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Abstract 

We present two large families of Silnikov-type homoclinic orbits 
in a two mode-model that describes second-harmonic generation in a 
passive optical cavity. These families of homoclinic orbits give rise to 
chaotic dynamics in the model. 

Introduction. 
harmonic generating passive optical cavity consists of the equations 

A standard model of the dynamics of light in a second- 

where A1 and A2 are the slowly-modulated amplitudes of the fundamental 
color and its second harmonic, K~ and yi2 are the frequency mismatches, ~ a A 1  
and ~ a A 2  are the losses of light in the ring cavity, and ~ 7 2  is the external 
pumping of the second-harmonic mode [l, 2, 3, 41. To derive this model, one 
must assume that the crystal is short, so that all the spatial effects in it, such 
as the modulational instability, can safely be neglected [5]. One must also 
assume that no modes other than a fundamental frequency of the light and 
its second harmonic can be present in the cavity 11, 41. Finally, one must 
assume that the asymmetric crystal in the cavity is of extremely high quality, 
so that both the pumping and the losses can be taken as relatively small and 
considered as perturbation terms. 

In this paper, we compute two large families of homoclinic orbits that the 
model (3.1) supports. All these orbits are of Silnikov type [6, 7, 8, 9, lo], 
and bring along with them chaotic dynamics arising from a Smale horseshoe 
construction [ll]. Physically, these dynamics should manifest themselves by 
transient intermittent flickering of light between the fundamental and the 
second-harmonic colors. 
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The ideal cavity. When E = 0, we obtain the equations that describe the 
ideal cavity without any pumping or losses. They are 

(3) 
z A1 = -iKIA1 + iA2A;, A2 = -A;, 2 

and can be derived via formulas Aj = Ho, j = 1,2, from the Hamilto- 
nian function HO = pllA112 - a (AfA;  + AT2A2). An additional conserved 
quantity in (3) is the intensity of the light in the cavity, I = flA1I2 + +IA2l2. 

The canonical transformation A1 = &,/-e-’$, A2 = ue-@ re- 
duces equations (3) into a planar Hamiltonian system for the complex vari- 
able a, and a quadrature for the angle $. F’rom this reduced form, we calculate 
the family of heteroclinic solutions, 

1 

A2(t, I ,  60) = [nl + id- tanh ( d s t ) ]  

Az(-m,  I ,  40) = ( ~ 1  - id-) e-i4o, A2(m, I ,  $0) = 

(5) 
which connect pairs of equilibria, 

(6) 
that lie in the plane A1 = 0, see Figure 1. (The details of the calculation 
are similar to but simpler than those in [12].) The difference A(1) in the 
argument of the variable A2 after such a heteroclinic excursion is equal to 
A ( I )  = 2arctan 

The pure second harmonic mode. The pure second harmonic mode in 
the plane Al = 0 is invariant even for the full system (3.1). Its dynamics are 
governed by the equation 

A2 = - E ( ~ Q  + a)A2 + ~ 7 2 ,  (7) 
which is obtained from (3.1) in this plane. There is a single equilibrium in 
this plane at 

(8) 
7 2  A1 = O ,  A2 = 

a + i K 2 ’  

which is, restricted to the A1 = 0 plane, a spiral sink if Q > 0 and ~2 # 0. 
Dynamics in this plane evolve on a slow, O(l/e) time scale. 
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The n-pulse Melnikov function. For system (3.1), a homoclinic orbit 
with n pulses consists of two pieces. The first piece is close to n consecutive 
heteroclinic orbits (AI, A2)(t, f, &-jA(I)),  j = 0 , .  . . , n-1, the first of which 
is the unstable manifold of the equilibrium point (8), that is, the heteroclinic 
orbit (AI, Az)(t, 1, $0) given by formula (3.1) with 

The second piece is close to the trajectory of the system (7) that connects the 
landing point A2(00,f,& - (n - l)A(I)) back to the equilibrium (8). The 
parameters f and $0 in the n pulses are determined by equation (9). The 
homoclinic orbit only exists if we choose the parameters a, 7 2 ,  ,q and ~2 so 
that the n-pulse Melnikov function Mn(I ,  &), to be described next, vanishes 
along the string of heteroclinic orbits ( A l ,  A2)( t ,  f, $o), . . . , ( A l ,  A2)( t ,  f, $0 - 
(n - l)A(F)). 

The n-pulse Melnikov function [13] is the sum of the ordinary Melnikov 
functions calculated along each of the heteroclinic pulses (3.1). Here, the 
ordinary Melnikov function [14, 151 is 

..M 

with V = (d.*, d ~ ; ,  a ~ , ,  a,;), and g the O(E) part of the vector field (3.1). 
(See also the exposition in [16], and the references to original works cited 
there.) An easy calculation, similar to that in [12], shows that for our model 

where 3m denotes the imaginary part of a complex number, so that the 
n-pulse Melnikov function is given by the expression 

Homoclinic orbits with n-pulses in the shape of a regular n-Gon. 
We consider homoclinic orbits whose shape is nearly that of a regular n- 
gon or a regular star with n vertices. By equations (6), adjacent vertices of 
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such an n-gon or star lie on straight lines tangent to the circle JA212 = K; .  

