\

*a

\,

ColF-7906 02—

b4
LAUR- 9g8-4069
Approved for public release; 2
distribution is unlimited.

Title: FEEDBACK LINEARIZATION APPLICATION FOR LLRF CONTROL SYSTEM

Y

e

RECE!VE
MAY g 3 1999
0s7Ty

Author(s): | Sung-il Kwon, a. H. Regan, Y. M. Wang, A. S. Rohlev

SR ek American Control conf., San Diego, CA, June 2-4, 1999

MASTER

BUTION OF THIS DOCUMENT 15 Unimaep

Los Alamos

NATIONALLABORATORY

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the

U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.s.

Govemnment retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow

others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article

as work performed under the auspices of the U.S. Department of Energy. The Los Alamos National Laboratory strongly supports

academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint

of a publication or guarantee its technical correctness. Form 836 (10/96)




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Goversmeat nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, compieteness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herewn to any spe-
cific commercial product, process, or service by trade name, trademark. manufac-
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any ageacy thereof.
The views and opinions of authors expressed herein do not necessanly state or
reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document. |



Title: Feedback linearization application for LLRF control system

Authors: Sung-il Kwon, Amy Regan, Y. M. Wang, and T. Rohlev
RF Technology Group
Accelerator Operations and Technology Division
Los Alamos National Laboratory

E-mail: skwon@Ilanl.gov

Submitted to: 1999 American Control Conference, San Diego, CA.

Remark: The second sections of the paper entitled ” Adaptive feedforward ...” , the paper
entitled ”Phase synchronization ...”, and the paper entitled ”Feedback linearization ...” are
describing the klystron model and are almost same. Also, the third sections of the paper
entitled ” Adaptive feedforward ...” and the paper entitled ”Feedback linearization ...” are
describing the RF cavity model and almost same. The rest sections of each paper describe
the different control techniques and they are derived from the klystron model and the RF
cavity model described in the second section and the third section. When at least two papers

are accepted for full papers, the second section and the third section will be modified.



http://skwonQlanl.gov

Feedback linearization Application for LLRF
Control System

Sung-il Kwon, Amy Regan, Y. M. Wang, and T. Rohlev
RF Technology Group
Accelerator Operations and Technology Division
Los Alamos National Laboratory
P.O.Box 1663
Los Alamos, NM 87544, USA
E-mail: skwon@lanl.gov

Abstract-The Low Energy Demonstration Accelerator(LEDA) being constructed at Los Alamos
National Laboratory will serve as the prototype for the low energy section of Acceleration Produc-
tion of Tritium(APT) accelerator. This paper addresses the problem of the LLRF control system
for LEDA. We propose a control law which is based on exact feedback linearization coupled with
gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that
is due to harmonics of the high voltage power supply and achieves tracking of desired set points.
Also, we propose an estimator of the ripple and its time derivative and the estimates based feedback

linearization controller.

1 Introduction

The low energy demonstration accelerator(LEDA) for the Production of Tritium(APT)
is being built at Los Alamos National Laboratory. The primafy function of the low level
RF(LLRF) control system of LEDA is to control RF fields in the accelerating Cavity and
maintain field stability within £1% peak to peak amplitude error and 1° peak to peak phase
error(8].
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This paper addresses the problem of the LLRF control system used for LEDA. We
propose a control law which is based on exact feedback linearization[3] coupled with gain
scheduling[9],[10]. The purpose of exact feedback linearization coupled with gain scheduling
is to reduce the effect of the deterministic cathode ripple that is due to harmonics of high
voltage power supply[7] and is to achieve tracking of desired set points. Low frequency ripple
does not deteriorate the current LLRF control system based on PID control method. As
frequency of ripple increases, the effect of the ripple on the performance increases too. Simu-
lation shows that 0.3% high voltage power supply ripple yields 1.05° at about 72kHz [5]and
1.0% high voltage power supply ripple yields 3.6° at about 120k Hz[12]. In order to suppress
the high frequency ripple, the proposed controller makes use of not only the ripple but also
the time derivative of the ripple. The usage of time derivative of the ripple improve the
controller performance([10]. First, we assume that the deterministic cathode ripple is mea-
surable and derive the controller. Second, we propose the ripple estimator which estimates
the ripple signal itself and the time derivative of the ripple as well and derive the controller
coupled with the ripple estimator. As is well known, in order to design the exact feedback
linearization controller, the given system to be controlled must be well defined. Previous
works[11], [13] modeled the klystron and RF Cavity used for LEDA. Our current work is
based on the klystron model and RF Cavity model set up in Matlab/Simulink environment.

