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Quantum computation is a subject of much recent interest. In much of the 
rork in the literature [l] quantum computers are described as built up from a 
equence of unitary operators where each unitary operator carries out a stage of 
he overall quantum computation. The sequence and connection of the different 
initary operators is provided presumably by some external agent which governs 
he overall process. However there is no description of a an overall Hamiltonian 
leeded to give the actual quantum dynamics of the computation process. 

In this talk, earlier work by the author [2] is followed in that simple, time 
ndependent Hamiltonians are used to describe quantum computation, and the 
ichrodinger evolution of the computation system is considered to be quantum 
d i s t i c  [3, 41. However, the definition of quantum ballistic evolution used here 
5 more general than that used in the earlier work. In particular, the requirement 
hat the step operator T associated with a process be a partial isometry, used 
n [4], is relaxed to require that T be a contraction operator. (An operator T is 
t partial isometry if the selfadjoint operators TtT and TTt are also projection 
lperators. T is a contraction operator if 11 T It_< 1.) 

The main purpose of this talk is to investigate some consequences for quan- 
um computation under this weaker requirement. It will be seen that system 
notion along discrete paths in a basis still occurs. However the motion OCCUIS in 
he presence of potentials whose height and distribution along the path depends 
in T and the path states. 

The time development of a quantum computation wil l  be taken here to be 
lenerated by Hamiltonians constructed fiom step operators T following the 
prescription of Feynman [5]: 

H = K ( 2  - T - T i ) .  
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In general a step operator for a process is a bounded linear operator T over 
some separable Hilbert space 31 which describes the elementary steps of the 
process. Successive iterations of T (or ~ t )  on a process system state in 7.1 
describe states corresponding to successive steps of the process in the forward 
(or backward) time direction. Of course Schrodinger evolution with H defined 
by Eq. 1 is smooth in that the wave function evolves continuously fiom one step 
state to the next. 

The explicit model for quantum computation used here is the Turing Ma- 
chine model. In this model a head in any one of a finite number of internal 
states, 1, moves along a two way infinite one dimensional lattice of qubits. The 
head scans one qubit at a time. The action taken depends on the head state 
1 and the qubit state s. Possible elementary step actions are, changing the 
head internal state, head motion one site to the right or left, and changing the 
scanned qubit state. AU these changes need not be present in each elementary 
step operator. 

I The computation basis is the set of states ( l j ,  I ,  S)} where j and I are the 
'position and internal state label of the head and IS) = @g-mlS(j)) where S 
is any function fiom the integers to the set {s} of qubit state labels which also 
satisfies a tail condition. Although qubits which can assume any one of a finite 
number of states (such as a spin J system) can be used, it is convenient to 
limit the qubits to be binary systems. In this case the set { a }  = { O , l ) .  A tail 
jcondition is needed to keep the number of basis states denumerable. Here the 
'function S is restricted to be such that S ( j )  # 0 for at most a finite number 
of sites. This condition, denoted the 0 state tail condition, is one of a infinite 
/number of possible conditions which could be chosen. 

Paths are finite or infinite sequences of states in the computation basis. Each 
step operator T has a unique collection of paths associated with it in that the 
paths can be generated by iteration of T or its adjoint on the states in the 
computation basis. Paths terminate at states annihilated by T or Tt. 

Ibe written as 
For a lattice model such as the one used here, the Hamiltonian of Eq. 1 can 

i H = K E + P E  (2) 
1 
!where the lattice kinetic and potential energy terms are given by KE = K(2 - 
;U - Ut) and PE = K(U - T + Ut - Ti). U is a bilateral shift which moves 
the head one site to the right along the lattice. The kinetic energy term is the 
symmetrized lattice version of the second derivative - ( ( h ) 2 / 2 m ) d 2 / ( d ~ ) 2 .  

, The form of Eq. 2 shows H with T a step operator for a QTM is equivalent 
it0 a 1D tight binding Hamiltonian with off- diagonal potentials. Tight binding 
jmodels of particle motion in one dimensional solids have been much studied 
i[6] and continue to be studied [?'I. This similarity wil l  be exploited here to 
examine the use the transfer matrix formalism and Landauer resistance [8] as 
a measure of the probability of a quantum computation to arrive at the N t h  

~ 

2 



step, with N arbitrary. The usefulness of this derives from the fact that for 
the generahed definition of quantum ballistic evolution used here, motion of 
a QTM state along a path in the computation basis with potentials present at 
some path sites is equivalent to both tunnelling through and partial reflection 
from barriers provided by the potentials. 

