
ORNL/CP-99522 

INTERFACIAL DEBONDING VERSUS FIBER FRACTURE IN FIBER- 
REINFORCED CERAMIC COMPOSITES 

Chun-Hway Hsueh,a Ming-Yuan He,b and Paul F. Bechera 

aMetals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA. 

bMaterials Department, University of California, Santa Barbara, CA 93106, USA. 

Toughening of fiber-reinforced ceramic composites by fiber pullout relies on debonding at 
the fiberimatrix interface prior to fiber fracture when composites are subjected to tensile 
loading. The criterion of interfacial debonding versus crack penetration has been analyzed 
for two semi-infinite elastic plates bonded at their interface. When a crack reaches the 
interface, the crack either deflects along the interface or penetrates into the next layer 
depending upon the ratio of the energy release rate for debonding versus that for crack 
penetration. This criterion has been used extensively to predict interfacial debonding versus 
fiber fracture for a crack propagating in a fiber-reinforced ceramic composite. Two 
modifications were considered in the present study to address the debondinghacture problem. 
First, we derived the analysis for a strip of fiber, which had a finite width and was sandwiched 
between two semi-infinite plates of matrix. It was found that the criterion of interfacial 
debonding versus fiber fracture depended on the fiber width. Second, a bridging fiber behind 
the crack tip was considered where the crack tip initially circumvented the fiber. Subsequent to 
this, either the interface debonded or  the fiber fractured. In this case, we have considered a 
bridging-fiber geometry to  establish a new criterion. 

1. INTRODUCTION limitations should be noted before the 
criterion is applied. First, the results were 

The tendency of a wedge-loaded crack obtained based on the condition that the 
meeting a bimaterial interface to either branch crack (i.e., the branched section of 
deflect into the interface o r  penetrate the crack emanating from the main crack) 
through the interface into the next layer has was very small compared with all other 
been analyzed earlier i l l .  The analysis was lengths in the problem. Second, the 
conducted in terms of the energy release analysis was for two semi-infinite elastic 
rate ratio of crack deflecting into the materials bonded at the interface. For the 
interface, Gd, to crack penetrating the two-dimensional crack initiation problem, 
interface, Gp. The criterion of deflection the branch crack can be treated as an 
versus penetration was then established infinitely Small crack; therefore, these 
depending on whether Gd/Gp was greater or assumptions are Satisfied. However, in 
less than the fracture energy ratio of the Some cases bg.,  for a wedge-loaded crack 
interface fi  to the adjoining layer, rf. k31, or in the presence of residual stress), 
criterion has been adopted extensively to the length Of the branch crack and the 
predict interfacial debonding of reinforcement become important, and 
reinforcement fracture for fiber- (whisker- these two conditions are not satisfied. Also, 
and self-) reinforced ceramic composites. the crack propagation problem in fiber- 
However, due t o  the assumptions made in reinforced is three- 
the asymptotic analysis [ l l ,  in which dimensional. For an embedded fiber of a 

f integral equation methods were used, two finite radius, there are three options d l en  a 
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matrix crack reaches the interface: 
interface debonding, fiber fracture, or crack 
circumventing the fiber. The two- 
dimensional analysis [I1 focuses on the 
case that the crack does not circumvent the 
fiber. However, when the  crack 
circumvents the fiber, the crack is bridged 
by intact fibers, and the bridging-fiber (or 
fiber-pullout) geometry can be used to  
analyze this problem. 

The purpose of the present study was to 
modify the two-dimensional bimaterial 
model [l] by considering two different 
geometries: (1) a strip of fiber sandwiched 
between two semi-infinite plates of matrix, 
and (2) a bridging-fiber geometry. 

2. THE SANDWICH GEOMETRY 

Schematic drawings of crack penetration 
and deflection for an oblique wedge-loaded 
crack used in the  two-dimensional 
bimaterial model [ l l  are shown in Figs. 1 
(a) and (b), respectively. Two semi-infinite 
elastic materials, material 1 and material 
2, are bonded at the interface. The main 
crack in material 2 is subjected to opening 
wedge loads, P, at a distance, L, from the 
interface along the crack line. The crack 
intersects the interface at an oblique angle, 
Q, and can either penetrate the interface 
into material 1 or deflect a t  the interface. 
The branch crack has a length a. For the 
case of a penetrating crack (Fig. la), the 
angle between the branch crack and the 
interface is 01. To examine effects of a 
finite width of material 1, a layer of 
material 1 with a width, h ,  sandwiched 
between two semi-infinite material 2 was 
considered, and the schematic drawings for 
crack penetration and deflection are shown 
respectively in Figs. 1 (c) and (d). 

