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Introduction 

The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute was 
held on May 20-22, 1996, at Argonne National Laboratory. This interdisciplinary institute 
was organized by Chris Bischof and Ron Shepard and brought together 41 computational 

chemists and numerical analysts. The goal was to  understand the needs of the computational 
chemistry community in problems that utilize matrix diagonalization techniques. This 
was accomplished by reviewing the current state of the art and looking toward future 

directions in matrix diagonalization techniques. This institute occurred about 20 years 
after a related meeting of similar size (see Report on the Workshop August 9-11, 1978, 
University of California, at Santa Cruz, edited by Cleve Moler and I. Shavitt and sponsored 
by National Resource for Computation in Chemistry). During those 20 years the Davidson 
method continued to dominate the problem of finding a few extremal eigenvalues for many 
computational chemistry problems. Work on non-diagonally dominant and non-Hermitian 
problems as well as parallel computing has also brought new methods to  bear. The changes 
and similarities in problems and methods over the past two decades offered an interesting 
viewpoint for the success in this area. 

One important area covered by the talks was overviews of the source and nature of 
the chemistry problems. The numerical analysts were uniformly grateful for the efforts to 
convey a better understanding of the problems and issues faced in computational chem- 
istry. An important outcome was an understanding of the wide range of eigenproblems 

encountered in computational chemistry. The workshop covered problems involving self- 
consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation 
(IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock 
method (SCF), the symmetric matrices can range from order hundreds to  thousands. These 
matrices often include large clusters of eigenvalues which can be as much as 25% of the spec- 
trum. However, if CI methods are also used, the matrix size can be between lo4 and lo9 
where only one or a few extremal eigenvalues and eigenvectors are needed. Working with 
very large matrices has lead to the development of out-of-core methods. In 1980 during the 
early CI calculations, basis sets of order lo4 were used. By the 199Os, parallel machines 
have been used to solve problems with lo9 basis functions. In IVR, the basis sets, if done 
by brute force, are prohibitively large. In practice, a series of smaller subspaces are predi- 
agonalized and a subset of these eigenvectors are used to form an accurate representation of 
the contracted basis set for the full problem. The smaller subspaces can be represented with 
several thousand basis functions where a few hundred to  as much as 25% of the eigenvectors 
of each diagonalization are keep to  form the contracted basis set. In the end, contracted 
basis sets can produce matrices as large as order a few tens of thousands. The symmet- 
ric eigeiisolution performed on this matrix needs to  find a few tens to a few hundreds of 
the eigenvalues/eigenvectors near an energy of interest and are not usually extremal eigen- 
values. In scattering problems, 20% eigensolutions of a matrix with several thousand basis 
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functions may be solved. Also, scattering and molecular dynamics problems can lead to the 
need to solve complex symmetric eigenproblems. 

Another interesting area was the description of the properties of typical matrices. Chem- 
ists often refer to  their matrices as sparse since only a few percent of the matrix elements are 
non-zero. However, numerical analyst refer to sparse matrices if the number of non-zeros 

is not proportional to  the matrix size. Thus, even though the matrices have few non-zero 
elements, they are not sparse in the traditional matrix theory sense. Another important 
property of the matrices is that they are often diagonally dominant. This property can 
greatly simplify issues in performing the eigenproblem. For example, the diagonal elements 

may represent a good initial guess to the final eigenvalues of the matrix. Several speakers 
noted that an important goal of the computational techniques in chemistry is to  produce 
matrices that are diagonally dominant. It is considered so important that techniques that 
fail in this regard are often reworked to obtain diagonally dominant matrices. Thus, chem- 

ists avoid even attempting to find eigensolutions to  matrices lacking this property. (It 
was also noted, however, that reactive scattering problems are not diagonally dominant .) 
On several occasions numerical analyst commented that some of the techniques used by 
chemists in finding the eigensolutions were not, in general, guaranteed to produce the right 
answer. The chemists responded, however, that the well-behaved nature of the matrices 
meant that the correct solutions were found. 

