f^+iDwmi.A/^+^(SM/ SwmiM^) 
i=i 1=1 

M. 

+ X, T^NM, +^kDwmNmb +$,k ("V SwmN^ +*,* ) 
*=1 

(4.200) 

The three terms on the righthand side of the above equations represent the matrix-
fracture transfer flow through the top, bottom, and vertical surfaces, respectively. 

4.5.4 Well Model 

Wells are assumed to be connected to the fracture system only. The flow rate, 
bottomhole pressure and gridblock pressure have the relationship 

Qak ~ Ph^ak\Pwfk *o*) 

where the PIk is the productivity index for layer k. 

(4.201) 

There are four well models implemented in the simulator. Similar formulations 
can be found in a paper by Fanchi et al (1982). 

It is assumed that the well is completed in K layers. 

4.5.4.1 Injection Rate Specified 

In this case the total water and/or gas injection rate {Qw and Qg) and well 
injectivity index (WI) must be specified for each layer. The injection rate for each layer is 
then allocated as follows: 

Water injection rate: 

_ ^ [W!{X0+Xw+Xg)]k 
\lv/k —idwK 

£[W7a.+Aw+A,)] t 

(4.202) 

*=i 

Gas injection rate: 

[wi{X0 + Xw + Xg)]t 
Ugk-Vg K 

^[wi{X0+Xw+Xg)]k 

(4.203) 

t=i 
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4.5.4.2 Oil Production Rate Specified 

In this case, the oil production rate, Q0 , is specified. The production rates of layer 
kare: 

Oil: 

o,*=a [{PI)X0/B0]k 
■o K 

Z[(PMJB.l 
(4.204) 

*=i 

Water: 

KlK Qwk = HxjBB 
(4.205) 

Jk 

Gas: 

"^gk xigk 

4.5.4.3 Total Production Rate Specified 

MBo)k 
(4.206) 

When the total reservoir production rate, QT , is specified, we first compute the 
phase mobility ratio for each layer: 

Oil mobility ratio: 

a . r = £ 
k=\ X0+Xw+ Xg 

(4.207) 

Water mobility ratio: 

°W=£ 
*=i Xa + Xw + Xg 

(4.208) 

Gas mobility ratio: 

«,r=X 
*=i K+K+K. 

The total oil rate then can be computed by 

(4.209) 
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_QT ^=1 UoT 

\ aoT "*" awT "*" agT ) 
(4.210) 

where 

^ 1 * 50=-5>4 (4.211) 
A * r = l 

is the average oil formation volume factor for all layers in which the well is completed. 

4.5.4.4 Bottomhole well pressure specified 

In this case, the injection or production rate for each layer is: 

Qak=PID-[Xa{Pa-Pwf\ (4.212) 

where PID is production index for a producer and injection index for a injector. 

4.5.5 Simulator Verification 

As mentioned earlier, the simulator can simulate both single-porosity and dual 
porosity reservoirs. Both cases are verified in this section. 

4.5.5.1 Single Porosity Waterflooding 

The Buckley-Levenett problem is a typical one-dimensional incompressible 
waterflooding case. No capillary pressure is considered. To simulate this problem, only 
the fracture system of the simulator is used. The input data is listed in Table 4.13. Figure 
4.58 shows a comparison of the analytical solution with the simulation results. A linear 
model with 500 gridblocks is used. The simulation results match the analytical solution 
well except for some numerical smearing at the displacement front. 

4.5.5.2 Single Porosity Hot Waterflooding 

Lauwerier (1955) considered a situation in which hot water is injected into a cold 
reservoir. As the hot water flow through the reservoir, heat is lost to the overburden and 
underburden as shown in Fig. 4.59. In this case, it is assumed that there are no vertical 
temperature gradients in the reservoir. Hot water is injected at a constant rate and 
temperature. Table 4.14 gives the input data. 

Figure 4.60 illustrates a comparison of the results. Simulated results match the 
analytical solution very well. Two hundred gridblocks were used in this calculation. 

4.5.5.3 Single Porosity Steamflooding 

Marx and Langenhiem (1959) solved the problem of a growing steam zone with 
heat losses to an overburden and underburden. As steam is injected into a lateral 
formation, the steam zone spreads laterally. Injected heat increases the heat either stored 
in the steam zone or is lost to the overburden and underburden. A thermal efficiency 
factor is used to indicate steam zone growth. Heat lost from the reservoir varies over a 
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large range with dimensionless time as shown in Fig. 4.62.100% quality steam was used 
in this simulation. Two hundred blocks of size 0.2x2.0x0.5 (m3) were used in simulating 
the one-dimensional case. Two-dimensional modeling is shown in Fig. 4.62. 10 by 10 
gridblocks with block sizes of l.Oxl.Oxl.O (m3) were used. We see that the analytical 
solutions are matched in both ID and 2D cases. The late-time deviation from the 
analytical solution is because of the breakthrough of steam because of limited reservoir 
size. 

