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A General Formula for Rayleigh-Schrddinger Perturbation Energy Utilizing a 

Power Series Expansion of the Quantum Mechanical Hamiltonian 

by 

John M. Herbert 

ABSTRACT 

Perturbation theory has long been utilized by quantum chemists as a method for approximating 

solutions to the Schrodinger equation. Perturbation treatments represent a system’s energy as a power 

series in which each additional term further corrects the total energy; it is therefore convenient to have an 

explicit formula for the nth-order energy correction term. If all perturbations are collected into a single 

Hamiltonian operator, such a closed-form expression for the nth-order energy correction is well known; 

however, use of a single perturbed Hamiltonian often leads to divergent energy series, while superior 

convergence behavior is obtained by expanding the perturbed Hamiltonian in a power series. This report 

presents a closed-form expression for the nth-order energy correction obtained using Rayleigh-Schradinger 

perturbation theory and a power series expansion of the Hamiltonian. 

I. INTRODUCTION 

Since the inception of quantum mechanics, perturbation theory has been an important tool 

for analyzing certain molecular systems whose Schrodinger equations are too complicated to be 

exactly soluble [ 11, proving especially useful in the study of nuclear motion about or near a 

molecule’s equilibrium geometry [2,3]. Systems suitable for perturbation treatment can be 

formulated as arising via the continuous disturbance or deformation of an “ideal” system whose 

Schrodinger equation can be solved exactly [4]. 

Standard perturbation-theoretical approaches separate the full quantum mechanical 

Hamiltonian operator into two parts: 
1 



fi = fiw + ~ l ,  (1) 

where I?(') represents the Hamiltonian operator for an unperturbed system whose Schrodinger 

equation can be solved exactly and fi' comprises the Hamiltonian operator for deviations 

from ideality. The perturbation parameter A is arbitrary and may take on values in the interval 

0 SA SI, with A = 0 corresponding to the unperturbed system. For certain problems, A has an 

obvious physical interpretation [ 11; otherwise, it is simply set equal to unity. 

Incorporating the Hamiltonian operator (l), the Schrodinger equation for the perturbed 

system becomes 

($') +i?')ym = Emym , (2) 

where E,,, and y,,, are, respectively, the system's energy and state function in non-degenerate 

quantum state m.1 Since fi = f i (A) ,  the eigenfunctions ym and eigenvalues E,,, of i? both depend 

upon A, and we may expand both quantities as Maclaurin series in k 

Y, = y2) +Ay;) + ... (3) 

Em = E ~ ' + ~ " ) + ; 1 ' E ~ ' +  , (4) 

where, for convenience, the symbols yc) and (the kth-order corrections to ym and E,,,) are 

introduced to represent the proper Maclaurin series coefficients of Ak , k = 0, 1,2, ... [5]. When 

all state functions and energies refer to the same quantum state, the subscripted quantum number 

m is often omitted. . 

11. EXPANSION OF THE HAMILTONIAN 

While the perturbation expansion (1) of the Hamiltonian is of the form most frequently 

encountered in perturbation theory research, this simplistic formulation quite often causes the 
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energy series (4) to diverge [3]. Instead of constructing the perturbed Hamiltonian as in (l), Z? 

itself can be expanded as a Maclaurin series [4,6] and written in the form 

fi = $ 0 )  +&(I) + ~2fi(2) + . . . (5) 

where once again f i ( O )  is the Hamiltonian operator for the unperturbed system. Rather than 

grouping together all perturbations into a single term fit, an expansion such as (5) represents 

each individual perturbation with its own Hamiltonian operator. 

Note that a necessary condition for convergence of the energy series (4)* is 

IE(k+ ' ) l  < IE"'I (6) 

for all k. Using a Hamiltonian of the form in (S), Sprandel and Kern [3] have demonstrated that 

the perturbation energy corrections Ek) for the pure vibration of H2 decrease asymptotically to at 

least 50thorder (the highest order examined) for each of the nine quantum states investigated. 

Furthermore, when the expanded Hamiltonian (5) is used, the difference between theoretical 

calculations and experimental values decreased smoothly with increasing order of approximation. 

In contrast, when a perturbed Hamiltonian such as (1) was used, the same nine energy series 

clearly diverged after 30 to 50 terms. 

111. PERTURBATION ENERGY 

Although the power series formulation (5) of the Hamiltonian has several clear advantages 

over the form in (l), it has not been widely adopted, presumably because the numerous terms in 

' For degenerate states, the notation becomes slightly more complicated. For details see references [4] and [SI. ' For the rigorous conditions under which (4) converges for a power series expansion of the Hamiltonian, see 
reference [ 11. 
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for the nth-order perturbation energy, E"), has not been published.' 

