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Feedback linearization Application for LLRF 
Control System 

Sung-il Kwon, Amy Regan, Y .  M. Wang, and T. Rohlev 
R F  Technology Group 

Accelerator Operat ions and Technology Division 
Los Alamos National Laboratory 

P.O.Box 1663 
Los Alamos, NM 87544, USA 

Email: skwon@lanl.gov 

Abstract-The Low Energy Demonstration Accelerator(LEDA) being constructed at Los Alamos 
National Laboratory will serve as the prototype for the low energy section of Acceleration Produc- 
tion of Tritium(APT) accelerator. This paper addresses the problem of the LLFU? control system 
for LEDA. We propose a control law which is based on exact feedback linearization coupled with 
gain scheduling which reduces the effect of the deterministic klystron cathode voltage ripple that 
is due to harmonics of the high voltage power supply and achieves tracking of desired set points. 
Also, we propose an estimator of the ripple and its time derivative and the estimates based feedback 
linearization controller. 

1 Introduction 

The low energy demonstration accelerator(LEDA) for the Production of Tritium(APT) 
is being built at Los Alamos National Laboratory. The primary function of the low level 
RF(LLRF) control system of LEDA is to control RF fields in the accelerating Cavity and 
maintain field stability within fl% peak to peak amplitude error and 1" peak to peak phase 
error [8]. 
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This paper addresses the problem of the LLRF control system used for LEDA. We 
propose a control law which is based on exact feedback linearization[3] coupled with gain 
scheduling[9],[10]. The purpose of exact feedback linearization coupled with gain scheduling 
is to reduce the effect of the deterministic cathode ripple that is due to harmonics of high 
voltage power supply[7] and is to achieve tracking of desired set points. Low frequency ripple 
does not deteriorate the current LLRF control system based on PID control method. As 
frequency of ripple increases, the effect of the ripple on the performance increases too. Simu- 
lation shows that 0.3% high voltage power supply ripple yields 1.05" at about 72kH.z [5]and 
1.0% high voltage power supply ripple yields 3.6" at about 120kHz[12]. In order to suppress 
the high frequency ripple, the proposed controller makes use of not only the ripple but also 
the time derivative of the ripple. The usage of time derivative of the ripple improve the 
controller performance[lO]. First, we assume that the deterministic cathode ripple is mea- 
surable and derive the controller. Second, we propose the ripple estimator which estimates 
the ripple signal itself and the time derivative of the ripple as well and derive the controller 
coupled with the ripple estimator. As is well known, in order to design the exact feedback 
linearization controller, the given system to be controlled must be well defined. Previous 
works[ll], [13] modeled the klystron and RF Cavity used for LEDA. Our current work is 
based on the klystron model and RF Cavity model set up in Matlab/Simuliik environment. 

2 The Klystron Model 

We consider a klystron model as shown in Figure 1. 
It has two inputs, LLRFJ and LLRF-Q and two output HPRFJ and HPRF-Q. As 

intermediate outputs, Klystron has the normalized amplitude NAMPLITUDE and the 
normalized phase NPHASE. 

The first stage of a klystron are linear systems called FILTER AND AMPLIFIER. 
Let ul=LLRFJ and let uz=LLRF-Q. Let x1 and x2 be outputs of the systems whose transfer , 

function are given by 

In state space, transfer functions (1) and (2) are represented as 
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Figure 1: A Klystron Model 



le+007 where a1 = - 3.54 
A klystron model has two loop-up tables, called AMPLITUDE SATURATION and 

PHASE SATURATION. The input of the two look-up tables is given by 

where R(t) is the ripple, Kg is the klystron gain, and KP, is the maximum klystron power. 
R(t), Kg, and KP, are specified for a given klystron. For given A, the output of the look-up 
table AMPLITUDE SATURATION can be represented by 

and the output of the look-up table PHASE SATURATION can be represented by 

Table 1 and table 2 show data of look-up table AMPLITUDE SATURATION and data 
of look-up table PHASE SATURATION, respectively. 