Therefore, I = f must be chosen so that the angle difference A(f) satisfies 
the equation 

4 2 T -  IG1 27rm A(1) = 2arctan = ( K 1 ) n  + 26, 
6 1  

where n > 2 and m are relatively prime integers with m < n/2, and 6 is a 
small number. 

Equations (9), (lo), and (11) imply that if we choose the parameters ~ 1 ,  

I G ~ ,  and 6, we can compute Q and 7 2  so that there exists an n-pulse, Silnikov 
type orbit 16, 7, 8, 9, lo] homoclinic to the equilibrium point (8), whose 
sequence of pulses encircles the origin rn times before easing into a spiral of 
size 267, which lies close to the plane A1 = 0, and slowly winds back into 
the equilibrium (8), see Figure 2. Specifically, M and 7 2  are given by the 
expressions 

+ O(S). 2 n ~ 2  E1 E2 
a = (61)  . 2Tm s2 + 0 ( 6 3 ) ,  7 2  = f 27rm sin C O S T  - 

The first of these equations shows that we must choose the detunings ~1 and 
~2 to have the same sign in order for these homoclinic orbits to exist in the 
physical regime M > 0. 

Apart from the just-described n-pulse homoclinic orbits in which all pulses 
follow one another in one group or bump, we can also find homoclinic orbits 
with similar shape in which several bumps, each consisting of n-consecutive 
pulses, follow one another, being interspersed with slow, spiral-like segments 
that lie close to the plane A1 = 0. We can form k-bump homoclinic orbits, 
with each bump containing n pulses, in the following fashion [17]. The first 
bump of such a homoclinic orbit is close to n consecutive pulses of which the 
first emanates from the equilibrium (8). There are in fact two such bumps 
possible; we denote one by c1 = + and the other by 01 = -, depending on 
the sign of the real part of the coordinate A1 at the takeoff. The next segment 
of this k-bump homoclinic orbit consists of Nl slow-time revolutions around 
the equilibrium (8). This segment ends near a curve Az(-m, I ,  @( I ) ) ,  where 
the second n-pulse bump takes off. (The existence of this curve easily follows 
from the simple zero of the Melnikov function at I = f and 40 = $0, and 
clearly, @(I) = $0.) If the value of I at the takeoff is I > 1, we denote 
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this takeoff point by 72 = +, and if I < f, we denote this takeoff point by 
7 2  = - . The second bump can have the sign e 2  = + or a 2  = - again. 
This pattern repeats IC times, and after the landing of the last bump, the 
homoclinic orbit spirals into the equilibrium (8). In this way, we can form a 
homoclinic orbit for every sequence 01 Nlr2e2N2 . . . rk-1ck-1Nk-1rke]c,  where 
a. 3 = f 7 3  r. = f, and k 5 Kma. The number ITmax depends only on the 
parameter 6 and grows to infinity as 6 shrinks to zero. Each such homoclinic 
orbit is of Silnikov type, see Figure 3. 

Multi-bump homoclinic orbits with an even number of pulses in 
each bump. We here consider the limit in which the ratio of the detuning 
I G ~  and the distance m- of the equilibrium point (8) from the origin is very 
small. In this case, the corresponding phase difference A ( I )  is close to  7r for I 
close to I = 1. We define v(I) = K I / ~ ,  and V = v ( f ) ,  and consider the case 
v(I), ii << 1. Re-computing the 2m-pulse Melnikov function M2m(I, $0) = 0 
along a string of 2m consecutive pulses emerging from the equilibrium (8), 
Taylor-expanding in the small parameter V, and setting M2m(1, $0) = 0 now 
yields the formula 

For this particular value of a, a Silnikov-type homoclinic orbit [6, 7, 8, 9, 101 
with 2m pulses connects the equilibrium point (8) to itself. The pulses of 
this homoclinic orbit jump between an O(ii)-sized neighborhood of the point 
(8) and an O(V)-sized neighborhood of its antipodal point, until this orbit 
finally spirals into the point (8). Note that we must again have 6 2 0  > 0, that 
is ~ 1 ~ 2  > 0, in order that a > 0, which is the physical regime. 

We now compute the curves along which 2n-pulse strings of unperturbed 
heteroclinic orbits takeoff from and land on the A2-plane for general n. We 
will use these strings as building blocks in constructing orbits homoclinic to 
the point (8) with many bumps, each bump consisting of an even, possibly 
different, number of pulses. 

