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Abstract: The aim of this work is to present a method that helps tuning the reinforcement 
function parameters in a reinforcement learning approach. Since the proposal of neural-based 
implementations for the reinforcement learning paradigm (which reduced learning time and 
memory requirements to realistic values) reinforcement functions have become the critical 
components. Using a general definition for reinforcement functions, we solve, in a particular 
case, the so-called exploration versus exploitation dilemma through the careful computation of 
the RF parameter values. We propose an algorithm to compute, during the exploration part of 
the learningphase, an estimate for the parameter values. Experiments with the mobile robot 
Nomad 200 validate our proposals. 
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function, behavior-based approach. 

1. Introduction 

Reinforcement Learning (RL) is a machine learning technique that allows a robot to learn 
complex behaviors using only a performance measure of the desired behavior [Kaelbling, 
19961. Models of the environment or of the desired behaviors are not required. The 
reinforcement signal provided by the reinforcement function (RF) evaluates the entered 
situation relative to the desired behavior. There has been a lot of research related to the issues 
of convergence [Dayan, 19941; generalization [Mahadevan, 19921; exploration [Thrun, 19921, 
[Zhang, 19961; and memorization [Lin, 19921. A major milestone in the course of RF 
development has been the proposal of neural-based implementations, which reduced learning 
time and memory requirements to realistic values, allowing true RL applications [Sehad, 
19941. Therefore, the RF has become the critical component. Despite all the ongoing research, 
there have been few efforts (if any) to propose a methodology or define a robust set of 
heuristics for the design of RFs. Authors usually report the building of the RF as an emergent 
process involving lots of trials and errors [Santos, 19971. 

In section 2, we introduce a general definition for a RF. In section 3, we propose an algorithm 
to compute during the learning phase the parameter values. In section 4, simulations and 
experiments involving the synthesis of avoidance obstacles are conducted with a mobile robot 
(Nomad 200). Finally, we discuss and conclude the obtained results and future work. 

' This research was funded in part by the Office of Energy Research, Basic Energy Sciences of the 
U.S. Department of Energy, under contract No. DE-AC05-960R22464 with Lockheed Martin 
Energy Research Corporation. 
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2. A Definition of the Reinforcement Function (RF) 

It has been reported in [Touzet, 1997al that a RF should always imply positive, negative, and 
null rewards2. Thus, a desired ratio of positive and negative rewards over time during the 
exploratory part of the learning phase is mandatory. Let us consider the following RF 
expression, which has only one parameter per case (positive and negative rewards): 

+ I  if s, (s, ,... ,s,, 1 > 6, 
R F ( ~ ,  ,..., s,, = - 1  if g2(+...,sl, < e- 1 0 in other case 

where (sl, ..., s, ) is the output readings of the sensors. 

For the need of illustration, we take the case of an obstacle avoidance behavior synthesis for a 
mobile robot. How should we define the value of e+ (res. e-) so that it respects the desired 
ratios? As shown on figure 1, the sum of the rewards over the number of moves value varies 
between 0.0 and 0.7. If e+ is small, the robot receives lots of positive rewards, and then the 
sum of the rewards will be large. The extreme case is when e+ is 0. As we increase 0+, the total 
amount of positive rewards diminishes. It must not reach 1000; otherwise, the robot would 
never receive positive rewards. The same reasoning applies to e-. 

Figure 1. Each point of the graphs was obtained by performing 500 moves at random (using a 
random action generator for the mobile robot): 

a/ Sum of positive rewards over the number of moves versus the value of e+ [0 .. 10001. 
b/ Sum of negative rewards over the number of moves versus the value of 8- [0 ,. 20001. 

If there is no positive reward, the evaluation function built during the learning phase will have 
"0" as maximum value and the policy cannot select effective actions. If there is no negative 
reward, the robot can remain in a dead-end situation forever. If there is no null reward, the 
evaluation function will be non-continuous at the frontier between positive and negative situation- 
action pairs. 



3. Dynamic Estimation of Parameters in Reinforcement Function 

We have derived an algorithm to dynamically compute during the exploration part of the 
learning phase the parameter values. Let us assume that the functions gl( ) and g2( ) are non- 
linear but monotonous (here decreasing for gl( ) and increasing for g2( ) as shown on fig. 1). 

# I"- 
. The Let us call P+ and p-the desired values (ideal ratios) for the observers - and - #r+ 

t t 
problem is to adjust dynamically the parameters 0+ and 0- so that we observe the following 

#I"+ # r- convergences - + p+ and - + p-  . t t 

Initialization; 
Dejne E, At k, k, and k2 (0 < k, ,k ,  < l )  
Define the values of p+ and p- ,  
Choose some initial value for e+ and 0-, 
Set the initial step for A O+ and A 0-, 

1. Compute ##I"? and #r-! as 

# r p  = i tj(rt,1> 
i=t-At 

t 

i=t-At  
= c 6(rL,-1) 

where 6 is the Kronecker function. 

