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Abstract 

In order to maximize the brightness and provide suffi- 
cient dynamic aperture in synchrotron radiation storage 
rings, one must understand and control the linear optics. 
Control of the horizontal beta function and dispersion is 
important for minimizing the horizontal beam size. Con- 
trol of the skew gradient distribution is important for min- 
imizing the vertical size. In this paper, various methods 
for experimentally determining the optics in a storage ring 
will be reviewed. Recent work at the National Synchrotron 
Light Source X-Ray Ring will be presented as well as work 
done at laboratories worldwide. 

I. Introduction 
The measured optics of a storage ring never completely 

agree with the predictions of computer models of the stor- 
age ring design. Traditionally, accelerator physicists have 
measured the horizontal and vertical betatron tunes and 
the beta functions at the quadrupoles, and then adjusted 
a subset of the many parameters of the computer model 
to make the model electron optics better fit the measure- 
ments. There was no certainty that the correct parameters 
were adjusted to achieve this improved fit. The optimized 
model fit the measurements better, but did not necessarily 
give the true lattice of the storage ring. 

This paper will review some recent work that has been 
done to better understand electron storage ring optics by 
using measured orbit data. The goal of the paper is to 
provide an overview of recent work not a comprehensive 
survey. Improvements in orbit measurement hardware in- 
cluding beam position monitors (BPMs) that measure the 
closed orbit to micron precision, fast digitizers capable of 
storing many turns of single turn orbit measurements, and 
computers capable of analyzing the large amount of data 
generated make these methods of analyzing accelerator op- 
tics practical. 

Turn-by-turn betatron oscillations (xb,n)  about the 
closed orbit measured at some BPM, 

xb,n = a & c a  (2rnv $- '$b)t (1) 

can be determined by the betatron function and phase [l] 
at  the BPM (pa, 4 b ) ,  as well as the betatron phase for 
the whole ring ( 2 7 ~ ) .  The integer n increases by unity for 
each revolution of the electron bunch, and a is the initial 
amplitude. In this paper, work will be described in which 
a harmonic analysis of many turns of xb,n is taken to yield 
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the betatron function and phase at the BPMs.[4], [5], [7], 

The shift in closed orbit at a BPM ( x b , c . o . )  from changing 
one of the orbit steering magnets by angle B also depends 
only on the betatron function and phase, 

181 

where (ps, c$~) are the beta function and phase at the steer- 
ing magnet. Work will be described in which this equation 
is inverted to give the beta function and phase at the BPMs 
and steering magnets.[lO], [14] 

Another approach is to determine the actual individual 
magnet field gradients from orbit measurements.[ll], 1121, 
[13], [15], [17], [16] The beta functions and phases are deter- 
mined by the magnetic gradient distribution in the storage 
ring (W), 

(3) 
1 1 
-p/?" 2 - Zp-I- K p 2  = 1, 

(4) 

The derivatives are with respect to longitudinal position in 
the ring, s. Through equations 1, 2, 3, and 4, orbit.shifts 
and orbit oscillations at  the BPMs are determined by the 
gradients in the quadrupoles. It is possible to invert this set 
of equations, and determine the gradients from orbit mea- 
surements. Once the magnetic field gradients are derived, 
the beta functions and phases are determined everywhere 
in the ring, not just at the BPMs and steering magnets. 

11. Turn-by-turn orbit data 

A .  First turns at APS 

When commissioning a storage ring, single pass orbit 
measurements for the first turn or first few turns have 
proven useful for diagnosing major magnet gradient er- 
rors.[ll], {2], [3] Figure 1 shows an example of the shift in 
the first turn orbit with a steering magnet measured dur- 
ing commissioning of the APS. Despite the relatively large 
error in measuring the orbit with the small single-pulse 
current during injection, comparison of the measured or- 
bit shift to that of a fit with the computer model shows an 
obvious large gradient error. This error was subsequently 
confirmed when one of the quadrupoles was found to be 
mistakenly connected to a sextupole power supply. 
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Figure. 1. The vertical (upper plot) and horizontal (lower 
plot) shifts in the first turn orbit in APS with orbit steerer 
S1A:HVl shows gradient error in quadrupole S39A:Q5. 

Once the major gradient errors are eliminated and larger 
single-bunch currents can be stored, harmonic analysis of 
turn-by-turn betatron oscillations over hundreds or thou- 
sands of turns gives the relative betatron functions and 
phases at the BPMs ( P b  and qjb in equation 2). The first 
such work was performed at SSRL [4], [5], and was a di- 
rect development of previous work using network analyzers 
(see, for example [6]). 