Another important aspect of the institute was the overviews of the computational tech- 
niques used for solving eigenproblems. Several speakers noted the interesting coincidence 
that this year is the 150th anniversary of the publication of Jacobi’s method for the eigen- 
problem. As noted above, many computational chemistry problems, especially in SCF, 
involve finding only a small subset of the spectrum. When a good preconditioner is avail- 
able, as is the case in a symmetric diagonally dominant matrix, chemists typically use the 
Davidson method invented by Ernest Davidson, who attended the institute. Alternative 
methods are also available which apply to  a greater range of problems and applications. Sev- 
eral numerical analysts discussed eigensolvers which do not necessitate diagonally dominant 
matrices thus avoiding the need to formulate the problem in this way. Implicitly restarted 
Arnoldi methods can be used to  solve both symmetric and nonsymmetric problems. The 
Jacobi-Davidson method and a truncated RQ algorithm allow for preconditioning. Both 
these methods seek to  generalize Davidson’s method to  matrices that are nonsymmetric as 
well removing one of its drawbacks. That is, if the perfect preconditioner is used, namely 
the inverse of the matrix, the Davidson method stagnates. Another technique discussed was 
Lanczos which is applicable to non-Hermitian problems. The numerical analysts discussed 

the relationships between these various methods. In contrast to  the above sparse methods, 
a number of speakers gave presentations on dense techniques. A key difference between 

sparse and dense techniques is that the latter ones require order n2 storage, where n is the 
order of the matrix. The standard technique is to  use the QR method though bisection is 
becoming increasingly popular due to the search for parallel methods. Alternative methods, 
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such as the Invariant Subspace Decomposition Algorithm (ISDA), were also presented. 

Several talks focused on software available for performing the eigenproblem. ARPACK 
implements the Arnoldi method for symmetric, nonsymmetric, and complex cases. ABLE 
is a matlab program which uses the Lanczos approach for the non-Hermitian eigenvalue 
problem. For dense problems, LAPACK, the follow-on to  EISPACK, has both symmetric 
and nonsymmetric eigensolvers. For parallel computations, PeIGS implements bisection 
for finding the eigenvalues and uses inverse iteration t o  get accurate eigenvectors. PRISM 
eigensolvers use the ISDA approach to find the complete eigensolution. The ScaLAPACK 
and PRISM projects are both working on parallel nonsymmetric eigensolvers. PARPACK, 
a parallel version of ARPACK, was also discussed. With a vision toward to future, the up- 
coming joint NSF/ARPA initiative for Optimized Portable Application Libraries ( OPALS) 
which will use mathematical descriptions and manipulations to  generate algorithmic vari- 
ants and codes was discussed. 

The interaction during the institute lead t o  a number of interesting ideas and observa- 
tions. One area where the numerical analysts expressed interest is in creating sample test 
cases that represent real chemistry problems. While the institute successfully explained 
the nature of the problems, having real matrices to  work with would allow for realistic 
testing of new methods and ideas for the eigenproblem. Another area of future interest 
is how to incorporate the insights on the nature of the problems into general eigensolvers. 
For example, how can a general package include preconditioners which are as good as the 
physical knowledge currently applied to  specific chemistry applications? It was also noted 
that problem formulation tradeoffs made by computational chemists are currently outside 
the eigensolvers. It is an interesting long term question of how to more tightly integrate 
these two. 