2 The Klystron Model

We consider a klystron model as shown in Figure 1.

‘It has two inputs, LLRF.I and LLRF.Q and two output HPRF_I and HPRF_Q. As
intermediate outputs, Klystron has the normalized amplitude N_AMPLITUDE and the
normalized phase N_PHASE.

The first stage of a klystron are linear systems called FILTER AND AMPLIFIER.
Let u;=LLRF I and let u,=LLRF_Q. Let z; and z; be outputs of the systems whose transfer

function are given by

X1(s) _ 1
Ui(s) 3.54e7s+1 (1)
)~ T ®

Us(s) 3.54e7s+1

In state space, transfer functions (1) and (2) are represented as

T1 = —a171 + a1u1 (3)

2
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Figure 1: A Klystron Model




.sz = —a1Z3 + a1ug (4)
1e+007

where a; = S
A klystron model has two loop-up tables, called AMPLITUDE SATURATION and

PHASE SATURATION. The input of the two look-up tables is given by

K
A= W(O.om(t) + 1)t . /22 + 23 (5)

where R(t) is the ripple, K, is the klystron gain, and K P, is the maximum klystron power.

R(t), K,, and K P, are specified for a given klystron. For given A, the output of the look-up
table AMPLITUDE SATURATION can be represented by

An = L(4) (6)
and the output of the look-up table PHASE SATURATION can be represented by

Table 1 and table 2 show data of look-up table AMPLITUDE SATURATION and data
of look-up table PHASE SATURATION, respectively.

A An A An A An A An
-0.1000 | 0.0000 |{ 0.0700 | 0.0000 ([ 0.1400 { 0.1900 || 0.5700 | 0.7500
0.7100 | 0.8700 || 0.8600 | 0.9800 }| 0.9000 | 1.0000 | 0.9100 | 1.0000
0.3122 | 0.4143 || 0.3568 | 0.4724 }| 0.4014 | 0.5305 || 0.4461 | 0.5886
0.4907 | 0.6467 || 0.5353 | 0.7048 || 0.5799 | 0.7585 || 0.5910 | 0.7680
1.0000 | 0.9900 || 0.4461 | 0.5886 || 0.6468 | 0.8158 || 0.6691 | 0.8349
0.0446 | 0.0000 || 0.0892 | 0.0521 || 0.6914 | 0.8540 | 0.7360 | 0.8891
0.1338 | 0.1732 || 0.1784 | 0.2400 || 0.7806 | 0.9218 || 0.8252 | 0.9545
0.2230 | 0.2981 || 0.2676 | 0.3562 || 0.8921 | 0.9961 || 0.9367 | 0.9970
0.3122 | 0.4143 || 0.3568 | 0.4724 || 0.9813 | 0.9921

Table 1. AMPLITUDE SATURATION Data




A On A On A On A On
-0.1000 0.0000 || 0.0700 | 0.0000 || 0.6400 | -0.0150 || 0.7100 | -0.0350
0.8600 -0.1370 || 0.9000 | -0.2440 || 1.0000 | -0.4770 || 0.0446 | 0.0000
0.4987 -0.0113 || 0.5445 | -0.0125 || 0.5576 | -0.0128 || 0.6691 | -0.0233
0.0892 | -5.0552e-4 || 0.1338 | -0.0017 || 0.5712 | -0.0132 || 0.7140 | -0.0377
0.1784 -0.0029 || 0.2230 | -0.0040 || 0.8921 | -0.2229 || 0.4549 | -0.0101
0.2676 -0.0052 || 0.3122 | -0.0064 || 0.4483 | -0.0100 || 0.4014 | -0.0087
0.3568 -0.0075 || 0.7885 | -0.0884 || 0.9593 | -0.3821

