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Introduction 

The simplified spherical harmonics (SPN) method has been used as an 

approximation to the transport equation in a number of situations.1~2~3 Recently, the 

SPN method has been formulated within the framework of the variational nodal 

method (VNM). Implementation in the VARIANT4 code indicated that for many two 

and three dimensional problems, near PN accuracy can be obtained at a fraction of 

the cost.5 Perturbation methods offer additional computational cost reduction for 

reactor core calculations and are indispensable for performing a variety of 

calculations including sensitivity studies and the breakdown by components of 

reactivity worths. Here, we extend the perturbation method developed for the VNM 
in the full PN approximation6 to treat simplified spherical harmonics. The change 

in reactivity predicted by both first order and exact perturbation theory using the 

SPN approximation is demonstrated for a benchmark problem and compared to  

diffusion and full PN estimates. 



Theory 

The even-parity form of the slab geometry PN equations may be written in terms 

of even- and odd-parity vectors of the Legendre flux moments: 6,  = +2m-2 and 

x, = $2m-1. Since the forward and adjoint equations differ only in the source and by 

a sign change in the odd-parity term, they may be expressed in the k paired form 

d i d  
dx 0 dx --E-ET-c + d, = b(os $,, + s') 

and 

where E is a two-stripe coefficient matrix, E-, = (2m-1)6m1+2m6m,ml+ 

d 
To obtain the SPN equations, we simply replace -& by 9. The even-parity flux 

+ -  and source become functions in three dimensions: c(x)-c(?) and s'+(x)--. s-( r ). 
4 -  

The odd-parity flux is a vector in three dimensions: x(x)- x ( r ). 
Expressing the resulting SPN equation in terms of variational functionals which 

employ Lagrange multipliers to  enforce nodal balance, we obtain 

V V 

Requiring the functional to be stationary with respect to 5 yields the SPN 

generalization of Eq. (1) within the node and Eq. (2) on the interfaces. Requiring 

the functional to be stationaq with respect to x yields the continuity condition on 5 
across the interface. 

In the W M ,  the flux and source moments are approximated by known spatial 

trial functions with unknown coefficients, and the Ritz procedure is applied. The 

reduced functionals have the form 



where the elements of the A (symmetric) and M matrices contain integrals of the 

spatial trial functions. The forward and adjoint equations are obtained by 

requiring stationarity with respect to  C, and x:  

We form global multi-group equations by combining the vectors of fluxes and 

sources from the corresponding nodal vectors for all groups. The matrices A and M 
are now block diagonal combinations of the nodal matrices for all nodes and groups. 

Expanding the source terms into fission and scattering, the unperturbed adjoint 

equations become 

A-M C,* 1 FT 0 <* 
[M? 0 I[,.]=d 0 01[,. 

while the perturbed forward equations are 

where the F matrix consists of the fission spectrum and cross sections, C contains 

the group-to-group scattering cross sections and A' = A + 6A, etc. Performing the 

prescribed operations,6 we obtain the exact change in reactivity: 

c*T F 5 Irk' - 

The corresponding first order approximation results from replacing c, 0' and k' 

by C,, 0 and k 

Since M contains no material cross sections, SM = 0 vanishes from the perturbation 

expressions. 



processor to  VARIANT. Results of perturbations applied to  the Takeda Benchmark7 

Models 1 and 4 are given in Figure 1. For the Takeda 1 problem, the standard rods- 

in problem is used as the base state. The applied perturbations consist of increasing 

the thermal capture cross section of the control rod material. For the Takeda 4 

problem, the base state is the standard rods-out problem. Initially the control rod 

channel contains sodium. The perturbations consist of sodium voiding of the 

channel. 

I 
In both problems, the SP3 approximation produces improved eigenvalues 

compared to diffusion theory. However, the corresponding improvement in the 

change in reactivity estimated by the SP3 perturbation theory is highly problem 

dependent. In the Takeda 1 problem, SP3 estimates of I Gkkk’ I are nearly identical 

to the P3 predictions. The base and perturbed cases can be accurately modeled 

using the SP3 approximation. For the Takeda 4 problem, SP3 theory fails to greatly 

I 

improve the estimated change in reactivity because full PN expansions are required 

to accurately model the flux distribution about the small, nearly-voided control rod 

channel. 
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Fig. l a  Takeda Benchmark Model 1 Perturbation 
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Fig. lb  Takeda Benchmark Model 4 Perturbation 


