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ABSTRACT. The thermal conductivity of a randomly oriented composite material is modeled using 
a probabilistic approach in order to determine if a size effect exists for the thermal conductivity at 
small composite thicknesses. The numerical scheme employs a random number generator to 
position the filler elements, which have a relatively high thermal conductivity, Ivithin a matrix 
having a relatively low thermal conductivity. The results indicate that. below some threshold 
thickness, the composite thermal conductivity increases with decreasing thickness. while above the 
threshold the thermal conductivity is independent of thickness. The threshold thickness increases for 
increasing filler fraction and increasing the ratio between the filler and matrix thermal 

conductivities. h c 
INTRODUCTION 

Predicting the thermal, electrical, and mechanical properties of composite materials is very important 
to their application, since it is both time consumin,o and expensive to measure these properties, given 
the wide possible ranges of filler and matrix materials. the filler orientation and dimensions. and the 
fraction of the total composite that is occupied by the filler. Kumerous studies have been reported 
which describe methods for calculating the effective thermal (or electrical) conductivities for fiber- 
reinforced composites (see, e.s., Maewal et al.. 1976: Han and Cosner, 198 1 : Peterson and Fletcher. 
1987; and Mottram, 1992). However, apparentIy most, if not all. of these investigations focused on - (zeometries in which the composite material was infinite in extent. Since the structure of fiber- 
reinforced composites is generally periodic. this allowed the use of a "unit cell" approach. in which 
the effective transport. properties of an elemental cell containing representative ptopenies of fiber 
and matrix material, in an appropriate configuration, are the same as those of the composite medium 
as a whole. This approach works well, provided that the geometry of the actual composite material 
at hand is relatively large, so that it contains a sufficient number of the unit cells. This unit-cell 
approach, however, will not be applicable if the composite geometry is limited in at least one 
dimension, such that the unit cell cannot be truly representative of the entire composite structure. 



Portions of this document may be illegible 
in electronic image products. h a g s  are 
produced from the best available original 
document. 



DISCLAIMER 

This report was prepared as an account of work spomred by an agency of the United 
States Government. Neither the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or implied, or assumes any legal liabili- 
ty or respomibility for the accuracy, completeness, or usefulness of any information, appa- 
ratus, product, or process disdosed, or represents that its use would not infringe privately 
owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the United States Government or 
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Schematic thema1 model of the two-dimensional, randomly oriented composite 
materiai. 

Another class of composite materials is those in which the filler, such as the fibers in a fiber- 
reinforced composite. is randomly oriented throughout the matrix. Examples of this type of 
composite include in-plane randomly oriented fiber composites (Peterson and Fletcher, 1987), and 
thermalIy conductive compounds consisting of a grease or epoxy which contains a Iarge number of 
small particles for enhancing the compound thermal conductivity, such as copper or silver particles. 
These themally conductive compounds are generally applied as a thin layer between two solid 
materials in order to increase the thermal conduction across the interface. Hence, their geometry can 
be severely restricted in the thickness direction. It is anticipated that the effective compound thermal 
conductivity, kefi  will be independent of thickness for sufficiently large thicknesses, but that ke8 
will vary at smaller thicknesses. 

This report is concerned with predicting k e 8  for composites containing a randomly oriented fiIler 

materia1 using a probabilistic approach. A ranse of filler and matrix thermal conductivities is 
examined. Specifically, our analysis determines the minimum thickness necessary to achieve the 
"bulk" vaIue of k e ~ ,  i.e., the minimum thickness needed to produce a keg  that is independent of 
sample thickness. 

THEORETICAL APPROACH 

Due to the typical geometry of a thermal compound application. in which a thin layer of the 
compound is sandwiched between two solids, the two-dimensional model shown in Fig 1 is 
employed. All elements are taken to be square-shaped for simpiicity. The matrix elements, having a 
thermal conductivity k,. are white, while h e  filler elements, having a thermal conductivity kf are 
shaded. The positions of the matrix elements are determined in a random procedure which is 
discussed below. The dimensions of each sqcare element are I x 1. The thickness, H, is equal to the 
number of elements in the thickness direction, n2. multipiied by 1. The width, L. is equd to the 
number of elements in [he width direction, n, multiplied by 1. In all cases. L 2 2H in order to 
minimize any effects &e to the left- and right-hand boundaries. The compoSite is positioned 



I 
. between two solid materials having temperatures Ti (upper) and To (lower). Heat transfer between 

the solid materials and the composite is characterized by the heat transfer coefficients h 1 (upper) and 

ho (Iower). For generality, a thermal contact conductance, h, (not shown in Fig. l), is assumed to 
exist between the filler elements and any of their neighboring elements. 