0.4907 
11 1.0000 
11 0.0446 

0.3122 

A N  

0.0000 
0.8700 
0.4143 
0.6467 
0.9900 
0.0000 
0.1732 
0.2981 
0.4143 

0.0700 0.0000 0.1400 0.1900 
0.8600 0.9800 0.9000 1.0000 

1 0.3568 0.4724 0.4014 0.5305 
0.5353 0.7048 0.5799 0.7585 
0.4461 I 0.5886 11 0.6468 I 0.8158 0.6691 I 0.8349 

0.7360 I 0.8891 

Table 1. AMPLITUDE SATURATION Data 
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A (  A (  A (  

J 

0.1784 -0.0029 0.2230 -0.0040 0.8921 -0.2229 0.4549 -0.0101 
0.2676 -0.0052 0.3122 -0.0064 0.4483 -0.0100 0.4014 -0.0087 
0.3568 -0.0075 0.7885 -0.0884 0.9593 -0.3821 

Table 2. PHASE SATURATION Data 

The normalized amplitude NAmplitude, defined by yt and the normalized phase NPhase, 
defined by yg of the klystron are expressed by 

z 2  7r 

X1 
yz” = e, + t a d ( - )  + 3.  - 180 . R(L) 

7r 
= 12(A) + + 3 - - - R(t). 

2 1  180 

In addition, for given y1 and y2, HPRF-I and HPRF-Q are given by 

HPRFJ = 10j/KPm * yf COS(&) 

(9) 

Since the look-up tables have the limited number of data, we need to approximate the 
look-up tables by linear or nonlinear curve fitting equations. Considering the characteristic 
curve of a klystron, we choose nonlinear equations. We choose curve fitting equations of 
AMPLITUDE SATURATION and PHASE SATURATION having the forms 



where fi, i = 1,2,  
determined. 

, N and parameters G, i = 1,2 , . . .  , N ,  di, i = 1,2 , . .  e ,  N are to be 

Higher order of a curve fitting equation may yield more accurate curve fitting equation. 
For simplicity, we choose N = 7. Also, in order to reduce the number of coefficients to be 
determined, fi, i = 1,2,  . , N are given in Table 3. 

c2 

c3 

c4 

c5 

q, 

~ 

Table 3. Exponents of curve fitting equations 

-0.3926435735396let-006 d2 0.83084262097993e+005 
l.l2805594234952e+O06 d3 -2.01778226478032e+005 

-1.72418545240933e+006 d4 2.5844141275565le+005 
1.47878241712872e+006 ds -1.83680595711727e+005 

-0.67483667002473e+006 d6 0.68453128529433e+005 

By using data given in Table 1 and Table 2, we obtain coefficients c;, i = 1,2,  - - - , N 
and diy i = 1,2, - - a ,  N ,  of the curve fitting equations (12) and (13). Coefficients c; and di 
obtained are given in Table 4. Figure 2 shows plots of data points as given in Table 4, Table 
5 and plots of curve fitting equations (12) and (13) whose coefficients, fi, i = 1,2, - - - , N ,  
c;, i = 1,2,  - - , N ,  di, i = 1,2, .  - - , N ,  are given in Table 3 and Table 4 with appropriate 
domain of A. 

11 c7 I 0.12802296547207e+006 11 d7 I -0.10399245992504e+005 11 
Table 4. Coefficients of curve fitting equations 

Plugging (5) to (12) and (13), curve fitting equations (12) and (13) are reduced to 
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where 

The normalized amplitude yt and the normalized phase yg of the klystron are 

i=l 

In addition, for given yf and yg, HPRF-I and HPRF-Q are given by 

H P R F J  = 1 O d K  y," ws(y,") 

2.1 The Klystron in x-coordinate 

Consider the normalized amplitude y: and the normalized phase yt as given in (17) and 

(18). 

21 = 4- 
x2 
X1 

22 = tan-'( -). 

We consider a transformation from x-coordinate to z-coordinate. In z-coordinate, the state 
equations (3) and (4) are reduced to 

Also, the curve fitting equations (12) and (13) are reduced to 
N 
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Figure 2: Curve fittings 
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The normalized amplitude y;" and the normalized phase y; are represented by 

Note that the exponents of the first term of (27) are the same as the exponents of the first 
term of (28). Also, note that the phase y; is linear with respect to x2. 