4.5.5.4 Dual Porosity Waterflooding 

Waterflooding of an ideal fractured reservoir was also simulated. A detailed 
description of the case is listed in Table 4.15. Other data are adopted from Beckner et al. 
(1988). The gridblocks are 5 by 5. No subgridding is used in the matrix. The system is 
assumed to be incompressible. Therefore the main oil recovery mechanism is 
countercurrent imbibition. An excellent match was obtained compared to the results of 
the dual porosity simulator developed for this study. Figure 4.63 shows the water cut 
obtained from the two simulators. 

4.5.5.5 Comparison of Thermal and Isothermal Process in Fractured Reservoir 

To investigate the efficiency of thermal process in fractured reservoir, the 
comparision runs was performed. The comparison between thermal process and 
isothermal process is shown in Figure 4.64. The two isothermal cases were simulated in 
two different temperatures. One is at the initial temerature of the thermal simulation and 
the other is near the final reservoir temperature of the thermal simulation. It is seen that 
the recovery of thermal process is higher than both of the isothermal processes. Therefore 
it can be concluded that not only does the oil viscosity lowered by thermal processes 
increase oil viscosiry, but also the thermal expansion is a big contribution. 

4.5.5.6 Effects of Matrix Block Size 

The effects of matrix block size was investigated. Four different simulation runs 
were performed with the blocks of 1,4, 8 and 16 in rach grid. The results are shown in 
Figure 4.65. For the smaller block size, the matrix can be heated faster and the flow path 
of oil from matrix to fracture is shorter, therefore, a higher oil recovery is resulted. 
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Table 4.1. Input data for Buckley-Leverett problem. 

Parameters 

Reservoir length, L 

Reservoir thickness, h 

Reservoir width, W 

Porosity, <|) 

Permeability, k 

Oil viscosity, UQ 

Water viscosity, p-w 

Initial water saturation, Swi 

Final water saturation, Swj 

Exponent of kro 

Exponent of krw 

End-point kro 

End-point krw 

Injection rate, qwini 

Values 

2.0 ft 

0.1ft 

0.1ft 

0.20 

500 md 

20.0 cp 

1.0 cp 

0.20 

0.65 

1.0 

0.2 

1.0 

0.2 

0.01 ft3/D 
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Table 4.2. Wanen and Root's data (1963) for pressure buildup test. 

Parameters 

Fracture permeability, kf 

Reservoir thickness, h 

Outer reservoir radius, re 

Wellbore radius, rw 

Reservoir storativity, <t>m cm + <t>f Cf 

Oil viscosity, u^ 

Oil formation volume factor, B0 

Initial pressure, pi 

Production rate, q0 

Production time, ts 

Interporosity parameter, X 

Values 

40 md 

20 ft 

oo 

0.316 ft 

2.64xl0-6psi '1 

2.0 cp 

1.23 

4000 psia 

115 STB/D 

21 days 

5 x 10-6 

Table 4.3. Calculated input data for simulation runs based on Warren and Root's data 
(1963). 

Storativity ratio 

Fracture porosity 

Matrix porosity 

0.0 

0.0 

0.2 

0.0010 

0.0002 

0.1998 

0.010 

0.002 

0.198 

0.10 

0.02 

0.18 

1.0 

0.2 

0.0 
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Table 4.4. Parameters for ideal fractured reservoir. 

Parameters 

Reservoir size 

Matrix block size 

Matrix porosity, <|)m 

Fracture aperture, Wf 

Fracture porosity, <|>f 

Equivalent fracture porosity, 0f 

Fracture permeability, kf 

Equivalent fracture permeability, kf 

Injection rate, qinj 

Oil viscosity, u.0 

Water viscosity, p:w 

Values 

50 x 50 x 10 ft 

10 x 10 x 10 ft 

0.30 

0.0339 ft 

1.00 

0.0081 

100.0 d 

405.1 md 

0.25 STB/D 

1.0 cp 

0.8 cp 
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Table 4.5. Kleppe and Morse's (1974) experimental data. 

Parameters 

Matrix permeability, km 

Matrix porosity, <t>m 

Core diameter 

Inside diameter of tube 

Core height, h 

Oil viscosity, p:0 

Water viscosity, pw 

Oil density, p0 

Water density, pw 

Pore volume of core 

Pore volume of fracture 

Low injection rate 

High iniection rate 

Values 

290 md 

0.225 

9.87 cm 

10.39 cm 

122.8 cm 

2.3 cp 

1.0 cp 

0.811 g/cm3 

1.02 g/cm3 

2114 cm3 

1017 cm3 

3.3 cm3/min 

35 cm3/min 
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Table 4.6. Property dependence on primary variables of single matrix block thermal 
code. 

po(B0) 
pw(Bw) 
Pr 
^ 0 

N 
<t> 
Kr 
Pc 
ho 
hw 
u0 
uw 
ur 
Xt 

X 

X 

X 

X 
X 

aw 1_ 
X 
X 

X 
X 
X 

X 
X 

X 
X 
X 
X 
X 

X X 

Table 4.7. Relative permeability and capillary pressure used in single matrix block 
thermal studies. 