Overall, the Large-Scale Matrix Diagonalization Methods in Chemistry theory institute 
was considered a stimulating exercise by the participants. Everyone took advantage of 

the unique opportunity for interaction between the often disjoint work of computational 
chemists and numerical analysts. The interrelationships and differences between the di- 
verse types of computational chemistry problems and potential eigensolvers was also made 
clear. It seems clear that the challenging nature of the chemistry problems envisioned re- 
quires concerted efforts by chemists, numerical analysts, and computer scientists to arrive 
at workable solutions. 
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Finding a Few Eigenvectors of Very Large Matrices 

Ernest R. Davidson 

Department of Chemistry 
Indiana University 

Bloomington, IN 46405 

A brief history of the development of the “Davidson” method will be given along with 
recent attempts at improvement and analysis of convergence by other workers. Examples 

will be given of matrices for which it performs poorly. Suggestions will be made for im- 
provements in the case that the number of eigenvectors desired is many greater than one, 

but many fewer than the squart root of the matrix dimension. 
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Algorithmic Foundations of 
Iterative Eigenvalue Solvers 

D. C. Sorensen 

Department of Computational and Applied Mathematics 
Rice University 

Houston, Texas 77005-1892 

Recently, there have been a number of algorithmic developments in the numerical solu- 
tion of large scale eigenvalue problems. The state of the art has advanced considerably and 
numerical software has begun to  emerge for the nonsymmetric problem. Greatly improved 

software is also now available for symmetric and generalized problems. The algorithmic ad- 
vances that have led to this improved software are based upon a better understanding of the 
connection between Krylov subspace projection, subspace iteration, and the QR-iteration. 
This talk will attempt to survey recent developments and relate them to the classic large 
scale iterative methods that have stemmed from the original Lanczos method. 

The survey will include the Implicitly Restarted Arnoldi, Rational Krylov, and Jacobi- 
Davidson methods. The latter is a generalization of the well known Davidson method. It 
provides a means to  utilize a preconditioned iterative solution to  the shift-invert equations 
that needn’t be solved accurately. The development of this capability is a very promising 
area of algorithmic research that could greatly increase our ability to solve very large scale 
problems. 

i 
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Some Current Issues in Parallel Eigensolvers for Computation Chemistry 

George F a n n  

Molecular Science Research Center 

Pacific Northwest Laboratory 
Richland, WA 99352 

We survey implementations and software packages for parallel computers for solving all 
of the eigenvalues and eigenvectors of dense, real, standard symmetric eigensystem problems. 
There are three methods that are in popular use: 1) Householder reduction to tridiagonal 
form, bisection for eigenvalues, inverse iteration for tridiagonal eigenvectors (some form of 
orthonormalization for eigenvectors), and back transformation of the eigenvectors; 2) block 
l-sided or 2-sided Jacobi iterations; and 3) spectral methods (e.g., sign functions, invariant 
subspace methods). 

Let n denote the dimension of the matrix. Let p denote the number of parallel processors. 

If n / p  > 7 the fastest method is type 1 above, Householder reduction + bisection + inverse 
iteration. For degenerate clusters of eigenvalues inverse iterations using random starting 

vectors can produce non-orthogonal eigenvectors and some form of orthonormalization must 
be performed. In chemistry applications, degenerate clusters of eigenvalues occur in the 
Fock matrices or in the current density fitting matrices. One of the fastest and most 
robust solvers in this category is PNNL’s PeIGS software, which performs full parallel 
orthonormalization for degenerate cluster of eigenvalues. Other popular solvers of this 
type that do not orthonormalize across processors are SCALAPACK’s PDSYEVX (which 
orthonormalize within each processor) and Intel’s EISCUBE. Performance results on the 
Intel Paragon and the SGI-Cray T3D will be given. 

Recent works by Hendrickson and Jessup and also the SCALAPACK team show that 
good performance and scaling are achievable with block Householder reduction algorithms 
in library quality codes. Currently, the fastest and the most scalable Householder reduction 
code was written by Hendrickson, Jessup and Smith; however, for n / p  < 8 with fixed n and 
increasing p ,  the speedups of all current Householder reduction algorithms stop improving on 
computers such as the Intel Paragon. Recently, Singh and Parlett showed that it is possible 
to  remove orthogonalization in many cases. Orthonormalizations can consume as much as 
60% of the solution time for the PeIGS code on completely degenerate eigen-problems. As 
a consequence of Singh and Parlett’s work, faster and improved serial algorithms have also 
been implemented. 