A logical point of origin for an energy formula is the Schradinger equation, 

i ? ~ = E y .  

In this case, fi, w, and E are represented by the series (3-5). Substituting these series into 

Equation (7) and collecting powers of h, one obtains 

( $ o ) ~ ( o )  _ ~ ( 0 ) ~ ( 0 ) ) + ; 1 ( f i ( O ) ~ ( l )  +f iwYm - p  y(l) -E( l )y (O))+  ... 
- E ( O ) ~ ( ~ )  (1) @-I) - ... E ( ~ ) ~ Y ' O ) )  + ~ ( f i ( O ) ~ ( n )  + f i ( ~ ) ~ ( n - l )  + ... + f i ( n ) w ( ~ )  - E  w 

+ ... + ~ + n ( I ; T ( o ) ~ ( n + n )  + ... + f i ( n + n )  w(0) -E(0)W(n+n) - ... - E("+")y(o)) = 0 

Assuming that this series converges, Equation (8) will be true if and only if each of the 

(5) lead to complicated expressions wherever I? is involved. Consequently, an explicit formula 

I coefficients of Ak, k=O, 1,2, .. ., is separately zero [5].  Applying this condition to the first n+l 
! 

(7) 

coefficients, one obtains [7] the following perturbation equations: t 

i Notice that the zero-order perturbation equation (9) is simply the Schrodinger equation for the ! 

E 
s unperturbed system. The remaining perturbation equations serve to relate the separate terms of 

6, y, and E, and need not have any independent physical significance [8]. 

Multiplying the nth-order perturbation equation (10) by y")* and integrating over all 

configuration space 2, one obtains 

where 

When the perturbation is written as a single term fie, such a formula is known; see reference [l]. 
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and 

( y ( i )  I y ( j ) )  = J' v(i)*y(j)dT (13) 

Since the unperturbed Schrodinger equation (9) is soluble (by hypothesis), the complete 

set of wave functions {yc)} is fully known. Moreover, each I+Y~) is an eigenfunction of the 

Hermitian operator I?'), so {yc)} is an orthogonal set [5]. Finally, one may assume that the 

unperturbed wave functions are normalized to integration, so that 

(yy) Ivy)) = 4, j , (14) 

where Si,j is the Kronecker delta function. Applying Condition (14) to Equation (1 l), one finds 

that the nth-order energy correction is given by the recursive relation 

E'"' = (p) I$O'I p) + . . . + (p) I$") I y'o') 

- E'ol(V'o' IV ' " ' ) -  ... - E(n-l)(v(o)  I V ( 1 ) )  

Iv. RAYLEIGH-SCHRODINGER PERTURBATION THEORY 

Equation (15) can be simplified considerably by resorting to the Rayleigh-Schrodinger 

form of perturbation theory. If the system of interest is roughly modeled by an unperturbed 

system with Hamiltonian operator I?'), it is reasonable to assume that the complete set {v:)} 

of unperturbed wave functions forms a basis for the Hilbert space of the Hermitian operator fi 
corresponding to the perturbed system [9]; this assumption is the foundation of Rayleigh- 



SchrXnger perturbation theory: In light of this assumption, one may express all perturbed wave 

functions y:) as linear combinations of the basis functions belonging to {yr)}: 

where are c$), CY), &I, ... are constants. 

The linear expansion (16) precipitates an important result that greatly simplifies 

perturbation theory calculations. It can be shown [5 ,8]  that the coefficient c:) in (16) does not 

affect any of the perturbation energy corrections, so this coefficient will be assigned a value of 

zero. Thus, 

and 

j # m  

by (17) and (14). Note that the summation in (18) precludesj = m, so that am, = 0 .  Hence, one 

obtains the condition 

(e I YF)  = 60," (19) 

for all n. 

Equation (19)- which implies that each perturbed wave function is orthogonal to the 

unperturbed basis function corresponding to the same state- is often misquoted as the 

fundamental assumption of Rayleigh-Schrcdinger perturbation theory. As shown in (18), this 

orthogonality condition is actually a consequence of the Rayleigh-Schredinger condition ( 16). 

' Note that the Rayleigh-Schrodinger assumption is most likely to be valid when the perturbation from ideality is 
small; thus, Rayleigh-Schrodinger perturbation theory is not suited for the study of highly excited quantum states. 
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V. REDUCED FORMULAE 

As a consequence of orthogonality condition (19), all overlap integrals in the energy 

expression (15) disappear, leaving 

This expression for the nth-order energy correction involves n+l different wave functions, while 

in general it is possible to express the (2p+l)st perturbation energy in terms of only the wave 

functions y(O) , y(') , . . . , Y / ( ~ )  [8]. Thus, the challenge is to reduce (20) to an expression 

involving the minimum possible number of wave functions. 

