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bY 

John M. Herbert 

ABSTRACT 

Rayleigh-Schrodinger perturbation theory is an effective and popular tool for describing low-lying 

vibrational and rotational states of molecules. This method, in conjunction with ab initio techniques for 

computation of electronic potential energy surfaces, can be used to calculate first-principles molecular 

vibrational-rotational energies to successive orders of approximation. Because of mathematical complexities, 

however, such perturbation calculations are rarely extended beyond the second order of approximation, 

although recent work by Herbert has provided a formula for the nth-order energy correction. This report 

extends that work and furnishes the remaining theoretical details (including a general formula for the Rayleigh- 

Schrodinger expansion coefficients) necessary for calculation of energy corrections to arbitrary order. The 

commercial computer algebra software Mathematica is employed to perform the prohibitively tedious 

symbolic manipulations necessary for derivation of generalized energy formulae in terms of universal 

constants, molecular constants, and quantum numbers. As a pedagogical example, a Hamiltonian operator 

tailored specifically to diatomic molecules is derived, and the perturbation formulae obtained from this 

Hamiltonian are evaluated for a number of such molecules. This work provides a foundation for future 

analyses of polyatomic molecules, since it demonstrates that arbitrary-order perturbation theory can 

successfully be applied with the aid of commercially available computer algebra software. 

I. INTRODUCTION 

Molecular vibrational-rotational (or vibro-rotational) energy levels are obtained from 

theory by solving (in some approximate fashion) the quantum-mechanical Schrodinger equation 

representing the internal nuclear motion of the molecule. These energies-which are eigenvalues 

of the quantum-mechanical Hamiltonian operator associated with internal nuclear motion-and 

their corresponding eigenfunctions are of key interest because numerous molecular properties 

such as equilibrium geometric structure, bond lengths and polarities, dissociation energies and 

other thermodynamic quantities, moments of inertia, and stability of transition states are linked to 

internal nuclear motion [I ,  21. While most of these properties are obtainable via experimental 

spectroscopy, theoretical calculation and analysis of vibrational-rotational spectra are vital to the 
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study of molecules not readily amenable to experimental investigation; these include unstable 

species, weakly bound complexes, and highly toxic compounds [2]. 

To approximate solutions to the nuclear Schrodinger equation, most researchers enlist 

either variational methods or perturbation theory [3]. While variational procedures are somewhat 

more accurate than perturbation methods, the difference is small for low-lying energy levels and 

is inevitably overshadowed by error introduced during calculation of ab initio potential energy 

surfaces [4]. Typically, perturbation theory provides vibrational and rotational data that are as 

accurate as any currently available ab initio potential energy surface will allow [5 ] .  In addition, 

perturbation theory holds an advantage over variation in that the form of the wave functions is 

necessarily shaped by the nature of the perturbation [6], whereas with variation the choice of trial 

function is essentially arbitrary [7]. As a result, perturbation theory remains the method of choice 

for describing the low-lying vibrational and rotational states of polyatomic molecules [SI'. 

Perturbation procedures furnish successively higher-order correction terms to eigenvalues 

and eigenfunctions; with suitable convergence this method can, in principle, be extended to 

arbitrary order, until the correction terms become negligibly small. In practice, however, the 

calculation of high-order corrections to vibrational-rotational energies and wave functions is 

limited by the accuracy of the potential energy surface and by the inherent complexity of the 

perturbation formulae themselves [9]. 

Fortunately, advances in high-speed computing over the past two decades have somewhat 

assuaged the former problem and have made feasible [4,10] the calculation of accurate ab initio 

potential energy surfaces for small molecules 111-141. Once nuclear and electronic motions are 

separated via the Born-Oppenheimer approximation [ 151, the electronic Schrodinger equation is 

solved for a number of nuclear configurations; this data is then fit to an analytic function-a 

potential energy surface-that provides electronic energy as a function of nuclear configuration 

[16]. This energy function is subsequently used as the potential energy operator in the 

Schrodinger equation for nuclear motion [3]. 

The second problem with high-order perturbation theory, and one that has yet to be 

satisfactorily resolved, is that even relatively low-order perturbation calculations involve 

prohibitively massive algebraic expressions. Because of this complexity, analytic perturbation 

theory is seldom applied beyond second order [3, 171, and instead variation-perturbation methods 

' For highly excited states, the convergence behavior of perturbation procedures is poor, and variational methods are 
significantly more accurate [4]. 
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[i8] or numerical solution of the perturbed Schrodinger equation [8] is employed to calculate 

high-order correction terms. However, whereas derivation of an analytic formula for each 

perturbation correction requires no a priori knowledge of molecular data and therefore provides a 

general expression that can be applied to any system (upon substitution of the appropriate 

molecular constants), numerical techniques require that molecular parameters be inserted into 

equations before these equations are solved. Thus, the numerical procedure must be repeated for 

each change in parameters. 

Although manual computation of explicit algebraic correction formulae to arbitrary order 

is not feasible, the growing availability of algebraic software capable of large-scale symbolic 

manipulations offers the possibility of obtaining the desired expressions via computer. To this 

end, high-order perturbation theory has been successfully applied to some simple systems using 

computer algebra [ 19-23]; these applications, however, are limited in scope to a single system [20, 

22,231 or a small group of similar systems [19,21], and in all cases the systems are composed of 

atoms and not molecules. Furthermore, these authors take advantage of the Hellmann-Feynman 

and Hypervirial theorems [3,6] in order to circumvent explicit computation of wave functions. 

Calculation of a vibrational-rotational wave function, however, allows one to compute 

expectation values and molecular properties other than energy [2]. 

First attempts at a more general computer algebra-based approach to a perturbation 

problem were presented in a series of papers by Bouanich2 in which the author uses commercial 

algebra software to derive symbolic algebraic formulae for integrals arising in a perturbation 

treatment of the vibration and rotation of diatomic molecules. Due to the nature of the potential 

energy function employed, however, Bouanich [25] is unable to extend these results to arbitrary 

order of correction. More recently, Dudas et aZ. [9] have developed a computer program (suitable 

for implementation in the commercial algebraic software package Mathernatica) that can derive 

vibrational-rotational integrals to arbitrary order of correction, although these authors provide no 

details concerning application of their algorithm to a vibrational-rotational analysis problem. 

This report presents a perturbation-theoretical analysis of the vibration and rotation of 

diatomic molecules. Using a modified form of the general perturbation energy formula 

developed by Herbert [26] and incorporating the Mathernatica code described above, explicit 

algebraic formulae for energy and wave function correction terms are derived in the Mathernatica 

environment. These expressions incorporate universal and molecular constants strictly in 

* For a summary with appropriate citations, see [24] or [25]. 
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symbolic form, so that the solution is not specific to a single mg mle. Thus, after an initial time 

investment to derive these formulae, it is a simple matter to sub. itute appropriate constants and 

thereby calculate vibro-rotational energies to arbitrary order of correction for any diatomic 

molecule to which the theory applies. Furthermore, use of the Rayleigh-Schrodinger form of 

perturbation theory facilitates explicit calculation of vibrational-rotational wave functions, and 

from these equations of state numerous molecular properties may be calculated [2]. 

Although perturbation theory is neither the fastest nor the most accurate procedure for 

vibrational-rotational analysis of diatomic molecules [8], this work is nonetheless significant 

because for the first time perturbation corrections can be calculated accurately, efficiently, and 

systematically for any order of correction. These results stand primarily as a pedagogical 

precursor meant to furnish important insight and provide a framework for future studies of the 

vibration and rotation of polyatomic molecules, where perturbation theory is the most common 

method of analysis [SI. 

11. THE NUCLEAR SCHRODINGER EQUATION 

In considering vibrational and rotational energies, one is concerned only with motion 

internaE to a molecule, so translational motion is discounted. When written exclusively for the 

internal nuclear motion of a diatomic molecule, the time-independent Schrodinger equation 

governing rotation and vibration is 

[--$V’+U(R) 1 YN = EYN , 

where E is the system’s internal energy @.e.? the total energy less translational and electronic 

contributions), U( R )  is the molecular potential energy function, and yN is the stationary-state 

wave function for nuclear motion in a reference frame that translates with the molecule. The 

constants ,u and A in (1) are, respectively, the system’s reduced mass and Dirac’s constant 

(which is equal to Planck’s constant divided by 2 ~ ) .  The first bracketed term in (1) is the kinetic 

energy operator for a diatomic molecule; its explicit form will not be required. 

For a diatomic molecule, the potential energy U depends exclusively on the internuclear 

separation R. Thus, the diatomic potential is spherically symmetric [17], so the eigenfunctions in 

(1) have the form 

Y N  = F ( R ) Y , M ( W )  9 
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where YJ” (8, @) is the well-known spherical harmonic function [3] and J and A4 are angular 

momentum quantum numbers. The unknown radial factor F(R) is some function that depends 

solely on the internuclear separation; this function can be shown [3] to obey the so-called radial 

differential equation: 

111. THE HARMONIC OSCILLATOR AND RIGID-ROTATOR MODELS 
To fully specify the solutions (2) to the nuclear Schrodinger equation (l), one must solve 

(3) to obtain an expression for the radial factor F(R). While this procedure is well established and 

can be found in many quantum chemistry textbooks, some elaboration concerning solution of (3) 

is necessary to elucidate how vibrational and rotational energies will be successively 

approximated. 

Upon application of the change of variable G( R )  = R F( R )  , (3) becomes [ 17,271 

+U(R)-E G(R)=O,  1 J (  J + l )A2 
G“(R)+ 

A2 

2P 
-- (4) 

which cannot be solved without explicit knowledge of how U varies with R [28]. One way to 

overcome this obstacle is to expand U(R) as a Taylor series about R,, the equilibrium internuclear 

separation: 

By definition, the potential energy has a global minimum at Re, so U’(R,) = 0 . Furthermore, the 

reference point for potential energy is always arbitrary, and it is convenient to choose U( R e )  = 0 . 
Under these conditions, Equation ( 5 )  becomes 

U”(R, )( R - Re)’ + U”’(Re )(R - Re 1’ + ... U(R) = 
2 !  3! 

and the energy E is now relative to U( R,) = 0. 

For low-lying vibrational levels R = Re, and all terms in (6 )  save the first are small [17]. 

Neglecting these terms affords 

U(R) =: keQ2 , (7) 

where k, = U”( Re) and 



is the so-called normal coordinate. Equation (7), which is an approximate potential energy 

function for a diatomic molecule, is also a Hooke’s law potential from classical mechanics. The 

constant k,, called the equilibrium molecular force constant, is a measure of the “stiffness” of the 

diatomic bond and is completely analogous to the spring constant of classical physics [29]. 

In the approximation that a diatomic molecule vibrates like a one-dimensional harmonic 

oscilIator, exact equality holds in (7). Under this assumption [and using Definition (S)], one may 

recast the differential equation (4) as 

* 2  

where the change of variable Y( Q )  G( R )  was made [ 171 in order to convert to a coordinate 

system based on Q. The first bracketed term in (9) is the potential energy of rotation [27,29] and 

is a result of the molecule’s rotational angular momentum and concomitant centrifugal force field 

[28]; the second term in brackets is the potential energy of harmonic vibration. Equation (9) is 

merely the time-independent Schrodinger equation for a diatomic molecule undergoing real 

rotation and harmonic vibration. 

One final simplifying assumption is necessary in order to solve (9). The molecule is 

conceptualized to undergo rigid rotation at a fixed internuclear separation Re. In this “rigid- 

rotator” approximation, the radial Schrodinger equation (9) becomes 

A2 
2P 

-- Y”(Q)+$k,Q’Y(Q)= 

The rigid-rotator approximation is perhaps unsettling because this model precludes 

change in internuclear separation, yet the molecule has already been assumed to undergo 

harmonic vibration. Such philosophical difficulties are averted by expanding the centrifugal 

potential term in (9) as a Maclaurin series in Q/R,. The base point for this expansion is 

Q/Re = 0, which corresponds by ( 8 )  to R = Re. The explicit form of the series expansion is [17, 

271 

J (  J + 1)A2 - J ( J + 1)A2 1 
~PU(R, + Q)’ - 2& (I+ Q/R,)‘ 
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where 

(12) 2 
'e @e 

is the equilibrium moment of inertia for a two-particle system. Note that the Taylor series (1 1) 

converges [30,31] when 

which by (8) is equivalent to R < 2 Re. If R is within this radius of convergence, the magnitude of 

the terms in (1 1) must become successively smaller; neglecting all but the first term is equivalent 

to the rigid-rotator approximation discussed above. 