For n / p  < 7 ,  the fastest, most robust and flexible method is the l-sided block Jacobi 
method from Bush of the Daresbury Laboratory. 

If the ratios of computation to  communication latency and bandwidth remain the same 
for the next generation of parallel computers then spectral methods (e.g., PRISM or the 
sign function methods) will be important because these methods are based on matrix mul- 

tiplication. We present performance and scaling results for matrix multiplication (modified 
van de Geijn’s sBJ3LAS) on the NERSC’s T3D and CCSC’s Paragon. 
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Interdisciplinary Scientific Computing Can Work 

Alan Edelman 

Department of Mathematics 
Massachusetts Institute of Technology 

Cambridge, MA 02139 

Last year, Tomas Arias (Physics) and Alan Edelman (Math. Lab for Computer Science) 
created the MIT Advanced Numerics Physics Team with the goal of interdisciplinary collab- 
oration in the fields of Physics, Computational Materials Science, Parallel Computing and 
Mathematics. Our mission was to  create a truly interdisciplinary environment where new 

algorithms would be created, real codes would be written on high performance architec- 
tures, and new mathematical ideas would be studied. In this talk I will discuss the results 
of these efforts. 
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Scaling and Squaring in Invariant Subspace 
Decomposition Methods 

Xiaobai Sun 

Department of Computer Science 
Duke University 

Durham, NC 27708-0129 

The increasing gaps in access time to  data in different levels of memory hierarchy have 
left the room for the development of parallel solvers for dense eigenvalue problems such 
as the so called invariant subspace decomposition methods. In this talk, we introduce the 

matrix algebra underpinning the scaling and squaring techniques used in invariant subspace 
decomposition methods. The theory leads to  an automatic scaling scheme for the method 
by Auslander and Tsao as a preprocess to  scale the spectral into a normalized interval 
or region; it also leads to  stand alone algorithms for decoupling an invariant subspace by 
automatically scaling and implicitly squaring the matrices involved in. 
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Eigenvalue Calculations in Collision Dynamics 

George Schatz 

Department of Chemistry 

Northwestern University 
Evanston, IL 60208-3113 

This talk will discuss two ways in which eigenvalue calculations are used in studying the 
collisions of atoms and molecules. We first consider the conventional use of eigenvalue calcu- 
lations to  determine vibration/rotation energies and wavefunctions for the fragments before 
and after collision. The Hamiltonian to  be diagonalized is usually obtained by quadrature 

over basis functions, or by DVR. It is usually dense, with dimensions of a few thousand, and 
we typically want hundreds of eigenvalues and eigenfunctions. The second application is in 
the calculation of flux correlation functions. Miller has demonstrated that the rate constant 
may be obtained by summing the eigenvalues of a matrix that is roughly ( H  - E + i e )2 ,  
where H is the Hamiltonian, E the energy, and e a small constant. The eigenvalues of this 
matrix are mostly large, but since it is the inverses of the eigenvalues that are summed, it is 
only the few small eigenvalues that are of interest. This leads to  a numerically ill-behaved 
problem that has hindered practical use of this method. 
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Invariant Subspace Decomposition Met hod and Lanczos Met hod 
for Large Scale Nonsymmetric and Complex Symmetric Eigenvalue Problems 

Zha ojun Bai James Demmel 

Department of Mathematics 
University of Kentucky 
Lexington, KY 40506 

Computer Science Division 
University of California 

Berkeley, CA 94720 

We will begin our presentation with a discussion of some large scale nonsymmetric and 
complex symmetric eigenvalue problems we have been working on recently. These eigenvalue 
problems come from quantum chemistry, physics, electrical engineering and other areas of 
computational science and engineering. They are challenging from the view points of math- 
ematical theory, numerical algorithms, software development and availability of computer 
resources. We will discuss numerical techniques in invariant subspace decomposition method 
and Lanczos method for solving these large scale eigenvalue problems. Software availability 

and performance benchmarks in both serial and parallel computing environment will also 
be presented. 
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Computation of High-Energy Molecular Eigenstates 