Table 2. PHASE SATURATION Data

The normalized amplitude N_Amplitude, defined by y* and the normalized phase N_Phase,
defined by y% of the klystron are expressed by

yi = Av=L(4) (8)
ko -1%2 L
ys = On+tan (x1)+3 130 R(t)

— -1c%2 LT

= I(A)+tan ($1)+3 180 R(¢). (9)

In addition, for given y; and y2, HPRF_I and HPRF_Q are given by

HPRF I = 101/ K Py, - y¥ - cos(y) ~ (10)
HPRF.Q = 10y/K Py - 4 - sin(yk). (11)

Since the look-up tables have the limited number of data, we need to approximate the
look-up tables by linear or nonlinear curve fitting equations. Considering the characteristic
curve of a klystron, we choose nonlinear equations. We choose curve fitting equations of

AMPLITUDE SATURATION and PHASE SATURATION having the forms

N .

AN == Zcie_fiA (12)
=1
N

0N = Z d,-e—f"A (13)
=1




where f;, ¢ = 1,2,-.-, N and parameters ¢;, ¢ = 1,2,---,N, d;, 1 = 1,2,---, N are to be
determined.

Higher order of a curve fitting equation may yield more accurate curve fitting equation.
For simplicity, we choose N = 7. Also, in order to reduce the number of coefficients to be
determined, f;, 4= 1,2,---, N are given in Table 3.

fi f2 fs Ja fs fe fz
0501075 11.0011.25(1.50(1.7512.00

Table 3. Exponents of curve fitting equations

By using data given in Table 1 and Table 2, we obtain coefficients ¢;, 1 = 1,2,---, N
and d;, 1 = 1,2,---, N, of the curve fitting equations (12) and (13). Coefficients ¢; and d;
obtained are given in Table 4. Figure 2 shows plots of data points as given in Table 4, Table
5 and plots of curve fitting equations (12) and (13) whose coefficients, f;, 1 = 1,2,---, N,
¢G,t=12,---,N, d;; 1 = 1,2,---, N, are given in Table 3 and Table 4 with appropriate

domain of A.

c; | 0.05680429876058e+006 | d; | -0.14120739315590e+-005
¢y | -0.39264357353961e+-006 || do | 0.83084262097993e+005
cz | 1.12805594234952e+006 | ds | -2.01778226478032e+-005
cq | -1.72418545240933e+006 || dy | 2.58441412755651e+-005
cs | 1.47878241712872e+006 || ds | -1.83680595711727e+005
cs | -0.67483667002473e+006 || dg | 0.68453128529433e+4-005
cr | 0.12802296547207e+006 || d7 | -0.10399245992504e+-005

Table 4. Coefficients of curve fitting equations

Plugging (5) to (12) and (13), curve fitting equations (12) and (13) are reduced to

N
Ay = Zcie—fiw(t)\/z§+z§ (14)
i=1
N 2
Oy =3 die FwOVEIHes (15)
i=1

6




where

_ K, 1.25
w(t) = 10\/FP;(0'01R“) + 1)+, (16)
The normalized amplitude y¥ and the normalized phase 4% of the klystron are
N
W = Ay= Zcie-fnt)(t)\/zf_ﬂg (17)
¥ = 9N+i(m—1( )+3 '1§6 R(t)
= Zdie_f‘"’(t) Vai+sd | tan! ( ) +3- 180 - R(%). (18)
In addition, for given y* and y%, HPRF_I and HPRF_Q are given by
HPRF_I=10/KP,, yl cos(y¥) (19)
HPRF_Q =10/ KP,, -y - sin(y%). (20)

2.1 The Klystron in z-coordinate

Consider the normalized amplitude y¥ and the normalized phase y¥ as given in (17) and

(18).
Let
2=+ 23 (21)
29 = tan"l(f—z-). (22)
1 .

We consider a transformation from z-coordinate to z-coordinate. In z-coordinate, the state
equations (3) and (4) are reduced to

z21 = —a121 + aycos(zp)u; + a18in(22)u2 (23)
29 — —ay mul =+ almu} (24)
21 21

Also, the curve fitting equations (12) and (13) are reduced to

N

AN = Z Cie—fiw(t)zl (25)
i=1
N

Oy =Y die™Fw®m, (26)
i=1




(a) Amplitude saturation curve fitting
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{b) Phase saturation curve fitting
o2 ! ! ! ! ; !

