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Abstract

We investigate 2 mechanism responsible for the observed very short
times of the photon echo decay (of the order of a-few femtoseconds)
in semiconductors. It is associated with the loss of phase memory
as a result of interaction of the mixed state (associated with inter-
band transitions) with an unscreened random Coulomb potential of

the photocarriers or with a random static potential of the impurities.
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Qualitative physical consideration enabling one to visualize the pro-
cess of echo decay are presented. We have introduced a new time
characteristic of a system of interacting electrons. This is the the
time of phase breaking, 7, which we calculate within the eikonal ap-
proximation using a diagrammatic techniques. It is shown that 7, is
typically much shorter than both the period of plasma oscillations and
.the time of electron-electron collisions. The screening of Coulomb po-
tential cannot build up during this time. 7, is-proportional to n~1/¢
(where n is the cairier ;:oncentration, d the dimensionality of a sys-
tem) which is consistent with the experimental results. However, the
derived law of echo decay of the form exp [~(7/7,)¢] does not agree -

with the existing experimental data.

as a

1 Introduction.

The echo phenomenon in two level electron systems excited by a sequence of
electromagnetic pulses is well known.[1},{2]." Recent advances in ultrashort
laser pulse technique have made possible observation of the two-pulse fem-
tosecond echo from interband (valence-conduction band) transitions in bulk
semiconductors [3] as well as in a quantum well structures [4]. The time
evolution of the phase sensitive mixed quantum states responsible for echo
phenomena in physicalhsystems are of great importance for understanding
of various mechanisms of phase relaxation of electron states as well as its
nature. The present paper is devoted to investigation of the possible mecha-

nism of the echo decay and can be considered as a continuation and further

development of the earlier paper [3).
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The echo is a nonlinear effect which can be in general described as follows.
Let an observable quantity, say, a macroscopic electric dipole moment D be a
sum of a great number of contributions from N independent subsystems (or
particles). Then a perturbation of a very short duration (a "shock?) excites
each individual particle j into a mixed transition state.between stationary
states with energies & and £5. Observables in such a state oscillate with the
frequency w; = &) — & (to make expressions in the iritermediate calculations
less cunibersome we will often put & = 1) and the total dipole moment is
varying as

D() = 3 dyexp (~iwjt) ()

At t = 0 it has a macroscopic va.lu.e D x Nd (N > 1),buif later due to differ:
ences in frequencies w; decreases and practically vanishes for times greater .
than the 1/Aw, where Aw is.a typical frequency shift. For broad distribution
of frequencies wj; it is of the order of the width of the frequencjr distribﬁtion in
the exciting pulse. After the time interval t 3> 1/ Aw thereis a'second pﬁls‘e
which reverses the quantum state in such a way that its frequency changes.
the sign w; — & — & = —w; while conserving the phase (~w;7) acquired to

the moment ¢ = 7. Thus we have
D(t) = Zv?-dj exp [tw;(t — 7) — tw;T]. . ) 2)
. °F F .

Here we introduce factors v? which characterize the change in the dipole ‘
moment amplitude d; due to the second pulse. We see that at the moment
¢t = 27 the phases of individual oscillators vanish and D(t) emerges again as
a macroscopic quantity (and the corresponding ecilo pulse is generated).
This can be illustrated by a diagram (see Fig.1). We use a time-ordered

diagrammatic techniques (see [6], cf. with [7]). A lineon a diagram represents
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the state of a jth particle and points indicate the actions of the pulses.
At t = 0 we had a stationary state. The first shock creates an oscillating
transition state. The second (double) shock reverses it at t = T and finally
at t = 27 a radiation pulse is observed. Eq.(2) shows that the constancy
of the oscillation frequencies w; with time is crucial for observation of the
echo . However, these frequencies suffer random fluctuations éw;(t) because
of interaction of the particles with the surrounding medium. We can include
the fluctuations into the general scheme regarding them as amplitudes of
instant shocks distributed randomly in time. Representing them by points .

on a diagram we get for the evolution operator (see Fig. 2.)
1 1 1 1

: —tbw;)————+... = - — 3
J; + tw; + O+ iwj( 2&{)'7)3; + twj + O; + wwj + z&wj 3) ,