3 The RF Cavity 

Figure 3 shows the RF cavity. 
RF Cavity has has four inputs, HPRFI, HPRF-Q, BEAM-I, and BEAM-Q and two 

outputs, CAVJ'LDI, CAV-FLD-Q. 
Let u;=HPRFI, u;=HPRF-Q, u$=BEAMI, uZ=BEAM-Q and let y;=CAV-FLDI, yg=CAV_FLD- 
Then RF Cavity can be expressed in the state space form. 

where 

A =  

X = AX -+ Bu" 
y" = cx 

1 1 0 0 0 i 353  5 jc4  

a b 0 0 j3c3  35c4 

a - G c l  1 b - z c 2  1 0 

1 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  
0 0 - 5 0 ~ 3  - g c 4  a - 5 ~ 1  b - z c 2  0 0 
0 0 0 0 1 0 0 0  
0 0 - g c 3  -=c4 - G C ~  - g c 2  a b 
0 0 0 0 0 0 1 0  

1 1 1 1 
- z C 1  - g c 2  

1 1 1 1 

1 1 1 1 

, 



B =  

r 

- o -2eta o 
0 0  0 0 
- o -2eta o 
0 0  0 0 
o & o -zeta 
0 0  0 0 
o & o -2eta 
0 0  0 0 

50 

50 

> 

1 

1 c1 c2 0 0 0 0 -c3 -c4 
0 0 c3 c4 c1 c2 0 0 

c= I 
2 a =  -- 
I- 
1 

K R  
c1 = - 

b = -(7 + K D W ~ )  

I- 
K R  1 K D W  

I- 2KQo c2 = -(; - -) 

K R  
c3 = 

27 KQo 

c4 = K R  (1 + 2KDW - KQo). 2rKQo I- 

Parameters of RF Cavity are given in [ll]. 
Also, FLDJ and FLD-Q of the Cavity Field Sample System are given by 

FLD-I = F A  * COS(GD) * y; - F A  - sin(GD) * $ 
FLD-Q = F A  - sin(GD) - yy + F A  cos(GD) - yg 

and FLDAMP and FLDPHS of the Cavity Field Sample System are given by 

F L D A M P  = .\/FLD_12 + FLD-QZ 

1 FLD-Q 
FLD-I FLD-PHS = tan-'( 

where 

F A  = 0.00037809 

180 
,A- GD = - - (-0.039455). 

The RF Cavity as given in (29), (30) is Hurwitz stable and is inverse stable as well. 
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Figure 3: A RF Cavity Model and a Cavity Field Sample System 
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4 The Feedback Linearization Controller 

Consider the Klyst roil equation in z-coordinate. 

and 

where 

Define 

zl = ( o . o ~ R ( ~ )  + 1)1.25~1 

22 = 2 2  + 3 - - - R(t). 7r - 
180 

The Klystron is expressed in Z-coordinate by 

where 

= a1 - 0.0125(0.01R(t) + l)-'R(t) (43) 
7r 

bZll(z,~(t) ,  &)) = CZ~(O.OIR(~) + 1 ) 1 - 2 5 ~ ~ ( z 2  - 3 - - ~ ( t ) ) ,  180 

12 



Note that Ez(z, R(t), k(t)) is invertible for any nonzero 21. In z-coordinate, state equations 
are dependent upon the ripple R(t) but the output equations are independent upoii the 
ripple R(t) . 

Defhe 

and 

r 

bzll(Z, W),  fi(W bz12(% R(t), h(t)) 
b z 2 1 ( z ,  W), k(tN b 2 2 2 ( a ,  R(t), m) 

- &(z, R(t), fi(t)) = 

Then, (39) and (40) are represented by 

i = Z2(R(t), fi(t))z + B,(Z) R(t)) fi(t))u, + E,(R(t)) k(t)). 

u z  = B, (a, R(t), k ( t ) ) ( E  - ICz). 

Assume that z1 # 0. Define 

-- 1 

Then, (48) is reduced to 

(47) 

(49) 



, 

Let 

k1 + 0.0125(0.01R(t) + l)-%(t) 0 = I  0 k2 
L L - I  

where R, is the control input that drives the steady state value H, of H to the desired value 
of Z[2]. Then, (50) is reduced to 

where 

- 
A,, is a constant matrix and is independent of R(t)  and k(t). By proper choice of k1 and 
k2, we can locate the eigenvalues of the matrix x,, that what we want. 

R, is the solution of the following equation[2]. 

The solution of (54) can be explained by the steady state value of the transfer function from 
R, to Z. The transfer function from R, to Z is 

For constant R,, steady state value Zs of Z is given by the equation 

Equivalently, 

0 = x z C Z s  + R,. 

The solution R, of (54) is represented by the steady state value Z~ of z and it is obtained 
as follow. 

First, we consider thc 

FLD-Q 

equations for FLDJ and FLD-Q as given in (31) and (32). 

