
JLAB-ACC-97-09 A Portable Accelerator Control Toolkit
William A. Watson III, Thomas Jefferson National Accelerator Facility

are shared within the collaboration, as are m
ware components for creating control
within an EPICS system are tied

-. infrastructure (the channel

In recent years, the expense of creating good control soft-
ware has led to a number of collaborative efforts among
laboratories to share this cost. The EPICS collaboration is
a particularly successful example of this trend. More
recently another collaborative effort has addressed the
need for sophisticated high level software, including
model driven accelerator controls. This work builds upon
the CDEV (Common DEVice) software Eramework, which
provides a generic abstraction of a control system, and
maps that abstraction onto a number of site-specilk con-
trol systems including EPICS, the SLAC control system,
CERNPS and others. In principle, it is now possible to
create portable accelerator control applications which have
no knowledge of the underlying and site-specific control
system. Applications based on CDEV now provide a
growing suite of tools for accelerator operations, including
general purpose displays, an on-line accelerator model,
beamline steering, machine status displays incorporating
both hardware and model information (such as beam posi-
tions overlaid with beta functions) and more. A survey of
CDEV compatible portable applications will be presented,
as well as plans for future development.

1 INTRODUCTION

In almost any book or journal on software development
one will find reference to the explosion in the quantity of
software development, and the cost and difficulty in devel-
oping necessary software in a timely fashion. A typical
rule of thumb for accelerators is that the control system
costs 10% of the total project, with half of that going to
software. In addition, as much as 5% to 10% of operating
manpower may go towards ongoing software improve-
ments.

In a decade of declining research budgets, this expense
has driven an increasing interest in software sharing within
many areas of the research community, including the
accelerator controls community.

1.1 EPICS
One example of a successful collaboration to develop
accelerator control software is EmCS @xperimental Phys-
ics and Industrial Control System). This software, whose
history is described in another paper at this conference [I],
is now in use at several accelerator sites including the
Advanced Photon Source at Argonne, Thomas Jefferson
National Accelerator Facility (Jefferson Lab), the B fac-
tory upgrades at SLAC and KEK, and several smaller
machines.

EPICS provides a framework for developing low level
device controls, including hardware interfacing and low
level control algorithm development. Many device drivers

reading, writing, and monitoring changesin named v&#
ables. A named variable can refer to a hardware IIO point,
or a variable within an algorithm

The toolkit contains a number of utility program

plays with interactive editors, a savehestore utility,
archiving (data logging) and data browsing prognuns, and
an alarm interface. Many commercial and freeware pack-
ages have also been interfaced to this bus via a callable
library (e.g. a spreadsheet and the tcl/tk toolkit).

Including astronomy sites and large physics detectors,
the EPICS collaboration includes over a hundred users and
application developers, and represents a notable software
sharing effort. For the most part, this sharing is limited to
those who use EPICS as the core of their control system.

Which plug into this software bus, including SJI IO~~~C dis-

1.2 SOSH
SOSH (for Software Sharing) is a name given to a series of
workshops on the general topic of software sharing for
accelerators and large physics detectors. The original
meetings were held in conjunction with the International
Conference on Accelerator and Large Experimental Phys-
ics Control Systems (ICAtEpCs).

The cun-ent thrust of these workshops is to (1) develop
a framework within which shareable applications can
be built, (2) develop shareable utility applications (e.g.,
display or manipulate named control system quantities),
and (3) develop accelerator or detector specificcontrol
applications. The framework includes a common (abstract)
i n t e b to the local control system, with common stan-
dards for names of classes of devices and their athibutes
(or a way of aliasing these to a common set).

At the “workshop on software Sharing” following
ICALEPCS ’93 in Berlin, 19 invited participants agreed in
a joint statement that “there is no fundamental reason
(from operation and machine points of view) why ... the
primary functions in the draft list could not be imple-
mented by common generic (coniigurable) software and
or using appropriate common software tool kits”. [2]

This list of functions included 13 topics related to the
application environment including user i n t e b develop
ment, on-line help, a sequencer, data logging, archiving,
and system coniigwation. This is the a m well covered in
a portable way (within EPICS) by the EPICS toolkit.

What is more remarkable is that the participants stated
that accelerator applications were equally shareable: mag-
net cycling (and super cycles), orbit measurement and cor-
rection, tune measurement and correction, chromaticity
measurement and correction, R F gymnastics, machine

STE

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or mponsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that i ts use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otberwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this documerrt may be illegible
in electronic imllge products. Images are
produced from the best avaiiable original
document.