2. If (AT+ - p + f $ - p + ] <  0 then A& =k,A& 

If(b--p-[%-p-)rO At then A &  =k2A0- 

At 

5. Store in &+ and &- the actual values of observer estimators, 

6. If not terminate, then go to 1. 

Figure 2. Update Parameters Algorithm. 



The principle of the Update Parameters Algorithm (UPA) as described in figure 2 is to 

At # r- 
At p- 

# I"f p+ < E and -- i) 7- 

#r+ # i" 
estimate the value of the observers - and -. To this end, two variables #rF and #I.! are t I 

< E during k iterations 

defined. They are the number of positive and negative rewards occurring in the last At 

iterations (At is an integer value). 

#rf 
If the value of the estimator - is greater than p + ,  then we have to change the value of 0, 

At 
Al # r+ to obtain in the next iterations a value of - closer to the desired value p + .  Since the 

At 
relation (gl( )) between #r+and le, is monotonously decreasing, a positive value (Ale,) is 

added to 8+. In the opposite case (- is smaller than p+) ,  then a negative value (Ale,) is 
#I": 

At 
substracted to le+. 

At # r- If the value of the estimator - is greater than p - ,  then we have to change the value of 0- 
At 

At # r- to obtain in the next iterations a value of - closer to the desired value p - .  Since the 
At 

relation (g2( )) between 

substracted to e-. In the 

#Land 0- is monotonously increasing, a negative value ( A & )  is 

opposite case (- is smaller than p - ) ,  then a positive value ( A & )  
At 

#I"- 

At 
is added to €I-, Each iteration, the values of #rF and #I? are updated using the last Atvalues 
of #r+ and #I"- (each reinforcement signal at time t is noted as I"').  

We may have crossed the desired value for the parameter, in which case the product 

(Ar+ - p+f%-p+] is negative (as also (Ar- - p - f s - p -  ). In this case, the absolute 
At 

value of A0+ (orland Ale-) is decreased by a factor kl (or k2). 

The stop conditions are given by: 

(&is a small positive real number), or 

ii) if the exploration part has finished. 



4. Experiments 

We have used the Nomad 200 (figure 3 )  
robot in an experiment of synthesizing an 
obstacle avoidance behavior using its IR 
sensors. The typical arena is shown on 
figure 4. The robot has 16 sensors uniformly 
distributed around its body. The value 
returned by an IR sensor is 255 when there 
is nothing in front and 0 with a nearby 
obstacle (however, each value is coded on 
only 4 bits). 

Figure 4. One of the arenas used in 
our experiments. The Nomad 200 

robot is represented inside the arena. 

I 

Figure 3.  The Nomad 200 mobile robot. 

The complete definition of the RF function is: 
+- 1 if it is avoiding, 
-1 i fa  collision occurs, 
or 0 otherwise 

The robot is avoiding when the current sum of sensor values3 is greater than the previous one, 
the difference being greater than e+ and a collision occurs when the sum of the 8 front sensors 
is lesser than %.This RF can be rewritten as: 

The sensor values measure the distance to the obstacles (the greater the value, the farther the 3 

obstacles). 
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Figure 5 shows the learning curve for 8+ and 8- during the exploration part when UPA is 
active. The initial values for 8+ and 8- have been set to 0.0 and 1000.0, kl= k2=0.99, At=20, 
A8, = A &  = 1 .O. The desired ratio of r+ and r- to respect is 0.2 (for both). At the end of the 
UPA phase, the values for 8+ and 8- are 390.0 and 1150.0 (respectively). The behavior of r+ 
and r- during the 500 UPA iterations is displayed on figure 6. 

Figure 5 .  €I+ and 8- values during the 500 iterations of the UPA phase. The initial values are set 
randomly to 0.0 and 1000.0, respectively. 

r+ lAt 

Figure 6.  Values of rt-lAt and r-/At during the 500 UPA iterations. The oscillations are due to 
the limited size of the integration window (here At = 20 time steps) and the non-uniform 

distribution of the encountered situations. The objective is a ratio of 0.2 for rt- and r-. 

After the 500 UPA iterations, Q-learning started the pure synthesis of the behavior using a 
self-organizing map implementation for memorizing and generalizing [Touzet, 1997bl. There 
were 16 neurons, a neighborhood of 4 and 18 inputs (16 IR sensor values, 1 action value, 1 



Qvalue). Figure 7 shows the evolution of r+/ t and r-/ t during the experiments. During the 
initial 200 iterations, we can see the increase of r+/ t and the corresponding diminution of r-/ t, 
representative of a good learning phase. The remaining 100 iterations are used to verify the 
level of performance (test phase). 

r + !it. r - lit. 