>w kro krw Pcjpsi) 
0.350 0.7500 0.0000 5.65 
0.375 0.5580 0.0007 3.95 
0.400 0.4050 0.0039 2.91 
0.425 0.2860 0.0110 2.31 
0.450 0.1950 0.2200 1.88 
0.475 0.1280 0.0380 1.54 
0.500 0.0800 0.0600 1.27 
0.525 0.0470 0.0880 1.04 
0.550 0.0250 0.1230 0.84 
0.575 0.0120 0.1660 0.66 
0.600 0.0050 0.2160 0.50 
0.625 0.0016 0.2740 0.36 
0.650 0.0003 0.3400 0.23 
0.675 0.00002 0.4150 0.11 
0.700 0.0000 0.5000 0.00 

Note: These data for relative permeability can be reproduced by taking 
korw^.50, k°ro=0.75, nw=3.2 and n0=1.8. 
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Table 4.8. Petrophysical and PVT data used in single matrix block thermal studies. 

Porosity: 
Initial 
Compressibility C r 

Thermal Expansion Pr 
Rock Density 
Oil Density at 60°F (328K) 
Oil Viscosity at 80°F (310K) 

Thermal exponent b 
Initial Pressure 
Rock Conductivity (constant) 
Matrix Permeability 
Fracture PermeabiUty 
Ineducible Water Saturation 
Residual Oil Saturation 
Initial Reservoir Temperature 
Hot Water Temperature 

17.6 
5.076x10-10 

9.72x10-5 
2643.045 

816.94 
4.6x10-3 

3.73 
11.72 

2.0 
0.0553 

537 
35 
30 
27 

127 

% 
Pa-1 
K-1 

kg/m3 
kg/m3 

Pa.s 

MPa 
W/m.K 

p:m2 

urn2 

% 
% 
°C 
°C 
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Table 4.9. Parameters used in Fig. 4.50. 

Activation energy, E 
Kinetic exponential coefficient, k^ 
Concentration ratio of CO2 in oil vs. water, fow 

Critical gas saturation, Sgc 

Water saturation, Sw 

Oil saturation, S0 

Porosity, <j> 
C02 compressibility factor, z 

62,700 J/mole 
0.025 sec-1 

2.0 
0.2 
0.5 
0.5 
0.2 
1.0 

Table 4.10. Parameters used in Figs. 4.51 through 4.53. 

Initial temperature, Tj 50°C 
Initial water saturation, Swi 0.35 
Initial oil saturation, Soi 0.65 
Critical gas saturation, Sgc 0.2 
Fracture spacing, d 4 m 
Matrix block porosity, <|> 0.2 
Matrix block permeability, kx 55.3 md 
Activation energy, E 62,700 J/mole 
Kinetic pre-exponential coefficient, k0 0.025 sec4 

C02 compressibility factor, z 1.0 
Concentration ratio of CO2 in oil and water, fow 1.0 
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Table 4.11. Relative permeability parameters used in Figs. 4.51 through 4.53. 

rog 

rg 

0.50 
0.75 
0.50 
0.75 
0.35 

' W l 

'org 

'& 

0.35 
0.30 
0.35 
0.20 

nw 

flow 

flog 

nB 

3.2 
1.8 
3.2 
1.8 

Table 4.12. Capillary pressure vs. oil saturation used for Figs. 4.51 through 4.53. 

So (kPa) 
0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

37.9 
30.3 
23.4 
17.2 
11.7 
6.89 
3.45 
2.07 
1.38 
0.69 

Table 4.13. Input data for the Buckley-Leverett problem. 

Reservoir length 
Reservoir thickness 
Reservoir width 
Porosity 
Permeability 
Oil viscosity 
Water viscosity 
Initial water saturation 
Final water saturation 
Exponent of kro 
Exponent of krw 
Endpoint kro 
Endpoint krw 

20 m 
l m 
l m 
0.10 
100 md 
3cp 
1 cp 
0.0 
1.0 
2.0 
2.0 
1.0 
0.0 
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Table 4.14. Input data for Lauwerier (1955) problem. 

Reservoir length 
Reservoir thickness 
Reservoir width 
Porosity 
Permeability 
Thermal conductivity 
Vol. heat capacity 
Initial temperature 
Hot water temperature 
Injection rate 

305 m 
3.048 m 
3.048 m 
0.35 
10.0 d 
2.524 w/m K 
2.35mJ/m3K 
288.7 K 
366.48 K 
7.36xl0"5 m3/s 

Table 4.15. Isothermal dual porosity simulation input data. 

Reservoir size 
Matrix block size 
Matrix porosity 
Fracture porosity 
Fracture permeability 
Matrix permeability 
Water injection rate 
Oil viscosity 
Water viscosity 

50x50x10 ft3 

10x10x10 ft3 

0.30 
0.0081 
405 md 
2md 
0.25 
1.0 cp 
0.8 cp 
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Fig. 4.1. Idealization of a naturally fractured reservoir by dual porosity model. 
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Fig. 4.2. Nodal representation of a three-dimensional anay of reservoir gridblocks. 
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Fig. 4.3. Radial grid system. 
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Fig. 4.4. Schematic of matrix block subgrids. 
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Fig. 4.5. Schematic of matrix subgrids in the lateral direction. 
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Fig. 4.6. Schematic of matrix subgrids in the vertical direction. 
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Fig. 4.7a Fractional flow and its derivative with respect to saturation. 
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Fig. 4.7b Comparison of water saturation profile of the Buckley-Leverett solution and 
UTDUAL results with a fracture system using 500 gridblocks. 
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Fig. 4.9 Comparison of Wanen and Root's solution (1963) and UTDUAL results. 
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Fig. 4.10a Comparison of Wanen and Root's (1963) solution and new transient solution 
with square matrix blocks and X ~ 10"3. 