.

, simulations, injection, matching, and extraction. To date, 2.2 CDEV
these sorts of applications have seen only limited portabil- CDEV (common DEW=) pro^^ an interface (API) to
ityt yet represent an even larger software development a virtual control system with a simple flavor - the system
effort than Of at major labs like consists of a set of named devices to which messages may
C m , FNAL, and SLAC. be sent. The client program has no knowledge of the

device’s software or hardware implementation -(location,
control system type), and only knows (or discovers at run soE;TwARE TEcHNou)Gy

2.1 A Softwarn Bus
If these applications are to be shareable among a large
number of laboratories running Merent (mostly custom)
control systems, there needs to be a well &fined common
interface through which they can connect. This interface is
often referred to as a “software bus”. Just as hardware
modules pass data over a backplane bus, so too software
modules (programs) pass information over the software
bus.

In May of 1995, CERN hosted a workshop titled “A
Softwarebus Common to Accelerators and Large Experi-
mental Physics Control Systems”. ’Iiventy-five partici-
pants agreed that (1) applications “above the bus” (host
si& vs. hardware side) held the most promise and benefit
for sharing, and (2) CDEV, a C++ framework developed at
Jefferson Lab, [3] should be investigated as the framework
through which these applications could access the control
system. ’Iivo additional workshops in the previous 2 years
have continued to focus upon CDEV as an enabling tech-
nology for portable accelerator control applications.

There are two ways in which a software bus can be
defined, and both are used in practice. In one, the network
prutocol is defined, including how resources are located
(discovered) on the network, what types of messages
between programs are supported, and how these messages
are formatted on the network. In the second way, an uppli-
caiion prugmmming intetjiace (API) is defined, which
specifies a set of routines to be called for communicating
with other programs. The protocol on the network is not
defined, and in fact multiple protocols may be used. The
second technique is equivalent to defining a virtuul uccel-
emtor, as presented by Kanaya at ICALEPCS ‘93. [4]

There are many software buses of each type in exist-
ence today, and it is diilicult to choose one to be a stan-
dard, in fact the choice is somewhat a matter of
preference. The choice of CDEV as a potential standard
interface was driven by these requirements of the bus:

ability to connmt to legacy control systems
high perfon~~~~ce, with fully asynchronous behavior
support for a high level view of the control system,
dealing with named accelerator devices (magnet,
bpm) each with multiple attributes (field, x-position,
beam current) instead of a view consisting of hard-
ware addresea or low level control points
support for object oriented programming, and in par-
ticular the C++ language
support for rich messaging (complex queries with
complex replies)

time) the-list of Asages to which the device responds.
CDEV is implemented as a C++ framework that pro-

vides a standard interface between an application and one
or more underlying control packages or systems. It serves
as an adaptor, or middleware, between a portable applica-
tion and a local control system. In addition, it provides a
number of features not provided by many control systems.
I 1
I I i I

L I
Application

* CDEV API I
service layer

I I

Figure 1: CDEV multi-service architecture.

CDEV does not specify which networking protocol is
used between client and server, and can in fact support
multiple protocols simultaneously (Figure 1). When used
with the EPICS channel access protocol, CDEV can locate
hundreds of devicdattribute pairs per secolld, and receive
thousands of value changes per second. The overhead of
using CDEV instead of the native EPICS API is negligible
and well offset by the additional functionality provided,
even if portability is not a desired goal.

When used with another custom TCP/IP based proto-
col (CLIP) developed at Jefferson Lab, CDEV can deal
with complex queries to (for example) a model server
returning arrays of two-dimensional transfer matrices
between specified devices. ?he client application remains
unaware of which protocol is involved.

Additional interfaces to other control systems may be
added to CDEV with a modest amount of programming,
ranging from a couple of weeks of learning and coding for
a simple system, to a few months for a complex system.
SLAC has interfaced CDEV to its control system on VAXI
VMS computers, and cERN/ps has done likewise for an
I3WAIX system. This is an extremely small amount of
effort to support portable software.

2.3 Alternatives to CDEV
One possible alternative to CDEV which was considered
(and continues to be evaluated) is CORBA, the Common
Object Request Broker Architectme, which defines stan-
dards for object-oriented distributed-programming com-
munication mechanisms. [5] Implementations of COMA

are available from multiple vendors on all major plat-
forms, and the latest version of the standard addresses
interoperability among vendors.