Figure 7. Graphs of I+/ t and r-/ t during the 200 learning + 100 test iterations. 

Figure 8 displays an “objective” measure of the performance of the behavior: The distance to 
the obstacles. The only combination allowing a distance to the obstacles greater than a random 
move selection behavior corresponds to the threshold configuration given by the UPA, 
meaningthat the used RF parameters (e+ and e-) are accurate for this task. There are 200 
learning iterations, after which there is no more learning for the last 100 iterations. We see that 
the learned behaviors avoid obstacles from a greater distance. 

........................... . . . . . . . . . . . . . . . .  
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Figure 8. Distance to the obstacles in respect to the number of obstacles encountered during the 
300 learning iterations. 

(a) is obtained by a random move selection behavior (no learning involved), 
(b) is the learned behavior corresponding to the values given by UPA (0+ = 390, 0- = 1 l50), 

(c) corresponds to (0+ = 195, 0- = 2300), (d) corresponds to (0+ = 780, 0- = 575), 
(e) corresponds to (0+ = 195, 0- = ll50), (f) corresponds to (0+ = 780, 0- = ll50), 
(h) corresponds to (e+ = 390, 9- = 2300) , (i) corresponds to (0+ = 390, 0- = 575). 
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5. Conclusion 

In this paper, we propose to solve in a particular case the so-called exploratiodexploitation 
problem. Based on the assumption that the relation between the parameters and the rewards 
is monotonous (it can be non-linear), the proposed Update Parameter Algorithm (UPA)allows 
one to compute during a pure exploration part an estimation of the W parameter values. We 
test the tuned parameters using a mobile Nomad 200 robot on a task of synthesis of an 
obstacle avoidance behavior. The performance of the learning was evaluated along two indexes: 
Ratio of positive and negative rewards over time (r+ and r-) and distance to the obstacles. Self- 
organizingmaps were used to implement the RL. Several experiments have been made with 
values of the parameters in the RF definition both close to or far from those obtained with the 
UPA. The results showed the validity of the RF parameters obtained, suggesting that further 
experiments are certainly needed to really measure the impact of these first steps in W design. 

The UPA use has been restricted here to a pure (without learning) exploration phase. It would 
certainly be interesting to be able to use the UPA during the learningphase as well. However, 
the non-uniform distribution of the rewards during the learning phase imposes modifications 
of the algorithm previously described. It is our desire to address this issue in the near future. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8 .  

9. 

10 

Leslie Pack Kaelbling, Michael L. Littman, Andrew W. Moore, “Reinforcement Learning: A 
Survey,” Journal of ArtiJcial Intelligence Research, 4( 1996), 23 7-285. 
P. Dayan and T. Sejnowski, “TD(1) Convergences with Probability 1 ,‘I Machine Learning, 
14(3), 1994. 
Sridhar Mahadevan and J. Connell, “Automatic Programming of Behavior-based Robots using 
Reinforcement Learning,” ArtiJcial Intelligence 55, 3 1 1-365, 1992. 
S.B. Thrun, ‘‘Efficient Exploration In Reinforcement Learning,” Technical Report CMU-CS- 
92-102, Carnegie-Mellon University, 1992 
Ping Zhang and StCphane Canu, “Indirect Adaptive Exploration in Entropy-based 
Reinforcement Learning,” Proceedings of ICANN’96, 1996. 
L.-J. Lin and T. M. Mitchell, “Memory Approaches to Reinforcement Learning in Non- 
Markovian Domains,” Technical Report CMcr-CS-92-138, Carnegie Mellon University, 
School of Computer Science, 1992. 
Samira Sehad and Claude Touzet, “Reinforcement Learning and Neural Reinforcement 
Learning,” in Proc. of ESANN, Bruxelles, 1994. 
Juan Miguel Santos and Claude Touzet, “First Results in Reinforcement Function Design,” 
submitted to Machine Learning and Autonomous Robots, Special Issue on Learning in 
Autonomous Robots. 
Claude Touzet and Sandip Sen, “Learning Agents,” Invited paper Autonomous Agents ’97, 
Marina del Rey, Los Angeles, CA, USA, February 1997a. 
Claude Touzet, “Neural Reinforcement Learning for Behaviour Synthesis,” to appear in 
Robotics and Autonomous Systems, Special issue on Learning Robot: the New Wave, N. 
Sharkey Guest Editor, 1997b. 



M98003165 
lllllllllllllllllllllllllllllllllllllllllllllllllllllll 

Report Number (14) r̂ , * f l U L / C  . p -- - qGOl-& 

DOE 