Equation (10) does not contain a rotational potential energy term but in fact resembles the 

Schrodinger equation for a one-dimensional harmonic oscillator whose total energy has been 

diminished by a rotational term. Analysis [17,27] of the boundary conditions of Y(Q) shows that 

when R = Re (the assumption permeating this treatment), Y may be represented by a 

(normalized) harmonic oscillator wave function, 

where u = 0, 1, 2, . . . is the vibrational quantum number, H ,  is the uth Hermite polynomial, and 

PVe 
A 

a=- 

The harmonic oscillator (14) vibrates sinusoidally about Re with a classical frequency v, given by 

The function Y,(Q) may be related back to the radial function3 F(R) and substituted into 

(2) to yield [ 173 an approximate diatomic vibro-rotational wave function: 

The subscript N from (2) has been dropped in favor of the three quantum numbers on which y 

depends. Furthermore, a superscript zero has been added to win anticipation of a perturbation- 

theoretical analysis of vibration and rotation; the wave function (17) for a harmonic 

oscillator/rigid-rotator provides a zeroth-order approximation to the true wave function for 

Recall the changes in variables made in Equations (4) and (9). 
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internal nuclear motion. 

Iv. ANHARMONICITY, COUPLING, AND CENTRIFUGAL DISTORTION 

Most molecules have a 'E ground electronic state: so at room temperature virtually all 

such molecules are in the 'C electron configuration. In this case, one may neglect electronic 

excitations, and vibro-rotational energy in the harmonic oscillatorh-igid-rotator approximation is 

[17,291 

E:;; = (u + +) me + J(  J + I)Be , (18) 

where me = 2ntzve, Be is the equilibrium rotational constant, 

and the superscript zero in (18) is analogous to the one in (17). Experimental values of Be and me 

have been calculated (from spectroscopic data) and tabulated [32] for most diatomic molecules. 

The energy expression (1 8) is strictly valid only for a diatomic molecule whose potential 

energy is given by U = $ keQ2, which is the equation of a parabola. In reality, the potential 

energy curve for a diatomic molecule is not parabolic. Figure 1, for example, depicts accurate 

potential energy data for 'HZ [33] obtained by solving the electronic Schrodinger equation; the 

harmonic oscillator potential is also p l~ t ted .~  The most pronounced anharmonicity in U(Q) 

appears when R is much larger than Re (that is, when Q is much greater than zero), for while the 

quantum-mechanical harmonic oscillator has an infinite number of vibrational levels, the 

potential energy curve for a real dinuclear molecule asymptotically approaches the molecular 

dissociation energy as Q increases, creating significant anharmonicity at large values of Q. 

Because of anharmonicity in the potential energy curve, the average internuclear 

separation for a real diatomic molecule increases slightly with increasing u; this in turn increases 

the molecule's effective moment of inertia and therefore decreases its rotational energy [34]. The 

Molecules in the IC state have zero net electronic orbital angular momentum and zero net electron spin. A few 
diatomic molecules do not have this ground state; these include 02, which has a 'Z ground state, and all molecules 
possessing an odd number of electrons (e.g., NO, NOz, and C102) [28]. 

Note that there is no rotational potential energy in the rigid-rotator approximation, so the zeroth-order potential 
energy curve for a diatomic molecule is simply that of an harmonic oscillator. 
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energy expression (1 S), however, fails to account for this coupling between vibration and 

rotation.6 

0.2 
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FIGURE 1 .  Real and harmonic potentials for X ‘C+, ‘H2. The “real” potential represents 
accurate data obtained [33] by solving the electronic Schrodinger equation using 
a 54-term variational wave function with relativistic corrections. The requisite 
harmonic force constant k, was calculated by means of Equation (16) and the 
experimentally determined harmonic frequency v, given in [32]. 

Lastly, as a molecule’s rotational energy increases, so too does its rate of rotation and 

hence its angular momentum. Since centrifugal force is proportional to angular momentum, an 

increase in rotational energy effectively stretches the molecule’s bond against its restoring force 

[28], and as a result some energy is consumed in the form of work [34]. This phenomenon is 

known as centrifugal stretching or centrifugal distortion. 

As shown by Levine [ 171, vibrational-rotational coupling does not entirely disappear even in the limit of a perfectly 
parabolic potential well due to the increase in average moment of inertia that accompanies increasing v and tends to 
decrease rotational energy. 

9 
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v. PERTURBATION THEORY FOR A DIATOMIC MOLECULE 
The harmonic oscillator/rigid-rotator wave functions (17) are exact solutions7 to the 

approximate Schrodinger equation (10). Equation (10) is an approximation to the true 

Schrodinger equation because it incorporates a truncated potential operator, eH0: 
QHO = k,Q', (20) 

the potential operator for an harmonic oscillator. Within the radii of convergence of the series 

(6) and (1 l), the full potential energy operator f is represented by cHo plus all of the terms in 

(6) and (1 1) that were neglected in the course of the harmonic oscillator and rigid-rotator 

treatmenkg Thus, 

where Definition (19) was used and where thejth-order force constant k, is defined as 

k j  = U"'(R,) (22) 

for a l l j  > 2. Some authors (e.g., Sprandel and Kern [SI) choose to incorporate the factorial terms 

from (21) into the force constants; however, Definition (22) provides a better analogy to the 

unperturbed case, since k, is merely a special case of (22) withj = e = 2. 

Successively higher-order corrections for anharmonicity, centrifugal distortion, and 

vibrational-rotational coupling are made by incorporating additional terms of the potential energy 

operator (21) into the approximate Schrodinger equation (10); these new terms manifest as 

perturbations to the harmonic oscillator/rigid-rotator Hamiltonian [ 171. The addition of all terms 

in (2 1) provides the full Hamiltonian operator 9 for internal nuclear motion: 

Qi +- 
2Y i=l (i+2)! ki+2 ,. t2' H=--Q' + t k , Q 2  +C 

which again is exact only within the radii of convergence of series (6) and (1 1). 

It is known [SI that the sequence of energy correction terms from perturbation theory is 

most likely to converge when the Hamiltonian is expanded as a power series with infinitely many 

separate perturbations. With this motivation, the Hamiltonian operator (23) is rewritten in the 

form 

' To within the negligible difference in boundary conditions discussed in Section 111. 
' Note that the first term in series (1 l), J( J + l)h /2Ze , does not appear as part of f or fHo because it is constant 
and is therefore subsumed into the system's eigenenergy [see Equation (lo)]. 

2 
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where 

is the unperturbed Hamiltonian operator (corresponding to the harmonic oscillatorhigid-rotator 

system) and each s(i) is a perturbation. 

The summations in (23) and (24) must be equal, yet there are numerous conceivable ways 

of constructing the perturbed Hamiltonian operators. When perturbation theory is applied 

through second order, the perturbations are traditionally written [27] as follows: 

Here the first-order perturbation 2") comprises both the first-order vibrational correction [that 

is, the cubic anharmonicity correction or the second term in series (6 ) ]  and the first-order 

rotational correction [the second term in series (1  l)]. Likewise, the second-order perturbation 

s(2) incorporates second-order potential energy corrections for both vibration and rotation. 

Extending this rationale to arbitrary order provides a convenient form for the perturbed 

Hamiltonian operators: 

(-l);(i+l)(J+l)JBe 
R; Qi , Qii2 + ,, ( i )  - ki+2 x =  

(i+2)! 

or, equivalently, 

since the angular momentum I: of a rotating diatomic molecule has a magnitude L given by 

The form of the perturbations in (28) parallels that used in second- [35] and fourth-order 136,371 

perturbation treatments of polyatomic molecules, in which each perturbed Hamiltonian is the 

sum of an anharmonicity correction and a rotational term containing momenta divided by 

moments or products of inertia. 

The first term in each perturbation (27) comes from (6),  and these terms correct for 

anharmonicity in the potential energy curve. The second part of (27) is a rotational perturbation, 



corresponding to a term in series (1 1). Rotational perturbations adjust the system’s rotational 

angular momentum so as to account for centrifugal stretching effects [6]. Corrections for the 

coupling of vibration and rotation arise from integrals involving 5$i) ; when these integrals are 

evaluated (see Section VI), the result is a function of 2) multiplied by a constant involving J, the 

rotational quantum number. This results in coupled energy terms that depend on both the 

vibrational and rotational quantum numbers. 

Using the general power series expansion (24) of the Hamiltonian operator, one may 

show [9,26,38] that there exists an energy correction term E:; and perturbed wave function 

~ : f : ,~  associated with each perturbation @). These entities are related by the perturbation 

equations [26,38],  the nth of which is , 

When n = 0, the system is unperturbed and Equation (30) reduces to the familiar Schrodinger 

equation for an unperturbed system: 

.$O) vio;,, = E:; ~ i o j , ~  . 

The system’s total energy E, and true wave function v ~ , ~ , ~  are the sums of their 

respective correction terms: 

i=l 

VI. EVALUATION OF MATRIX ELEMENTS 

To calculate energy corrections E:; and perturbed wave functions  sf:,^, one must 

evaluate numerous integrals of the form 

v:p)dz 7 (34) (O)* &-(Z) 3ClZ.i2 = J Ygl 

where the integral is taken over all configuration space z and the ordered triple <i = (vi, Ji, Mi) 

specifies the system’s quantum state. The matrix element notation introduced in (34) is 

12 



somewhat nonstandard in that H i l ~ ~ 2  involves zeroth-order wave functions rather than true wave 

functions, and the Hamiltonian operator is a perturbation. 

Integrals such as (34) can, in general, be evaluated numerically; however, for the case of 

internal nuclear motion there exists [ 171 a simple procedure whereby an analytic solution may be 

obtained. Note that in spherical polar coordinates, the infinitesimal volume element 

d z  = R2 sin 8 dR d8 d$ , where 8 and $ are the standard spherical polar angles [30]. Hence, in 

this coordinate system, the arbitrary Hamiltonian matrix element H& becomes 

~ I I j ~ ~ ~ ' * k ' " l y : 2 0 ' R 2 s i n 8 d ~ d 8 d R  
R e o  

= JJJ  Yvl 

(35) 

Yv2 t~)q: (e,$)q? (e,$) sin8 d$ d8  dR , 
R e m  

where the R2 term disappears as a result of (8) and (17). Since Yj and k(i) both depend only on 

Q [Equations (14) and (27), respectively] and Q is a function of R only [Equation @)I, these 

terms may be factored out of the q5 and 8 integrals: 
m 

Hi:,\2 = J Yv, Yu2 dRJ qM1 1 2  qM2 sin 8 d$ d8  
0 e o  

where the Kronecker delta function 6 arises from the orthonormality of the spherical harmonic 

functions [3]. 

As a final step, one uses Definitions (8) and (27) plus the linearity of 2 to obtain 

where the normal coordinate matrix elements are defined [cf. Equation (34)] as 

13 



To a good approximation, the limits of integration in (37) and (38) may be interchanged; see [ 171 

or [27] for discussion. The vibrational potential energy constants y$, and rotational potential 

energy constants y::: in (37) are simply the constant coefficients from (27): 

(- 1)' ( i + 1 )( J + 1) JB, y;;; E 
( i )  - ki+2 

Ri Yvib = 9 (39) 

Because of the orthogonality of the spherical harmonic functions, the matrix element (37) 

is zero if J ,  # J ,  or MI # M,. Thus, the only nontrivial Hamiltonian matrix elements are those 

of the fmn q ( : ; , J l  ,MI Mu2 ,Jl ,Ml ) 7 or 9ft!u2 in less cumbersome notation. Note that the matrix 

element ~ ; ! %  contains an implicit dependence on the rotational quantum number J insofar as 

7::; depends upon J .  Elimination of J2 and M2 reduces 

which is simply a standard, two-dimensional matrix' whose elements are given by 

from a sixth- to a second-rank tensor, 

The functions Y, and Y,. in (38) are harmonic oscillator wave functions [see Equation 

(14)]. Working in the Heisenberg Lie algebra," it is possible to show [39] that the normal 

coordinate integrals (38) form a vector space; moreover, using matrix multiplication, one can 

readily derive expressions for these integrals as functions of the quantum numbers v and v' and 

the exponent z. However, an alternative approach yields better insight concerning the physical 

system. 