While CORBA is well accepted in the marketplace,
there are several problems with making it the software bus
for control systems, and performance is one, CORBA is
about 10 times slower at locating resources on a network
than can be achieved with custom protocols - primarily
because the location services deal with only a single
resource at a time. In contrast, EPICS and CLIP buffer
requests for name resolution, achieving much higher
throughput for large, complex applications such as interac-
tive displays containing a thousand or more variables.

Another CORBA diiliculty is the complexity of the
API for dynamic invocation (talking to remote objects
whose interface is not compiled into the current program).
This dynamic binding capability (discussed further in the
next section) is a key feature of many utilities.

Nevertheless, CORBA continues to be of interest. One
avenue often discussed is to use CDEV over CORBA, and
to use CORBA only to locate servers and to transport mes-
sages. In this case one would use a custom (accelerator
device) resource locator and CDEV as the MI and bigher
level framework. CDEV could easily support this simulta-
neously with the existing direct support of other protocols.

3 UTILITY APPLICATIONS

3.1 Name Based UO
The= are a large number of useful controls applications
which deal only with named values, and are not accelera-
tor specific. These include operator displays (graphical -
a meter showing magnet current, or text based - a list of
all magnet setpoints and cunents), data archiving (ament
in the magnet for the last year), or save and restore (of the
magnet setpoint). These control system values are refer-
enced by a single name (e.g. magnet7-setpoint) or through
a pair of names (magnet7, setpoint) corresponding to
device name and attribute name.

Because of the proven usefulness of the EPICS utility
programs (which are name based), one development activ-
ity has been to port those tools to CDEV, allowing them to
be used with non-EPICS servers and protocols.

3.2 Cmerhng EPICS tools .
WO EPICS applications [6] have already been converted
from calling the EPICS channel access library to making
CDEV calls.
stnpTmZ Strip chart graphical application, with 8 colored

pens. I n W ~ l y choose variables, including wild-
cards. Save / restore of display definitions.

Alarm handlw, monitors the alarm (error) sta-
tus of the referenced values and summarizes the errors
in a tree hierarchy. Indicates alarm through color,
blink, and beep.

alh

In addition, the following EPICS tool is in the process of
conversion; others will be converted as time allows.
dm Display manager; one Of the two synoptic dis-

play programs in EPICS, with the ability to display
values as text, color (of a graphic), or through widgets
such as meters and push buttons. Menus and push but-
tons support executing scripts or bringing up addi-
tional displays.

3.3 New CDEV tooh
Several new utilities have been developed or are currently
being developed within the CDEV framework
met X-windows Automated Correlation TmMt

Modeled after the SLAC correlation package, this
utility can step 1 or 2 variables, and measure hundreds
of other variables at each step. As part of each step or
measurement, additional actions may be performed
including time delay, wait for a value to settle, or
invoke a script Plans include automated Wmax
optimization of one parameter (done routinely at
SLAC with their software).

Another tool modeled after a SLAC utility, this
program displays attributes of devices (such as bdZ,
the integral field in a magnet) as a function of position
along the beam (2) in the machine. While this appears
to be specific to accelerators, the attribute represent-
ing position could easily be replaced by any other col-
lating parameter.

Archive data browser. Originally developed to
directly read EPICS archive data files, this program is
being converted to a CDEV based clientisewer archi-
tecture. StnpTool will also be modified to initialize
immediately with archived data from the server, and
to allow scrolling backwards in time. Additional fea-
tures in the new archive system are planned. [7]

A distributed error logging system. Includes a
logging daemon for each host (Unix and VxWorks), a
database server, client logger and browser libraries, a
Motif browser, a tcl browser, and (soon) a Java
browser. Logging client library supports filtering
(suppression of repeating errors). Browser supprb
interactive suppression of uninteresting errors.

plot

xav

c&g

CDEV is (1) a standard API for communicating with
devices, (2) a C++ framework implementing this API, (3)
a Java package implementing a (subset of) this API, and
(4) a set of applications and libraries useful in building dis-
tributed systems. This section will briefly review the high-
lights of each, eIllphasizing recent developments.

4.1 c++ Librmy
The mainstay of CDEV is a C++ class library for develop
ing both applications and adaptors to additional control
systems. The library includes:

* directory services: look up devices by name or by connect Java applets to the control system. (See Fig-
ure 2.)