Fig. 4.10b Comparison of Wanen and Root's (1963) solution and new transient solution 
with square matrix blocks and X = 10-6. 
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Fig. 4.10c Derivative curves of new transient solution with square matrix blocks and 
X = 10-3. 
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Fig. 4.11 Comparison of new transient solution with square matrix blocks and 
UTDUAL results with 8 matrix subgrids. 
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Fig. 4.12 UTDUAL results of the SPE sixth Comparative Project, water injection case. 
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Fig. 4.13a Comparison between VIP-DUAL and UTDUAL for Kazemi et al.'s (1976) 
five-spot reservoir. 
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Fig. 4.13b Fracture water saturation profile along the diagonal line connecting two wells. 
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Fig. 4.13c Matrix water saturation profile along the diagonal line connecting two wells. 
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Fig. 4.14. Schematic of ideal fractured reservoir. 
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Fig. 4.15. Grid system for fine-grid simulation of an ideal fractured reservoir. 
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Fig. 4.16 Oil recovery of an ideal fractured reservoir by fine-grid simulation. 
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Fig. 4.17a Oil recovery from ideal fractured reservoir with different matrix 
permeabilities by fine-grid single porosity method. 
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Fig. 4.17b Water cut from ideal fractured reservoir with different matrix permeabilities 
by fine-grid single porosity method. 
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Fig. 4.18a Comparison of fine-grid single porosity simulation with UTDUAL results 
(IMPES option) of ideal fractured resevoir with different matrix 
permeabilities. 
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Fig. 4.18b Comparison of fine-grid single porosity simulaiton with UTDUAL results 
(IMPES option) for ideal fractured reservoir with different matrix 
permeabilities. 
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Fig. 4.18c Fracture water saturation profiles along the diagonal line connecting two wells 
for the case of km = 2 md. 
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Fig. 4.18d Matrix water sautration profiles along the diagonal line connecting two wells 
for the case of km = 2 md. 
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Fig. 4.19a Comparison of fine-grid single porosity simulation with UTDUAL results 
(IMPES option) for ideal fractured reservoir with different matrix 
permeabilities. 
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Fig. 4.19b Comparison of fine-grid single porosity simulation with UTDUAL results 
(IMPES option) for ideal fractured reservoir with different matrix 
permeabilities. 
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Fig. 4.19c Fracture water saturation profiles along the diagonal line connecting two wells 
for the case of km = 2 md. 
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Fig. 4.19d Matrix water saturation profiles along the diagonal line connecting two wells 
for the case of km = 2 md. 
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Fig. 4.20a Comparisons of fine-grid single porosity simulation with UTDUAL results 
(IMPES option) for ideal fractured reservoir. 
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Fig. 4.20b Comparisons of fine-grid single porosity simulation with UTDUAL results 
(IMPES option) for ideal fractured reservoir. 
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Fig. 4.21a Comparison of two matrix/fracture transfer flow calculations: IMPES and 
diffusion equation for an ideal fractured reservoir with km = 2 md. 
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Fig. 4.21b Comparison of two matrix/fracture transfer flow calculations: IMPES and 
diffusion equation for an ideal fractured reservoir with km = 2 md. 
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Fig. 4.22a Effect of matrix boundary condition on oil recovery, UTDUAL runs with 
diffusion equation option and one matrix subgrid. 
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Fig. 4.22b Effect of matrix boundary condtion on water cut, UTDUAL runs with 
diffusion equation option with one matrix subgrid. 
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Fig. 4.23a Effect of matrix boundary condition on oil recovery, UTDUAL runs with 
diffusion equation option and four matrix subgrids. 
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Fig. 4.23b Effect of matrix boundary condition on water cut, UTDUAL runs with 
diffusion equation option and four matrix subgrids. 
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Fig. 4.24a Water saturation in each fracture gridblock along the diagonal line connecting 
two wells of ideal fractured reservoir with km = 2 md. 
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Fig. 4.24b Matrix/fracture transfer rate divided by Swf for each gridblock along the 
diagonal line connecting two wells of ideal fractured reservoir with km = 2 
md. 
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Fig. 4.24c Comparison of imbibition rate into single matrix block under totally immersed 
conditions and matrix/fracture transfer rate from UTDUAL simulation of ideal 
fractured reservoir. 
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Fig. 4.25 Comparison between diffusion equation option and the option using results 
from single matrix block studies. 
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Fig. 4.26 Grid refinement studies of ideal fractured reservoir with km = 2 md. 
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Fig. 4.27 Grid refinement studies of ideal fractured reservoir with km = 2 md. 
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Fig. 4.28 Difference in oil recovery between results with/without subgrids. 
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Fig. 4.29 CRAY Y-MP CPU time ratio versus the number of subgrids. 
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Fig. 4.30 Computer time ratio between IMPES and diffusion equation options of 
UTDUAL. 
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Fig. 4.31a Effects of Coats' (1989) pseudo-capillary pressure on oil recovery of ideal 
fractured reservoir. 
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Fig. 4.31b Effects of Coats' (1989) pseudo-capillary pressure on water cut of ideal 
fractured reservoir. 
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Fig. 4.32a Effect of matrix block size on oil recovery of ideal fractured reservoir. 
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Fig. 4.32b Effect of matrix block size on water cut of ideal fractured reservoir. 
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Fig. 4.33a Effect of water injection rate on oil recovery of ideal fractured reservoir. 
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Fig. 4.33b Effect of water injection rate on water cut of ideal fractured reservoir. 
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Fig. 4.34a Effect of equivalent fracture porosity on oil recovery of ideal fractured 
reservoir. 
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Fig. 4.34b Effect of equivalent fracture porosity on water cut of ideal fractured reservoir. 
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Fig. 4.35a Effect of matrix capillary pressure on oil recovery of ideal fractured reservoir. 
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Fig. 4.35b Effect of matrix capillary pressure on water cut of ideal fractured reservoir. 
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Fig. 4.36a Modeling of Kleppe and Morse's (1974) waterflooding experiment by 
UTDUAL with IMPES option. 
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Fig. 4.36b Modeling of Kleppe and Morse's (1974) waterflooding experiment by 
UTDUAL with IMPES option, showing effect of matrix subgriding. 
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Fig. 4.36c Simulation-generated fracture and matrix saturation profiles for Kleppe and 
Morse's data (1974), low injection rate. 
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Fig. 4.36d Simulation-generated fracture and matrix saturation profiles for Kleppe and 
Morse's data (1974), high injection rate. 
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Fig. 4.37a Water-oil ratio comparison between UTDUAL simulation result without 
subgrid and Kazemi et al.'s (1976) results. 
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Fig. 4.37b Saturation profile at 499 days, comparison between UTDUAL simulation 
result without sub-grid and Kazemi et al.'s (1976) results. 
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Fig. 4.37c Effect of matrix subgrid on oil recovery of Kazemi et al.'s (1976) five-spot. 
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Fig. 4.37d Effect of matrix subgrid on water-oil ratio of Kazemi et al.'s (1976) five-spot. 
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Fig. 4.38. Schematic of single matrix model. 