The harmonic oscillator wave functions ( 14) incorporate the Hermite polynomials, which 

are related by the well-known recursive formula [6] 

x H,W = H , - , ( x )  + + H,+, (x)  ; (41) 

Q ~ + H , ( Q ~ + ) =  v ~ , - , ( ~ c r b ) + 3 ~ , + ~ < ~ a t >  (42) 

setting x = Q& and IZ = 0, this equation becomes 

By rearranging (14), one may express the Hermite polynomial H , ( Q ~ )  in terms of a harmonic 

oscillator wave function: 

Operator matrices such as @'obey the same rules as matrices of numbers [17]. 
Io  The harmonic oscillator Hamiltonian is an element of the associative covering algebra for the Heisenberg Lie 
algebra [39]. 
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similar expressions can be obtained for H,, and H,, in terms of Y,, and Y,,, respectively. 

Substituting these expressions for the Hermite polynomials in (42) leads to a great deal of 

cancellation and affords [ 173 the relatively simple expression 

Finally, one multiplies Equation (44) by Y:, and integrates to obtain 

(e) , = (z)J Y:?Pu-, dz + [ -) v + l  j Y;.Yu+, dz 
u 3 u  2 a  2 a  

where the orthonormality of the harmonic oscillator wave functions was applied. The physical 

insight is this: because the net overlap of distinct harmonic oscillator wave functions is zero, the 

allowed electric dipole transitions for Y, must be A v = +I [29]. Real molecules, however, are 

not confined exclusively to these harmonic oscillator transitions, but exhibit additional 

transitions for A v = f2 ,  f 4, . . . [34]. As expected, these selection rules arise mathematically 

from the perturbations 2"'. 
From Equation (37), the perturbed Hamiltonian matrix elements are, in general, functions 

of some power of the normal coordinate matrix, but Equation (45) deals only with Q'. To obtain 

formulae for integrals analogous to (45) but involving higher powers of Q, one employs matrix 

multiplication [ 171; for example, the matrix Q2 is simply the (matrix) product of two Q matrices," 

where j is a dummy index variable that is eliminated during the course of the computation. 

Explicit formulae for the normal coordinate matrix elements up to ( Q4)v,u,  are provided by 

Wilson et al. [I]. 

By including only their nonzero elements, these matrices can always be made square and of the same dimension. 11 

Thus, the matrix multiplication (46) is always defined. 

15 



VII. RAYLEIGH-SCHRODINGER EXPANSIONS 

For vibrational-rotational analysis problems, it is convenient to use the Rayleigh- 

Schrodinger form of perturbation theory, which is based on the assumption that the set of all 

unperturbed wave functions {y/;”} is a basis for the Hilbert space containing the true wave 

functions I,Y< [26]. Thus, each perturbed wave function 

combination of the wave functions in (17): 

may be expressed as a linear 

where c;:) is the nth-order expansion coefficient associated with quantum state 5’. The 

summation in (47) runs over all possible values of the three quantum numbers v, J ,  and M. 

Three useful results will greatly expedite calculation of the linear combination 

coefficients in (47). First, it is known [3,40] that the expansion coefficient c : ’ , ~  does not affect 

the perturbation energy EL:; ~ so one may set c : ; , ~  = 0 in the Rayleigh-Schrodinger expansion 

of I,U::;,~ . If this is done, the expansion (47) simplifies to 

Second, observe that 

r 1 

where the Rayleigh-Schrodinger expansion (48) was used. Similarly, 

r 1 
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The second equality in (50) follows from the fact that the zeroth-order wave functions are 

If either of m or n is zero in (49) or (50), then one or both of the wave functions does not 

need to be expanded. These formulae are still valid, however, provided one defines 

where 4 is the quantum state whose wave function is to be expanded and 6' is the index variable 

of the Rayleigh-Schrodinger expansion (48). Definition (5 1) simply means that a zeroth-order 

wave function is a linear combination of a single wave function, namely, itself. 

Using the results obtained above, one can derive a general formula for the Rayleigh- 

Schrodinger expansion coefficients from the perturbation equations. Applying (48) and the 

notation introduced in this section, one obtains for the nth perturbation equation (30) 

Since the coefficients for n = 0 are known [from (51)], let n be greater than zero. Pre-multiplying 

(52) by the complex conjugate yi?* of an arbitrary state function and integrating over all space, 

one obtains 

which can be simplified by using the unperturbed Schrodinger equation (3 1) to perform the 

operation X * (0) y5,, (0) : 

As 4' is arbitrary, choose 4' such that 5' f 5. Under this condition, the wave functions 

yk? and yjn-j) are not necessarily orthogonal [26]; however, in the case where i = n, these two 

functions are orthogonal, so (54) reduces to 

Applying (50-52), Equation (55) becomes 

l 2  These wave functions are (or can be chosen to be) orthogonal because they are eigenfunctions of a Hermitian 
operator, in this case 3") ; the normalization condition is trivial. 
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I 
for all n > 0, which is nearly the desired general formula. However, if 5 and 5’ are degenerate 

quantum states with the same energy in the harmonic oscillator/rigid-rotator approximation, then 

the left side of (56) is zero, and no information regarding the expansion coefficients can be 

obtained from this formulation. Hence, assume for the moment that E:,\. # E:;. 

Solving (56) for c;:’ and substituting this expression into (48) affords the expansion 

Recall from the preceding section that the only nontrivial Hamiltonian matrix elements Hi!!<- 

are those for which J’ = J” and M’ = M”. Furthermore, observe from (56) with n = 1 that each 

first-order expansion coefficient c;!’ is simply a Hamiltonian matrix element divided by an 

energy difference. By induction on n, one may show that every set of nth-order expansion 

coefficients {$)} is nothing more than a sum of such terms, some of which are multiplied by an 

energy correction E::. Thus, the entire right side of (57) is zero whenever J’# J” or 

M’ f M ” ,  so the summations over 5’ f 5 and 5” f 5 in (56) and (57) reduce to summations 

over v’ # v and v” f v, respectively. Applying this simplification and making use of (5 l), one 

may also write Equation (56) as 
n-1 n-1 

‘{’ ( n )  ( E(0) v’,J’ - E‘O’ v,J ) = -yp;,+c c;;-i’@; - C c;;-i)H;wv n .  (58) 
i=l i=l vn#v 

In obtaining Equations (57) and (58),  it was assumed that E:?,\, # E:!;. In general, the 

difference in zeroth-order energies between states e’ and 5 is 

E:,\. - E:!) = (v’ - v) we + (J’  - J ) (  J’ -I- J + l)Be (59) 

from (1 8). However, the outer summation in the final Rayleigh-Schrodinger expansion (57) runs 

over only quantum numbers v’ # u and therefore J = J’ and M = M’. Under these conditions, 

the energy difference (59) reduces to 

E:,;. - Esp: = (v’ - u) we. (60) 
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Hence, the zeroth-order energy digerences are independent of the rotational quantum number. 

Moreover, since (58) need contain no summations over J or M ,  the rotational quantum number J 

appears in this equation only as a multiplicative constant [recall Definition (39) of the ith-order 

rotational potential energy constant]; the quantum number M does not appear in (58) at all. 

Because of this, the Rayleigh-Schrodinger expansion coefficients c::) in (58) will be denoted 

instead by c?), where an implicit parametric dependence on J (analogous to that of H,fl. ) is 

assumed . 

Equation (60) is significant because it implies that E:,\. - EFj f 0 if v’ # v. Since 

Equation (58) relates to the Rayleigh-Schrodinger expansion 

V‘#U 

this condition is met, so the assumption that f EA:; is justified. The final expression for 

the Rayleigh-Schrodinger coefficients is obtained from (58): 

where (60) was used. 

Equation (62) provides an important recursive relation whereby each new set of 

expansion coefficients {c?’} is determined by all of the coefficients of order less than n. 

Reference to molecular vibrations and rotations was made only in the context of obtaining a 

value for E:;. - E,, (’) , so the remainder of the derivation is valid for any Rayleigh-Schrodinger 

perturbation problem involving a power series expansion of the Hamiltonian. 

VIII. ENERGY CORRECTIONS 

Equations (61) and (62) are necessary in order to expand the perturbed wave function 
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vii) in terms of the known functions in the set {y;?}. l3  Such perturbed wave functions appear 

in the equation for the nth-order energy correction [26], 

where Dirac bra-ket notation has been introduced; that is 

and 

The parameter Kin (63) is defined as 

the greatest integer less than or equal to 3 n . Mathematically, only the wave function terms 

v?), v:', . . . , vlK) are necessary to express the nth-order energy correction EL:; [40]. 

Using Equations (48-50) to expand the wave functions in (63) provides 

l3  A nagging problem throughout this discussion is whether to include as subscripts the quantum numbers J and M .  
The results of Section VI justify omission of M as a subscript for c(") because Hamiltonian matrix elements do not 
depend on M ,  nor is M a necessary summation variable in the Rayleigh-Schrodinger expansion (61). Likewise, J is 
not a necessary summation variable, although it does appear in Hamiltonian matrix elements as part of the rotational 
potential energy constants of (39). A subscript J is not included on Hamiltonian matrix elements, however, in order 
to emphasize that p) is a (two-dimensional) matrix whose indices are vibrational quantum numbers, whereas J 
appears only in the aforementioned rotational potential energy constants. In keeping with this convention, the J 
subscript of the expansion coefficients is suppressed. Whenever a wave function explicitly appears in a formula, 
however, all three quantum numbers u, J ,  and M will be retained (often as the single subscript 5)  until an integration 
or other operation is performed that formally removes dependence on J and M .  Furthermore, the energy corrections 
E'" will retain both v and J as subscripts in order to emphasize the presence of both vibrational and rotational energy 
levels. 
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Hamiltonian matrix elements in (67) may be converted to normal coordinate matrix elements by 

using Equation (40), and Kronecker delta functions of the form 6u,,u,p simplify some of the nested 

summations in (67), leaving 

The outermost index variable x in (68) assumes only two values, 0 or 2, with 

YiZ' - = Yvib ' 
( 2 )  - (z) Yo = Yrot ' 

This amounts to evaluating Equation (68) once for rotational perturbations and once for 

vibrational perturbations. 

Expressed in terms of normal coordinate matrix elements, the Rayleigh-Schrodinger 

coefficients in (68) have the form 

where (40), (62), and (69) were used. 

Evaluation of summations over quantum states such as those in (68) and (70) has 

traditionally been one of the foremost difficulties encountered in any application of perturbation 

theory [17,40]; however, in this context such is not the case, for the summations over v' # V, etc., 

in (68) and (70) are not infinite sums. Rather, because there are only a finite number of allowed 
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transitions and since normal coordinate matrix elements must vanish for forbidden transitions, 

( turns out to be zero whenever i f j - z ,  j - z + 2, . . . j + z - 2, j + z .  Thus, this matrix 

element consists of no more than z + l  nonzero terms. This result is one reason that Rayleigh- 

Schrodinger perturbation theory is so often used in vibrational-rotational analysis. 

The above selection rules for the elements of the matrix Q arise from the fact that the 

harmonic oscillator wave function Y, has a definite parity [3] corresponding to the parity of the 

vibrational quantum number v. Furthermore, Q in (e'). . has the same parity14 as the integer z, 
' . I  

so the parity of '!Pi*,' Y, is the same as that of the integer z+ i + j .  As !he integral of an odd 

function over all space is zero, (eZ). . = 0 whenever z+ i + j is odd, or in other words when 
' * J  

if j - z ,  j - z + 2 ,  ... , j + z - 2 ,  j + z .  

IX. IMPLEMENTATION USING MATHEMATZCA 
An existing Mathemutica code [9] can evaluate the matrices Q for any positive integer z 

and return analytic functions of the vibrational quantum number analogous to (45); the selection 

rules for these matrices (as discussed above) are A v = +1, k 3, k 5, . . . , k z when z is odd and 

A 2) = 0, f 2, f 4, + .  . f z when z is even. This Mathematica code, along with Equations (68) 

and (70), could in principle be used by Mathematica to derive arbitrary-order correction terms. 