B. Multi-turn digitization at LEP 

The most extensive application of this method has been 
performed at CERN [?I, [SI, where hardware capable of 
simultaneously digitizing 1024 consecutive turns at 504 
BPMs has been implemented on the LEP storage ring. 
The amplitude of the measured oscillation at each BPM 
depends on.0, and the gain of the BPM, which is not well 
known, so simply looking at the measured amplitude does 
not give an accurate measure of P b .  The phase of the os- 
cillation, however, is independent of the BPM gain calibra- 
tions, so the betatron phases, db, can be measured quite 
accurately. The beta function is the inverse of the deriva- 
tive of the betatron phase (equation 4), so the measured 
betatron phases can be used to determine the beta func- 
tion. To do this, the measured phases were fit to a function 
with the following form, 

where &(s) is the phase according to the MAD[9] computer 
model and the functions B(s),  A(s) and d(s) are slowly 
varying functions. An oscillation of this form in the mea- 
sured phase with respect to the model phase is to be ex- 
pected from small gradient errors in the quadrupoles (see, 
for example [l]). The values of B(s) ,  X(s) and d(s)  were 
assumed to be constant over small sections of the ring, and 
were determined by fitting 4(s) to q5b over each section. 
Then the derivative of qj(s) was taken to determine P(s) .  
The 20% peak-tc-peak beat in the beta function in LEP 
was thus accurately measured. P(s)  also gives a value of 

fib for each BPM which, with the measured oscillation am- 
plitude at each BPM, could be used to calibrate the BPM 
gain. 

i 

111. Closed orbit data 

Two common ways of mqasuring machine optics using 
closed orbit shifts are to look at the shift in closed orbit 
from single steering magnets (see, for example [lo], [11], 
[12], [13], [14], [15], [IS]) or to make local orbit bumps using 
combinations of steering magnets[l7]. 

A .  Orbit bumps an Tn'stan 

The work at Tristan[l'?] is the first of two methods I will 
describe in which the actual gradients of the storage ring 
magnets were experimentally determined. Figure 2 shows 
schematically the algorithm used to determine the Tristan 
optics. 

, 
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Figure. 2. Measurement of quadrupole gradient error using 
an orbit bump with betatron phase advance of 7r. 

The magnet structure in Tristan is FODO, which is a 
periodic structure in which each cell has one focusing and 
one defocusing quadrupole. During the experiment, the 
optics were adjusted to give x/2 betatron phase advance 
per cell. Equal dipole steering kicks were given next to 
two quadrupoles, separated by x in phase advance. This 
should have resulted in a purely local closed orbit distor- 
tion. Therefore, the residual orbit distortion around the 
ring was due to  errors in the quadrupole gradients inside 
the local bump or to errors in the calibration of the dipole 
kicks used to make the bump. By analyzing the resid- 
ual orbits from all the different T bumps, the quadrupole 
gradient errors (both normal and skew) could be derived. 
Also, using the same bumps but with the sextupoles turned 
on inside the bumps, the horizontal and vertical offsets of 
the electron beam from the center of each sextupole could 
be determined. In this way, the gradients in Tristan were 
determined to  very high precision. Using the improved 
understanding of the linear optics, the measured dynamic 
aperture in Tristan was predicted by the model with an 
unprecedented accuracy. 

The experiment at, Tristan was simplified by the fact that 
the optics were set up to give x phase advance between 
steering kicks, so only two steering kicks were necessary to 
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I make a local bump. In addition, the quadrupole at the cen- 
t ter of the bump was approximately 7r/2 in. phase advance 

from the two steering kicks, so the residual orbit from gra- 
dient errors in the quadrupoles were easy to distinguish 
from residual orbit distortion caused by calibration errors 
in the steering kicks. It is unclear whether the local bump 
method could be applied in storage rings designed for syn- 
chrotron radiation, where, in general, three orbit kicks are 
required for a local bump and the quadrupoles are not 7r/2 
in phase advance from the orbit steering magnets. 

3. Orbit response matr ix  analysis 

Equation 1 gives a representation of the orbit response 
matrix which is the change in orbit at every BPM for a 
change in strength of every steering magnet. In reference 
[14] a method is presented for inverting this equation to 
derive the beta functions and phase advances at the BPMs 
and steering magnets from the measured orbit response ma- 
trix. Just as with the analysis of free betatron oscillations 
at LEP, the analysis of the measured orbit response ma- 
trix gives a very accurate measurement of betatron phase 
advance, but the accuracy of the fit beta functions is lim- 
ited by errors in the calibration of the BPMs and steering 
magnets. The beta function, however, can be derived from 
the fit phase advances, as was done at LEP. 