Fig. 4.39. Water saturation distribution with different grid sizes at late time. 
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Fig. 4.50. Time required to generate critical gas saturation by chemical reaction. 
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Comparison of recovery for different residual oil saturations as a function of 
time. (Tf=290°C, Pco2= 5 bars). 
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Fig. 4.52. Comparison of gas saturation and recovery for different temperatures as a 
function of time. (PC02= 5 bars, Som=0.2). 

188 



Time (Days) 

Comparison of gas saturation and recovery at different pressures as a function 
of time. (Tf=290°C, Som=0.2). 
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Fig. 4.56. Comparison of heat efficiency rate from a complete finite-difference heat 
conduction simulation vs. application of the Vinsome and Westerweld (1980) 
technique. 

/ 
/ / 

/ / CE7"/ 
/ 

/ Nsub/ 

k=1 

2 

Msub 

/ / 

1 

1 
Fig. 4.57. Schematic of matrix block subgrids. 

191 



B-L solution 
Simulator 

i 111 111 111 111 i l'i 111 111 111 111 111 111 11 I ' I 111 111 111 11 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Dimensionless distance 

Fig. 4.58. Comparison of water saturation profiles from the Buckley-Leverett (B-L) 
analytical solution compared to the model developed in this study. 
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Fig. 4.59. Schematic of the Lauwerier (1955) hot water injection problem. 
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Fig. 4.60. Comparison of Lauwerier's (1955) solution with analytical simulation results. 
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Fig. 4.62. Comparison of Marx and Langenheim (1959) solution with simulation, 2D 
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Fig. 4.64. Effect of thermal vs. isothermal Processes on oil recovery. 
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Fig. 4.65. Effect of different number of matrix grid blocks on oil recovery. 
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NOMENCLATURE 