However, Mathemutica itself is capable of performing the algebra necessary to transform the 

general energy expression (63) into Equation (68). Hence, in the interest of maximum versatility, 

the general expressions (63) for the energy corrections and (58) for the Rayleigh-Schrodinger 

coefficients were used instead of (68) and (70). The advantage of this approach is that the 

perturbed Hamiltonian operators and zeroth-order energy differences are defined by means of 

short, readily alterable functions that are separate from the main Mathemutica code. As such, 

these definitions can be changed quickly should one wish to employ the Rayleigh-Schrodinger 

perturbation framework to solve a quantum-mechanical problem other than the one discussed 

herein. 

Appendices A and B provide the complete Mathemutica code necessary to derive analytic 

expressions for EA!;, EL:;, . . e in terms of molecular constants, universal constants, and 

Recall that Q is the variable of integration in Q' . ., and not simply some number. Therefore, in this context p ( i l p J  

14 

is a function with definite parity. 
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quantum numbers. Appendix A defines a Mathernatica package called RSPERTURB that contains 

a slightly modified version of the code of Dudas et al. [9] plus Equations (48-50), (58), and (63), 

along with a few other assorted rules for manipulating quantum-mechanical matrix elements. 

The code in this package pertains to Rayleigh-Schrodinger perturbation theory in general. 

Appendix By on the other hand, defines the package DIATOMICVIBROT, which consists of 

Definition (60) of E:,:. - E:; and Definition (27) of 2'') ; the purpose of this Mathernatica 

package is to apply the functions in RSPERTURB to the vibrational-rotational analysis of diatomic 

molecules. 

In deriving energy formulae using RSPERTURB and DIATOMICVIBROT, the quantum number 

v was not incorporated symbolically, but instead separate energy expressions were derived for 

each value of v. There are several reasons why this was done. First and foremost, when v is 

known explicitly, the summations over quantum numbers v' + v, etc., may be quickly evaluated, 

so it is enormously simpler (and much more efficient) to derive formulae in this manner. 

Moreover, the perturbation analysis described here is accurate only when R = Re (that is, when v 

is small), so there are relatively few vibrational states for which this analysis is applicable (and 

hence for which energy formulae need be derived). 

The only reason one might desire a general energy expression in terms of both v and J is 

that such an expression could subsequently be factored into a polynomial in powers of J (  J + 1) 

and (v + 3) whose coefficients could be related to the important spectroscopic constants, as 

shown by Dunham [41]. When only first- and second-order energy corrections are included, such 

a procedure has been utilized [ 171 to derive ab initio formulae for the spectroscopic constants in 

terms of universal constants, molecular constants, and the quantum numbers v and J .  In general, 

however, perturbation calculations do not yield energies that can be factored exactly (ie., 

analytically) into powers of J (  J + 1) and (v + 3) [42]. Furthermore, few of the Dunham 

coefficients have been attributed any physical or spectroscopic meaning [28,43], and indeed the 

Dunham expansion in (v + +)i[J(J  + l)]j is most often used as a numerical fitting equation. In 

light of this, the most efficient way to obtain theoretical values for spectroscopic constants is to 

calculate vibrational and rotational energy levels from first principles, then numerically fit these 

values to an appropriate power series in much the same way that ab initio electronic energies are 

fit to an analytic potential energy function. 
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Using the external packages RSPERTURB and DIATOMICVIBROT, Mathematical5 derived 

analytic formulae for the energy correction terms E<') through E@ and for vibrational states v = 0 

through 2) = 10. The odd-order perturbation energies were found to be zero, owing to the fact 

that perturbed Hamiltonian matrix elements 5YLi!v, have a definite parity due to Definition (27) 

and the parity of (ez) (as discussed in the preceding section). Using intrinsic Mathematica 
Y 9 %  

functions for algebraic simplification,'6 one can express each correction formula as a linear 

combination of small terms; the linear combination coefficients are integers whose values depend 

upon the vibrational state. By taking advantage of linear combination notation and intrinsic 

patterns in the correction formulae, one can reduce these expressions from literally hundreds of 

pages of algebra into relatively compact forms. These compact expressions for the energy 

corrections E2), E4), and E6) are given in Appendices C-E. 

Each energy correction formula consists of purely vibrational terms, purely rotational 

terms, and coupling terms arising from the interaction of vibration and rotation. Terms 

containing rotational dependence of some description are easily identified by the presence of the 

quantum number J ,  while purely vibrational contributions are conspicuous by the absence of this 

factor. Coupling terms are distinguishable from purely rotational contributions on the basis of 

their integer coefficients: the coefficients for a purely rotational contribution to the energy will 

not change with v, and such terms can therefore be grouped together into a single term for pure 

rotation (see Appendix C). 

The procedure used to derive E*), E4), and E6) is completely general and works for 

arbitrarily high orders of correction; the maximum order of correction is potentially limited only 

by time constraints. Previously, researchers using Mathematica to solve problems in quantum 

chemistry have reported [44] that this software is perhaps too slow to be of practical use. For the 

perturbation calculations presented in this report, however, such is not the case. 

Figure 2 presents the CPU time required for initial derivation of successive orders of 

perturbation formulae in their crudest forms, while Figure 3 shows the time required to simplify 

these crude formulae into the compact forms listed in Appendices C-E. Combining the timing 

data from Figures 2 and 3, one sees that the amount of CPU time required to derive and simplify 

l5 All Mathernatica computations were performed on a Sun SPARC 5 workstation using Mathernatica version 2.2 for 
Unix. 
l6 Manipulating Mathematica output into a desired form is something of an art. The proper sequence of commands . 
was found to be Simplify, which places all terms over a common denominator, followed by Expand, which 
separates this massive fraction into a sum of small terms and makes cancellations where appropriate. 
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a given formula is in all cases on the order of 10;" seconds. Furthermore, for a given value of n, 

CPU time scales linearly with V. 

CPU Time Required for Derivation of Crude Correction Formulae 
4000 I 1 I I I I I 

i v=lo 

v = 2  

v =  1 

v = o  

" 
0 1 2 3 4 5 6 

Order of Correction 

FIGURE 2. CPU time required by Mathernatica to derive symbolic energy correction formulae. 
All computations were performed on a Sun SPARC 5 workstation using Mathernatica 
version 2.2 for Unix. Results are shown for the first eleven vibrational states, ranging 
from v =  0 to v= 10. 

Although CPU time does scale exponentially, two facts make this problem somewhat 

more tractable. First, because of the v dependence of CPU time, the correction formulae for very 

low-lying vibrational states require significantly less time to derive and simplify than those for 

higher vibrational states (since negative values of v are not allowed, summations over v' f v are 

considerably less involved for small v). Because Rayleigh-Schrodinger perturbation theory is 

applicable only to low-lying vibrational states, those formulae that are of primary interest are also 

those that require the least time to obtain. 

Furthermore, it is worth noting that RSPERTURB is not the most efficient possible 

algorithm for deriving energy correction formulae because RSPERTURB recalculates the expansion 

coefficients cf) from the general formula (58) each time they are needed. It would be 

enormously more efficient to first calculate as many Rayleigh-Schrodinger coefficients as are 
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required," then store these expressions so that Mathematica may reference them during the 

course of a computation. In the case of diatomic molecules, however, the entire algorithm is 

wholly pedagogical in nature-the point is simply to demonstrate that arbitrary-order 

perturbation formulae can in fact be derived using computer algebra. In future work with 

polyatomic molecules (where emphasis shall be placed on obtaining actual numerical values for 

vibrational-rotational energies), a more efficient algorithm will be employed. 
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FIGURE 3. CPU time required by Muthematica to manipulate crude energy formulae into 
their simplest forms. Results are shown for the first eleven vibrational states. 

x. NUMERICAL RESULTS AND ANALYSIS 
Numerical values for perturbation energies through the sixth order of correction for 

various molecules of interest are quickly obtained by using Equation (18) for the zeroth-order 

energy and the formulae listed in Appendices C-E for corrections to this energy. In a thorough 

ab initio treatment, the force constants and equilibrium internuclear separation Re would be 

determined by means of electronic energy calculations [4, 12-14]. For *HZ, this was accomplished 

(1) (K) " To apply nth-order perturbation theory, one needs all nonzero Rayleigh-Schrodinger coefficients c, , . . . , c, , 
where n and K are related by Equation (66). 
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by fitting existing ab initio electronic energy data [33] to an eighth-degree Taylor polynomial; 

from Equations (6) and (22), each molecular force constant is just a coefficient of this 

polynomial divided by a factorial term. Notice from (27) that the ith perturbed Hamiltonian 

operator contains force constants through IC,+,, so the Taylor polynomial fit must be of at least 

eighth degree in order to apply sixth-order perturbation theory. 

Using these Taylor force constants, vibrational-rotational energy levels for 'H, were 

calculated to the sixth order of Rayleigh-Schrodinger perturbation theory [RSFT(6)]. Because the 

Taylor polynomial approximation to the potential energy curve has some finite radius of 

convergence, the theoretical data obtained from this potential energy expansion become 

nonsensical beyond a certain value of v. (In this application it was found that beyond v = 4 the 

calculated energy levels actually begin to decrease as the quantum numbers increase. Thus, 

theoretical calculations using this particular polynomial potential function cannot under any 

circumstances be extended beyond v = 4.) 

In Figure 4, RSPT(6) energies for each vibrational state v = 0 through v = 4 are plotted as 

a function of the rotational state J and compared with experimental values [32]. The Taylor 

polynomial provides an excellent fit for v = 0 and v = 1; moreover, the difference between 

theoretical and experimental energies increases rapidly with v but only slowly with J.  

As noted in the preceding section, calculation of useful theoretical data concerning 

diatomic molecules is not the purpose of this report; rather, the objective of this work is to 

demonstrate that perturbation calculations can be carried out systematically to any order using 

computer algebra, as well as to explore the behavior of perturbation energy calculations for some 

test molecules. As such, only a few numerical results will be presented in order to verify that the 

energy correction formulae are indeed legitimate. Furthermore, force constants obtained from 

numerical fits of ab initio potential energy data will not be used, but instead an empirical 

function for the potential energy curve will be employed. The reason for this choice is that there 

exist [2,34,45] several well-known analytic functions that can accurately represent potential 

energy curves for most diatomic molecules. Such functions cannot be employed in truly ab initio 

work, since their forms depend parametrically upon experimentally measured spectroscopic 

constants. However, for the purpose of testing the energy formulae of Appendices C-E, such 

accurate potential energy functions are extremely valuable and convenient. 

The simplest (and, not inconsequentially, the most popular [34]) analytic function for the 

potential energy of a diatomic molecule is the Morse function [46]: 
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U(Q) = D[I - e-pQ]’, (7 1) 

where D is the molecular dissociation energy and p is the so-called Morse parameter, whose 

value is given [ 17,471 by 

Sprandel and Kern [8] have tabulated D and p for several diatomic molecules. 

RSPT(6) Versus Experiment for Motecular Hydrogen (8th Degree Taylor Polynomial Potential) 

0 0  
Vibrational Quantum Number, v Rotational Quantum Number, J 

FIGURE4. Energy calculations through sixth order for X ‘C+, ‘H2, using force constants 
obtained from a Taylor polynomial fit of theoretical potential energy data [33].  
Each solid line shows the theoretical energy of a particular vibrational state as a 
function of the rotational quantum number, and dashed lines represent 
corresponding experimental values [32]. 

Although Morse’s function remains popular by virtue of its simplicity, the most accurate 

general-purpose empirical function for diatomic potentials is typically found ~34,451 to be the 

Hulburt-Hirschfelder function [47]. This function contains the parameters D and p from the 

Morse potential plus additional parameters b and c: 

U(Q)= D[(1-e-pQ)2 + ~ p ~ Q ~ e - ~ ~ ~ ( l + b p Q ) ] .  (73) 
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Like p, the Hulburt-Hirschfelder parameters b and c can be written in terms of spectroscopic 

constants, but these formulae are quite complicated and have been omitted here. For the explicit 

forms of b and c, as well as tabulated values of these parameters for many diatomic molecules, 

see Hulburt and Hirschfelder [47]. 