Thermal Resistance Network 

Since we are considering only steady-state heat transfer, it is expedient to model the thermal 
conduction through the composite material using a thermaI resistance network. Figure 2 shows a 
small portion of this network near the lower left-hand comer of the composite. Each node represents 
the temperature of one of the elements in Fig. 1. The boundary conditions at the left and right-hand 
sides of the composite, at positionsj = 1 a n d j  = n, are taken to be insulated, so that no heat flows in 
those directions. 

The thermal resistances surrounding the i j  node are shown in Fig. 2, where RQ,J is the "upper" 

resistance, R ~ , J  is the "right" resistance, RQ,B is the "bottom" resistance, and R i j , ~  is the "left" 

resistance. These resistances are determined by the two nodal elements which they straddle. For 
example, if the i,j node is a filler element, and the i,j+l node is a matrix element, R ~ , R  is given by 

where 

and 

where in this case k i j  = kfand k i , j + ~  = k,. Note that the thermal contact conductance, h,, only 

appears where there is a filler element. If a filler element occupied the node i,j+Z rather than a 
matrix element, than h, would also appear in the expression for Ri,j+I. The other resistances 

surrounding the node i,j are determined in a completely analogous manner, except for the top (i = 1) 
and bottom ( i  = m) rows of the matrix, where the heat transfer coefficients hi  and ho come into play. 

as shown for the bottom row in Fig. 2. 

The system of linear equations is generated in a straightforward manner by summing up all the heat 
fI ows for each node and equating to zero. For example, for the i,j node Iocated in the interior of the 
matrix, as shown in Fig. 3, we have 

One such equation can be written for each node, producing a system of equations of the form CX = 
€3, where C is an (mxn) x (mxn) coefficient matrix, B is a vector of length mxn, and x is h e  output 
vector Of length mxn which contains the nodal temperatures. This matrix equation is solved using 
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Figure 2. Lower left-hand portion of the thermal resistance network. 

LU decomposition (Press et a]., f992), where L represents "lower triangular" and U "upper 
tri an ,QU 1 ar " . 

Determining the Positions of the Filler Elements 

The total number of filler elements, nj is a function of the specified filler fraction, 9. where cp ranges 
between 0 and 1: 



"f =cpx(mxn) ( 5 )  

where p = 172 x n is the total number of nodes. We employ a random number generator (Press et a]., 

1992) to determine which nodes are occupied by the filler. Since the output of the random number 
generator is between 0 and 1, we divide this range into p intervals: 

where each interval represents one node. The random number generator is then utilized to produce a 
random number between 0 and 1. The interval in which that number falls is assigned to be a filler 
node. This process is repeated until all nffiller nodes are assigned. If, during the course of this 

procedure, two or more random numbers fall within the same interval, only the first such number is 
kept, since that node is already assigned to be a filler element. Any subsequent numbers falling 
within the same interval are discarded, and additional random numbers are generated in order to 
ensure that exactly nf nodes are occupied by filler elements. 

Determining the Composite Thermal Conductivity 

Determining kef for the composite material is actually not trivial, even once all the nodal 

temperatures have been determined. The reason lies in the highly anisotropic nature of the heat flow 
within the composite. Referring to Fig. 2, recall that the heat transfer coefficients to isothermal 
reservoirs. rather than the composite temperature itself, are specified at the upper and lower 
boundaries. If we assume the thermal resistances due to h i ,  ho, and the conduction within the 

composite are in series. we arrive at the following expression for the total thermal resistance, Rtor, 
between Ti and To: 

Intuitively, Eq. (7) seems reasonable, because we can imagine that we should be able to assign well- 
defined values for each of the three terms on the right-hand side of Eq. (7). However, in reality, for 
finite values of h i  and ho, there is no well-defined single temperature on the upper and lower 

boundaries of the composite, and hence the assumption implicit in Eq. (7) that these three resistances 
lie in series is not rigorously correct. This problem, however, is averted for the results reported here, 
since we take both hl and ho as tending towards infinity, which yields uniform upper and lower 

boundary temperatures for the composite. The resolution of this issue when hi and ho are assigned 
finite values is left for the future. 