a = Shortest length of the rectangular prism matrix block 
Ac = Area of cylinder face 
AL = Area of cylinder ends 
AL = Total surface area of the imbibition front inside matrix block 
A0 = Total surface area of the matrix block through which imbibition occurs 
Ax = Total surface area of the imbibition front inside matrix block at distance x 
AXj = Matrix block area perpendicular to the direction Xj at distance x 
Ax2 = Matrix block area perpendicular to the direction x2 at distance x 
Ax3 = Matrix block area perpendicular to the directions x3 at distance x 
b = Medium length of the rectangular prism matrix block 
Ba = Formation volume factor of phase a 
C = CO2 concentration in water 
c = Longest length of rectangular prism matrix block 
Cpa = Specific heat capacity at constant pressure of phase a 
Cr - Pressure compressibility of oil 
Cs = Specific heat capacity of rock 
d = Fracture spacing 
Df = Diffusion coefficient of fluid 
DT = Thermal diffusion coefficient 
E = Activation energy 
e = Output voltage from the sensor 
/ = Generic function 
fq = Quartz content in the rock 
fi = Volume fraction of matrix subgrid j 
f^ = Ratio of C0 2 solubility in oil vs. water, dimensionless 
fw = Fractional flow 
g = Conductance in X direction 
g = Conductance in Y direction 
h = Height of cylinder 
ha = Specific enthalpy of phase a 
hk = Thickness of k th layer of subgrid 
hs = Specific enthalpy of saturated vapor 
hw = Specific enthalpy of saturated water 
/, j , k = Node identification 
/ = Jacobian matrix 
K = Aspect ratio 
k = Absolute permeability of the matrix block 
k = Permeability 
k0 = Kinetic pre-exponential coefficient 
Kfj = Henry's coefficient 
kh = Heat conductivity 
kr = Relative permeability 
Kgas = Relative permeability to gas 
krwater = Relative permeability to water 
kra - Relative permeability of phase 
k = Sensor constant 
L = Length of the specimen 
L = Limiting distance, half of the shortest distance across the matrix block 
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n0 
n-w 
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Pa 
Pc 
p 
1 C,SWl p 
1 gas 
PI P 
1 water 
q<x 
Qgas 
Qgasx i 

Qgasx 2 
Qgasx $ 
QgasC 
ah 
Qwater 
QgasL 
Qwater 
Qh 
Qi 
as 
Qsw 
xiwater 
Qwater 
Qwater x ] 
Qwater x 2 

Qwater x 5 
Goc 
R 
R 
r 
Rb(p) 
rco2 

s s 
s* 
Sa 
'-'water 
Swi 

= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

= 
= 
= 
= 
= 
= 

Distance from the fracture face to the leading edge of the imbibition front 
Dimensionless imbibition front distance 
Half conelation lengths 
Matrix block dimensions 
Total C0 2 concentiation 
C0 2 concentration in liquid 
Unit normal vector 
Oil relative permeability exponent 
Water relative permeability exponent 
Pressure 
Probability of occunence of conductors 
Pressure of phase a 
Capillary pressure 
Capillary pressure at the initial water saturation 
Pressure of the gas 
Productivity of well 
Pressure of the water 
Injection or production rate of phase a 
Total flow rate of gas in all directions 
Flow rate of gas in xi direction 
Flow rate of gas in x2 direction 
Flow rate of gas in X3 direction 
Gas flow rate from cylinder face 
Source term in energy equations 
Water flow rate from cylinder face 
Gas flow rate from cylinder ends 
Water flow rate from cylinder ends 
Energy injection or production rate 
Heat loss to the overburden and underburden 
Heat flux through the sensor 
Steam condensation rate 
Cumulative water imbibed 
Total flow rate of water in all directions 
Flow rate of water in xi direction 
Row rate of water in x2 direction 
Flow rate of water in x3 direction 
Cumulative water imbibed at the end of imbibition 
Gas constant 
Radius of cylinder 
Radius 
RG transformation of p 
Rate of C0 2 production 
Saturation, dimensionless 
Laplace variable in dimensional space 
Laplace variable in dimensionless space 
Saturation of phase a 
Water saturation 
Initial water saturation 

197 



T 
Th 
Ti 
t 
t* 
TH 
p 
TV 
TX 
TXC 
TXH 
TY 
TYC 
TYH 
TZ 
TZC 
TZH 
ua 
Ur 
V 
WI 
x,y,z 
X 
Xi,X2,X^ 
z 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

Temperature 
Hot (steam) temperature 
Initial reservoir temperature 
Time 
Time to reach the center of the block 
Transmissibility in horizontal direction of matrix block 
Initial temperature 
Transmissibility in vertical direction of matrix block 
Transmissibility in x-direction 
Transmissibility of energy by conduction in x-direction 
Transmissibility of energy in x-direction 
Transmissibility in y-direction 
Transmissibility of energy by conduction in y-direction 
Transmissibility of energy in y-direction 
Transmissibility in z-direction 
Transmissibility of energy by conduction in z-direction 
Transmissibility of energy in z-direction 
Internal energy of phase a 
Internal energy of matrix 
Volume of the grid block 
Injectivity of well 
Cartesian coordinates 
Position 
Directions 
Gas deviation factor, dimensionless 

Greek Symbols 
a 
a 
Ba 
Pr 
7a 
•/h) 
A 
Ax 

c 
5x 
e 
Oor (p 
X 

xa 
Xeff 

V 
h 
As 

= 

= 

= 
= 

= 

= 

= 

= 

= 

= 

= 
= 

= 

= 

= 
= 

= 

= 

Phase a 
Thermal diffusivity 
Formation volume factor of phase a 
Thermal expansion coeficient of rock 
Specific gravity of phase a 
Semivariogram 
Change of a parameter 
Node to node distance in X direction 
Conelation length 
Block dimension in X direction 
Contact angle 
Normalized temperature 
Thermal conductivity 
Mobility of phase a 
Effective thermal conductivity 
Fluid thermal conductivity 
Lower bound on thermal conductivity 

Solid thermal conductivity 
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XJJ 