When an analytic potential energy function is used, symbolic expressions for the 

molecular force constants can be obtained by analytic differentiation of U. Because dR = dQ by 

(8), these derivatives may be taken either with respect to R or with respect to Q, then evaluated at 

either R = R, or Q = 0. For the Morse potential function (71), there exists [SI a simple closed- 

form expression for these derivatives: 

( 2 p 2 ~ ,  if i = e 1 
(74) 

For the Hulburt-Hirschfelder potential function (73), no such closed-form expression exists; 

however, Mathematica can easily perform the requisite symbolic differentiation. For 

convenience, formulae for the Hulburt-Hirschfelder force constants (through klo) obtained in this 

manner are listed in Appendix F. 

For comparative purposes, RSPT(6) vibrational-rotational energies for 'H, were calculated 

by using first Morse and then Hulburt-Hirschfelder force constants. In Figures 5 and 6, RSPT(6) 

energies for each vibrational state v = 0 through v = 10 are plotted as functions of the rotational 

state J and compared with experimental values [32]. For the lowest vibrational levels (i.e., 

v I 4 ), theoretical energies obtained from Hulburt-Hirschfelder force constants are essentially 

indistinguishable from experimental values. As v increases, so too does the discrepancy between 

theory and experiment; this rift also increases (to a lesser extent) with increasing J. Similar 

behavior was observed in the Taylor polynomial potential energy curve (Figure 4), and is 

attributable to the fact that for low-lying states the rotational term in 2'') is much smaller than 

the vibrational term [27]. 

Although force constants from the Morse potential appear to provide a better fit for v = 7 

through v = 10, the decision was made to use the Hulburt-Hirschfelder potential function for all 

calculations, since Rayleigh-Schrodinger perturbation theory is most applicable to the lowest 

vibrational levels. This last point cannot be overemphasized, and in performing such theoretical 

calculations it is imperative that one understand precisely how many vibrational and rotational 

energy levels can accurately be described using the given theory and all its intrinsic 

approximations and assumptions. 
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FIGURE 5 .  Energy calculations through sixth order for X 1Z+8 'HZt using force constants 
obtained from the Morse potential. Each solid line shows the theoretical energy 
for a particular vibrational state as a function of the rotational quantum number, 
and dashed lines represent experimental values [32]. Morse parameters were 
obtained from [SI. 

The maximum vibro-rotational energy that can be calculated to a given level of accuracy 

depends upon the potential energy surface, the order of perturbation theory, and the molecule 

itself. In what follows, a paradigmatic analysis of the accuracy of RSPT(6) calculations to 'H, is 

provided, beginning with a look at the sequence of energy corrections for this molecule. 

Table 1 lists the individual correction terms for several different vibro-rotational states of 

*HZ. Several important trends in perturbation energy corrections, which are true for nearly all 

diatomic molecules, are exemplified by this data. First, note that corrections to the zeroth-order 

energy are significantly smaller for v = 0 than for v = 1. This difference in the relative 

magnitudes of correction terms is even more pronounced at larger values of v and is illustrative 

of a general trend: each order of perturbation correction becomes larger (in an absolute sense) as 

2) increases. This is not surprising, given that the harmonic oscillator model becomes 
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increasingly less accurate for higher and higher vibrational energy levels; for highly excited 

vibrational states, significant correction to this idealized model is required. 

RSPT(6) Versus Experiment for Molecular Hydrogen (Hulburt-Hirschfelder Potential) 
. .  . .  _ . .  . . . .  

.. . .. 

. 
10 

Vibrational Quantum Number. v Rotational Quantum Number, J 

FIGURE 6. Energy calculations through sixth order for X IC+, 'H2, using force constants 
obtained from the Hulburt-Hirschfelder potential. Each solid line shows the 
theoretical energy of a particular vibrational state as a function of the rotational 
quantum number, and dashed lines represent experimental values [32]. Hulburt- 
Hirschfelder parameters were obtained from [47]. 

TABLE 1. Energy correction terms for six vibrational-rotational states of 'H2. The tilde 
over the energy correction indicates division by Planck's constant times the 
speed of light in order to convert standard SI energy units into waves per 
centimeter (or wavenurnbers), the standard units of molecular spectroscopy. 

I Correction I Vibro-Rotational Energy Contributions, I Vibro-Rotational Energy Contributions, 1 
I E;:: [waves/cm] Eo,, - ( i )  [waves/cm] I - I I Term 

U = O , J = O  V = O , J = l  u = O ,  J = 2  ~ = 1 ,  J = O  ~ = 2 ,  J = O  ~ v 3 ,  J = O  
E@) 2202.42 2324.14 2567.58 6607.27 11012.12 15416.97 

E(4) -0.52 -0.49 -0.42 1.99 45.91 101.48 
E@) -23.34 -26.59 -34.21 -274.04 -775.45 -1527.56 

E(6) 0.02 0.02 0.02 -0.5 1 -5.05 -20.57 



Table 1 also demonstrates, however, that energy increases relatively slowly with J.  

Although this is illustrated in Table 1 only for the ground vibrational state, it is in fact a general 

trend for low-lying vibrational and rotational states: within a given vibrational state, energy 

increases slowly with J ,  but within a given rotational state, energy increases quite rapidly with 

v.I8 This, in fact, is the trend illustrated in Figures 5 and 6, and is due to the fact [27] that the 

vibrational potential energy series (6) is term by term much larger than the rotational potential 

energy series (1 1). 

TABLE 2. Complete results of RSPT(6) vibro-rotational energy calculations for X IC+, IHZ (tabulated 
in waves per centimeter); the lower entry in each cell is an experimental value [32]. 
Theoretical calculations were performed using Hulburt-Hirschfelder force constants, 
where the Hulburt-Hirschfelder parameters were obtained from [47]. 

v = O  2178.59 
2179.30 * 6340.49 

V =  1 6334.71 

v = 2  10246.7 
10266.3 

v = 3  13914.8 
13961.7 

~ = 4  17335.4 
1743 1.4 

V =  5 20501.9 
20680.4 

v = 6  23403.8 
23713.6 

v = 7  26027.3 
26535.8 

29151.9 
v = 8  28355.2 

33785.4 

J = 1  I J = 2  I J = 3  
2297.08 I 2532.96 I 2884.09 

10353.4 10565.6 10881.3 
10373.9 10588.0 10906.2 
14015.4 14215.8 14513.8 
14065.2 14271.0 14576.8 
17430.0 17618.2 17897.9 
17531.7 17731.1 18027.4 
20590.1 20765.6 21026.3 
20778.1 20972.4 21260.9 
23485.3 23647.4 23888.0 
23808.8 23998.0 24279.1 
26101.7 26249.4 26468.5 
26627.8 26810.7 27082.2 
28421.9 28554.1 28749.9 
29239.0 29412.3 29669.0 

J = 4  J = 5  
3347.34 3918.67 
3346.94 3916.59 
7444.28 7986.38 
7449.96 7990.47 
11297.6 11810.7 
11325.1 11840.3 
14906.4 15390.1 
14979.3 15473.9 
18266.4 18719.8 
18417.0 18895.6 
21369.4 21791.2 
21640.2 22105.9 

J = 6  
4593.28 
4587.71 
8626.23 
8626.60 
12415.9 
12445.9 
15960.3 
16054.8 
19253.8 
19457.3 
22287.2 
22652.2 
25048.2 
25633.3 
27520.5 
28389.1 
29684.8 
30903.0 
3 15 18.1 
33 1 53.4 
32993.8 
351 13.4 

J = 7  J = 8  
5365.67 6229.81 
5353.51 6206.08 
9358.52 10177.4 
9351.52 10157.3 
13108.2 13881.8 
13135.3 13900.4 
16611.9 17339.2 
16715.4 17447.6 
19863.2 20542.7 
20095.5 20802.1 
22852.5 23481.5 
23272.4 23958.5 
25566.3 26141.4 
26236.2 26902.7 
27988.0 28505.0 
28970.0 2961 1.4 
30097.2 30551 .O 
3 1450.1 32052.9 

For highly excited vibrational and rotational states, this simple qualitative model breaks down, since vibrational 
and rotational level spacings exhibit opposite trends: vibrational level spacing decreases as v increases, while 
rotational level spacing increases as J increases [ 17,341. However, for the low-lying vibrational-rotational states to 
which Rayleigh-Schrodinger perturbation theory is applicable, the vibrational corrections will indeed be much larger 
than the rotational ones. 
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Table 2 shows the complete results of RSPT(6) calculations for 'HZ, along with 

experimental vibro-rotational energies obtained from spectroscopic data [32]; for convenience, 

the relative differences between theoretical and experimental energies are tabulated in Table 3. 

The data in Table 3 indicate excellent agreement between theory and experiment for low-lying 

vibrational states (for instance, when v I 3  the difference between theoretical and experimental 

energies is less than one percent for all eleven rotational levels considered); moreover, the 

relative differences in Table 3 are not altogether large even for higher vibrational states. 

However, it should be noted that when v > 3 the absolute difference between theoretical and 

experimental energies is often on the order of several hundred wavenumbers. Thus, it appears 

that for v > 3 one might wish to resort to eighth- or higher-order perturbation corrections. 

Much of the discrepancy between theoretical and experimental energies in Table 2 is 

obviously due to the fact that Rayleigh-Schrodinger perturbation theory works well only near the 

equilibrium geometry; as v and J increase, the two nuclei of the diatomic molecule spend more 

and more of their time separated by large values of R and hence away from the minimum-energy 

config~ration.'~ However, some portion of the discrepancy in Table 2 can be attributed to the 

experimental values themselves. 

TABLE 3. Relative (percent) difference between the theoretical and experimental energies in Table 2. 
Negative values indicate theoretical energies that lie below experimental ones. 

l9 It is easy to visualize how an increase in vibrational energy stretches a diatomic molecule away from its 
equilibrium geometry. However, an increase in rotational energy has the same effect due to centrifugal stretching, as 
discussed in Section IV. 
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Virtually all tabulated experimental vibro-rotational energy data (including those listed in 

Table 2) come from energy formulae that are power series in (v + 4) and J (  J + l), and whose 

coefficients are the important spectroscopic constants. These formulae have the form 

= ~,(u+3)+fi,J(J+1)+D,J2(J+1)2 +Ym , (75) 

where tildes indicate units of waves per centimeter. While Ym is simply a constant with no 

dependence on v or J ,  each of &, , E,, and 6, is a power series20 in (v + 3) : 

L,  is an anharrnoizicity series whose first terms corresponds to me from (1 8) and whose 

remaining constant coefficients 6pe, 6 , y e ,  etc., are known as anhamzonicity constants. These 

terms correct for the non-parabolic nature of the potential energy curve and tend to decrease 

vibrational level spacing as v increases [17]. The series E, (whose constant coefficients E,, 4, 
etc., are known as coupling constants) defines an effective rotational constant for vibrational 

level v that takes into account vibrational-rotational coupling; the first term in this series 

corresponds to Be in (18). Finally, the centrifugal distortion series 6,  (whose coefficients are 

the so-called centrifugal distortion constants) accounts for centrifugal stretching effects [48]. 

Truncated versions of the power series (76-78) are obtained from numerical fits of 

experimental vibro-rotational energy data; the number of terms that are included in the final 

experimental energy equation (75) depends upon the accuracy of available experimental data and 

therefore varies from molecule to molecule. It must be stressed, however, that the experimental 

energy formula (75) is an approximation [48] and is not valid for all values of v and J.  In the case 

of the 'H2 data in Table 2, the fit is valid only for 

experimental energy fits of any listed in [32]. (Dunham [41] predicts that this should, in fact, be 

the worst fit, since 'H2 is the lightest of all molecules). Not coincidentally, the relative 

differences (Table 3) between experimental and theoretical energies are largest when v > 3. 

I 3  [32], which is one of the worst 

- 
2o Most texts on experimental spectroscopy include explicit negative signs for G,x,, a,, and 0,; however, in 
deference to mathematical generality the forms in (76-78) will be used in this report, and appropriate signs will be 
incorporated into numerical values of spectroscopic constants. 
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Because of this breakdown in the Dunham energy series approximation, the theoretical energies 

for v > 3 in Table 2 may, in fact, be more accurate than existing experimental values might lead 

one to believe. 