Using Eq.(3) we obtain the total dipole moment as o
.1 1

3 t 4
b(t) = Ev — tw; —-z&o_,(t) (¢ ")a +zw_, +zb'w,(t) ( - )
Thisisa ra.ndom quantity that should be averaged over all possible frequenc_:y--

variations 6w;(2):

<D(r) >= Y vld; <exp (z' / Y ws(t)dt — i / ’ 5w,-(t)dt)> . (5) |

Here the averaging is denoted by the angular brackets. The averaging pro-.

cedure will be considered in detail below. Now let us note that there are two
principal mechanisms leading to the decay of the echo signal. The first one is
* a simple damping resulting mainly from large (and fast) fluctuations (”colli-
sions”). These are the processes which, in particular, bring al;out relaxation
of the occupancy numbers of energy levels. The law of the echo decay due

to them is

<D27) >= vidjexp(—27y;) (6)
i
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with v; = (u](-l) + 1/_5-2)) /2, where UJ(-U and 1/§2) are the damping rates (or the
inverse relaxation times) for the levels £{ and &

The second decay mechanism is related to the phenomenon known as
spectral diffusion [8},[9], in which small frequency fluctuations play a principal
role. As a result of such fluctuations the oscillation frequency suffers a sort

of random walk so that one can write
<D(27) >= ZU?dj < exp [i'r(ﬁw' - 5«1)] > . ()
- L

where 8w’ and 8w are the frequency value after independent wandering during i
the time 7. If we assume that frequency wandermg looks like a usual dlffusxon

and take the probability distribution of random variable { = 5w’ --5w as. glven ‘_
by

wo-sime(-G)

we obtain for the echo decay due to the spectral diffusion: - - .
<D(27) >= Zv2d / W, (f) exp (z&r)dﬁ szd exp- (—D'r ) (9)

The diffusion constant D can be expressed through the mean square of .the
frequency wandering as < 6w? >=< & > [2 = Dt. Thus there are two
limiting cases of echo decay: the law exp (—»t) and the law exp (—D¢3) where
v and D are the damping and diffusion constants, respectively. For various
distributions of damping and diffusion constants the summation over J can
change the resulting formula even for pure cases of damping or diffusion (it
is interesting to compare our results also with [9] where. the law exp (—At?)
where A is another constant is obtained for two- level systems in glasses).
The echo decay, or optical dephasing, was studied in semiconductors in

a number of papers (sce [10], [L1], [12]). The obtained results usually corre-
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spond to consideration of damping, i.e. only the action of short range and/or
rapidly varying parts of the perturbations are finally taken into account. In
this way, in paper by Lonski et al.[11] the echo decay in disordered semicon-
ductors is considered and an exponential law of decay is found. The difference
between their and our case can be understood as follows. In Ref.[11], due to
a short range of the potential, the time of echo decay is.determined by the
collision time and the law of decay turns out to be purely exponential. We
consider here a long range Coulomb interaction where one can look upon the
phase variation as a sum of a great number of relatively small contributions..
As a result, we get a sort of diffusional motion of the phase and the echo dies =
off during the time 7,,, which may be much smaller than a time characteriz-

ing collisions of the particles interacting according to the Coulomb law. We .

are going to show that for a number of cases of interest the spectral diffu-. . .

sion may be quite effective as a dephasing mechanism with the characteristic

decay time much smaller than the usual relaxation time due to ”collisions™. -

2 Echo phenomenon in semiconductors

We consider a semiconductor with the energy gap E, and the dispersion laws

in the conduction and valence bands given by
&= pP*[2me, & =—E;— p°[2m,

where p is the electron quasimomentum. The mixed quantum state which
is responsible for the echo phenomenon in this case is represented by the

nondiagonal element of density matrix or, simply, by the product of the




wave function specified by the values of their quasimomenta:
Yo Ppy ~ €xp (2Q2pt),
Ppuibpe ~ exp (—2Qpt)

where ), is equal to
2 2

2m. 2my
We assume that a short laser pulse creates such a state at ¢ = 0 (see Fig.

3.). Then another pulse at ¢ = 7 reverses it and at ¢ = 27 an echo signal is

observed Just as it has been shown in the prevmus section. Two dra.wmgs_
in Fig.3. reflect the fact that a state with the frequency of oscxlla.tlon +Qp

can be created by mixing two pure quantum states (diagonal elements of the’

density matrix) ¥§ ¥p. and 95, Pp.. The bar'at the bottom of the dra,w_iﬁg
corresponds to the occupancy numbers of these states, Fop and Fyup.

