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Abstract 

We describe a numerical optimization scheme for fusion reactors. 
The particular application described is to find the smallest copper 
coil ‘spherical’ tokamak, although the numerical scheme is sufficiently 
general to allow many other problems to be solved. The solution to 
the steady state energy balance is found by first selecting the fked 
variables. The range of all remaining variables is then selected, except 
for the temperature. Within the specified ranges, the temperature 
which satisfies the power balance is then found. Test are applied to 
determine that remaining constraints are satisfied, and the acceptable 
results then stored. Results are presented for a range of auxiliary 
current drive efficiencies and different scaling relationships; for the 
range of variables chosen the machine encompassing volume increases 
or remains approximately unchanged as the aspect ratio is reduced. 
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1 Introduction 
A previous paper [l] presented an analytic model describing the minimum 
tokamak reactor size as a function of aspect ratio A. In particular the depen- 
dence of major radius R and machine encompassing volume V, with A was 
discussed. In those analytic studies only two auxiliary current drive efficien- 
cies ( ~ C O  = 0 and 00) and one scaling law were considered. In addition, the 
power to the grid Ps. remained unspecified (but 2 0. The analysis attempts 
to find plasma densities and temperatures, and corresponding reactor param- 
eters which are consistent with the steady-state power balance equation and 
with a number of physical constraints. The power balance equation relates 
the power lost as described by the ratio of total contained energy to the en- 
ergy containment time computed from an assumed scaling law to the power 
input due to fusion power, current drive, and auxiliary heating. While the 
equation is conceptually simple, it is nonlinear and contains over two dozen 
parameters which must simultaneously satisfy a number of additional and 
often nonlinear constraints. In the analytic model, a single scaling law and 
certain limiting assumptions were made to obtain an analyticaly tractable 
equation. Here we use a directly numerical search procedure which allows 
more general scaling laws and constraints to be considered. Figure 1 illus- 
trates the power flows considered; detailed definitions are found in [l], and 
at the end of this document. 

The mathematical problem is to solve a nonlinear equation, power bal- 
ance, which contains approximately 24 variables subject to roughly seven 
nonlinear constraints to minimize either the major radius or volume. The 
exact number of variables and constraints depends on the particular problem 
and scaling law considered. The analytic technique in the previous paper 
fixed some of the parameters and looked at limiting cases in order to obtain 
an analytically tractable equation. Here we give up the closed analytic result 
in favor of examining the problem and constraints directly. In both the arm 
lytic and numerical treatment some parameters are held fixed for this study. 
The resulting problem requires a search in an eight or larger dimensional pa- 
rameter space. We examine this space directly using a relatively coarse mesh 
rather than following a gradient using a differential approach. This coarse 
mesh search can be considered as an initial procedure to find good starting 
conditions for a minimization method; however, the coarse mesh search was 
adequate for the problem at hand. To date the only plasma losses considered 
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are those described by the scaling relationships considered (see Appendix 1). 
Appendix 2 lists the definitions and relations, with Appendix 3 defining the 
symbols used. Constants are found in Appendix 4. 

I 

P gr 
Figure 1. Power flows considered. 

The objective of the calculation is, given the plasma shape (aspect ratio A,  
triangularity 6, elongation K ) ,  wall loading limit r,,, plasma content, Ze.f, 
Zi, plasma profiles 3;2, TT, and exponents in confinement time scaling (YR, 
a,, c, H ,  ..., and certain conversion efficiencies, fdo, f c D ,  etc., to find the 
smallest machine, where by smallest we mean either 

smallest major radius &, 
smallest machine encompassing volume V, , 

with the recirculating power fraction x 5 xo (e.g. 0.6) that satisfies the 
power balance equation 
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subject to the restrictions: 

Greenwald limit (density) 

fie < ~,IO"(I~/IO')/(T~')), 

Beta limit 
p < zlo-8-, PNO IP 

aBT0 

Wall loading limit 

Safety fact or (stability ) 

Power production 

and other additional constraints such as 

maximum allowed field strength on the central column 

BTleg < BTlegmo,Oj (7) 

and the maximum bootstrap fraction 

fbs 5 fbsmae. (8) 
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We have written a small computer code to perform this task. (The code, 
written in C++, can be obtained from the authors.) An outline of the 
computational procedure is as follows (details appear later) : 