Server Shell A skeleton server program which can be
used to build a new CLIP server by writing a single
routine to handle one message. All connection man-
agement and message queueing and routing is han-
dled by the shell. Used to implement the NameServer,

type, including wildcard matching; discover at run
time supported attributes and messages; get type for
given device

* asynchronous messaging: high throughput, buffered
YO; callback mechanism, time-outs
string and composite self describing binary data mes- .-

sages, with support for multiple architectures (byte
swapping)
*YO operation grouping and synchronization

coZZections, for operations on vectors of devices, with
support for passing the device array intact to the
underlying control system for higher performance on
some systems

single calling interface
virtual VO: use of multiple control systems from a

support for EPICS, CLIP (plus others at their sites)
base class for integrating new control systems
extensive documentation

4.2 Java Package
The Java package is written in 100% Java, allowing
applets to be written to run inside of commercial web
browsers. [8] It supports the same calls as in C++ for send-
ing messages to devices, with network support for the
CLIP protocol also in 100% Java. The package currently
does not include support for groups or collections.

In addition to the Java-cdev package, there is also (in
beta form) a graphics library for producing animated dis-
plays along the lines of those produced by dm (above).

4.3 tcvtk
It has been the experience at Jefferson Lab and elsewhere
that the tcZ scripting language and its tk graphics toolkit
provide an extremely productive environment for rapid
prototyping of control applications. [9] Tcl has been inter-
faced to OW, allowing scripts to access the entire con-
trol system and LLcceletator model at Jefferson Lab.

4.4 Network Componene
The latest extensions to CDEV include a set of network
components useful in building up a large distributed sys-
tem. These components include:
NcmeSener Supports the mapping from a named

resource to m r address and port. A CDEV device
may be implemented as a single resource, or as a set
of resources on different servers. Communication
with the 118me semer is asynchronous and buffered,
locatingresources1otimesfasterthancoRBA.

Allows multiple applications to connect to
the control system through a single point, producing
only a single connection to any real-time system. Per-
forms protocol conversion from the external protocol
(CLIP) to the site-specific protocol. Currently used to

Gateway

Gateway, and the model &er Artemis (described in
the next section).

1 t

I I I
C++ application ~l I

-MY
CDEV

I I

server shell mer shell
Nameserver

Figure 2 CDEV network components, showing logical
network connections for two protocols, with gateway
connected applets and applications.

L

5 ACCELERATOR APPLICATIONS

A certain amount of success has been achieved in the past
in sharing beam optics modeling codes, such as MAD,
DIMAD, PARMELA, and also analysis codes, such as
RESOLVE. These applications are off-line applications
with no connection to a control system, yet do r e p e n t a
notable software sharing success.

Sharing of on-line applications is somewhat more difli-
cult, and has met with only limited success. Much of the
lack of success can be attributed to the lack of a common
interface to the control system.

5.1 Stan&ardr or Conventions Needed
The model design codes mentioned above have been suc-
cessful in moving from site to site because they provide
significant capabilities, while enforcing few constraints
upon the users. Each program has a simple naming con-
vention for devices, and for classes of devices, and for
attributes of devices. For example, DIMAD defines a qua-
drupole magnet as something of type “quadrupole” having
characteristics ”L” (length), “Kl” (strength, in l/m2), and
‘‘apemre” (radius in meters). Instance names are restricted
to eight significant characters, and everything is case
insensitive.

9

€
I

These are exactly the types of conventions which need
to be standardized in order to allow portable on-line appli-
cations -- conventions on names of classes of devices, and
conventions upon what capabilities (such as read and write
attributes) these devices support.

5.2 CLASSIC
Among recent attempts to standardize the definitions of
accelerator objects is the CLASSIC project. [lo] CLAS-
SIC is an acronym for Class Library for Accelerator Sys-
tem Shulation and Control. Its goal is to provik

a C++ class library for accelerator design, simulation

*a mechanism for C++ code sharing and standardiza-

a platform to exchange new ideas in code develop-

The collaboration includes SLAC, CERN, FNAL, DESY,
Jefferson Lab, and the University of Maryland.
CLASSIC includes a standard input file format with

mnemonic type codes for all accelerator elements, mem-
ory structures to represent these beamline components and
composite beam lines, representations of lattice transfer
maps, representations of misalignments, interfaces to algo-
rithms, and an interface to the on-line control system (the
plan is to use CDEV). This is still a work-in-progress, with
the initial soilware being tested within the framework of a
new version of MAD.

and operation

tion in the accelerator community, and

ment.