FA * COS(GD) 
F A  sin(GD) FA COS(GD) 

-FA - sin(GD) 
(55) 

14 



Let FLDld and FLD-Qd be the desired values of FLDl  and FLD-Q. Then, the desired 
d u e s  yTd, ygd of y:, y; are given by the algebraic equation 

I-'[ FA * WS(GD) - F A .  sin(GD) [:I=[ F A  * sin(GD) F A  - COS(GD) 

Second, we consider the Cavity equation. 

x = Ax + Bu" 
yc = Cx 

(57) 
(58) 

Let H ~ A ~ ( s )  be the transfer function from ui = HPRFJ and u; = HPRF-Q to Y;: = 
CAVYLDJ and y; = CAVYLD-Q, assuming that ug = BEAMJ and u: = BEAM-Q 
are given and constant. Then, we obtain the relation represented by the transfer function 
HCAV ( s  ) 

Note that HCAV(S) has no zeros at the origin in the complex plane. Let s, ?Jj be the 
steady state value of yy, yg, respectively and let q, be the steady state value of uy, u;, 

respectively. Then, 

[ ] = ffCAV(0) [ ] 
H c ~ v ( 0 )  can be obtained by applying any steady state value test[1],[6]. One method is step 
input test[6]. Select u:' as nonzero constant, as zero, and obtain fi' and y;'. Next, select 
uf as zero, uZ2 as nonzero constant and obtain yy and @. Then, H c ~ v ( 0 )  satisfies 

Since Cavity has no zeros at the origin in the complex plane, 

Note that inputs u: and u; of Cavity are given by equations of the normalized amplitude yt 
and the normalized phase yk. 



* 
I 

Since Cavity has no zeros at the origin in the complex plane, 

Let gf, @ be the steady state values of yf, y$, respectively and let z, 
state values of yy, yy, respectively. Then, the steady state relation is given by 

be the steady 

Setting 

[ ; ] = [ Z!] 
and plugging (56) into (65), we obtain 

Define the right-hand side of the above equation to be 

[ :: 
Then, 

where gf and $j are the normalized amplitude and the normalized phase of Klystron which 
yield the desired value FLD& of FLDJ and the desired value FLD-Q of FLD-Q. 

The steady state values PIs, Z2s, which are the desired values of Z1, 772, respectively are 
obtained by solving the algebraic equations generated from (41),(42), (68) and (69). 
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We have to solve TIs and Zzs. Instead of obtaining the analytic solution of the system (70) 
and (71), we obtain the numerical solution by resorting to an optimization method. Our 
approach is the minimization in the least square sense given as follow: 

The controller design procedure is as follows: 

Controller design procedure 

1. Obtain H c ~ v ( 0 )  by applying a step input test. 

2. Given desired FLD& and FLD-Qd, obtain 5: and pi. 

3. For the solutions $ and $, solve the optimization problem and obtain Z l S  and Z2%. 

4. Obtain IC1 and IC2 so that the matrix xzc is stable. 

5. Find the solution R, of 0 = x z c Z  + R,. 

6. Obtain the control input a as given in (51) and the control input u, as given in (49). 

5 Numerical Simulation 

We consider the Klystron RF Cavity system when there is 20,000Hz sinusoidal ripple 
and 720Hz, 120Hz ripples as well. The maximum power KP, and the klystron gain K, are 
given in Table 6. 

Table 6. Klystron gain and klystron maximum power 



4 . 0 1  I 

1 0 2 3 4 5 
I 

time(sec) lo-' 

-0.02- 

ol-o.cm 
1 

3 
-0.04- 

-0.05- 

............................................................................... '................. 

-. ................ I . .  ................ .:.. ................. :. ................ ..!. ................ 

.................................................................................................. 

................................................ ........................................... 

I 
-0.06 .................. ) ............................................................................... c 
-0.07 I 

0 1 2 3 4 
time(sec) x 1  

Figure 4: BEAM-I and BEAM-& used for steady state gain simulation. 
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1. For steady state gain HcAv(O), we use the coiistant input method. BEAMl aiid BEAM-& 
used for the steady state gain simulation is in Figure 4. 

First, we set 
the steady state values g and G. Second, we set 
simulated the RF Cavity and obtained the steady state values 
shows the results. 