Figure 2: Curve fittings



The normalized amplitude ¢¥ and the normalized phase ¢ are represented by

N
Y= e fedn (27)
=1
& n
yh = die™ O 4 25+ 3. 180 R(t). (28)

i=1

Note that the exponents of the first term of (27) are the same as the exponents of the first
term of (28). Also, note that the phase y¥ is linear with respect to z;.

3 The RF Cavity

Figure 3 shows the RF cavity.

RF Cavity has has four inputs, HPRF_I, HPRF_Q, BEAM_I, and BEAM_Q and two
outputs, CAV_FLD_, CAV_FLD_Q.
Let u§=HPRF I, u=HPRF_Q, u§=BEAM.], u{=BEAM_Q and let y§=CAV_FLD I, y5=CAV_FLD_

Then RF Cavity can be expressed in the state space form.

z = Az + Bu° (29)
y°=Cxz (30)
where
a—&c; b—gcz 0 0 0 0 25C3 %64 ]
1 0 0 0 0 0 0 0
1 1 1 1
—%5C1 — 52 a b 0 0 5063 ®5C4
0 0 1 0 0 0 0 0
A= 1 1 1 1 ’
0 0 —%63 ——504 a— gé'cl b bt 5—002 0 0
0 0 0 0 1 0 0 0
0 0 —'5—10'03 —51664 —%Cl 5002 a b
0 0 0 0 0 0 1 0 |




-526 0 —2eta 0 |
0 0 0 0
% 0 —2e¢ta 0
B 0 S 0 0 ,
0 5 0 —2eta
0 O 0 0
0 % 0 —2eta
0 O 0 0 |
C“_CI c2c 0 0 0 0 —c3 —e¢
i 0 0 ¢35 ¢4 ¢4 o O 0
2
a=—-—
-
1 2
b:—(;_5+KDW)
KR
C} —= —
-
. _KR(I KDW)
2T\ 2KQo
. KR
3——2T'KQO
KR |1
Cq = 2TKQO(;+2KDW KQO)

Parameters of RF Cavity are given in [11].
Also, FLD_I and FLD_Q of the Cavity Field Sample System are given by

FLD_I = FA-cos(GD) -y — FA - sin(GD) - 5 (31)
FLD.Q=FA-sin(GD)-yi + FA- cos(GD) - y5 (32)
and FLD_AMP and FLD_PHS of the Cavity Field Sample System are given by

FLD_AMP = /FLD_I? + FLD_Q?
FLD_Q)
FLD_I

FLD_PHS = tan™(
where '

FA = 0.00037809

™
GD = = - (~0.039455).

The RF Cavity as given in (29), (30) is Hurwitz stable and is inverse stable as well.

10
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4 The Feedback Linearization Controller

Consider the Klystron equation in z-coordinate.

21 = —ayz1 + aycos(z2)uy + arsin(zz)usg - (33)
o= —ay sm(zz)u1 . cos(n)uz. (34)
21 21
and
N
yic _ E Cie—fi'w(t)zl (35)
i=1
N T
vk =3 die O 4 2+ 3. — - R(t) (36)
= 180
where
w(t) = M(0.01R(t) + 1)1®
M = _Kg_
10V/KP,
Define
Z; = (0.0LR(¢) + 1)1%z, (37)
%= 2+ 3- ——- R(0). - &g

180

The Klystron is expressed in Z-coordinate by

Z = —@ 71 + b (Z, R(E), R())uy + b,12(Z, R(2), R())uz + E.(R(E), R(£))  (39)

%2 = U221 (7) R(t)a R(t))ul + bz22(21 R(t)a R(t))u2 + EzZ(R(t)7 R(t)) (40)
N
o = Z cie~FiMA (41)
1.;1
ys =Y die M 1z, (42)
where
@, = a; — 0.0125(0.01R(t) + 1) R(¢) (43)

b1 (Z, R(2), R(£)) = a1(0.01R(¢) + 1)1 Pcos(z, — 3 - 1% - R(t)),

12




b.12(Z, R(t), R(t)) = a1(0.01R(¢) + 1)*®sin(z; — 3- — - R(t)),

. 180
b2 (7, R(t), R(t)) = —a S’l,’n,(z2 -3 180 R(t))

bzzz(’z',R(t),R(t)) N . R0
D L

Note that B,(Z, R(t), R(t)) is invertible for any nonzero Z;. In Z-coordinate, state equations
are dependent upon the ripple R(t) but the output equations are independent upon the
ripple R(t).