In reference [16] another method of analyzing the mea- 
sured response matrix data is presented in which the 
quadrupole gradients are derived. The gradients in a 
MAD[9] model of the NSLS X-Ray Ring were varied in or- 
der to minimize the x 2  deviation between the model and 
the measured orbit response matrices (Mmod and M,,,,). 

where the double sum is taken over the orbit steering mag- 
nets and the BPMs. The gi are the measured noise levels 
for the BPMs. The matrices include the coupling terms (i.e. 
vertical orbit shifts with horizontal steering magnets and 
horizontal orbit shifts with vertical steering). With this 
method the normal and skew gradients in each individual 
quadrupole can be determined. These gradients, in turn, 
define the beta functions and betatron phases throughout 
the ring, not just  at the BPMs and orbit steering magnets. 
This algorithm also yields the calibrations and rotations of 
the BPMs and steering magnets. For those quadrupoles 
adjacent to sextupoles, the analysis was not able to dif- 
ferentiate well between gradient errors in the quadrupoles 
and sextupole gradients due to orbit offsets from the sex- 
tupole magnetic centers. This problem was solved by first 
measuring the orbit response matrix with the sextupoles 
off, and then measuring the matrix with the sextupoles on. 
The first matrix was used to calibrate the gradients in the 
quadrupoles, and the second matrix was used to find the 
gradient in the sextupoles. 

Once the model was fit to the measurements to minimize 
x 2 ,  the RMS difference between the model and the mea- 
sured response matrices was only 1.2 pm which is primarily 

due to random noise in the orbit measurements. The noise 
propagated to give very small error bars on the fit param- 
eters and beta functions as shown in table 1. The small 
error bars are a direct result of the high precision of the 
BPM system at NSLS.[18] 

Table 1. These RMS variations are the error bars on the 
fit parameters due to random orbit measurement errors. 

Parameter 1 RMS variation 

quadrupole gradients I .04 % 

BPM gain .5 % 

steering magnet calibration .5 % 

quadrupole rotations .4 mrad 

BPM rotations .5 mrad 

steering magnet rotations .8 mrad 
beta functions .08 % 

Tests were performed to confirm that this algorithm 
could resolve small changes in the quadrupole gradients. 
Figure 3 shows the results of one such test. For this test 
the response matrix was measured. Then the gradients 
in two of the four families of quadrupole in the X-Ray 
Ring were changed, and the response matrix was measured 
again. Each response matrix was analyzed separately, and 
comparison of the two sets of fit parameters showed that 
the algorithm did an excellent job of correctly resolving the 
changes in the quadrupole gradients. 
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Figure. 3. This plot shows the ratio of the fit gradients 
for the 56 quadrupoles in the X-Ray Ring before and after 
changing the Q1 and Q4 quadrupole family gradients. The 
fitting algorithm successfully resolved the changes made in 
the quadrupole gradients. 

The fit parameters that were independently measured 
agreed with the results from the x2 fitting. For example, 
figure 4 shows the excellent agreement between the fit BPM 
rotations and the BPM rotations physically measured in 
the X-Ray Ring. Also, other measured optics parameters 
that were not used in the x2 fitting confirmed that the fit 
model is correct. For example, figure 5 shows the agree- 
ment between the measured dispersion and the dispersion 
predicted by the fit model. 
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Figure. 4. This plot compares several of the BPM rotations 
found by fitting the orbit response matrix to those rotations 
found by measuring the actual BPM alignment. The fit 
values agree with the measured values to within the error 
bars of the measurement. 
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Figure. 5. The dispersion function distortions in the X- 
Ray Ring are due to gradient errors, primarily from orbit 
offsets in sextupoles. The fit model agrees well with the 
measured dispersion. 

The improved knowledge of the X-Ray Ring optics 
achieved through the orbit response matrix abalysis has 
provided the possibility of increasing the synchrotron ra- 
diation brightness. During machine studies the strengths 
of the quadrupoles adjacent to sextupoles were adjusted in 
order to compensate for the sextupole gradients and cor- 
rect the large distortions in the dispersion shown in figure 
5. The dispersion correction alone reduced the horizontal 
emittance from 110 nm*rad to 70 nm*rad. A new ring lat- 
tice is now (Autumn 1995) being commissioned which will 
further reduce the emittance to  50 nm*rad. The under- 
standing of the rotational alignment of the X-Ray elements 
has also been used to improve the vertical beam size cor- 
rection program. 
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