Robert E. Wyatt 

Department of Chemistry 

University of Texas 
Austin, TX 78712 

The study of high-energy molecules is the focus of considerable effort in physical chem- 
istry. On the theoretical side, the goal is to compute the interior eigenpairs associated with 
the large Hamiltonian matrix. The dimension of H can range from several thousand to  
several million. The present study will emphasize applications of the Lanczos algorithm 

driven by a spectral filter, f(H). The filter is designed to  pick out eigenvalues near a test 
input energy E. A successful filter is the system Green function, (El-H)-'. Application of 
this strategy to a large molecular application will be described. In addition, results from a 

parallel version of this code will be described. 



Applications of Three-Term Recursion Relation and Pseudodiagonalization in 
ab initio Quantum Chemistry 

Peter Pulay 

Department of Chemistry 
University of Arkansas 
Fayetteville, AR 72701 

Two topics will be reviewed. The first is the inclusion of the 3-term recursion relation 
familiar from the theory of conjugate gradients in the Davidson eigenvector method [l] for 

large matrices (dimension over lo6) [a, 3, 4, 51. The primary goal of this is to  save storage 

space which is a bottleneck in full CI or large multi-reference CI calculations [GI. 

The second topic is the application of pseudodiagonalization, familiar from semiempirical 
theory [7] in large-scale SCF (and DFT) calculations. Three recent developments will soon 
eliminate the dreaded “integral bottleneck” from SCF-type theories. (1) the progress to 
large molecules, enabled by increased computer power, which leads to  the milder asymptotic 
O(N2) scaling instead of O(N4); (2) parallelization of integral and Fock matrix calculation; 
(3) new methods of constructing Coulomb and Fock matrices. Thus the O(N3) matrix 
diagonalization becomes the rate-determining step for large calculations. Shepard [SI has 
recently formulated a method, based on Bacskay’s second order SCF theory, which avoids 
the diagonalization bottleneck. I will summarize our experience with pseudodiagonalization, 
based on first-order SCF theory. This method was implemented for the p a r d e l  calculation 
of NMR chemical shifts. [9] 
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Towards Usable and Lean Parallel 
Linear Algebra Libraries 

Alinadena Chtclzelkanova, Carter Edwards, John Gunnels, 
Greg Morrow, James Overfelt, and Robert vun de Geijn 

Texas Institute for Computational and Applied Mathematics 
The University of Texas at Austin 

Austin, T X  78712 

In this talk, we introduce a new parallel library effort, as part of the PLAPACK and 
PRISM projects, that attempts to address discrepancies between the needs of applications 
and parallel libraries. A number of contributions are made, including a new approach to  
matrix distribution, new insights into layering parallel linear algebra libraries, and the appli- 
cation of “object based” programming techniques which have recently become popular for 
(parallel) scientific libraries. We present an overview of a prototype library, the SLlibrary, 
which incorporates these ideas. Preliminary performance data shows this more application- 
centric approach to  libraries does not necessarily adversely impact performance, compared 
to  more traditional approaches. 
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Highly Excited Vibrational States of Polyatomic Molecules 

Edwin L .  Sibert 

Department of Chemistry 
University of Wisconsin 

Madison, WI 53706 

Variational treatments of highly excited vibrational states are reviewed. Using the water 
molecule as an example of three anharmonically coupled harmonic oscillators, normal mode 

product basis functions are introduced to  obt.ain a matrix representation of the Hamiltonian. 
The shortcomings and advantages of this representation are discussed. Other coordinate 
choices and basis sets, in particular the discrete variable representation, are reviewed. The 
vibrational states for a planar molecule of acetylene are calculated using the discrete variable 
representation for the bending degrees of freedom. Perturbative treatments of molecular 
vibrations are also considered, The vibrations of acetylene and carbon dioxide molecules 
were used to  illustrated the strengths and weaknesses of this method. 
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Diagonalization Techniques in Electron Propagator Theory 