Define
(R, () = [ o } , (44)
z=[f1], u=[” (45)
BL(R@), B(®) = [ <o } (46)
and
_ oo | bai(Z R(), R() ba12(Z, R(t), R(t))
Bz, Rit), Bit)) = [ ben(2, R(2), B(©)) bl RUE), B() “n
Then, (39) and (40) are represented by
%= AL(R(), B®)7 + Bo(z, R(Y), BO)us + B.(R(), R(2)). (48)
Assume that z; # 0. Define
u, = B, (%, R(t), R(t)) (@ - E.). (49)
Then, (48) is reduced to
z=A,(R(t), R(t))Z + IxxoT. (50)

.




Let

= Kz+R,
ki +0.0125(0.01LR(¢) + 1)"1R(t) 0
0 ks

£l

zZ+

" } (51)

T2

where R, is the control input that drives the steady state value Z, of Z to the desired value
of Z[2]. Then, (50) is reduced to

7 = ch2 + IZX2R2 (52)
where
—_ -—ay + kl 0
Azc = . 53
; kz} (53

4, is a constant matrix and is independent of R(t) and R(t). By proper choice of k; and
k2, we can locate the eigenvalues of the matrix A, that what we want.

R, is the solution of the following equation[2].
0= chfs + I3y R,. (54)

The solution of (54) can be explained by the steady state value of the transfer function from
R, to Z. The transfer function from R, to Z is

Z(s) _ s — -1
Rz(S) —( J! ch) I2x2-

For constant R,, steady state value Z, of Z is given by the equation

Zs = (OI - ch)—112X2Rz
Equivalently,
0=A4,2,+R,.

The solution R, of (54) is represented by the steady state value Z, of Z and it is obtained
as follow.

First, we consider the equations for FLD_I and FLD_Q as given in (31) and (32).
(55)

FA-cos(GD) —FA- sin(GD) ys
FA.sin(GD) FA-cos(GD) ys |

FLD_I
FLD Q

14




Let FLD_I; and FLD_Q, be the desired values of FLD_I and FLD_Q. Then, the desired
values y§,, y54 of ¥f, y5 are given by the algebraic equation

v, | | FA-cos(GD) —FA-sin@D) ™ [ FLD, -
s, | | FA-sin(GD) FA-cos(GD) FLDQ, |’
Second, we consider the Cavity equation.
z = Az + Bu’ (57)
y°=Cz : (58)

Let Hoav(s) be the transfer function from «§ = HPRF.I and u§ = HPRF.Q to 1§ =
CAV_FLD and y§ = CAV_FLD_Q, assuming that u§ = BEAM. and u§ = BEAM_Q

are given and constant. Then, we obtain the relation represented by the transfer function

Heoav(s)
vi(s) ui(s)
= Hoav(s) . (59)
{ 35 (s) u5(s)
Note that Heav(s) has no zeros at the origin in the complex plane. Let 75, 75 be the

steady state value of ¥, y$, respectively and let @S, @§ be the steady state value of u§, u$,

respectively. Then,

Ya

} | (60)

S8

He 4v(0) can be obtained by applying any steady state value test[1],[6]. One method is step
input test[6]. Select u$! as nonzero constant, u§' as zero, and obtain 3§ and yS'. Next, select

u$? as zero, uS? as nonzero constant and obtain ¢§? and y§2. Then, Hoay (0) satisfies

cl 'U,Cl uc?
{ ¥ U ] = Heav(0) [ i1 22 } ) (61)
Uy Ug

¥ 95
Since Cavity has no zeros at the origin in the complex plane,
w3 - U3
_i = HCiV(O) _,1: o (62)
Ua Y2

Note that inputs u$ and u§ of Cavity are given by equations of the normalized amplitude ¥

and the normalized phase y%.