The composite thermal conductivity, k e ~ ,  is determined here by first calcularing Rfol usins 

TI -*o 
Rtot = 

4 

where 4 is the total heat flow throw$ the composite. In practice. q is determined by summins all the 
individual nodal heat flows at either the upper or lower composite boundary. which must yield equd 
values of 4. In fact, the consistency of the numerical scheme is checked by comparing q calculated 
at the upper boundary with that calculated at the lower boundary, and ensuring that the values are 
equivalent. 
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Figure 3. Histogram of ke~va lues  for kIn = 0.2 W m-] K-l, kf= 400 W m-1 K-1, cp = 0.40, rn = 
16, n = 34, ho = hl = h, = 103O W m-2 K-l, and I = 5 pm. 

Finally, k e 8  is determined by equating the value for Rtot calculated from Eq. (8) with Eq. (7), 

yielding 

Once kegis calculated in this manner for a single set of random numbers, and hence filler positions, 
this procedure is repeated a number of times, with a new set of random numbers assigned for each 
repetition. This yields a distribution of values. from which a mean value of k e 8  is calculated 

(kmean>. The value of most interest is kmeal2. since that is what is most likely to occur in a real 
application. A total of 200 iterations are performed to determine kmean. .4n example of the kef 

distribution for cp = 0.20, m = 20, n = 40, km = 0.2 W m-1 K-1, and kf= 400 W m-1 K-I is shown in 

Fig. 3. These particular values of k,, 3nd kf correspond to a thermal grease matrix with copper 

particles serving as the filler. For this par t icah c3se. k,,,ea,z is 0.3975 W m-I K-I. It should be 

noted that the distribution in Fig. 3 is by no means typical. For larger values of cp. andlor Small 
values of rn, especially where kf >> ktn, occasional large values of kef result which skew the 
distributions towards the higher values. Such outlying points would presumably become less and 



less relevant as the total number of iterations is increased. However, in the interests of maintaining a 
reasonable computation time while achieving satisfactory accuracy, the number of ilterations for the 
present results is fixed at 200. The error caused by this limitation, as well as from other sources, is 
discussed in the next section. 

Numerical Uncertainty 

There are essentially four contributions to error in our numerical scheme: (i) insufficient number of 
iterations to achieve a satisfactory distribution; (ii) insufficient UH ratio to eliminate edge effects; 
(iii j errors originating from the random number generator; and (iv) roundoff and truncation errors. 
For (i), this error seems most severe where kfdiffers greatly from km. A comparison between a test 

run of 1000 iterations with our standard run of 200 iterations indicates an error as high as *lo%. For 
(ii), sample calculations indicate that maintaining UH 2 2 results in an error of less than +I%. For 
(iii), the random number generator employed is satisfactory, according to Press et al. (1992), except 

for an extraordinarily high number of calls, on the order of 108. In the present case, the maximum 

number of calls is on the order of lo5, so that we neglect any error due to the random number 
generator. Finally, for (iv), these errors are difficult to estimate. but are thought to be negligible 
compared with error (i). Therefore, the error caused by an insufficient number of iterations is the 
dominant contributor. and we thus estimate the total numerical uncertainty at 210%. 

RESULTS AND DISCUSSION 

The results shown below indicate the effects of filler fraction (cp) ,  matrix and filler thermal 
conductivities (kIj t  and kf), and filler thermal contact conductance (hc) on the mean composite 
thermal conductivity (klilean), as determined from an average of 200 iterations. In each case, kmean 
is plotted versus the composite thickness. as represented by the number of elements, or cells, in the 

thickness direction. XI1 calculations are performed for lzo = 111 = 1030 W m-2 K-1, Le., effectively 

infinite, I = 5 pm, Ti = 1 K, and To = 0 K. In each case the ratio WH is at least 2, and for smaller 

values of m, WH is set at 5 so that edge effects due to the left and right boundaries can be neglected. 

Effect of Filler Fraction (cp) 

Figure 4 presents kmean as a function of cp. The matrix and filler thermal conductivities are km = 0.2 

W rn-l K-l and kf= 400 W m-1 K-1, respectively. These values correspond approximately to a 
matrix consisting of thermal grease, such as one of the Apiezon greases. and the filler consisting of 
copper particIes. all at room temperature. Any effect of filler contact resistance is neglected here by 
taking hc = 1030 W m-2 K-1. 

Figure 4 shows the anticipated results, in that at larse thicknesses, the curves generally approach a 
horizontal asymptote which signifies that kmean becomes independent of thickness at that point. A t  

small thicknesses. klnean tends to increase with decreasing thickness. Thus, each curve can be 
divided into two regions: the "small" region at lower thicknesses. where kmean varies with 

thickness. and the "bulk" region at higher thicknesses. where kmean is independent of thickness. 