= 13226.0 and % = 0.0. We simulated the RF Cavity and obtained 
= 0.0 and Zj = 13226.0. We 

aiid G. Table 7 

1 
2 

13226.0 0.0 1.32243e+004 -1.75200e+000 
0.0 13226.0 -1.91973e+002 1.7433OeS-004 

Table 7. Steady state gain simulation 

From the simulation results as given in Table 7, we compute the steady state gain 
HCAV (0) - 

0.99987 -0.01452 
-0.00013 1.31809 

2. Let the desired FLD& and FLD-Q, be FLD& = 5.0 and FLD-Q, = 0.0. From (67), 
(68), and (69), we obtain $ and & as given in Table 8. 

Table 8. Steady state normalized Amplitude gt and the normalized phase $j 

3. In order to  solve the optimization problem (72), we made use of the unconstrained op- 
timization algorithm in Matlab Toolbox. With initial values ~ 1 ,  = 1.0 and Zzs = 1.0, 
after 54 iterations, we obtain the optimal solution ZlS and Z2s as given in Table 9. 

1Q 



. 

0.01088 

Table 9. The solution ZlS and Z2s of the optimization problem (72) 

4. Since a1 = 2.82486e+006 is sufficiently large, we set k1 = -2.0~~1. And we set k2 = -loal. 
Hence, the eigeiivalues of xzc are A1 = -3al and A2 = - 1 0 ~ 1  for any R(t) and k(t). 

5. The solution R, of (54) is given by 

I -  3.41312e + 006 
3.07291e + 005 R,= [ 

Based on numerical values obtained, we implement the controller (50) to drive the 

Figure 5 through Figure 7 show the simulation results of the Klystron-RF Cavity system 
Klys t ron-RF Cavity system. 

in Matlab/Simulink environment. 
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Figure 5: Field Amplitude, FLDAMP 
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6 RIPPLE Estimation 

11 Ripple phase peak- t o-peak 
q5(rad) field Phase error(Degrees) 

0.0 0.0061 0 
1.12830 

- 2x Q 2.21690 

x - 
8 

The controller proposed in the previous section is based on the assumption that the iii- 

has poor information on R(t) and dR(t) 7, the feedback linearization cannot give desired per- 
formance. Table 10 and Table 11 show amplitude and phase errors when there are phase 
difference and amplitude difference between the ripple used for controller and the real ripple 
entered a klystron. Table 10 is the results when there is a phase difference between the ripple 
of the feedback linearixatioii controller and the ripple of the klystron. The controller ripple 
is R(t) = sin(2nft) and the ripple of the klystron is R(t) = sin(2nft + q5), f = 120KHx. 
Here, q5 is the phase of the ripple of klystron. 

formation on ripple R(t) and its time derivative 7 W t )  are fully known. When a designer 

peak-to-peak 
field Amplitude error(Vo1ts) 

0.00006(0.00115 %) 
0.02368(0.47 %) 
0.04000(0.80 %) 

Klystron Ripple peak-to-peak 
amplitude Ak field Phase error(Degrees) 

0.6 1.16286 
0.8 0.58323 
1.2 0.57660 
1.4 1.15631 

Q I 4.10113 I 0.08600(1.72 %) I 4x - II 

peak-to-peak 
field Amplitude error(Vo1ts) 

0.02432(0.49 %) 
0.01219(0.24 %) 
0.01209(0.24 %) 
0.02423(0.49 %) 

Table 10. Amplitude error and Phase error when there is difference in phase of ripple R(t) 

Table 11 is the results when there is amplitude difference between the ripple of the feed- 
back linearization controller and the ripple of the klystron. The controller ripple is R(t) = 
ARsin(2nft), AR = 1.0, f = 120KHz and the ripple of the Mystroii is R(t) = A&z(2nft), 
f = 120KHz. Here, A k  is the amplitude of the ripple of klystron. 

Table 11. Amplitude error and Phase error when there is difference in amplitude of ripple 
R(t) 
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The purpose of the low level RF control(LLRF) system is to maintain the field stability 
within f l . O %  amplitude and 1.0" phase. In the case that there is phase difference, only 
phase difference yields 1.12" field phase error. In the case that there is amplitude difference, 
40% gap of amplitude yields 1.156" field phase error. 

For the remedy to the poor information 011 the ripple and its time derivative, we can 
make use of Lyapuiiov redesign after we design the exact feedback linearization controller 
based on the nominal values of the ripple and its time derivative[4]. This additional controller 
compensates the uncertainties or unmodelled dynamics. Another possible remedy is to design 
the estimator which yields the estimated ripple and its time derivative and based 011 the 
estimated information, we design the controller. 