1. Select the set of fixed variables. 

2. Select the range of variation for all remaining variables except 
temperature. 

3. Within the given range, solve for the temperature that satisfies 
the power balance. 

4. Test if the remaining constraints are satisfied. 

5. Store the acceptable set if I& (or Vm) less then current I& 
(0rVm). 

Note that, to speed up the calculations, the energy released by the nuclear 
reactions is approximated by a simple dependence on temperature, which 
restricts T 5 25 keV. 
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2 Computational Procedure 
The computational procedure caries out a brute force search. Normally, such 
a procedure for the large number of variables involved in this study would 
be computationaly prohibitive. By carefully organizing the nested loops and 
applying the constraints as early as possible, we have been able to examine 
problems in a reasonable time (a few minutes to a few hours on a desktop 
personal computer). The problem is coded as a series of nested loops which 
are outlined as follows: 

Calculate, plasma content factors: 

Select an A, (results plotted as function of A) .  

Begin at & = 
balance found or hmaz is reached. 

and increment & until solution to energy 

The upper range of B T ~  is limited by &leg-mm through 

Fix K- = KO (alternatively one could take, to further advantage 
low-A, = 3). 
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Search over range: K f [Kmin, ~ m a z ]  7 defining 

s2 s 
8 4A v = 27rRo7raK4 1 - - - - ) 7  

S = 27r2&3a(l+ ~ ) ( 1 . 0  - 0.136-), A 
1 &0.13 

fel = fezo [z + (1  + 0.34S~-O.~). 

The minimum q limits the maximum Ip through 

Search over range: Ip E [Ipmin, Ip,,]. 

The lower range of B T ~  is limited by qmin through 

Upper bound on n is set by the Greenwald limit 

Search over range: no, E [nomin, nomm] defining 
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Search over range: E [&omin, B T ~ ~  1 computing 

The maximum power available 

Some fraction of this power is 
range: a H  E [O,1] calculating 

for heating is given by 

supplied as heating. Search over 

The upper To is given either by the p limit (note the explicit A 
dependence has been included) through 

or by the wall loading limit 

so that 
TO,,, = min( Toi,, TO%:, i ed ) .  (30) 

The inner loop is a search procedure to find a peak temperature 
that will provide power balance. Solve W(T0) = TE(TO)PX(TO) 
for To where To E [Tomin, Tomax] and where 

PCD = a$D -b aFDTo, 
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If a solution for TO is found, check to see if physically meaningful, 
i.e. 

P H  2 0,  (37) 
and 

fbs  5 fbsmaz, 

and that remaining constraints are satisfied. Namely, 

and 
x < xo, 

Store the result. 
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3 Power balance equation 
The procedure requires that the power balance equation, 

which at that point in the calculation is only a function of To (all other 
parameters fixed) be solved for TO. Note that most of the single term scaling 
laws can be expressed as 

with 

where the acs are obtained from the expressions for PCD, PH, Pa. The y 
exponent is either zero or small for most of the scaling laws. The equation 
for To becomes 

(44) 
c 2  Pc = a 2  To + a p o  + a;, 

which for y = 0 is a quadratic and can be solved directly. For the case in 
which y # 0, the quadratic roots are used as initial guesses for a simple 
iterative Newton’s method. The Rebut-Lallia scaling law, which does not fit 
the pattern, can be expressed in the form 

which also reduces a quadratic equation for To 

For the case in which y # 0, Newton’s method was applied to the equation 

(48) 
1-27 

f(d = aY2 - [by2 + cy + 4 
to obtain a general iterative method for these cases. 
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4 Results 
We show here the results of the optimization for tokamak reactors with copper 
toroidal field coils with no space made available for a nuclear shield or blanket 
at the inner equator. The objective is to complement the analytic results 
presented in [l]. The values considered for the optimization are given in 
Appendix 5 ‘Nominal values’. The main differences between the numerical 
results presented here and the analytic results are: 

1. Different energy confinement scaling relations are used here. 

2. Arbitrary auxiliary current drive efficiencies are used. This 
means that a driven system is implied. 

3. The power to the grid Pn is specified. In the examples shown 
below, Pv 2 0.5 GW was specified. 

4. Various parameters are allowed to change, rather than fixed 
values being chosen. 

Figure 2 shows the smallest major radius R as a function of aspect ratio A 
for the four confinement relations used to date (see section ‘Scaling Laws’). 
Figure 3 shows the machine encompassing volume/103 for the same data. 
Results from other relationships can be provided if required. In the legend 
the first number refers to the scaling law used, with ITER89P =1, KayeAll 
= 2, GoldstonL = 3, DIIIJet = 4. For each scaling relationship, results 
assuming two values of current drive efficiency are shown, namely ~ C D  = 1. 
x 1019 (pessimistic) and 10. x 1019 (optimistic). In the legend the second 
number refers to the auxiliary current drive efficiency (1 or 10). For each 
scaling relationship and current drive efficiency results were obtained with S 
= 0.2, 0.3 and 0.9, but very little difference in the major radius was found. 
Shown are data obtained with 6 = 0.3. The results show that there is x 40 
% reduction in the major radius of the smallest device as A is reduced from 3 
to M 1. However, there is no associated reduction in V, even with the most 
optimistic auxiliary current drive efficiency. 
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Other general observations include: 