The diagram in Fig.3 enables one to write an expression for the spatial
Fourier transform of the pola;ri.zation curr'eﬁt.. The current is represented by
the uppermost arrow in the drawing. .Other points correspond to the matrix
elements of electron interband transitions and describe the actions of the two

laser pulses with the wave vectors k; and kp. Thus we have:"

sz
¢ —2 = : z t—
i(t, k1 — 2ks) ezp:<zlv|c> az-i(ﬂp-l-(kl—kg)Vu+k2Vc)5( 'r)
1‘1
L S(t — F.0).

Here we put Epux ~ &p + kv because of the inequality & < p. Note that a
point in a line going along the time (the wave function) contributes (—2) while
a point in a line going in the opposite direction (the complex conjugated wave

function) contributes (=). The energy in the resolvent enters with the plus




sign for a wave function line and with the minussign for a complex conjugated
wave function line. Due to spatial homogeneity the total quasimomentum is

conserved at any interaction point. The current Eq.(11) has the form typical

for the echo phenomena and at ¢t = 27 is equal to

itk —2ky) = ef_p: < v|vic > exp [i(ky — ko) (vy — VC)T]iV:;le(Fcp — Fyp)

(12)
In Eq. (11) we put Fpye = Fep.

Let us dxscuss mechanisms lea.dmg to echo decay. We assume that the

electrons are- mﬁuenced by a random field U(r,) produced either by impu-

rities and lattice vibrations or by other electrons created by the laser pulse .-

and ra.ndomly dlstubuted in space. Field U(r,t) can be represented by its

space a.nd tlme ha.unomcs

e~

U(r,t)= Z‘Uqw e—iwttiar : 3y :

qw

The mean value of U(r,t) vanishes so that < Ug, >=~0 and

< U"(rl, tl)U(r, t) >= z quwlZe-iw(i-:—txHiq(r«n) ' (14) '

Qqw

For example, for the potential of randomly distributed static impurities we

have
Ur) = Zu(r —r;)= Zu ¢ Ux-T5) (15)

where r; is the position of the jth impurity. At first we study the role of short
range fast field fluctuations with wave vectors ¢ ~ p and frequencies w ~ &,.
Due to the action of such fluctuations damping constants appear for electron
states. We illustrate it by the following diagram (see Fig. 4.). There are two

fluctuations with the space and time dependence of the type exp { fiwt £ 1qr)

)

g
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that act on the wave functions of the considered state at arbitrary time

moments as two successive momentary shocks. The first diagram corresponds

to an expression of the type

1

Oe +1Qp + (&5 1q — £F)

S(—i)? < p + qlli(r, t)ip > < plU(r,t)lp+q>
q

(16)
Assuming for the first point the time dependence e~*t and for the second

point et we have

1 .
- 2 — _igge
qu Upsarl 5o T = =) 65, ()

and an analogous expression for the second drawing. Considering the time
evolution of the envelope function orie can exclude the large frequency. {p

from the denominator, We see that this expression is none other than.a con-

tribution to the electron energy and to the da;nping due to field fluctuations: -

1
tq=E—w
- (18)
The second drawing in Fig.4 represents the term —26€. The diagram in Fig.

- z‘58f, = -—WZ lUp+q.p'lz5(5f>4q = 5{; —w) +1 Z ‘Up-!-q.plzgs
q q

4 describes interaction of an electron in the mixed quantum state with time
dependent local field fluctuations caused by the scatterers. We can include

the interactions in all lines of the echo diagrams in Fig.3. that results in

substitution

v
The frequency variation §Qp vanishes in the final expression so that only
damping is important. For the fast echo phenomena such as the femtosecond

echo an estimate shows that during the delay time for the echo signal, 7,

the electron collisions are very improbable because of the inequality 7 < 7.
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Thus the main role in the decay should play the long range and slowly vary-
ing part of the field fluctuations. For carrier concentration of the order of
10" cm™3 the electron-electron collision time 7., is greater than 100 fs. Since
the time of echo decay is of the order of 10 fs [3] we should exclude these
collisions as a cause of echo decay. On the other hand, for such carrier
concentrations the period of plasma oscillations is also about 100 fs so that
Debye screening of field fluctuations cannot build up during the echo evolu-
tion. The experiment shows [3] that the time of echo decay depends on the.
carrier concentration, n, as 2~1/¢. This fact points out that field fluctuations

are mainly due to Coulomb field of the carriers created by.the laser pulses.