To accomplish this reduction, fxst consider the case where n is odd; that is, n = 2k+l for 

k = 0, 1,2, . . .. From (20), 

since 

by (9) and (19). Substitution for k(k)y(o) , fi(k-l)y(o) , .. . , $l)y(o) from the first k perturbation 

which still contains wave functions of order higher than k. To eliminate these, substitute for 

(E'O' - f i ( o ) ) y ( k + l ) ,  (p -fi'O')y (k+2) , ... , (E(') - f i (o))yc2r)  from the next k perturbation 

equations. This step yields 
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AU matrix elements in (24) containing v / ( ~ + ' )  , I,v(~+') , . . . , cancel out of this expression, 

affording 

Since n = 2k+ 1, application of (19) to Equation (25) provides 

for odd n. While Equation (25) perhaps has a simpler form, Equation (26) separates the nth-order 

perturbation energy into its separate contributors: Hamiltonian matrix elements, overlap 

integrals, and lower-order perturbation energies. 

A similar derivation for even n yields 

The kIh perturbation equation is equation (10) with n = k. 
8 



The sole difference between (26) and (27) is the coefficients of the overlap integrals and 

Hamiltonian matrix elements when i = n. 

For some applications, it is useful to possess a formula that is valid for all n. As above, let 

k = i n  forevennand k = + ( n - l )  foroddn. Then {y(o),y( ') ,  ... , Y ( ~ ) }  isthesmallestset 

of wave functions spanning {Po' , E(')  , . . . , E'"'}. Incorporating k and the Kronecker delta 

function, one may combine Equations (26) and (27) into a single perturbation energy formula: 

for n > 0. 

The generalized energy formula (28) is recursive, since the nth-order energy is a function 

of lower-order energies. Elimination of these lower-order energies from (28) is tedious, but in 

principle it is possible to express P'solely in terms of overlap integrals and Hamiltonian matrix 

elements. This procedure, however, results in an energy formula involving an infinite number of 

separate summations (only finitely many of which are non-zero for a given n). Thus, only as a 

recursive relation can the nth-order perturbation energy be expressed in a compact, closed form. 

Ultimately, the recursive nature of (28) poses no additional burden, since the entire sequence of 
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perturbations energies El), E2), . . . , I?") should be calculated in order to investigate the 

convergence behavior of the energy series (4). 

' Note also that Equations (26-28) contain overlap integrals of the form (y:) I y:)) . 
When i = 0, such integrals are equal to unity, since the unperturbed wave functions are assumed 

to be normalized. Imposing the restriction that the total wave function y,,, be normalized and 

substituting for v,,, from (3) provides 

Expanding (29), collecting powers of A, and applying (19), one obtains [I] the following set of 

equations: 

i=O 

These equations demonstrate that in general (y:) I y:') # 1 for i > 0, so normalization of the total 

wave function y,,, precludes normalization of the perturbed wave functions. Since y,,, is the 

wave function of an actual physical system, its normalization condition will be retained: 

VI. CONCLUSION 

The energy expression (28) is extremely general, for its derivation involved few 

assumptions. The first assumption- that the total wave function and the unperturbed wave 

functions are normalized- is trivial, and the assumption that fi may be expanded as a power 

series is the foundation of this particular approach to perturbation theory. While the Rayleigh- 

Schr6dinger condition (16) is certainly not trivial, it was used in this context only to derive the 

Recall that the perturbed wave functions, when taken individually, need not correspond to an actual physical 
system. 
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orthogonality condition (19). In the absence of Conditions (16) ahd (19), Equation (25)- along 

with an analogous expression for even n- is still valid. 

Beyond these assumptions, however, the form of the expansion (3) of ym requires that 

quantum state m of the unperturbed system be non-degenerate, since limA+o yf, = y:) only for 

non-degenerate states rn [5]. While Equation (28) is therefore valid only when the unperturbed 

system is non-degenerate, modifications can be made to accommodate degeneracy [4,5]. 

In light of the superior convergence behavior of perturbation energies when a power series 

Hamiltonian is used, a general formula such as (28) is extremely important. In subsequent work, 

the Rayleigh-Schr6dinger condition (16) will be used to express all wave functions in (28) as 

linear combinations of the state functions in the complete set {y:)} . Since the wave functions 

of this set are fully known (by hypothesis), the perturbation energy can thus be calculated (to 

arbitrarily high order) without knowledge of any perturbed wave functions. Furthermore, since 

empirical data [3] suggest that use of Equation (28) will lead to asymptotically decreasing 

perturbation energies, one simply increases n until the energy corrections fall below an 

appropriate tolerance. The system’s total energy is then given by (4). 
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