Ha 
Ha 
Hgas 

Hs 
Hw 
Hwatex 

P 
Pa 
Pa 
Pr 
Ps 
Pw 
Psc 
<J 

a 
X 

?amf 

Xhmf 
V 

0) 
d 
0 
<t> 
V 

Subscripts 
a 
cow 
eql 
eq2 
f 
g 
i 
m 
o 
om 
org 
orw 
r 
rg 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 
= 
= 

= 

= 

$ 

= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 
= 

Effective conductivity of formation 
Upper bound on thermal conductivity 

Dynamic viscosity of phase a 
Viscosity of phase a 
Viscosity of the gas 
Viscosity of saturated vapor 
Viscosity of saturated water 
Viscosity of the water 
Density 
Density of phase a 
Density of phase a 
Density of matrix 
Density of saturated vapor 
Density of saturated water 
Density at standard conditions 
Electrical conductivity 
Interfacial tension 
Time 
Matrix-fracture transfer rate of phase a 
Matrix-fracture transfer rate of energy 
Kinematic viscosity 
Upstream weighting factor 
Differential operator 
Formation resistivity factor 
Porosity 
Hamilton operator 

Phase 
Capillary pressure for oil and water two 
Value at chemical equilibrium 
Value at thermodynamic equilibrium 
Fracture 
Gas 
Initial 
Matrix 
Oil 
Residual oil in three-phase system 
Residual oil in oil-gas system 
Residual oil in oil-water system 
Relative, rock 
Relative permeability of gas 
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rgo 
rog 
rogo 

row 
rowo 

rw 
rwo 
s 
w 
wc 
wi 
x,y,z 

= 
= 
= 

= 
= 

= 

= 
= 
= 
= 
= 
= 

Superscript 

Relative permeability of gas at residual oil saturation 
Relative permeability of oil in oil-gas system 
Relative permeability of oil in oil-gas system at residual gas saturation 
and zero water saturation 
Relative permeability of oil in oil-water system 
Relative permeability of oil in oil-water system at residual water 
saturation and zero gas saturation 
Relative permeability of water 
Relative permeability of water at residual oil saturation 
Steam 
Water 
Connate water 
Lreducible water 
x, y and z directions 

= Normalized value 
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APPENDIX A. NEW FUNCTIONAL CORRELATIONS FOR 
SATURATED STEAM PROPERTIES 

A new set of continuous conelation functions of saturated steam properties 
(density, enthalpy and viscosity) has been developed. The new conelations cover the 
saturation envelope from 20°C to 360°C and are highly accurate and continuous over a 
wide temperature range. In terms of simplicity, accuracy, and continuity, these functions 
offer advantages in certain applications over those previously published. 

NEW FUNCTIONAL CORRELATIONS 

The most commonly used methods for determining saturated steam properties in 
computer applications are to use table look-up, or a series of equational approximations to 
fit the data. In this study we have developed a set of simple continuous conelation 
functions for saturated steam properties, which have certain advantages over those 
previously published in terms of combined simplicity and accuracy. These functions cover 
a temperature range from 20°C to 360°C, the temperature range of interest in most thermal 
recovery operations. 

Recent work on steam properties presented some new polynomial equations for 
steam properties. Ejiogu and Fiori (1987) presented polynomial interpolations that cover 
the high temperature range from 241°C to 353°C. Tortike and Farouq Ali (1989) developed 
a set of steam properties as polynomials throughout most of the temperature range of 
saturated steam from 0°C to 353°C Chien (1992) presented empirical conelations which 
are highly accurate but are mostly discontinuous and require a large number of coefficients. 
These studies provide a baseline for comparison with our new conelations. 

Theoretically, any data can be fit by a polynomial no matter how complicated. 
However, as the degree of a polynomial increases, the fitting curve may include many 
changes in derivative. For most applications it is desirable to choose a degree of fit as low 
as possible in order to reduce oscillations, while still retaining desired accuracy. Using 
different correlations to fit data in different ranges is another way to obtain more accurate 
results. But this may cause discontinuities in the derivatives that could lead to, among 
other things, convergence problems in simulation. The best conelations are accurate 
enough to cover the required range, continuous in its derivative, and simple to use. 

The data used in this study were tabulated data from the National Bureau of 
Standards/National Research Council of Canada (1984). For saturated water and steam, the 
conelations were developed using polynomial and nonlinear regression. Regression 
coefficients and residuals were used to judge the accuracy and suitability of each 
conelation. All conelations are presented in SI units. Temperature was chosen as the 
independent variable. This makes the conelations simple and easy to use in thermal 
reservoir simulation. Relative residuals were calculated between the conelations and the 
steam table data, expressed as percentages of actual values. The maximum and mean 
absolute values of the residuals are also reported. 