The thickness at which the "buIk", or asymptotic. behavior is reached increases with increasing Cp- 
For cp = 0.20, the boundary between the "smaI1" and "bulk" regions occurs near M = 7. that is. for a 
composite thickness of only 7 elements, or cells. The size of each element, I x I, is determined by 
the average filler size, so that if the fiiler consists of solid copper particles, the "bulk" region is 
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Figure 4. Effect of varying fiber fraction cp on kmean (k,  = 0.2 W m-1 K-1, kf= 400 W m-1 K-1, 

ho = h 1 = h, = 1030 W rn-2 K-1, and I = 5 pm). 

obtained for a thickness of 7 copper particles. For <p = 0.40, the boundary between the two regions 
occurs near m = 13, and for cp = 0.60, the boundary apparently lies beyond rn = 25. Therefore, the 
region in which the "small" size effect strongly impacts kmean becomes much larger with increasing 

0- 

What causes to increase at small thicknesses? First of all, note that this trend is in agreement 
with a study on percolation in a unidirectional fiber composite consisting of perfectly conducting, 
circular fibers enmeshed within a nonconducting matrix (Joy and Strieder, 1979). Our model differs 
from the percolation model in that both the matrix and the filler have a finite conductivity, which 
allows conduction even without the percolation mechanism. However, we believe that a percolation 
type of mechanism is responsible for the enhanced thermal conduction at small thicknesses. It seems 
that as the thickness is decreased, there is a greater propensity for the filler particles to "line UP". thus 
creating a relatively high thermal conductivity path, or thermal "short", which increases the overall 
composite thermal conductivity. The probability for this kind of filler alignment apparently 
decreases with increasing thickness, such that beyond some given thicknes-he boundary between 
the "small" and "bulk" regions---none of these high thermal conductivity paths can occur, yielding a 
Jqnealz which is thereafter independent of composite thickness. 

SO far. nothing has been said concerning m y  effect of element size. I ,  on kmean. With reference to 
Eq. (3). I impacts the thermal resistance Ri,j only in the term involving the filler contact conductance 

h,. Therefore. where h, -+ 00, as in the results in Fig. 4, changing I has no effect on &mean- 
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Figure 5. Effect of varying fiber and matrix thermal conductivities on kntean (9 = 0.60, ho = hl = 
h, = 1030 W m-2 K-l, and I = 5 pn). 

Finally, note the small fluctuations in the curves in Fig. 4, which are especially apparent for the cp = 
0.20 and q~ = 0.40 curves. These fluctuations are the result of the probabilistic nature of our 
theoretical approach. As discussed in the previous paragraph, there is some possibility, at small 
thicknesses, for the filler particles to align themselves to create a high thermal conductivity path. 
This can result in a vaIue for keg that is a factor of 15 greater than kmean, thus skewing the 

distribution and yielding a relatively high value for kmean. Upon further investigation, it is revealed 

that this effect is somewhat dissipated by taking a greater number of iterations to determine k,,a,. 

However, in an actual composite material, there is also some probability for the highly conducting 
particles to align themselves in this way, so that the fluctuations predicted by our theoretical model 
could also occur. Predicting exactly when and where such fluctuations will occur. however. is 
impossible because of the random nature of the composite. 

Effect of k ,  and kf 

The composite themai conductivity kjnearr is plotted versus thickness for three different sets of km 

and kfin Fig 5. For each curve, cp = 0.60, I = 5 pm, and ho = h i  = hc = 103O IV m-? K-I. The 
upper curve corresponds to a copper filler within a grease matrix, like the results in Fig. 4. The 

middle curve, where k, = 0.19 W m-1 K-1 and kf = 46 W m-1 K-1, corresponds to a polymide 

matrix with an alumina filler. The lowest curve, where k, = 0.3 W rn-1 K-1 and kf= 1.0 w rn-' 



K-1, corresponds to the (3-10 composite, which consists of woven glass fibers within an epoxy 
matrix. Note, however, that since G-10 is a woven, not a random, composite, these results will not 
apply specifically to G-10. These three combinations of km and kf are chosen to provide a broad 

range of thermal conductivities, while still being relevant for some practical applications. 

Although all three curves indicate that kmean increases with decreasing thickness, the effects on the 

two upper curves are most pronounced. For the lowest curve, where k, and kfdiffer by only a factor 

of three, there is only a very slight increase in kmean at lower thicknesses. Apparently, k, and kf 
must be sufficiently different to achieve a significant size effect on kmean at small thicknesses. 