J. V. Ortiz 

Department of Chemistry 

University of New Mexico 
Albuquerque, NM 87131 

Propagator methods in quantum chemistry determine transition energies and probabil- 
ities without wavefunctions or total energies for individual states. Propagator poles and 
residues may be obtained from a generalized eigenvalue problem where techniques devel- 
oped for large configuration interaction calculations can sometimes be adapted. Solution 

of the Dyson equation is equivalent to  a partitioning of the eigenvalue problem occurring 
in electron propagator theory. Quasiparticle approximations may be recovered by a simple 
restriction of the ionization operator space. Pole search techniques for the Dyson equation 
that depend on the evaluation of derivatives of the self-energy matrix are shown to be highly 
efficient for outer valence ionization energies and electron affinities. In the random phase 
approximation of the polarization propagator, where excitation energies and transition mo- 
ments are calculated, two approaches have been taken. In the first, a generalized eigenvalue 
problem with a non-positive metric matrix is considered. In the second, an ordinary eigen- 
value problem with a nonsymmetric matrix is solved. Algorithms corresponding to these 
distinct approaches are compared. 
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Experiments with Multilevel Diagonalization 

Robert J .  Harrison 

Molecular Science Research Center 
Pacific Northwest Laboratory 

Richland, WA 02139 

I will describe the results of some experiments using full multilevel diagonalization meth- 
ods with application to  matrices generated from both numerical wavefunctions and selected- 
CI Hamiltonians. 
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DVRs and FBRs: Sparse vs. Full Representations 

John Light 

Department of Chemistry 
The University of Chicago 

Chicago, IL 60637 

In quantum dynamics of molecular systems) the solutions of PDEs (the Schrodinger 
equation) in up to six dimensions are desired in some finite region of coordinate space. 
Basis set expansions (FBRs) produce full matrix representations of the eigenvalue prob- 
lems. For direct product representations) these can be converted to  sparse discrete variable 

representations (DVRs) which can be solved more easily. I will discuss briefly the rela- 
tion between FBRs, DVRs, collocation, and their applicability to  various multidimensional 
problems. 
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Iterative Diagonalization and Wave Packet Dynamics 

Stephen K. Gray 

Chemistry Division 
Argonne National Laboratory 

Argonne, IL 60439 

Some connections between iterative diagonalization techniques and wave packet dynam- 
ics are noted. A particularly interesting connection, in my view, results when wave packet 
dynamics is written in the form of a (Chebyshev) three-term recursion. An old iterative 
method (“spectroscopic eigenvalue analysis”) due to Lanczos is then seen to  be intimately 

related to  the wave packet dynamics of a certain preconditioned Hamiltonian operator. 

15 



Parallel Orthogonal Matrix Reduction Techniques 

Christian Bischo f 

Mathematics and Computer Science Division 
Argonne National Laboratory 

Argonne, IL 60439 

In the context of the PRISM (Parallel Research into Invariant Subspace Methods) 
project, we are pursuing the development of algorithms and codes t o  compute the eigen- 
decomposition of symmetric matrix and the reducton of a symmetric matrix to  banded 
and tridiagonal form. We give an overview of the PRISM approach and the computational 
approaches used to  implement invariant subspace reduction, one of the kernels at the heart 
of this a.pproach. As it turns out, the invariant subspace computation can be achieved very 
efficiently through a technique called Successive Bandreduction (SBR), which efficiently 
addresses general band reduction scenarios. We present results on parallel machines and 
present directions of future research. 
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The Subspace Projected Approximate Matrix (SPAM) Modification 
of the Davidson Method 