3 Femtosecond echo decay.

-

For so short time interval the ,p;)tential created .by randomly distributed
" charges'(electrons or impurities) may be treated as static or quasisté;tic,. Tlﬁé" ‘
change of the electron quasimomentum, ¢, under the action of a smooth and
long-range Coulomb potential is small as compared with quasimomentux.n P

(this makes the so called high energy or eikonal approximation [13]), so that

[€p—q — &l < & (20)
where

gp_q b gp = —qp/?TI..
To take into account the influence of charged impurities , one should insert
- points of interaction with impurities in the diagrams and take the average. In

the second order in the perturbation potential U and in the first order in the

impurity concentration n onc gets 16 terms of the perturbation theory. As
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an example, three of them are represented by diagrams in Fig. 5. To make
our consideration as simple as possible, we assume that the time interval
between the pulses is much longer than the durations of the pumping pulse.
In our further calculations we will consider §-pulses.

The presented diagrams are equal to the following expressions

1 1 . 1 - 1
Rl — s qVt iy S ~-1qVet - 9
nat5(t 7) at( tUq)e 3¢( iU_q)e 3t6(t)’ _ (21)
1 1 g ~iqvet 1. iqQVet 1
n——5(t - 'r)-a—(—zU_q)e e -,--(qu)e‘q e ——6(t), o (22)

(zU_q)e"’q"°‘ ; iquet 'q"”‘ci(t—-f) (qu)e‘q""‘ 6(t) (23)
t
Let us note that in addition to the dla«rra.ms commonly known in kinet- -

ics describing the usual ”in-" and out” terms there are some specml types

descnbmg correlation of the carriers via 1mpur1t1es durmg various time inter-

in the electron motion in the conductlon band and valence band during the
time intervals from 0 to 7 and from 7 to 27. Summing over q we get for the |

sum of all 16 diagrams
n T 27 o ’
—-{—i U(r — v t)dt + z'/ Ulr —v (t—7) - v,,'r] dt

/ U(r — v,t)dt — z/ Ulr — vy(t — 7) — ver] di}>.

Taking into account all orders in U and n we obtain the evolution law in the

fo;m
exp [—n. / dr(l — e"o)}, (24)
where
o= - /OT U(r — (p/m.it)dt + _/_LT U(r— (p/m )t + (p/me)7)dt +

/Or U(r + (p/miit)dl — /_zr e+ (p/mg )t — (pfmen)7)dt

11




Here we introduced the reduced electron-hole mass m.;, = memy/(me + my).

Let us note that the same result can be derived in a somewhat different
way. To begin with, let us calculate the phase acquired by electron-hole state

in a field of single zth 1mpur1t3 center. In the field U electron and hole during

the time interval 7 between pulses acquire phases

_ /0 U(R; —vet)dt and /0 U(g;_vht)&t" (25)

respectively.” The light créates electron with momentum p a.nd hole. with
momentum —p. The corresponding velocities which should Be inserted in
(25) are ve =p /mc, Vi = -—p/mh At the time ¢ = 7 the second light pulse
changes the band mdxces After the second pulse during the tire mterva.lf

between i =17 a.nd t = 27' the electron sta.te a.cquntes the phase

/ URi—var —volt— 7))t o (6)
whereas the hole state gets the phase |

_ /0 " U(R; — ver — va(t — 7))dt (27)

The total phase at ¢ = 27 is a sum over spatial coordinates of the impurities
randomly distributed in space. To compute an observable one should take a

configurational average of the expression

A=exp (iZq&;) (28)

where
6 = _/T U(R;—-vet)dt+/7 U(R; — vat)di
0 0
2r
+ C(R; — v — v [t — 7))dl

——/‘ U(R; — vr — vyt = 7))dL.
0



The number of impurities N in a volume V obeys the Poisson distribution
P(N) = —-¢"V, (29)

where N is the average number of impurities. The coordinates of impurities

are uniformly distributed with probability density 1/V.