Furthermore, the change in kmean between its maximum and minimum values increases with 

increasing difference between k-and km, or kjkm. For the upper curve where kfkm = 2O00, kmean 

chanzes by a factor of 7.5, while for the middle curve (kfk, = 242), kmean changes by only a factor 

of 4.5. 

For the upper curve, the horizontal asymptote is still not reached for m = 25, indicating that the 
boundary between the "small" and "bulk" regions lies at still greater thicknesses. For the middle 
curve, the boundary occurs near in = 12, and for the lowest curve, at M < 5. Thus, it is clear that the 
greater the difference between kIn and kfi as measured by the ratio kpkm. the greater the thickness 

over which the size effect on k,,,,,,, is important. 

Effect of Filler Contact Resistance 

The final set of results is given in Fig. 6, which shows the effect of varying h, on kmean. The 

material properties assumed are the same as those in Fig. 4: km = 0.2 W m-1 K-1 and k f =  400 W 

m-1 K-1. while y = 0.40. As anticipated. ,as h, decreases (Le., the thermal contact resistance 

benveen the filfer particles and the matrix or other filler particles increases), kmean decreases. For 

the thermal prease/copper particle combination considered here, the actual value of h, at room 

temperature would probably be relatively higk-perhaps close to 107 W m-2 K-l, or even higher. 

Three of the curves in Fig. 6 display the size effect on kmean at small thicknesses. However, one 

curve, that for h, = 105 W m-2 K-1, is essentially flat. The reason for this can be understood by 

examining Eq. (2), the relation for Ri,j For h, = IO5 W m-2 K-1, the first term on the right-hand 

side, I/h& is equal to 2.0 m K W-1, while the second term, 1/2ki,j, is equal to 0.00125 m K W-*. 

The sum of these terms is almost equal to the thermal resistance of a matrix, or 1/3-k, = 3.5 m K 
W-l.  Since the matrix nodes and filler nodes have approximately the same resistance, the 
distribution of filler nodes is insignificant, and hence there is no observable size effect on kmem.  

It was briefly mentioned earIier that, for h, + 00, there is no impact of varying I on kmean. For the 

finite values of h, in Fig. 6, however, the choice of I is important, as it would be in practical 

applications where i'z, will always be some finite value. Thus, for the future we can identify three 

unresolved matters concerning the thermal conductivity of thin. random composites: ( i )  the effec: Of 

I on kmeait: (ii) the effect of finite ho and hi on kmean: and (iii) experimental verification of che size 

effect on k,ne,, predicted by our model. Our forthcoming work wiIl focus on these three areas. 

including an experiment on a commonly used thermal compound, in which the compound thickness 
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Figure 6. Effect of varying the filler contact conductance on kmealt (kin = 0.2 W m-1 K-1: kf= 

400 W m-1 K-1, cp = 0.40, ho = hi = 1030 W m-2 K-1, and I = 5 pm). 

will be carefully controlled and measured to produce thermal conductivity data that can be directly 
compared with our model. 

CONCLUSIONS 

A probabilistic model of the thermal conductivity of a two-component, randomly-oriented composite 
material indicates that a significant size effect exists for the thermal conductivity at small 
thicknesses. Specifically, below some threshold thickness beyond which the thermal conducti,vity is 
independent of thickness, the thermal conductivity increases with decreasing thickness. This effect 
appears to be due to the increased probability that for smalI thicknesses the filler particles, which 
have a relatively high thermal conductivity relative to the matrix, are able to align themselves in che 
thickness direction, thus providing a high-thermal-conductivity path which increases the overall 
composite conductivity. The threshold thickness below which the size effect is important increases 
with increasing filler fraction and increasing kfkm, the ratio between the filler and matrix thermal 
conductivities. 

NOMENCLATURE 

heat transfer coefficients to the cold and hot thermaI reservoirs. respectively lu; rn-? K-l] 

thermal contact conductance at the filler surface Iw m-2 K-I J 



P . H  composite thickness [m] 

effective composite thermal conductivity yW m- 1 K- 13 

filler thermal conductivity [W m-1 K-I] 

matrix thermal conductivity [w m-1 K-I] 

mean composite thermal conductivity [W m-1 K-I] 

element dimension [pm] 

composite width [m] 

number of cells (elements) in the thickness direction 

number of cells (elements) in the width direction 

total number of filler elements 

total heat flow through the composite [W] 

thermal resistance of the i.j node [m K W-11 

total thermal resistance of the composite [m K W-11 

temperatures of cold and hot thermal reservoirs. respectively [K] 
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