1. Optimising on the smallest R or smallest Vm gives the same 
device. 

2. There is little dependency of the smallest R on 6. 

3. The optimum (i.e. smallest) device generally operates at the 
maximum allowed elongation and neutron wall loading limit. 

The results described above were obtained by first choosing A, the scaling 
relationship for energy confinement, ~ C D  and 6, and then varying R, Ip, BT, 
IS, n, etc. Typically for each A, q c D ,  and 6, approximately lo7 cases were 
run, from which those which satisfy the constraints are first chosen, and then 
within that subset those with the minimum size are recorded. 
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Figure 2. The major radius R of the smallest copper toroidal field coil 
tokamak reactor as a function of aspect ratio A. Results using four different 
energy confinement scaling relationships are shown. The first digit of the 
legend refers to the scaling relationship (ITER89P =1, KayeAll = 2, 
GoldstonL = 3, DIIIJet = 4) and the second digit refers to the auxiliary 
current drive efficiency used (qco = 1. x lo1' and 10. x lo1'). 6 = 0.3, 
with other parameters and variations found in the text (see 'Nominal 
values ' ) . 
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Figure 3. The 
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machine encompassing volume Vm/103 m3 of the smallest 
copper toroidal field coil tokamak reactor as a function of aspect ratio A. 
Results using four different energy confinement scaling relationships are 
shown. The first digit of the legend refers to the scaling relationship 
(ITER89P =1, KayeAll = 2, GoldstonL = 3, DIIIJet = 4) and the second 
digit refers to the auxiliary current drive efficiency used (qco = 1. x 1019 
and 10. x lo1'). S = 0.3, with other parameters and variations found in 
the text (see 'Nominal values') 
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5 Summary and Conclusions 
We have presented a numerical technique for optimizing a given energy con- 
finement scaling relationship, together with given ranges of variables and 
k e d  constraints, to find the smallest tokamk reactor. Results were pre- 
sented for a range of auxiliary current drive efficiencies and different scaling 
relationships; for the range of variables chosen the machine encompassing 
volume increases or remains approximately unchanged as the aspect ratio is 
reduced. These results were consistent with the results obtained using the 
analytic method in [l]. 
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Appendix 1. Scaling laws [Z] 
Data from the first four scaling laws are discussed in this paper, although all 
those listed (and any others provided) can be used if required. 

a(m)7 R(m), B(T),  &(A)? TE(5)7 PE(w), n(m-3) 

ITER89-P (L-mode) 

0 . 0 4 8 H a a  0.3 & 1.2 (&)0’85 K ~ * ~ B ~ . ~  (&)’”) ($ ) -o ‘5  (49) 

Kaye-all-complex (L-mode) 

0.85 0 . 2 5 ~ 0 . 3  (M) ’*’) (2) -0‘5 (50) TE = ( 0.067Hfia0.3Ry5 (&) K 1020 

Goldston (Lmode, H/D) 

( -0 .37g.75 (&) p) ($) -0.5 TB = 0.037H -a 

DIII- Jet (H-mode) 
1.03 -0.46 

73 = (0.053HRA’48 ($) ) (3) 
Lackner-Gottardi (L-mode) 

0.8 K, 

7-3 = (012H/$a0*4G’8 (&) (1 -k 
(&)o.6) 

27r (1 + 6 2 )  a2B 
Po 2 R0(1,/1O6) 

q = -  

Kaye-Goldston (L-mode) 

TE= ( 0.055H -aa- 0 . 4 9 ~ k 6 5  (&)1‘24 

I /  (!k) -05 

(53) 

~ 0 - 2 8 B - ~ - ~ ~  ($) 0.26 ) (2) -0.58 
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Rebu t-Lallia (L-mode, D) 

( 2 H g 0 . 1 4 6  ( B  ($)) 'I2 (a2&K)11/12 ( - ("))3'* Z.rr 1/4) (P")-' 
1020 

Goldston-quadrature (OH, L-mode H/D) 