The exponent in Eq.(28) is then a product of exponents and we have for

the configurational average denoted by < ... >,

< A>.= <(‘1—/./;/.dr¢xp ¢)N>

where < ... >n means the average over the Poisson distribution: Since -

N &

(30)

< >y= S P(N)a" = Fle-D) . (31)
N=0 =5
we get for < A >,
N i
< A>.=exp [V ./v dr (e —.1)] (32)

Introducing the concentration of impurities N/V = n we see that Eq.(32)
.coin,cides with Eq.(24). We wish to emphasize that even under the-condition
m, = my, the total phase of mixed state does not vanish.

For 3D case where the impurities of two types (donors and acceptors)
in equal concentrations are present we get that the echo signal decay is de-
termined by Eq.(24) where exp (2¢) is replaced by cosé. Inserting for the
impurity potential U(r) = e/sr (¢ being the dielectric susceptibility) we

rewrite the decay factor through dimensionless variables

. SN i
exp [——2.—.::(;:/1:1.,,,, )""73/0 R'(IR./ dx(l - cos o')}. (33)
-1
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where ¢ = €* f(me/my, R, z)/eli(ve + vy). Here f(m./my, R,z) is 2 function
of the effective mass ratio, m./my, dimensionless distance variable R and z

(another variable which is equal to the cosine of the angle between p and r).

dt

fmefmn, R, 2) = /o VB2 + (me/M)2€ + 2R(m. [M)xt

dt
) N T 2Ra{(me/ M)t = 1)

— [terms obtained- by repla.cement Me — M4, T — (——m)]

where M = m, +my,. Eq.(33) can be presented in the form exp (—(7/7,)3)

where 7, is the time of phase breaking.

Let us consider par tlculm cases where the Genera.l formula can be 51mp11-'

fied. In the quasiclassical case; o o

a=e /eh(ve+vh) > 1,

we have
7o = [15(27)Y2 /167237 [ 2. (34)

Then the phase breaking time is much smaller than the time of flight 7 i.e.
the time it takes a particle to traverse mean distance between the Coulomb
centers,

75 =072 [(ve + va)- (35)

Let us turn to the second case where a < 1. In this case the Coulomb
potential can be considered as a perturbation. We can expand cos¢ and

obtain the same law for the echo decay with
re = 77/a*Plrg(ne  ma)]' . (36)

14
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where

o 1
g(mefmy,) =/ deR/ da [f (mefmu, R, )] (37)

0 -1
For m./m;, — 0 we have 7, = 7;/a?/3(2x)*/3. Now the phase breaking time
is larger than 7. In this case, as well as in the previous one, the deviation
of carrier trajectory from the straight line is small during the time 7,. In

Ea g

other words, the quasimomentum relaxation time, 7., is much larger than

the phase breaking time 7,,.
Finally, let us see how our results are changed if the random Coulomb

potential is produced by the moving carriers. Instead of Eq.(24) we have

exp [— 2 (Fepy + Fopy) [ e 5 +ef‘°?2))}, )

where : o B

_ [l (P P\
¢1— -[)U[r (mc m,) t.. dt
27 7
+/ U{r—-(—p—-—-—g—l—)t-l- P 1at
T me Me Ml

T P P1 ]
+/0 U[r+(mh— )t_ dt

m,
_[ylea (B _P1y, P ,]
/ U{1+(mh Byt — o) ae, (39)

and one gets ¢, by the replacement p;/m. — pi/m; in Eq.(39). Instead
of the electron velocity we now have the difference of the carrier velocities
and instead of the concentration of the carriers ¥, (Fep, + Fip,) enters our
formulae where one should sum over the quasimomenta p; of the carriers
which produce the Coulomb field. Our formulae are applicable also to a

two-dimensional situation. [n this case we get instead of Eq. (39)

P 2 . 32 2
X | —1e T ? {1 — cos 3
c\[)[ 10 (md‘> /U Rdlx/() o LO»«!))] (40)




with
2

= mf (me/ms, R, cos0) (41)

We come to the general conclusion that in this case the time of phase breaking

is proportional to n~1/2,

4 Qualitative cdnsiderati_on.

Let us begin with analysis of the case

a>1 ' (42)

" Consider the electrostatic potential U(2) in the reference frame moving with
the electron under consideration (see Fig.6). The characteristic scale of time
variation is 7; = n~/4/v, while the characteristic amplitude is nllde? [,

Therefore for t < 75 one can expand U(t) retaining the linear term -
- §U =~ tn'/4e? [rse.

The corresponding phase variation is
5 ~ tzn;/ de?[7/he.