The small relative differences in Table 3 can also be somewhat misleading, for it is 

known that the Taylor series (6) and (1 1) fail to converge for all values of v and J listed in this 

table. An estimate of the maximum values of v and J for which convergence is guaranteed can 

be obtained by examining the radii of convergence of the potential energy series (6) and (1 1). In 

Section I11 it was easily shown that series (1 1) converges whenever Q < Re. The radius of 

convergence for (6) is known [9] to be approximately the same, although this radius is difficult to 

determine exactly. 

Figure 7 depicts a plot of the Hulburt-Hirschfelder potential energy curve for 'HZ obtained 

by using the Hulburt-Hirschfelder parameters listed in [47]; overlaid onto this plot are the 

RSPT(6) vibrational energy levels for the ground rotational state and the J = 10 rotational state. 

The vertical line in Figure 7 is located at the radius of convergence, Q = Re. Although the 

quantum-mechanical harmonic oscillator may tunnel out of the potential well of Figure 7, the 

wave function falls off very rapidly for values of Q outside this well [17,27]. Hence, to a good 

approximation one may restrict the normal coordinate to values within the potential energy well. 

Note that for vibrational levels above v = 5 (in the ground rotational state) and above 

v = 3 (in the J = 10 rotational state), the normal coordinate may drift beyond Re yet still be within 

the potential well. For these energy levels, the perturbation series (32) and (33) cannot be 

assumed to converge for all values of Q, so the perturbation treatment presented herein is not 

applicable. Since J = 10 and J = 0 are, respectively, the highest and lowest rotational levels 

examined for 'H,, Figure 7 establishes boundary conditions for convergence of the perturbation 

series for this molecule. For the rotational levels 0 I J I 10, one anticipates convergent 

perturbation series up to at least the v = 3 vibrational level but no higher than the v = 5 

vibrational level. 

One last comment concerning the accuracy of molecular hydrogen calculations is in 

order. This molecule (and, in particular, the diprotium isotope examined here) is something of a 

worst-case scenario. Because it is the lightest molecule, high-order energy corrections for H2 

should be the most significant of any diatomic molecule [41]. Furthermore, the breakdown of the 

Born-Oppenheimer approximation is known [49] to be more significant for isotopomers of H, 



than for other diatomic molecules. Thus, H2 represents something of a lower limit to the accuracy 

of perturbation calculations. 

lo4 RSPT(6) Energy Levels for Molecular Hydrogen 
I I I 1 I I I I I 

FIGURE 7. Hulburt-Hirschfelder potential energy curve and vibro-rotational energy levels for 
the ground rotational state (solid lines) and the J = 10 rotational state (dashed 
lines) of X IC+, 'H2. These energies were obtained from RSPT(6) calculations by 
using Hulburt-Hirschfelder force constants, where the Hulburt-Hirschfelder 
parameters b and c were taken from [47]. The dotted vertical line is located at 
Q = R e .  

TABLE 4. Experimental and RSPT(6) vibrational-rotational energies for X IC+, I4N2 in units of waves per 
centimeter. Experimental values were taken from [32], while theoretical calculations used the 
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47 3. 

u = 3  I 8077.78 I 8079.39 I 8081.65 I 8083.27 I 8089.42 I 8091.02 I 8101.08 I 8102.64 I 8116.62 I 8118.14 
u = 4  I 10315.4 I 10323.2 I 10319.2 I 10327.0 I 10326.9 I 10334.7 I 10338.5 I 10334.7 I 10353.8 I 10361.6 
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Tables 4 through 7 present experimental and RSPT(6) energies for several other 

representative diatomic molecules, while Tables 8 and 9 list the relative differences between 

theory and experiment for each set of calculations. Notice that this difference is much smaller 

for heavier molecules (I4N2 and 12C'60) than for lighter ones ('H''F and 'H2H). This behavior 

affirms Dunham's result [4 I] for dinuclear vibrational-rotational energies: the accuracy of low- 

order perturbation calculations increases with the molecular reduced mass. 

TABLE5. Experimental and RSPT(6) vibrational-rotational energies for X IC+ 12C160 in units of waves per 
centimeter. Experimental values were taken from [32], while theoretical calculations used the 
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47]. 

- J=O J = 1  J = 2  J = 3  J = 4  I I I 4 . J  I I 
~ ,- I I I I I I2Cl6O I RSPT(6) I EXD. 1 RSPT(6) I EXD. I RSPT(6) I EXD. I RSPT(6) I EXD. I RSPT(6) I EXD. I 

v = O  1081.07 1081.59 1084.92 1085.31 1092.60 1093.12 1104.14 1104.66 1119.51 1120.03 
v = 1 3223.08 3224.86 3226.89 3228.67 3234.51 3236.29 3245.94 3247.72 3261.17 3262.96 
v = 2 5338.70 5341.65 5342.47 5345.42 5350.02 5352.97 5361.34 5364.30 5376.44 5379.40 
v = 3 7427.71 7432.03 7431.44 7435.77 7438.92 7443.25 7450.14 7454.46 7465.09 7469.42 
v = 4 9489.88 9496.06 9493.59 9499.76 9500.99 9507.17 9512.10 9518.28 9526.91 9533.10 

TABLE 6. Experimental and RSPT(6) vibrational-rotational energies for X ICc 'HL9F in units of waves per 
centimeter. Experimental values were taken from [32], while theoretical calculations used the 
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47]. 

~ = 3  I 13445.2 I 1341.97 I 13481.5 I 13457.7 I 13554.0 I 13542.2 I 13662.7 I 13690.1 I 13807.5 I 13926.8 
~ = 4  I 16916.0 I 16878.6 I 16950.8 I 16916.1 I 17020.3 I 17005.2 I 17124.6 I 17173.8 I 17263.4 I 17464.2 

The RSPT(6) calculations in Tables 4-7 are all based upon the Hulburt-Hirschfelder force 

constants listed in Appendix F. The values of b and c used in these equations were taken from 

those explicitly tabulated in [47], while the spectroscopic constants necessary to obtain p were 

taken from more recent experimental data [32]. The spectroscopic constants listed in [32], 

however, differ from the ones that Hulburt and Hirschfelder [47] used to calculate b and c, so 

these Hulburt-Hirschfelder parameters were also calculated from the spectroscopic constants 

listed in E321 (using the formulae in [47]). When force constants obtained in this manner were 
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utilized in RSPT(6) calculations, the theoretical energies obtained for 'H"F and 'H'H fell several 

wavenumbers closer to experimental values, thus demonstrating the importance of possessing an 

accurate potential energy function. 

TABLE7. Experimental and RSPT(6) vibrational-rotational energies for X 'E+8 'H2H in units of waves per 
centimeter. Experimental values were taken from [32], while theoretical calculations used the 
Hulburt-Hirschfelder potential model with Hulburt-Hirschfelder parameters obtained from [47]. 

TABLE 8. Relative (percent) difference between theoretical and experimental energies for the heavy 
molecules I4N2 and l2Cl6O. Negative values indicate theoretical energies that lie below 
experimental ones. 

TABLE 9. Relative (percent) difference between theoretical and experimental energies for the light 
molecules 'H"F and 'H2H (HD). Negative values indicate theoretical energies that lie 
below experimental ones. 

One last interesting numerical result is presented. Theoretical values for spectroscopic 

constants of 'H, were obtained by fitting RSPT(6) energy data for 'Hz to polynomials in 2) and J 
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corresponding to truncated versions of (76-79). Thus, for example, the value of 

coefficient of the J (  J + l)(v + 3) term in such a polynomial. Mathernatica 's intrinsic function 

NonlinearRegress" was used to perform the numerical fitting procedure, and the 'H,energy 

data from Table 2 for 0 I v I 3 and 0 I J I 10 were used as input (these energies, one will recall, 

differed from experiment by less than one percent). The theoretical spectroscopic constants 

obtained in this manner are listed in Table 10 alongside their experimental counterparts, which 

were taken from [32]. The numerical fit of the theoretical data has an estimated standard 

deviation of 1.24 waves per centimeter. 

in (76) is the 

TABLE 10. Theoretical and experimental spectroscopic constants for 'H2. 
Theoretical values were calculated by Mafhematica to six 
significant digits, while experimental values were obtained 
from [32]. 

Spectroscopic Theoretical Value Experimental Value 
Constant [waves/centimeter] [waves/centimeter] 

4400.33 4401.2 13 - 
U P  

I I -122.135 I -121.336 I 6Je 
60.616 60.8530 - 

' e  

-3.0655 -3.0622 - 
a, 

I I 

-0.0399509 -0.047 1 - 
De 

I 8.93 I I 10.2031 - I ynn 

XI. co CI isIor 
Formula (57) provides a general expression for the Rayleigh-Schrodinger expansion of 

perturbed wave functions when a power series expansion of the molecular Hamiltonian is 

employed. This formula is valid in any application of Rayleigh-Schrodinger perturbation theory 

and complements the general perturbation energy formula obtained by Herbert [26]. In fact, these 

two formulas may be combined to yield the energy correction formula (67), which also holds for 

any application of Rayleigh-Schrodinger perturbation theory. In the context of vibrational- 

rotational analysis, however, Equation (67) may be simplified by writing the perturbed 

Hamiltonian matrices in terms of powers of the normal coordinate matrix. 

*' This function is contained in the package Statistics'NonlinearFit' . 
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In this report, such an analysis was presented for diatomic molecules. First, an 

appropriate Hamiltonian operator, exact within a certain radius of convergence, was derived 

[Equation (23)] and then written in perturbation-theoretical form as a power series whose 

individual terms are given by (25) and (27). Next, it was shown how an arbitrary element 3€;:,i2 

of the ith perturbed Hamiltonian matrix could be expressed in terms of normal coordinate matrix 

elements [Equation (40)]. Finally, Equation (40) was substituted into general formulas for 

Rayleigh-Schrodinger perturbation energies and expansion coefficients to yield equations 

specific to this application [(68) and (70), respectively]. Alternatively, one may forego 

derivation of (68) and (70) and proceed directly to implementation on Mathematica using 

Equations (58) and (63) .  

Using the packages RSPERTURB and DIATOMICVIBROT, Mathematica derived symbolic 

perturbation energy formulae which were then evaluated numerically for several test molecules. 

A procedure was given whereby the accuracy of such theoretical calculations may be estimated. 

However, the numerical results are not the significant accomplishment of this report; rather, these 

results serve only to demonstrate that computer algebra can successfully be used to implement 

high-order perturbation calculations that are much too laborious to be accomplished manually. In 

this regard, the most significant parts of this report are the RSPERTURB and DIATOMICVIBROT 

programs, for they allow anyone-quantum chemist or experimentalist-to take advantage of 

arbitrary-order perturbation theory (RSPERTURB) to solve diatomic vibrational-rotational analysis 

problems (DIATOMICVIBROT) using Mathematica. 

Although derivation of symbolic high-order perturbation formulae requires a significant 

amount of computation time due to the nature of the Mathematica software package, significant 

improvements in algorithm efficiency (as discussed in Section E) will be made before this 

analysis is applied to polyatomic molecules. Even so, the methods presented herein may already 

be more efficient than numerical procedures, for the calculations performed by Mathematica 

result in symbolic formulae that express energy corrections in terms of arbitrary universal and 

molecular constants. Once the RSPT(6) formulae in Appendices C-E were derived, for example, 

energy corrections through sixth order were rapidly calculated for all of the molecules in 

Section X simply by substitution of appropriate constants. Because of their symbolic nature, 

once published the formulae in Appendices C-E need never be derived again. 

Computer algebra has proven to be an effective tool in the application of perturbation 

theory to problems in quantum mechanics, In future work, the procedures presented here will be 
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applied to vibrational-rotational analysis problems involving polyatomic molecules. Many of the 

results presented in this report and in [26] are quite general and can readily be extended to 

polyatomic molecules. The major difficulties in such an application are derivation of an 

appropriate Hamiltonian, segmentation of that Hamiltonian into a power series consisting of 

separate perturbation terms, and derivation of explicit forms for the polyatomic vibrational- 

rotational wave functions. Once these obstacles are overcome, however, the remainder of the 

treatment should be analogous to that presented in this report 



APPENDIX A 
THE MATHEMATZCA PACKAGE RSPERTURB 

Note that the function Qdel t a  in this package is a slightly modified version of the code 

authored by Dudas et al. 191. 