u$ | _ [ 10VEPm -y} - cos(yh) (63)
10VEKPm -y - sin(yf) |

u3

A B 4




Since Cavity has no zeros at the origin in the complex plane,

10K Pm '91 cos(y¥) R Yy
[ 10VEPm yl sm(y2 jl = Hgay(s) [ ye ] c (64)

Let 7%, 7% be the steady state values of y¥, y¥, respectively and let 7, 7§ be the steady
state values of ¢, y§, respectively. Then, the steady state relation is given by

—k
71 - cos(Ps)
65
|7 -
Setting
75| _ | Yia
T3 Yod
and plugging (56) into (65), we obtain
y'f cos(7s) 1 H (0) FA-:cos(GD) —FA-sin(GD) - FLD_I;
7r - sin(7E) 10\/ cav FA-sin(GD) FA-cos(GD) FLD Q.
Ga
Define the right-hand side of the above equation to be
-1
P1 1 (0) FA-cos{GD) —FA-sin(GD) FLD_I; (67)
$o | 10VKPm Hoav FA-sin(GD) FA-cos(GD) FLDQu |’

Then,

7=+ (68)

7= tan”l(ﬁ) (69)

where 7* and g% are the normalized amplitude and the normalized phase of Klystron which
yield the desired value FLD_I; of FLD_I and the desired value FLD_Q, of FL.D_Q.

The steady state values Z,, Z2s, Which are the desired values of Z1, Z3, respectively are
obtained by solving the algebraic equations generated from (41),(42), (68) and (69).

N
Z C_ie—fiMils — —y-llf (70)
=1
N
Z die—fiMzn + Ty = y—lzc (71)
=1

16




We have to solve Z1, and Zp,. Instead of obtaining the analytic solution of the system (70)
and (71), we obtain the numerical solution by resorting to an optimization method. Our

approach is the minimization in the least square sense given as follow:

N N
minimize (Y ;e FiMPe — gy 4 (3 die M 4 7, — gE)2, (72)
=1 =1

The controller design procedure is as follows:
Controller design procedure
1. Obtain Hgav(0) by applying a step input test.
2. Given desired FLD_I; and FLD_Q,, obtain 7% and 7.
3. For the solutions ¥ and 7%, solve the optimization problem and obtain Z;, and Zss.
4. Obtain k; and k; so that the matrix A, is stable.
5. Find the solution R, of 0 = A,.Z+ R,.

6. Obtain the control input % as given in (51) and the control input u, as given in (49).

5 Numerical Simulation

We consider the Klystron RF Cavity system when there is 20,000H z sinusoidal ripple
and 720H z, 120H z ripples as well. The maximum power KP,, and the klystron gain K, are
given in Table 6.

K, 8449.4

KPF,, | 3.600e+006

Table 6. Klystron gain and klystron maximum power
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Figure 4: BEAM_I and BEAM_Q used for steady state gain simulation.
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1. For steady state gain He 4y (0), we use the constant input method. BEAM_1 and BEAM_Q
used for the steady state gain simulation is in Figure 4.

First, we set u§ = 13226.0 and @5 = 0.0. We simulated the RF Cavity and obtained
the steady state values 7§ and 75. Second, we set ©§ = 0.0 and @5 = 13226.0. We
simulated the RF Cavity and obtained the steady state values 7§ and 7. Table 7

shows the results.

Simulation No. s us 75 75
1 13226.0 0.0 1.32243e+004 | -1.75200e4-000
2 0.0 13226.0 || -1.91973e4-002 | 1.74330e+4004

Table 7. Steady state gain simulation

From the simulation results as given in Table 7, we compute the steady state gain
Hcav(0).

0.99987 —0.01452

Hea(0) = .
cav(0) —0.00013  1.31809

2. Let the desired FLD_I; and FLD_Q, be FLD_I; = 5.0 and FLD.Q, = 0.0. From (67),
(68), and (69), we obtain 7* and 7% as given in Table 8.

7* | 6.97080e-001
7t | 6.22858¢-004

Table 8. Steady state normalized Amplitude 7* and the normalized phase 75

3. In order to solve the optimization problem (72), we made use of the unconstrained op-
timization algorithm in Matlab Toolbox. With initial values z3, = 1.0 and Z,, = 1.0,
after 54 iterations, we obtain the optimal solution Z;, and Z3; as given in Table 9.