Hence,

T = (s fetntl)1/?

which coincides with Eq.(34). We should, however, make here the following
important point. The theory developed in the present paper is based on the
assumption that the spatial distribution of the scatterers is random. Such an
assumpbtion is usually valid for charged impurities. However, one can expect

that the carriers excited by light in the course of band-to-band transitions

16



are strongly correlated immediately after their excitation and it takes roughly
time 7; for the correlation to die off. This means that for the case of Eq.(42)

our theory is applicable only for 7 bigger than 7;. For shorter times further

development of the theory is needed.
The opposite case @ < 1 can be understood in the following way. One

can assume that, together with short-scale fluctuations, the potential U has ;

s

also long-scale fluctuations due to the excess number of carriers with a charge ‘

of a particular sign. Let the characteristic spatial scale of such a fluctuation

be R. Then the characteristic energy is
ez(nR‘f)l/z/eR: 2(nR*2)2 .
Due to such-a fluctuation the time variation of elect_rc;n energy is
e21;'1/2 ( o e ka e
It brings about the phase variation | |
6271‘1/‘2( U)d/z-qtd/'z [he o

which gives 7, ~ 7/a?? in this case. Let us give an example of order
of magnitude estimate of 7, in 3D case. It depends on the average carrier

energy. For £ ~0.2-10"'? erg. and n =7~ 10* cm™3, we get 7, = 15 fs.

5 Conclusidn

One can ask as to what is the physical nature of the contribution to the echo
decay due to the interaction between the electrons and impurities. Indeed.

when calculating the echo amplitude we could have used the exact electron

17




wave function in the impurity ficld. One could come to the conclusion that
in such a case there would be no decay. The point, however, is that the plane
waves of light interact with a pair of electron states having definite values
of quasimomenta (because of the quasimomentum conservation). The exact
states are superposition of the states with the definite values of quasimo-
menta. Since our treatment of the echo phenomenon rests on the concept
of independent states, the coupling among them brings about the decay. (cf.
with Ref[14] where irreversibility of energy conserving dipole dephasing for -
a simple atomic system was found). The impurity concentration being small, -
the exact wave functions are.close to the plane waves and can be built up
by the perturbation method. Mathematically such an approach is totally
identical to that we used while starting with plane waves and considering the
impurity potential as the cause of phase breaking. ‘

The decay of the interband femfosecond echo in semiconductors takes . -
place when carriers. in the mixed interband states lose their phase memory..
This occurs due to the action of random unscreened Coulomb ﬁeld originated
either in the static impurities 6r photocarriers (provided that they are ran-
domly distributed in space) generated by the laser pulse. We do not take
into account the effects caused by the finite duration of the laser pulses. We
believe, however. that these effects do not change qualitatively our results. It
is demonstrated that the phase breaking time is proportional to n~1/? where
n is the carrier (impurity) concentration and d is the dimensionality of the
system. The calculated phase breaking times for a 3D case are up to about a
dozen of femtoseconds. The concentration dependence of such a time and its
order of magnitude are in agreement with experiment. We would like to note

that it is difficult to make a direct comparison of the time of phase breaking,




7., and the quantity measured in experiment, Teawo, because of different laws
of decay observed on the experiment and predicted by the theory. However,
the general conclusion 7, ~ n~'/? is of major importance.

One of the principal results of our paper is that we have established a
new time characteristic of an electron system, 7,. This time appears to be
usually shorter than other characteristic times such as 7.; it'describes the
rate of decay of the coherent properties of an electron-hole system.

We wish to emphasize once again that the physical considerations put
forward in this paper are based on some generic concepts. -As for the cal-
culations, they are presented, with the help of a diagrammatic techniques, .
in a straightforward way. The law of the echo decay we derived does not _
agree with the existing experimental data. We are of opinion that such a dis-
agreement is of fundamental nature and that manifests basic need for fgrtllfe‘r:

experimental and theoretical work.
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Figure captions

Fig. 1. General scheme for echo phenomena. Interaction constants are . .

omitted. The "tail” beforet = 0. represents}},;e?artide distribution function.
Fig. 2. Action of random forces on an oscillator.

Fig. 3. Echo in semiconductors.

Fig. 4. Damping due to ”collisions”.

Fig. 5. Diagrams for nonlinear polarization in the eikonal approximation.

Fig. 6. U(t) in the electron reference frame.
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