For the plane-strain bimaterial problem, 
the solution variables of interest depend on 
two non-dimensional elastic mismatch 
parameters; i.e., the Dundurs' parameters 
[4] which are 

Figure. 1. Schematic drawings showing (a) 
a penetrating crack, and (b) a deflected 
crack for two semi-infinite dissimilar 
materials bonded at the interface, and (c) a 
penetrating crack, and (d) a deflected crack 
for material 1 with a width, h, sandwiched 
between two semi-infinite material 2. 



(2) 

where E, p and v are Young's modulus, 
shear modulus and Poisson's ratio, 
respectively, E=E/tl-$), and the subscripts 
1 and 2 denote materials 1 and 2, 
respectively. Since experience with related 
problems suggests that ais the much more 
important one of the two parameters, the role 
of ais emphasized and p=O is taken in the 
present study. 

2.1. Analysis 
Because of the complication of the 

problem, integral equation methods were 
not feasible, and a finite element method 
was used in the present study to analyze the 
energy release rates for a deflected crack 
and a penetrating crack. 

The solutions for the stress intensity 
factors for the problem of a penetrating 
crack can be written as (11 

where c is a dimensionless complex-valued 
function of the arguments indicated. The 
corresponding energy release rate, Gp, is 

(4) 

It is noted that Gp is a function of m, and the 
maximum value of Gp with respect to  01 for 
fixed alL is denoted by Gp"" 

The stress intensity factors for a 
deflected crack can be expressed by [ll 

Kl+iK2 = d ( a , y , a / L ) p L Y 2  ( 5 )  

where d is a dimensionless complex-valued 
function of the arguments indicated. The 

corresponding energy release rate of the 
deflected crack, Gd, is given by 

1 2 2  Gd=--JdJ E* P / L  

where E* is given by 

(7) 

The ratio of the competing energy release 
rates is hence 

The numerical results presented in this 
paper were computed using a finite element 
code, ABAQUS [51, with eight node 
isoparametric elements. A quarter-point 
crack tip element served to model the 
inverse square rmt stress singularity at  the 
crack tip. The detailed discussion about the 
numerical method can be found elsewhere 
[6], and the J-integral was calculated by the 
domain integral method [71 for ten contours 
to obtain strain energy release rates. The 
model employed in the finite element 
calculation was a circular region r l  R. In 
order to obtain the asymptotic solution, R 
should be much larger than both the Iength of 
the branch crack, a ,  and the distance from 
the wedge load to  the crack tip, L .  The 
convergence of the finite element solutions 
was examined, and it was found that the 
ratio R/L=1000 is sufficient to  obtain the 
asymptotic soiutions. Hence, RILL1000 was 
used in the present finite element analysis. 

2.2. Results 
max The energy release rate ratio, GdlGp , 

as a function of a is plotted in Fig. 2 at 



different widths of the sandwiched layer 
(i.e., material 1) for =30", 45", 60" and 
75" and a/L=O.Ol [SI. The curve for L/h=O 
(i.e., h+-) is also included which was the 
result presented in the earlier work [ll .  The 
results in Fig. 2 show that the curve becomes 
flatter as the width of material 1 decreases 
(i.e., L/h increases). 

a/L=O.Ol 
Ll 

w o  2 o-22 - 
-1 -0.5 0 0.5 1 

Dundurs' parameter, a 

Figure. 2. The energy release rate ratio, 
Gd/GFaX, as a function of the Dundurs' 
parameter, a, for a/L=O.Ol at different 
values of Llh and . 

3. A BRIDGING-FIBER GEOMETRY 

When the crack circumvents the fiber, 
the crack surfaces are bridged by the intact 
fiber, and the applied tensile load is 
supported by the fiber. An idealized 
bridging-fiber (Le., fiber-pullout) geometry 
[9] is shown in Fig. 3, in which one crack 
surface with the bridging fiber is shown. A 
fiber with a radius, a ,  is embedded in a 
coaxial cylindrical shell of matrix with a 
radius, b, and is subjected to a tensile stress 
in its axial direction. 

a 

Figure. 3. A schematic drawing showing 
the bridging-fiber (Le., pullout 1 geometry. 