Z1s | 1.20825
Z2s | 0.01088

Table 9. The solution Z;, and Z, of the optimization problem (72)

4. Since a; = 2.82486e+-006 is sufficiently large, we set k; = —2.0a;. And we set ky = —10a;.
Hence, the eigenvalues of 4, are \; = —3a; and Xy = —10a, for any R(t) and R(t).

5. The solution R, of (54) is given by

z

3.41312¢ + 006
3.07291e + 005

Based on numerical values obtained, we implement the controller (50) to drive the

Klystron-RF Cavity system.
Figure 5 through Figure 7 show the simulation results of the Klystron-RF Cavity system

in Matlab/Simulink environment.
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6 RIPPLE Estimation

The controller proposed in the previous section is based on the assumption that the in-

formation on ripple R(t) and its time derivative %ﬁt) are fully known. When a designer

has poor information on R(t) and d—R;—EQ, the feedback linearization cannot give desired per-
formance. Table 10 and Table 11 show amplitude and phase errors when there are phase
difference and amplitude difference between the ripple used for controller and the real ripple
entered a klystron. Table 10 is the results when there is a phase difference between the ripple
of the feedback linearization controller and the ripple of the klystron. The controller ripple
is-R(t) = sin(2x7 ft) and the ripple of the klystron is R(t) = sin(2rxft + ¢), f = 120K Hz.
Here, ¢ is the phase of the ripple of klystron.

Ripple phase peak-to-peak peak-to-peak
¢(rad) field Phase error(Degrees) | field Amplitude error(Volts)
0.0 0.00610 0.00006(0.00115 %)
z 1.12830 ' 0.02368(0.47 %)
2 2.21690 0.04000(0.80 %)
& 4.10113 0.08600(1.72 %)

Table 10. Amplitude error and Phase error when there is difference in phase of ripple R()

Table 11 is the results when there is amplitude difference between the ripple of the feed-

. back linearization controller and the ripple of the klystron. The controller ripple is R(t) =
Apgsin(27nft), Ar = 1.0, f = 120K Hz and the ripple of the klystron is R(t) = Agsin(2w ft),
f=120K Hz. Here, A; is the amplitude of the ripple of klystron.

Klystron Ripple peak-to-peak peak-to-peak
amplitude A, | field Phase error(Degrees) field Amplitude error(Volts)
0.6 1.16286 0.02432(0.49 %)

0.8 0.58323 0.01219(0.24 %)
1.2 0.57660 0.01209(0.24 %)
1.4 1.15631 0.02423(0.49 %)

Table 11. Amplitude error and Phase error when there is difference in amplitude of ripple
R(1)
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The purpose of the low level RF control(LLRF) system is to maintain the field stability
within +1.0% amplitude and 1.0° phase. In the case that there is phase difference, only %
phase difference yields 1.12° field phase error. In the case that there is amplitude difference,
40% gap of amplitude yields 1.156° field phase error.

For the remedy to the poor information on the ripple and its time derivative, we can
make use of Lyapunov redesign after we design the exact feedback linearization controller
based on the nominal values of the ripple and its time derivative[4]. This additional controller
compensates the uncertainties or unmodelled dynamics. Another possible remedy is to design
the estimator which yields the estimated ripple and its time derivative and based on the
estimated information, we design the controller.

In this section, we address the ripple estimator which estimates the ripple R(¢) and its
time derivative ‘ﬂztﬁ, and the feedback linearization controller based on the estimator.

We first consider equations as given in (21) and (22).

21 =z + 28 (73)

T2

2y = tan (= (74)
I
where z; and z; satisfy
Sbl = —a1%; + a1 (75)
i?g = —a1T2 + a1Us (76)

and u;=LLRF._, u,=LLRF_Q. Given LLRF.I and LLRF_Q, we can obtain z; and z; by
solving differential equations (75), (76) and algebraic equations (73), (74).
Second, we consider equations given by (19) and (20)
HPRF I = 10y/KP,, - y¥ - cos(y¥) (77)
HPRF Q= 10y KP,, - y¥ - sin(y%). (78)

From (77) and (78), for given HPRF_I and HPRF_Q, we obtain the normalized amplitude
y¥ and the normalized phase ¢ of the klystron by solving algebraic equations.