R. Shepard, J .  L. Tilson, A .  F. Wagner, and M. Mink08 

Argonne National Laboratory 
Argonne, IL 60439 

A modification of the Davidson subspace expansion method, a Ritz approach, is pro- 
posed in which the expansion vectors are computed from a “cheap” approximating eigen- 
value equation. This approximate eigenvalue equation is assembled using projection oper- 
ators constructed from the subspace expansion vectors. The method may be implemented 
using an “inner/outer” iteration scheme, or it may be implemented by modifying the usual 
Davidson algorithm in such a way that exact and approximate matrix-vector product com- 
putations are interspersed. A multi-level algorithm is proposed in which several levels of 
approximate matrices are used. Examples are presented for the single-eigenvector compu- 
tation step of rational-function direct-SCF wave function optimization in which the number 
of exact matrix-vector products is reduced by a factor of 3 compared to  the usual Davidson 
approach. 
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ARPACK: General Purpose Software for the Large Scale Eigenvalue Problem 

Richard B. Lehoucq 

Mathematics and Computer Science Division 
Argonne National Laboratory 

Argonne, IL 60439 

An overview of the ARPACK software package along with some applications is presented. 
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue 
problems. The software is capable of solving large scale symmetric, nonsymmetric, and 
generalized eigenproblems from significant application areas. The software is designed to 
compute a few (k) eigenvalues with user specified features such as those of largest real part 
or largest magnitude. Storage requirements are on the order of n'k locations. No auxiliary 
storage is required. A set of Schur basis vectors for the desired k-dimensional eigenspace 
is computed which is numerically orthogonal to  working precision. Numerically accurate 
eigenvectors are available on request. 
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Matrix Eigenvalue Problems: 
Arnoldi Versus Nonsymrnetric Lanczos Algorithms 

Jane Cullum2 

Mathematical Sciences Department 
IBM Research Division 

T. J. Watson Research Center 
P.O. Box 218 

Yorktown Heights, NY 10598 

We consider two types of iterative procedures, Arnoldi and nonsymmetric Lanczos, 
which have been developed for large scale nonsymmetric eigenvalue computations Ax = 
Xz. We present theoretical and numerical comparisons between these methods. We prove 
that, in exact arithmetic, any type of convergence behavior which can be obtained using a 

nonsymmetric Lanczos procedure can also be obtained using an Arnoldi procedure but on 
a different matrix and with a different starting vector. Therefore, in this global sense, the 
convergence behavior of these two methods is the same. 

Numerical experiments by other researchers, for example, L. Trefethen and F. Chatelin, 
have demonstrated that the convergence of iterative methods for solving either Ax = b or 

Ax = Ax can be adversely affected when A is highly nonnormal. It is therefore of interest 
t o  relate the behavior of either of these methods on any matrix to  their behavior on normal 
matrices. We derive two results related to such comparisons. 

In practical applications, however, we are interested in comparisons of these methods 
when they are applied to the same matrices, and in any changes in convergence behavior 
which may occur as we vary the nonnormality of the matrices. Therefore, we use an invari- 
ance property shared by both types of procedures to  obtain a set of test matrices which 
allows us to  make such comparisons. Through a set of numerical experiments using these 
test matrices, we consider the behavior of these types of procedures when they are applied 
to  the same matrices. 

Our limited experiments indicate that a Lanczos eigenvalue method may be less sensitive 
to  changes in the nonnormality of the test matrices we use than an Arnoldi method is, 
and that approximations generated by an Arnoldi method may behave better than those 
generated by a Lanczos method when the test matrices are normal or near normal. The 
experiments also illustrate that the convergence behavior of either method is a complicated 
function of the choice of the starting vector, the nonnormality of the matrix, and the finite 
precision of the arithmetic. 

2This work was supported by NSF grant GER-9450081 while the author was visiting the University of 

Maryland. 
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