In order to maximize clarity and keep things as simple as possible this talk 
will restrict consideration to QTMs with associated step operators T such that 
the potentials along the paths on the computation basis are finite square barriers 
of a k e d  height. The locations, widths, and number of barriers can vary from 
path to path. The ends of paths correspond to the presence of infinite reflecting 
barriers. 

. 

This will be done by requiring T to have the form 

00 

T = (Aj,Opj,O -k YAj,lPj,l)pj* (3) 
j=-m 

Here and Pj are the respective projection operators for finding the site j 
qubit in state Is) and the head at site j ,  and 7 is a constant between 0 and 1. 
Aj,a is a sum of all elementary actions associated with the site j qubit in state 
Is). It is the factor which is different for different QTMs. It is convenient but 
not necessary to require that the form of Ai,, be independent of j .  R e d  that 
5 = 0 , l .  

Ai,. can be expanded as an operator matrix over the head states. That is 

, ~ j , s  = ~ ; f ; n = o ( m ~ ~ j , s  11) where 

I (4) 
~ 

(mIAj,sV) = d m , ~ l m ) ( ~ l ~ ~ , a ~ , s  
I 
;Here dr,m is a constant which assumes the values 0 or 1; Im)(ZI is the transition 
'operator from head states I i)  to Im). VI,' is an arbitrary unitary operator in 
/ U ( 2 )  which acts on the site j qubit. Ul,, is the unitary head shift operator which 

jassumes the values U , d ,  I corresponding to moving one site to the right, to 
ithe left, or no motion. U is the bilateral shift on the lattice. The dependence 
,of both vl,' and Uiqa on I, s is shown explicitly. L is the number of head states. 

poses conditions on Aj+. It was shown elsewhere [4] that it is necessary and 
sufficient that T and T i  be orthogonality preserving and stable on B. These 
,conditions are discussed in detail in [4]. It follows from these conditions that for 
each value of I dm,r # 0 for at most one value of m and that vi,, be restricted 
, to be either the identity or the qubit 0 - 1 state exchange operator. (For spin 
:1/2 qubits this is the Pauli operator a, for z-axis quantieation). 
I 
I For the most part this corresponds to requiring that T be limited to de- 
l 
scribing deterministic QTMs only, A limited special class of nondeterministic I 
,machines is included (see [4] for an example) but this is of no concern here. 

i 



Deterministic machines in the computation basis, are limited to qubit trans- 
formations which are the identity or 0 - 1 exchanges. Unitary transformations 
which take qubit states 10) or 11) into linear combinations of these states are ex- 
cluded. Of course this limitation and definition of determinism can be extended 
to any arbitrary rotated qubit basis ulO), 11) by limiting transformations in T 
to the identity and zwz,vt. 

The limitation used here corresponds to association of a potential determined 
by the constant 7, Eqs. 3 and 4, with just those elementary step operations 
which correspond to reading a 1 at the qubit site scanned by the head. This 
corresponds to association of a potential of height V = ZK(1 - 7) with all 
computation basis path states for which such operations are active. 

It is hoped to analyze some simple examples of these QTMs in the tal% and 
give an andysis of the motion of a quantum computation state as it progresses 
through potential barriers. This includes calculation of the Landauer resistance 
,[8], which is the ratio of the reflection coefficient to the transmission coefficient, 
jas a function of overall system energy or momentum for these examples. 
i The property of the Landauer resistance to decrease rapidly from extremely 
'high values, at energies corresponding to forbidden energy regions in appropriate 
hfinite structures, to high values a t  energies corresponding to allowed energy 
(bands, and even to s m d  values of order unity over eztremely narrow regions 
;of energy or momentum has been shown by other authors [9], to hold for some 
!distributions of potentials. These include periodic distributions and substitution 
:dynamic distributions. 
j The usefulness of the Landauer resistance as a measure of the probability 
for a QTM to complete at least N steps will be examined. For the simple 
,examples for which the Landauer resistance decreases to values of order unity, 
the usefulness of this as a measure of the completion probability for N steps 
qof the computation wiU be discussed. Problems associated with the extremely 
narrow momentum range over which the Landauer resistence is of order unity 
,will be discussed. 

I 
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