In this section, we address the ripple estimator which estimates the ripple R(t) and its 
time derivative F, and the feedback linearization controller based on the estimator. 

We first consider equations as given in (21) and (22). 

21 = 4- 
x2 
X1 

2 2  = tan-'(--) 

where 2 1  and x2 satisfy 

(73) 

(74) 

and ul=LLRFJ, u2=LLRF-Q. Given LLRFJ and LLRF-Q, we can obtain 21 and 22 by 
solving differential equations (75), (76) and algebraic equations (73), (74). 

Second, we consider equations given by (19) and (20) 

H P R F J  = 1OdE - y," - ms(y,") (77) 
HPRF-Q = 10dKPm - yf - sin(yE). 

From (77) and (78), for given H P R F l  and HPRF-Q, we obtain the normalized amplitude 
yf and the normalized phase y!j of the klystron by solviiig algebraic equations. 

k 
y1 = 

HPRF-Q 
H P R F J  y," = tan-'( 1. 

Third, we consider the klystron model as given in Figure 1. In Figure 1, the normalized 
amplitude of the klystron is the output of the look-up table AMPLITUDE SATURA- 



TION and the input of the look-up table AMPLITUDE SATURATION is given by 

in z-coordinate, or 

in Z-coordinate. Also, there exists a region of (A, yf) pairs where there is an inverse look-up 
table of the look-up table AMPLITUDE SATURATION. This region can be extracted 
from data given in Table 1 and Table 2. As in the case of AMPLITUDE SATURATION, 
we obtain the curve fitting equation for the inverse look-up table for AMPLITUDE SAT- 
URATION. Since in the controller design, we make use of the output equations (35) and 
(36) or (41) and (42) which are based on the curve fitting equation, we use the output equa- 
tion as given in (41) in order to obtain the curve fitting equation for the inverse look-up 
table for AMPLITUDE SATURATION within the region of invertibility. Based on the 
generated data pairs from (41) where the selected data of yf and Z1 guarantee invertibility, 
we obtain the curve fitting equation as follows. 

where N = 7, coefficients ff, i = 1,2, - - , N and the coefficients ct, i = 1,2, - - - , N obtained 
are given in the Table 12. 

Table 12. Coefficients of Curve fitting equation for Inverse AMPLITUDE 
SATURATION 
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The estimate of the ripple R(t) and the estimate of the time derivative dt Wt) of the ripple 

R(t) are obtained by considering the klystron system both in z-coordinate and Z-coordinate. 
The relationship between x-coordinate and z-coordinate is given by 

z1 = ( o . o ~ R ( ~ )  + 1)1.25~1 

z2 = z2 + 3 * - R(t). 180 

(84) 
(85) 

7r - 

Whenever z1 and x2 are obtained from (75) and (76), then we can obtain z1 by using (73). 
Similarly, whenever & is obtained from (79), we can obtain Z1 by using (83). For given z1 
and zl, we can obtain the estimate &(t) of the ripple R(t) by solving algebraic equation (84). 

Also, the estimate i ( t )  of time derivative k(t) of the ripple R(t) is obtained by differentiation 

The feedback linearization controller based on the estimate k(t) and h(t) is given by 
of R(t) . 

A-1 
?-&, = B, (z, B(t ) ,  i ( t ) ) (n  - E,(&(t), W(t))) 

a = Ei'(&(t), &))z + R,, 

where 

kl + 0.0125(O.Olii(t) + l)-%(t) 0 
0 k2 

K(R(t ) ,  act)) = 

Figure 8 shows the feedback linearization system in Matlab/Simulink environmeiit . KLY- 
STRON is the klystron model, RIPPLE is the equivalent system which generates high voltage 
power supply ripple. RF-CAVITY is the RF Cavity with Beam. Inputs of the ripple estima- 
tor are HPRFJ, HPRF-Q, LLRFJ and LLRF-Q which are measurable. The ripple estimator 
estimates both the ripple and its time derivative. The time derivative information is used 
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i , 

in the feedback linearization controller and the usage of the time derivative information 
improves the closed loop performance [lo]. 

Figures 9-12 show the simulation when there is 20, OOOHz sinusoidal ripple and 720Hz, 
120Hz ripples as  well. 

Figures 13-16 show the simulation when the ripple is 

3n 
R(t) = I.Osin(27m) + l.Osin(27rf2t + -) 8 
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