Saturated water density 

pw = 398.942 + 8.288558^5335.9562 - TL4S (A. 1) 
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Saturated vapor density 

ps = EXP[-5.6294 + 0.14564T0-8 - 2.1242 x lO^T1' 

-7.4288 x W6T2A + 4.7323 x W*T32] 

Saturated water enthalpy 

(A.2) 

hw = 2751 - 212.23333^1170.86-T08S (A.3) 

Saturated vapor enthalpy 

(A.5) 

hs = 178.758 + 5.14455T +119.8224^374.09-T (A.4) 

Saturated water viscosity 

pw = EXP[0.484045 - 3.1115 x W^T095 +1.3192 x lO^T19 

-2.2934 xl0-?T2-85] 

Saturated vapor viscosity 

ps = 0.0085 + EXP[-7.0661 + 2.1106 x 10~2T 

-7.2058 x lQrsT2 +1.0111 x 10~7T3] 
(A.6) 

Comparisons of the new conelations to recent studies are listed in Tables A. 1 
through A.7 and Figs. A.l through A.7. As can be seen, the new conelations generally 
have both greater accuracy and fewer coefficients than the equations of Tortike and Farouq 
Ah (1989). The equations of Chien (1992) are highly accurate, but have a large number of* 
equations and coefficients. 

For water density and vapor enthalpy, the new conelations have a maximum 
residual smaller than 0.25%. The highest residual among the new conelations is for vapor 
density, which reaches nearly 3% at 360° C. All the others have maximum residuals less 
than 2%. Absolute residuals between lOO'C and 300°C are even smaller. 

Comparisons of water and vapor viscosities are made only between the new 
conelations and those of Chien (1992). The residuals calculated using the conelations of 
Tortike & Farouq Ah (1989) are larger than they reported, which leads us to beheve that the 
published equations may be inconect. 
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Table A.l. Comparison of saturated water density equations and residuals. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

no 

yes 

Number of 
Equations 

1 

2 

1 

Number of 
Coefficients 

3 

12 

6 

Temperature 
Range(C) 

20-360 

100-370 

0-367 

Max. 
Absolute 

Residual % 
0.20 

0.12 

A.87 

Mean 
Absolute 

Residual % 
0.07 

0.03 

0.22 

Table A.2. Comparison of saturated vapor density equations and residuals. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

no 

yes 

Number of 
Equations 

1 

2 

1 

Number of 
Coefficients 

5 

15 

6 

Temperature 
Range (C) 

20-360 

100-369 

0-372 

Max. 
Absolute 

Residual % 
2.98 

0.11 

7.71 

Mean 
Absolute 

Residual % 
0.56 

0.03 

A.29 

Table A.3. Comparison of saturated water enthalpy equations and residuals. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

yes 

yes 

Number of 
Equations 

1 

1 

1 

Number of 
Coefficients 

4 

12 

7 

Temperature 
Range(C) 

20-360 

20-369 

0-372 

Max. 
Absolute 

Residual % 
A.67 

0.07 

2.93 

Mean 
Absolute 

Residual % 
0.71 

0.03 

0.52 

Table A.4. Comparison of saturated vapor enthalpy equations and residuals. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

yes 

yes 

Number of 
Equations 

1 

1 

1 

Number of 
Coefficients 

3 

12 

7 

Temperature 
Range(C) 

20-360 

20-369 

0-367 

Max. 
Absolute 

Residual % 
0.25 

0.10 

0.50 

Mean 
Absolute 

Residual % 
0.085 

0.044 

0.08 
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Table A.5. Comparison of saturated water viscosity equations and residuals. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

no 

yes 

Number of 
Equations 

1 

2 

1 

Number of 
Coefficients 

4 

12 

6 

Temperature 
Range (C) 

20-360 

50-370 

0-372 

Max. 
Absolute 

Residual % 
1.56 

0.22 

7.6(2.87) 

Mean 
Absolute 

Residual % 
0.78 

0.06 

1.98(1.07) 

Table A. 6. Comparison of saturated vapor viscosity equations and residuals. 

This work 

Chien (1992) 

Tortike andFarouq Ali 
(1989) 

Continuous 

yes 

no 

yes 

Number of 
Equations 

1 

2 

1 

Number of 
Coefficients 

5 

14 

6 

TemperatureR 
ange (C) 

20-360 

70-370 

0-372 

Max. 
Absolute 

Residual % 
A.34 

0.17 

18.2(6.41) 

Mean 
Absolute 

Residual % 
0.45 

0.10 

3.87(1.59) 

Note: The data in parentheses were reported by Tortike and Farouq Ali (1989). 

Table A.7. Comparison of heat of vaporization. 

This work 

Chien (1992) 

Tortike and Farouq Ali 
(1989) 

Continuous 

yes 

yes 

yes 

Number of 
Equations 

1* 

1* 

1 

Number of 
Coefficients 

6 

23 

6 

Temperature 
Range (C) 

20-360 

20-369 

0-372 

Max. 
Absolute 

Residual % 
0.56 

0.24 

0.323 

Mean 
Absolute 

Residual % 
0.216 

0.062 

0.104 

*The heat of vaporization is calculated using the water and vapor enthalpy conelations. 
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Fig. A.l. Water density residual vs. temperature 
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Fig. A.2. Vapor density residual vs. temperature 
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Fig. A.3. Water viscosity residual vs. temperature 
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Fig. A.4. Vapor viscosity residual vs. temperature 
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Fig. A.5. Water enthalpy residual vs. temperature 
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Fig. A.6. Vapor enthalpy residual vs. temperature 
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Fig. A.7. Heat of vaporization residual vs. temperature 
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