3.1. Analysis 
Using the energy-based criterion, the 

relation between the tensile loading strew 
on the fiber to debond the interface, ad, and 
the interface debond energy, f i ,  has been 
defmed, such that [lO,lll 

f r 1) Y2 

where 

a2Ef +(b2 -a2)Em 

b2 
E, = (10) 

When ad is greater than the fiber strength, 
as, fiber fracture occurs before interfacial 
debonding. However, construction of the 
diagram of interfacial debonding versus 
fiber fracture needs not only the interface 
debond energy, G, but also the fiber fracture 
energy, rf [l]. To achieve this, the relation 
between os and rf is required which is 
derived as follows. 



i 

The relation between as and rf is a 
function of the shape and the size of the 
defect in the fiber. When the fiber has a 
small (compared to  the fiber radius) defect 
of size c and is subjected to a tensile stress, 
a, the stress intensity factor at the crack tip, 
KI, can be expressed by a general equation, 
such that 

(11) 

where A i s  a defect-geometry factor (= 1.122 
for a circumferential crack where c is the 
crack depth (121, = 0.637 for an internal 
penny-shaped crack where c is the crack 
radius [12], and = 0.34 for a thumb-nail flaw 
extending iiom the surface to the interior 
where c is the crack radius [13]). The 
corresponding strain energy release rate, 
Gf, is 

(12) 

Fiber fracture occurs when areaches as and 
the corresponding Gf reaches rf. 

Combination of equations (11) and (12) 
gives 

(13) 

Substitution of equation (13) into equation 
(9) yields a critical ratio for G/rf, such that 

3.2. Results 
Using Eq. (14), the diagram of 

interfacial debonding versus fiber fracture 
is constructed in Fig. 4 D41, in which the 
Dundurs' parameter, a, is defined by Eq. 
(I), where the subscripts, 1 and 2, denote the 
fiber and the matrix, respectively. 

It is noted that both the relative defect size, 
clu, in the fiber and the defect-geometry 
factor, A, are involved in defining the 
diagram. Interfacial debonding and fiber 
fracture occur when cd2G/urf is below and 
above the curve, respectively, in Fig. 4. 
This critical ratio decreases with the 
increase in a. Also, the curve in Fig. 4 
becomes flatter as bla increases. 
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Fig. 4. The diagram of interfacial 
debonding versus fiber fracture for the 
bridging-fiber geometry. 

Interfacial debonding and fiber fracture 
occur when I'ilI'f is smaller and greater 
than the critical ratio, respectively. 

4. CONCLUDING REMARKS 

Considering a two-dimensional 
geometry, a diagram of interfacial 
debonding versus fiber fracture has been 
constructed previously based on the ratio of 
the interface debond energy to the fiber 
fracture energy, G/rf ill. The fiber and the 



matrix are represented by two semi-infinite 
planes. Hence, when the matrix crack 
reaches the interface, it  will either deflect 
into the interface or penetrate the fiber. One 
modification of this two-dimensional 
approach is to consider a finite width for the 
fiber, which is sandwiched between two 
semi-infinite planes of matrix. It was 
found that the critical ratio of r i l r f  in 
defining the condition of interfacial 
debonding versus fiber fracture is a 
function of not only the Dundurs' parameter 
but also the fiber width. Specifically, the 
curve in the diagram of interfacial 
debonding versus fiber fracture becomes 
flatter when the fiber width decreases (Fig. 
2). 

Considering a bridging fiber behind the 
crack tip, the critical ratio of Pl/Q was also 
derived in the present study. It was found 
that this critical ratio decreases with the 
increase in the Dundurs' parameter, a. 
Also, the curve in the diagram of interfacial 
debonding versus fiber fracture becomes 
flatter when the radius ratio of matrix to 
fiber, blu, increases (Fig. 4). It is noted that 
the two-dimensional bimaterial model 
considers the case where the crack reaches 
the interface, and the crack either deflects 
along the interface or penetrates the fiber. 
The bridging-fiber model considers the case 
where the crack reaches the interface, 
circumvents the fiber leaving an intact 
bridging fiber, and is then followed by 
either interface debonding or fiber fracture. 
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