Beginpackage [ "Rsperturb' " 3 

( *  Two variables must be specified at the beginning of each session: 
HighestState is the numerical value of the highest quantum state for which 
formulae are to be derived, while HighestOrder is the highest order of 
correction for which formulae will be derived. Specifying larger values of 
these variables than are necessary will not adversely affect the output, 
although the derivations may require more CPU time than would otherwise be 
necessary. * )  

Energy::usage = 
"Energy [n, v] derives the nth-order energy correction formula for quantum 
state v using the most general form of the perturbation energy formula (as 
derived by Herbert 1261 ) -'' 

Egy::usage = 
"Egy[i,v] is the ith-order energy correction for quantum state v as 
referenced by the function Energy[n,v]. This notation allows a recursive 
formula for Energy[n,vl to be generated without explicit evaluation of the 
lower-order energies on which it depends." 

KDe1ta::usage = 'The Kronecker delta function." 

SumStates::usage = 
"Sumstates [expr, {v, v', vmax} ] sums expr over the quantum numbers from v to 
vmax, skipping v = v' *'' 

Qde1ta::usage = 
"Qdelta[n] derives expressions for the elements of the matrices 
Q1, Q2, . . . ,  Q". This is a slightly modified version of the function 
published in 191; this version incorporates Kronecker delta functions." 

GenerateC0efficients::usage = 
"GenerateCoefficients[n,v] returns a matrix containing all of the Rayleigh- 
Schrodinger expansion coefficients necessary to expand the nth perturbed 
wave function for quantum state v. This function is useful for obtaining 
the explicit form of the wave function as a linear combination of the 
zeroth-order wave functions." 

RSCoefficients1::usage = 
"RSCoefficientsl[n,j,{v}] generates the nth-order Rayleigh-Schrodinger 
expansion coefficient associated with quantum state j such that the 
summation excludes j = v- This function is intended to be called by other 
functions - " 

RSCoefficients2::usage = 
'Usage is the same as the function RSCoefficientsl; both functions are 
necessary for matrix elements that require two different expansion 
coefficients . " 

Psi::usage = 
"Psi[n,vl is the nth-order perturbed wave function for quantum state v." 

42 



H::usage = 
"H[n] is the nth-order perturbed Hamiltonian operator." 

k::usage = 
"k[i] is the symbolic representation of the ith molecular force constant." 

1nt::usage = 
'Int [Psi [nl, VI] , H [XI , Psi [n2, v21 I is a quantum-mechanical integral 
involving a perturbed Hamiltonian operator. If nl = 0 and n2 = 0, then 
this function is a Hamiltonian matrix element as defined in Equation ( 3 4 ) . "  

1nt::usage = 
"Int [Psi [nl, VI], Psi [n2, v213 is an overlap integral. " 

( *  Other symbols appearing in the symbolic output are: 
a, which represents the constant a in (15); 
ke, the equilibrium molecular force constant; 
ve, the harmonic frequency as defined in (16); 
h, Planck's constant; 
Be, the equilibrium rotational constant (19); and 
Re, the equilibrium internuclear separation. * )  

Highest = HighestState + 3 + Sum[index, {index, 3, HighestOrder + l}]; 
AA = Array[A, Highest]; 
BB = Array[B, Highest] ; 
Unprotect [Part] ; 

Attributes[KDelta] = {Orderless}; 
KDeltafa-, b-] := Which[a == b, 1, a !=  b, 01 / ;  a == b I I a !=  b 

SumStates[expr-, {var-, hole-, max-)] := 
SumLexpr, {var, -max, hole - 111 + Sum[expr, {var, hole + 1, max}] 

( *  Expansion of perturbed wave functions in Hamiltonian matrix elements using 
Equation (49) * )  
Int / :  Int[Psi[nl-Integer, v1-1, h:-H, Psi[n2_Integer, v2-11 := 

Block[{pdt}, 
pdt = SumStates[RSCoefficientsl[n2, i, (v2}]* 

SumStates[RSCoefficients2[nl, j ,  {vlll pdt, {j, vl, Highest}] 
Int[Psi[O, jl, h, Psi[O, ill, {i, v2, Highest}]; 

I /; (nl > 0) && (n2 > 0) 

SumStates[RSCoefficientsl[nl, j, lvl)] Int[Psi[O, jl, h, Psi[n2, v211, 
Int / :  Int[Psi[nl-Integer, vl-I, h:-H, Psi[n2_Integer, v2-I1 := 

{ j ,  vl, Highest}] /; (n2 == 0) && (nl > 0) 
Int / :  Int[Psi[nl-Integer, VU, h:-H, Psi[n2_Integer, v2-11 := 

SumStates[RSCoefficients2[n2, j, {v2}] Int[Psi[nl, vll, h, Psi.10, jll, 
{j, v2, Highest)] / ;  (nl == 0) && (n2 > 0) 

( *  Expansion of perturbed wave functions in overlap integrals using Equation 
( 5 0 )  * )  
Int / : Int [Psi [nl-Integer, v-] , Psi [nz-Integer, v-] ] : = 

SumStates[RSCoefficientsl[nl, j ,  {VI]* 
RSCoefficients2[n2, j ,  {VI], {j, v, Highest}] /; (nl > 0) I I (n2 > 0) 

( *  Hermitian property of quantum-mechanical integrals * )  
Int / :  Int[Psi[nl-, vl-I, h:-H, Psi[n2-, v2-13 := 

Int / :  Int[Psi[nl-, vl-I, Psi[n2-, v2-31 := 
Int[Psi[n2, v21, h, Psi[nl, vlll / ;  Order[Psi[nl, vll, Psi[n2, v211 == -1 

Int[Psi[n2, v21, Psi[nl, v111 / ;  Order[Psi[nl, vl], Psi[n2, v213 == -1 

( *  Orthogonality of zeroth-order wave functions * )  
Int / :  Int[Psi[O, vl-I, Psilo, v2-11 := KDeltaLvl, v21 

Energy[n-, V-] := 
Block[{terml, term2, term3, terml, term5, span, ii, j j } ,  
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If[EvenQ[nl == True, span = n/2, span = (n - 1)/2]; 
terml = Sum[(2 - KDelta[n, 2 ii]) Int[Psi[jj - 1, VI, 

term2 = Sum[Int[Psi[ii, VI, H[n - 2 iil, Psi[ii, VI], 

term3 = Sum[(2 - KDelta[n, 2 ii]) Egy[n - ii - jj + 1, VI 

term4 = Sum[Egy[n - 2 ii, VI* 

term5 = KDeltaLn, 2 span + 11 (Int[Psi[span, VI, H[lI, Psi[span, VI] - 

terml + term2 - term3 - term4 + term5 

H[n - ii - jj + 11, Psi[ii, VI], {jj, 1, span), {ii, jj, span}]; 

{ii, 0, span - 111; 
Int[Psi[jj - 1, VI, Psilii, VI], {jj, 2, span), {ii, jj, span}]; 

Int[Psi[ii, VI, Psi[ii, VI], {ii, 1, span - 111; 

Egy[l, VI Int[Psi[span, VI, PsiLspan, VI1 (1 - KDelta[l, n])); 

I / ; n > O  

u = 2; 
While[u c n + 1, yy = u 
ssE[u,lIl = (ss[[w,l 
zed = 2; 
gg = u + 1; 
While[zed < gg, zz = 
ss[[u,zedll = ( s s [  

(ss  [ [ Y Y ,  zed1 I / 
zed++] ; 
y m = u + l ;  

- 1; 
1 / -  qnum --> qnum + 1) ss[[l,l]]; 

zed - 1; 
yy,zzll / .  qnum -> qnum - 1) ss[[1,2]1 + 
qnum -> qnum + 1) ss[[l,l]l; 

- 

ss[[u,ymll = (ss[[~y,ull / .  qnum -> qnum - 1) ss[[1,211; 
u++l ; 
dr = Highest - 1 - n; 
Drop[ss[[nll, -drl; 
qdel = Array[qd, nl; 
Do[qdel[ [iill = Sum[ss[ [ii, jjll 

qdel[ [nlll 
KDelta[qp, qnum + ii - 2 (jj - I)], {jj, ii + 111, {ii, n)]; 

GenerateCoefficients[ord-Integer, state-Integer] := 
Block[{counter, indexl, index2, temp, count2}, 

temp = Array[t, ordl ; 
coefficients = Array[cc, {ord, ord + 311; 
Do[terml = - Int[Psi[O, ml, Hicounter], Psi[O, state]]/ 

(h ve (m - state)); 

temp[[indexlll, {indexl, counter - 111; 

index211 Int[Psi[O, ml, H[counter - indexl], Psi[O, index211, 
(index2, state - counter + indexl - 3, state - 1, 211 + 
Sum[(temp[[indexlll / .  {m -> index2)) Int[Psi[O, ml, 
HLcounter - indexll, Psi[O, index211, (index2, state + counter - 
indexl + 3, state + 1, -213, {indexl, counter - 111; 

term2 = l/(h ve (m - state)) Sum[Egy[counter - indexl, state]" 

term3 = -l/(h ve (m - state)) Sum[Sum[(temp[[indexl]] / .  {m -> 

temp[[counterll = terml + term2 + term3; 
Do[coefficients[[counter, count211 = temp[[counterll / .  m -> 

(count2, Floor[(counter + 3)/2111; 
Do[coefficients[[counter, count211 = temp[[counterll / .  m -> 

(count2, Ceiling[(counter + 31/23 + 1, counter + 311; 
If[EvenQ[counter] == True, 
coefficients[[counter, Ceiling[(counter + 3)/21111, 

(-2 + state - counter + 2*(count2 - 1)), 

(-2 + state - counter + 2* (count2 - 1)) , 

{counter, ord}];  
coefficients 

1 
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RSCoefficientsl[n-Integer, index-, {not-)] := 
Block[{m, w, coeffs, cc, counter, terml, term2, term3), 

coeffs = Array[cc, Highest]; 
coeffs[[ll1 = -(Int[Psi[O, ml, H[lI, Psi[O, wll/DeltaE[m, wl); 
counter = 2; 
While[counter <= n, 

terml = -(Int[Psi[O, ml, H[counterl, Psi[O, w]]/DeltaE[m, w]); 
term2 = Sum[Egy[counter - AA[[2*counter - 111, w ]  

coeffs [ [AA[ [2*counter - 11 1 1  1 ,  
{AA[[2*counter - 111, 1, counter - l)]/DeltaE[m, w]; 

1111, Psi[O, AA[[2*counterllll (coeffs[[AA[[2*counter - l]]]] / .  
m -> AA[[2*counterll), {AA[[2*counterll, w, Highest)], 
{AA[[2*counter - 131, 1, counter-l)]/DeltaE[m, w]); 

term3 = -(Sum[SumStates[Int[Psi[O, ml, H[counter - AA[[2*counter - 

coeffs[[counter]] = terml + term2 + term3; 
counter++] ; 
coeffs[[nll / .  {m -> index, w -> not)] 

RSCoefficients2[n_Integer, index-, {not-)] := 
Block[{m, w, coeffs, cc, counter, terml, term2, term3}, 

coeffs = ArrayEcc, Highest]; 
coeffs[[lll = -(Int[Psi[O, ml, H[lI, Psi[O, wll/DeltaE[m, wl); 
counter = 2; 
While[counter <= n, 

terml = -(Int[Psi[O, m], H[counterl, Psi[O, w]]/DeltaE[m, w]); 
term2 = Sum[Egy[counter - BB[[2*counter - 111, w ]  

coeffs[[BB[[2*counter - 11111, {BB[[2*counter - 111, 1, 
counter - 11 1 /DeltaE [m, wl ; 

term3 = -(Sum[SumStates[Int[Psi[O, m], Hrcounter - BB[ [2*counter - 
1111, Psi[O, BB[[2*counterllll (coeffs[[BB[[2*counter - l]]]] / 
m -> BB[[2*counterll), {BB[[2*counterll, w, Highest)], 
{BB[[2*counter - 131, 1, counter-l)1/DeltaE[rn, w]); 

coeffs[[counterl1 = terml + term2 + term3; 
counter++] ; 
coeffs[[nll / -  {m -> index, w -> not}] 

Endpackage [ 1 
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APPENDIX B 
THE MATHEMATZCA PACKAGE DIATOMICVIBROT 

Beg~nPackage["DiatomicVibRot'"] 

De1taE::usage = 
"DeltaEfj, VI gives the difference in zeroth-order energies between quantum 
states j and v." 