Again re-computing the 2n-pulse Melnikov function Mzn(I, 40), Taylor- 
expanding in v(I), setting Mzn(I, 4 0 )  = 0, assuming v(1) = V + 0 (V2), and 
using formula (12), we compute that the takeoff and landing curves in the 
plane A1 = 0 for the persisting 2n-pulse strings of heteroclinic orbits (3.1) 
lie at 

(13) 

a! = mK2v + O(v2). (12) 

&(-OD, I ,  4o(I))  = -(y2~2) [ZdZ + d Z ( m  - 2 n ) ~ ]  + 0 (e2) , 
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and 

A2(m, I ,  h ( I )  - (n - l)A(I)) = - ( 7 2 ~ 2 )  [ia + &-(m + 2 n ) ~ ]  + 0 ( p 2 )  . 
(14) 

In the rest of this discussion, we only consider equations (3.1) in the case 
when 7 2 ~ 2  < 0, because the case when 7 2 ~ 2  > 0 yields almost identical 
results. We construct a homoclinic orbit that connects the equilibrium (8) 
at A2 = A2(-00,f,&) = &-(z - rn0) + O(D2) to itself as follows. The 
first bump of this orbit stays near a string of 2rn pulses emanating from this 
equilibrium. Formula (12) shows that this bump exists at some value a = 
m ~ 2 Q  + O(D2). In fact, there exist two symmetric bumps of this kind, which 
we denote, as in the previous section, by o1 = + and o1 = -, respectively, 
depending on the sign of the real part of the coordinate A1 at the takeoff. This 
first bump returns to the A2-plane near the point A2 = m - ( i + 3 m ~ ) + O  (p2), 
and the homoclinic orbit continues near this plane along a tight spiral that 
stays O(Y2) close to the circle /A2 - a-(i - m0)I = 4m0 for N1 revolutions 
about the equilibrium point (8). 

The second bump of the homoclinic orbit takes off near an intersection 
point of the circle lA2 - a(i - m0)I = 4m0 and one of the lines (13), 
clearly with n = n2 < 3m so that this intersection can exist, and consists 
of 2n2 pulses. Since there are two such intersection points, one with I > r 
and one with I < f, we denote the former by 7 2  = + and the latter by 
7-2 = -. We must also assign the second bump its signature, 0 2  = f, 
which again depends on the sign of the real part of the coordinate A2 at the 
takeoff point of this bump. By formula (14), the landing point on the A2- 
plane of the second bump is the reflection of its takeoff point across the line 
A2 = iX + a - m t i .  In other words, this landing point is 0 ( Y 2 )  close to the 
appropriate intersection point of the circle IA2 - m-(z + 3mD)I = 4rn0 and 
the line (14) with n = 122. The homoclinic orbit then proceeds to wind near 
the A2-plane about the equilibrium point (8) along a spiral O(Y2) close to the 
circle IA2 - (i - m0)I = R2D. Here, the radius R2 is computed by a simple 
application of the Pythagorean theorem to be R2 = 4J-j. The 
third bump, consisting of 2n3 pulses, takes off near an intersection point of the 
circle lA2-(i-rnD)I = Rz0 and the line (13), clearly with n = 723. In order for 
this intersection to exist, we must have 723 < m+R2/2 = m+2J;n(mfnz).  
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For general j ,  the j-th bump takes off near the intersection point of the 
circle [A2 - (i - mD)I = Rj-19 and the line (13) with n = nj and lands near 
the intersection point of the circle [A2 - (i + 3mD)( = Rj-1P and the line 
(14) with n = nj. The piece of the spiral that follows this bump lies 0(02)  

close to  the circle [A2 - (i - mD)I = RjD, where Rj = 4 
Moreover, 

From the discussion we have just concluded it follows that we can form 
a homoclinic orbit connecting the equilibrium point (8) to itself in the way 
described above for every sequence of symbols and integers 

where aj = f, Tj = f, each nj satisfies the inequality (15), k 5 Kmm, 
and the number Kmm only depends on the small parameter D and grows to 
infinity as V shrinks to zero, see Figure 4. 

Conclusion. We have exhibited two large families of Silnikov-type homo- 
clinic orbits [6, 7,8,9,10] that are present in the model (3.1). Even though we 
have assumed that only the second-harmonic mode in the cavity is pumped in 
this model, it is easy to see that the calculations and results would be nearly 
identical if the fundamental mode was also pumped by a term of the form 
E Y ~ .  Furthermore, well-known arguments show that the homoclinic orbits 
that we have found imply the presence of a Smale horseshoe return map [ll], 
and thus chaotic dynamics. The orbits generated by the Smale horseshoe 
map are all unstable, and thus only exhibit transient chaos. However, the 
presence of homoclinic orbits in the phase space of the model (3.1) is also 
a likely mechanism responsible for the occurrence of strange attractors seen 
numerically at S(1) values of E in the model [4], and has also been observed 
experimentally [ 181. The numerical investigation of the connection between 
the homoclinic orbits and this attractor is in progress and will be presented 
elsewhere. 

a 1  
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Figure Captions 
Figure 1. For fixed 4 0 ,  all the heteroclinic solutions (3.1) lie in a plane, 
and their endpoints (6) all lie on the same straight line tangent to the circle 

Figure 2. A homoclinic orbit in the shape of a hexagon. 
Figure 3. A two-bump homoclinic orbit in the shape of a hexagon. 
Figure 4. A homoclinic orbit with two bumps, the first containing two pulses 
and the second four. 

2 1  = JA2I2 = ic:. 
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