5.3 Unified Accelerator Libraries
UAL [113 is another effort to develop an environment for
portable accelerator control applications. One major thrust
of this effort is to standardize descriptions of accelerator
structures. Unlike the CDEV and CLASSIC projects, UAL
does not standardize upon C u as the programming lan-
guage, but instead uses the Scripting language PERL as the
glue to bind together a set of programs in potentially mul-
tiple languages into a cohesive system.

At this point, the UAL project anticipates using
CORBA as the software bus through which applications
will gain access to the control system.

5.4 CDEV Compliant Accelerator Software
In addition to the general purpose utility applications
listed in the previous section, thete are a small number of

Artemis Artemis is an accelerator beam optics server for
simulation and control. [12] It provides first- and sec-
ond-order transport matrices, beam envelop pmpaga-
tion, and particle ray tracing. It currently uses
DIMAD as a backed, but is adaptable to othermod-
eling engines. It uses CDEV to obtain current lattice
settings and to seMce clients.

Atlast (AuTomated Lock And Steering Tmlkit)
is a modular program for beam based energy and orbit

accelerator optics applications already finished:

Atlast

corrections. It uses CDEV to monitor beam position
monitors, obtain model information, and drive acm-
tors. Multiple algorithms are allowed, with support
for SVD and Prosac. C131

6 SUMMARY

Progress has been made in forming a new multi-lab collab-
orative effort in high level accelerator applications devel-
opment. The CDEV fiamework has been used to support a
diverse set of on-line tools, including modified Epics
applications, new utilities, and a small number of beam
based applications. PortabiIity of applications between
EPICS and non-EPICS control systems has been demon-
strated.

New developments at Jefferson Lab, SLAC, and other
labs will continue to expand the set of CDEV compliant
applications, and the work of atKliated groups like the
CLASSIC collaboration will further increase the amount
of software rumable at sites supporting a CDEV adaptor.

7 ACKNOWLEDGMENTS

Work supported by the US. Department of Energy, con-
tract DE-AOO5-84ER40 150.

8 RJ3mRENcES

I11

141

1‘71

C81

191

‘E?xpe&ncc with EPICS in a wide variety of applications’, M.
Icraimr, APJL; M. claosen, DESY; W. Luptolz KECK; and C.
watsm, Jtfftrson Lab, thesc pxUcding6, PAC ’97.
‘ b l session on Softwan Sharing’. ‘About the Saturday Work-
shop‘, B. Kuipcr, ICALEPC 1993 Pmceedm ‘ gs. Nucl. Instr. and
Meth.inPhys.Res. A352 (1994)513-515.
‘An Objcct-oricntcd class Library for Devclopiag Devicc control
Applicatioas’. J. Qtn. W. Aka’s. G. Heycs, D. Wu, and C. Watson,
IOQLFPCS 1995 . scc alsoWtp-Jhvww.jlab..o.

‘ V i accelerator and fundamental guidelines towards sharable
software for acctleFatot control systems’, N. Kanaya, ICALEPCS

Re CORBA, see httpJ/www.omg.org/omg&lhvicorba.htm.

Rivate communication. SmpTml converted by C. Lanieu, Jeffer-
son Lab, d h by Jamt Andason, Argonnc National Lab.

1993 Proaxdm - gS,497-500.

‘Design of a aew EPICS archive system’ pnseatcd at the Vancou-
ver spring 97 EPICS collaboration Meting by Maa Bickley.
‘A Java wclcege for Bdding client Applds to Access TJNAF
Accelerator Data Across the Internet’. C. Qua& master‘s thesis,
ChdstOpherNnvpart Unimsity, 1997.
‘Rapid Application Developmeat Using tbe TcyIk: Lauguage’. I.
van Zejts, PAC 1995 proctedrngs , Vol. 4 p. 2241.

[101 ‘Tk CiarSic Projtct. F. C. Isclia, C h m p d d Accelerator Phys-
ics Rocdhgs, 1996,325-330.

[111 ‘Unified Accck&r Uxarks’, N. hblbky, R IIBlmaa. Coqmta-

[12] ‘The Use of Arttmis with High Level Applications’, B. Bowling,

E131 ‘Prosac Algorithm’, Y. Chao. CAP 96.319.

tional Accelerator F%ysics Proaxdm . e, 1996,337-342.

H. Shoaee, S. Wespoon, ICALEPCS 1995.