DeltaE[j-, v-] := h ve (j - v) 

( *  Define the zeroth-order energy * )  
EnergyLO, v-1 := h ve (v + (1/2)) + J (J + 1) Be 

( *  Define perturbed Hamiltonian matrix elements * )  
Int / :  Int[Psi[O, vl-I, H[x-Integer], Psi[O, v2-11 := 

(kIx + 21 Int[Psi[O, vll, Q"(x + 21, Psi[O, v211)/(x+2)! + ((-l)*x (x + 1)* 
J (J + 1) Be Int[Psi[O, vll, Q"x, Psi[O, v211)/Re*x 

Int / :  Int[Psi[O, vl-I, Q"x-., PsiIO, v2-31 := 
QdeltaLxI / .  { q p  -> vl, qnum -> v2> 

Endpackage L 1 
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APPENDIX C 
SECOND-ORDER CORRECTION FORMULAE 

For each vibrational state, E2)is a linear combination of the purely vibrational terms, 

purely rotational terms, and vibration-rotation coupling terms listed below. 

VIBRATIONAL TERMS: 4') , B.') 

ROTATIONALTERMS: $), Bir) 

COUPLING TERMS: @-'), BiV-') 

Using lower-case letters to represent the integer coefficients of a linear combination, one can 

write the complete second-order energy correction as 
(2) - a r ) 4 ( v )  + bF)Biv) + a f ) ~ i r )  + b:)B,") + a;-r)A;v-r) + br-r)B;v-r) 

ElAJ - 

where the coefficients depend upon the vibrational state 2). Values of the linear combination 

coefficients for the first eleven vibrational states are listed in Table C-1 . 

TABLE C-1. Linear combination coefficients for E"'. 

47 



3, in (79) is the second-order constant ofpure rotation and is defined as the sum of the 

two purely rotational terms listed above (since these terms are independent of the vibrational 

state, the coefficients a:) and b:) will be the same for each value of v and can thus be 

incorporated into a single constant 31, which is independent of vibrational state). Capital letters 

in the energy formula (79) represent collections of universal and molecular constants, which have 

the form 

where L2, 1, C 2 7  ". . C are integers whose values are listed in Table C-2 for all vibrational and 

coupling terms. Lastly, the second-order constant of pure rotation is 

- 2 J 2 (  J + 1)*B: 912 = 
a.R:hv, 

TABLE (2-2. Symbolic term factors (80) for E'*'. 
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APPENDIX D 
FOURTH-ORDER CORRECTION FORMULAE 

Using the notation developed in Appendix C ,  one can express the fourth-order energy 

correction formulae for all vibrational and rotational states in the form of a linear combination of 

The fourth-order constant of pure rotation in Equation (82) is 

1 2 ~ ~ ( ~  + 113@ ~ J ~ ( J  + i)~, 'k, 
914 = + (3J2-2J+3) .  

a2 Re4 ( h  ve ) a3@( h 

. Notice that the final term in 914 cannot be factored into integer powers of J or J+1, as predicted 

by Darling and Dennison [42]. Values for the coefficients in (82) are given in Tables 

D-1 and D-2. 

TABLE D- 1. Linear combination coefficients for 

155 19 70 13 1 

1875 207 550 123 7 

7825 845 2050 485 25 

20825 2233 5250 1267 63 

43695 4671 10830 2637 129 

79255 8459 19470 4763 231 

130325 13897 31850 7813 377 

199725 21285 48650 11955 575 

290275 30923 70550 17357 833 

404795 43111 98230 24187 1159 

546105 I 58149 I 132370 I 32613 I 1561 

15 

75 

195 

375 

615 

915 

1275 

1695 

2175 

27 15 

3315 
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TABLE D-2. Linear combination coefficients for E<4). 

I I I I I I I I 1 i 

0 1  11 I 3 3 1  11 11 1 1 3 I 31 I 1 
I I I I 1 I I I i i 

1 71 9 9 71 71 3 3 15 187 5 

2 191 15 15 191 191 5 5 39 499 13 

3 371 21 21 371 371 7 7 75 967 25 

4 611 27 27 611 611 9 9 123 1591 41 

5 911 33 33 911 911 11 11 183 2371 61 

6 1271 39 39 1271 1271 13 13 255 3307 85 

7 1691 45 45 1691 1691 15 15 339 4399 113 

8 2171 51 51 2171 2171 17 17 435 5647 145 

9 2711 57 57 2711 2711 19 19 543 7051 181 

10 3311 63 63 3311 3311 21 21 663 8611 221 

The fourth-order symbolic constants have the form 

the values of $2' and l: through e.),, for eleven vibrational states are listed in Tables D-3 and 

D-4. 

TABLED-3. Symbolic term factors (84) for z4). 

I 
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TABLE D-4. Symbolic term factors (84) for p4). 
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APPENDIX E 
SIXTH-ORDER CORRECTION FORMULAE 

The sixth-order correction formulae are given by the linear combination 

+ . . . + 11 1 r-r) E,$'-') +%6.  (85)  (6) - ( v ) A ( V )  + . .* + k r ) K ; V )  + 
'uJ -a6 6 

The sixth-order constant of pure rotation %6 is 

3 (86) 
~ B , ~ J ~ ( J  + 1)'k4 - ~ o ~ B , ~ J ~ ( J  + 1)' - ~ ~ B , " J ~ ( J  + l)'k3 - ~ B , " J ~ ( J  + 1)'k; 

%6 = 
3a4 R," (h  v, )" a3 R," (hv, a4R; (h  v, )" a5 R," ( h  v, >' 

while each sixth-order symbolic constant has the form 

The coefficients of the linear combination (85) are given in Tables E-1 through E-6, while the 

symbolic term factors (87) are listed in Tables E-7 through E-9. 

TABLE E-1. Linear combination coefficients for p6), 

F 10909 1359 

F 372 142069 

6 1 1806789 

10 1418539759 

15169 

289039 

1767379 

6311389 

16712869 

36694219 

70908439 

124939129 

205 300489 

3 194373 19 

475725019 

I I I I I 

11827 37 45 17 I 237 I 449 323 
I I I I I 

198565 I 435 77207 3472 5769 4745 

1170721 2231 456947 19602 31529 26621 

4125655 7425 16 12457 67947 107969 92015 

10859407 19017 4246817 177487 280449 240023 

23766697 41007 9297467 386862 609449 522773 

45840925 78395 17936207 744372 1170569 1005425 

80674171 137181 31569197 1307977 2054529 1766171 

132457195 224365 51836957 2145297 3367169 2896235 

205979437 347947 80614367 3333612 5229449 4499873 

306629017 516927 120010667 4959862 7777449 6694373 
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TABLE E-2. Linear combination coefficients for E(@,  

i:) 2, 

0 2 

1 21 

2 103 

3 336 

4 852 

5 1827 

6 3481 

7 6078 

8 9926 

9 15377 

10 22827 

I I I I 
5 1  1 105 I 699 I 1398 

- 
279 

I I 

2097 I 959 959 61 9 735 2097 4194 

317 41 2625 3495 6990 

1061 129 6615 4893 9786 

2725 321 13545 629 1 125 82 

837 * 
7979 7979 

1395 

1953 

251 1 
~ 

5885 681 24255 7689 15378 

11261 1289 39585 9087 18174 

19717 2241 60375 10485 20970 

32261 3649 87465 11883 23766 

50045 5641 121695 13281 26562 

7689 11879 11879 

9087 16559 16559 

10485 22019 22019 

11883 28259 28259 

13281 35279 35279 

3069 

3627 

4185 

4743 

5301 

5859 - 14679 43079 43079 74365 8361 163905 14679 29358 

TABLE E-3. Linear combination coefficients for E@). 

i k'-" 
279 

837 

1395 

1 :-I) m(v-r) 6 *:-r) O r - r )  

65 63 126 63 

615 189 378 189 

2425 315 630 315 

6335 44 1 882 441 

13185 567 1134 567 

P:-" Sk"" rY) 
121 121 95 

78 1 78 1 1035 

2101 2101 4225 

1674 

2790 

3906 

4 5022 T 15287 15287 

11 165 

23355 

1953 

2511 

It"" 31787 31787 

3069 

3627 

23815 

39065 

4185 

4743 

59775 945 1890 945 

86785 1071 2142 1071 

120935 1197 2394 1197 

163065 1323 2646 1323 

9 I 10602 5301 

5859 

53 



TABLE E-3. Linear combination coefficients for E@). 

aa(v-r)  
6 

155 

1875 1 :4 1 
7825 

1875 

7825 

20825 

43695 

79255 

130325 

199725 

20825 105 210 

43695 135 270 

79255 165 330 

130325 195 390 

199725 225 450 
I I I I I I I I 

7 I 105 I 210 I 105 I 1691 I 1691 I 199725 I 1691 I 1691 +pqf 
546105 315 

8 119 238 119 2171 2171 290275 2171 2171 

9 133 266 133 2711 2711 404795 2711 2711 

10 147 294 147 3311 3311 546105 3311 3311 

290275 

404795 

546105 

TABLE E-4. Linear combination coefficients for E(@. 

i i6 j j r - r )  kkr-' ' ( v - r )  

11 22 11 

33 66 33 

55 110 55 

77 154 77 

99 198 99 

121 242 121 

I I I 

15 I 151 I 151 I 35 19 53 

207 329 

845 881 

2233 1709 

4671 2813 

8459 4193 

13897 5849 

21285 7781 

45 883 883 275 

75 2347 2347 1025 

105 4543 4543 2625 

135 7471 7471 5415 

165 11131 11131 9735 

195 15523 15523 15925 

225 20647 20647 24325 

499 499 

967 

Ft"" 43111 12473 

231 I 462 I 231 315 40411 40411 66185 
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TABLE E-5. Linear combination coefficients for I!?). 

32697 

148995 

I 

10 I 15233 I407043 

1817 

2054 1 

84535 

223979 

469053 

849937 

139681 1 

2139855 

3 109249 

4335 173 

5847807 

31 31 35 

TJ-i?JT 
1025 

15925 

8611 I 8611 I 66185 42 663 663 

TABLE E-6. -Linear combination coefficients for E'6). 

ddd 2) bbbr-') CCC(v-r)  6 f f f6(v-r) ggg hhhr-') i i i("') 6 j j j r - r )  kkkr-') 11 1r-j e ee (v-r)  

0 13 49 49 65 61 47 1 1 3 35 1 

1 123 277 277 615 618 41 1 5 5 21 309 7 

2 485 733 733 2425 2480 1585 13 13 75 1195 25 

3 1267 1417 1417 6335 65 17 4109 25 25 189 3101 63 

4 2637 2329 2329 13185 13599 8523 41 41 387 6435 129 

5 4763 3469 3469 23815 24596 15367 61 61 693 1 1605 23 1 

6 7813 4837 4837 39065 40378 25181 85 85 1131 19019 377 

7 11955 6433 6433 59775 61815 38505 113 113 1725 29085 575 

8 17357 8257 8257 86785 89777 55879 145 145 2499 42211 833 

9 24187 10309 10309 120935 125134 77843 181 181 3477 58805 1159 

10 32613 12589 12589 163065 168756 104937 22 1 22 1 4683 79275 1561 
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TABLE E-7. Symbolic term factors (87) for E'@. 



TABLE E-8. Symbolic term factors (87) for E'6). 
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TABLEE-9. Symbolic term factors (87) for p6). 
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APPENDIX F 
HULBURT-HIRSCHFELDER FORCE CONSTANTS 

k, = 2DP2 

k3 = 6DP3(c - 1) 

k4 = 2DP4(12bc - 24c + 7) 

k5 = 30DP5(-8bc + 8~ - 1) 

k6 = 2Dp6 (720bc - 4 8 0 ~  + 3 1) 

k7 =42DP7(-160bc+80c-3) 

k, = 2DP8(13440bc - 5376c + 127) 

k9 = 6DP9(-16128bc + 5 3 7 6 ~  - 85) 

k,o = 2Dp1°( 161280b~ - 46080~ + 5 1 1) 
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