1
k J2 2 79
W= e \/m\/HPRF >+ HPRF.Q (79)
HPRF Q
k= tanl (e Y). 0
ys = tan™( = ) (80)

Third, we consider the klystron model as given in Figure 1. In Figure 1, the normalized
amplitude of the klystron is the output of the look-up table AMPLITUDE SATURA-




TION and the input of the look-up table AMPLITUDE SATURATION is given by

K
A= 10—K\/_g?-(o.om(t) +1)IB. (81)
in z-coordinate, or
K, _

in Z-coordinate. Also, there exists a region of (A, y¥) pairs where there is an inverse look-up
table of the look-up table AMPLITUDE SATURATION. This region can be extracted
from data given in Table 1 and Table 2. As in the case of AMPLITUDE SATURATION,
we obtain the curve fitting equation for the inverse look-up table for AMPLITUDE SAT-
URATION. Since in the controller design, we make use of the output equations (35) and
(36) or (41) and (42) which are based on the curve fitting equation, we use the output equa-
tion as given in (41) in order to obtain the curve fitting equation for the inverse look-up
table for AMPLITUDE SATURATION within the region of invertibility. Based on the
generated data pairs from (41) where the selected data of y¥ and Z; guarantee invertibility,
we obtain the curve fitting equation as follows.

N
7= Zcfe"fizy’f (83)
=1

where N = 7, coefficients f7,7i=1,2,---, N and the coefficients ¢, ¢ = 1,2, .-, N obtained
are given in the Table 12.

F2 1050 | & | 246379.701273592
72 10.75 || & | -1633291.85956396
f2 100 & | 4505197.57531207
f7 1125 || & | -6618176.95439792
F2 1150 || cz | 5460679.73050349
F2 1175 || & | -2399431.11098975
72 1 2.00 || & | 438643.015066461

Table 12. Coefficients of Curve fitting equation for Inverse AMPLITUDE
SATURATION
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The estimate of the ripple R(¢) and the estimate of the time derivative R(t)

of the ripple
R(t) are obtained by considering the klystron system both in z-coordinate and Z-coordinate.

The relationship between z-coordinate and Z-coordinate is given by

z1 = (0. 01R(t) + 1)1z (84)

22—22+3 180 R(t) (85)

Whenever z; and z are obtained from (75) and (76), then we can obtain z; by using (73).
Similarly, whenever ¢* is obtained from (79), we can obtain Z; by using (83). For given z;
and %;, we can obtain the estimate R(t) of the ripple R(t) by solving algebraic equation (84).

2 Z1(t) vos _
R(t) = 100(( (t)) 1.0). (86)
Also, the estimate R(t) of time derivative R(t) of the ripple R(t) is obtained by differentiation
of R(¢).
The feedback linearization controller based on the estimate R(t) and R(t) is given by
-5 @ R(2), R9) (@ — E.(R(), B(®))) (87)
a = K(R(t), R(t))z + R,, (88)
where
B (2, 21, B(e)) = { bon(2, R(8), RO) buna(z, BD), B() } (59)
ban(Z, R(1), R(t)) bum(Z, R(t), A(2))
. 5 0
E.(R(t),R(t)) = 90
(E(2), B(?)) { .= h (t)} | (90)
R, bay) = | B 0.0125(0.0;R(t) )R : } | 01)
R, = [ i } . (92)

Figure 8 shows the feedback linearization system in Matlab/Simulink environment. KLY-
STRON is the klystron model, RIPPLE is the equivalent system which generates high voltage
power supply ripple. RF_CAVITY is the RF Cavity with Beam. Inputs of the ripple estima-
tor are HPRF_I, HPRF_Q, LLRF I and LLRF_Q which are measurable. The ripple estimator
estimates both the ripple and its time derivative. The time derivative information is used
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in the feedback linearization controller and the usage of the time derivative information
improves the closed loop performance[10].
Figures 9-12 show the simulation when there is 20,000H z sinusoidal ripple and 720H z,

120H z ripples as well.
Figures 13-16 show the simulation when the ripple is

R(t) = 1.0sin(2x fit) + 1.0sin(2x fot + :%r)

where f; = 120kHz, fo = 80kH=z.
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