1 
= (- +- 

where 

TE,OH = 0 . l O Z 6 ~ ~ ~ a  1.04 R 2 0 4  . q 050  . 
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Appendix 2. Definitions and Relations 
We assume that the plasma contains one hydrogen-like main ion, ni and one 
impurity, nI, with charge 21. Using charge neutrality ni+ZInI = ne, and the 
definition of ,Teff,  Zeffne = ni + nIZ?, we can define two factors g = ni/ne 
and 92 = (1/2)(1+ 7t,i/ne + nI/ne) in terms of 21 and Zeff as 

SO that the pressure p = (ne + ni + n1)kT , 

and energy content W = (3/2)(ne + ni + n ~ ) k T ,  

W = 3ng2kT 

are expressed only in terms of g2. Where we assume T e  = T,  = T and n = ne. 
The plasma profiles are assumed to have the forms: 

so that 

It is convenient to define a plasma profile and impurity content factor as 

g2 (n2T2) 
+m2 sp = 
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Additional definitions include: 
Plasma volume 

6 2  s 
8 4A 

v = 27r&7rUKU(l- - - -) 

Machine-encompassing volume 

V, = T(RO + U ) ~ ~ K U  

First wall surface area 

Elongation 

/61/4 

A S = 2n2&a(l + ~ ) ( 1 . 0  - 0.136-) 

Maximum toroidal field on axis 

Safety factor(s) 

or 

q = qJ1.22 - - o*68) (1 - A-2)-2 
A 

1 + K2(i + 2s2 - 1.2s3) (1.22 - y) 
2 ) A2(1 -A-2)2  sq = - 

PO 
q = @To&/& 

Averaged poloidd field 

B -- 

Beta 

(74) 

(76) 

(77) 
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Beta poloidal 

Boot strap fraction 

Bootstrap current 

2 P p = P ( 2 )  

I b s  = f b s I p  

Total heating power, external plus alpha 

pc = pa -k PH PCD 
Neutron power 

Alpha power 

Power consumed by the TF coil 

Pn = 4Pa 

P, = 1.5 x 1 0 - 3 7 ( ~ ~ ) 2 ~ ~ ,  

Power consumed by current drive 

Electric power generated 

Total stored energy 

Recirculating power fraction 

Wall loading 

w = 3g&T)V 

pn r, = 

(89) 
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Conversion efficiency 

Power to grid 
PH PCD PTF PPid = felPn - - - - - - 
f H  f C D  f T F  
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Appendix 3. Symbols 

plasma minor radius (m) 
vertical elongation 
triangularity 
major radius (m) 
aspect ratio 
plasma volume (m3) - 
machine encompassing volume( m3) 
plasma surface area (m2) 
vacuum toroidal field at plasma geometric axis (T)  
magnetic field at inner toroidal-field-coil leg (T )  

averaged poloidal field at plasma surface (T )  
plasma current (A)  
bootstrap current (A)  
edge safety factor q+ 
cylindrical safety factor 
central density (vz-~), ne = ni 
central temperature(keV), T e  = Ti 
density profile shaping factor 
temperature profile shaping factor 
charge of main impurity ion 
effective charge including impurities 
effective mass 
fuel dilution factor 
plasma profile and impurity content factor 
total stored energy in plasma ( J )  
ratio of average pressure to vacuum toroidal field 
beta normal 
fraction of Greenwald limit 
bootstrap fraction 
bootstrap fraction coefficient 

-- 

i 
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- 

TE confinement time (s) 
H confinement enhancement factor 
a~ confinement-time scaling-law exponent 
a, confinement-time scaling-law exponent 

total heating power (external plus alpha)(W) 
alpha heating power (W)  
power in neutrons( W )  
total electric power generated(W) 
power consumed in producing toroidal field (W)  
power consumed in generating current drive (W)  
power consumed in generating auxiliary heating( W )  
total heat lost from plasma(W) 
power lost to Bremsstrahlung( W )  
power lost to cyclotron radiation(W) 
neutron power flux to walls (W/m2) 
ratio of alpha power to conduction loss 
ratio of neutron power to auxiliary power 
recirculating power fraction 
conversion efficiency from electric power to plasma current (w) 
conversion efficiency from neutrons to electrical power 
conversion efficiency from electrical power to toroidal field 
conversion efficiency from electrical power to current drive 
conversion efficiency from electrical power to auxiliary heating 
fraction of TF area made of conductor 

A 

Appendix 4. constants 

po permeability of free space 47~ x 10-7(Hm-1) 
IC* Boltzman constant 1.6022 x 10-16(J/keV) 

resistivity of copper 2 x 10-8(R - m) 
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Appendix 5. Nominal values 
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