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Abstract-The Low Energy Demonstration Accelerator{LEDA)
being constructed at Los Alamos National Laboratory will serve
as the prototype for the low energy section of Acceleration Pro-
duction of Tritium(APT) accelerator. This paper addresses the
problem of the LLRF control system for LEDA. We propose a
control law which is based on exact feedback linearization coupled
with gain scheduling which reduces the effect of the deterministic
klystron cathode voltage ripple that is due to harmomnics of the high
voltage power supply and achieves tracking of desired set points.
Also, we propose an estimator of the ripple and its time derivative
and the estimates based feedback linearization controller.

I. INTRODUCTION

The low energy demonstration accelerator{LEDA) for the Pro-
duction of Tritium(APT) is being built at Los Alamos National
Laboratory. The primary function of the low level RF(LLRF)
control system of LEDA is to control RF fields in the accelerat-
ing cavity and maintain field stability within 1% peak to peak
amplitude error and 1° peak to peak phase error[8].

This paper addresses the problem of the LLRF control system
used for LEDA. We propose a control law which is based on exact
feedback linearization[3] coupled with gain scheduling[10]. The
purpose of exact feedback linearization coupled with gain schedul-
ing is to reduce the effect of the deterministic cathode ripple that
is due to harmonics of high voltage power supply[12] and is to
achieve tracking of desired set points. Low frequency ripple does
not deteriorate the current LLRF control system based on PID
control method. As frequency of ripple increases, the effect of the
ripple on the performance increases too. Simulation shows that
0.3% high voltage power supply ripple yields 1.05° phase error at
72kHz[5] and 1.0% high voltage power supply ripple yields 3.6°
phase error at 120kH2z[12]. In order to suppress the high frequency
ripple, the proposed controller makes use of not only the ripple but
also the time derivative of the ripple. The usage of time deriva-
tive of the ripple improve the controller performance[10]. First,
we assume that the deterministic cathode ripple is measurable
and derive the controller. Second, we propose the ripple estima-
tor which estimates the ripple signal itself and the time derivative
of the ripple as well and derive the controller coupled with the
ripple estimator. As is well known, in order to design the exact
feedback linearization controller, the given system to be controlled
must be well defined. Previous works[6],{12] modeled the klystron
and RF cavity used for LEDA. Our current work is based on the
klystron model and RF cavity model set up in Matlab/Simulink
environment.

II. KLySTRON MODEL

The klystron is the most commonly used linear accelerator RF
power source. The klystron used in LEDA has two inputs, LLRF_I
and LLRF_Q and two output HPRF_I and HPRF_Q. As interme-
diate outputs, klystron has the normalized amplitude yf and the
normalized phase y’z" . Let ¥1=LLRF.I and let uo=LLRF_Q. The
klystron in LEDA is modeled as

21 = —a1z1 + a1cos(z2)u1 + aisin(z2)uz (1)

sin(z cos(z
a1 (z2) u1 + a1 (z2) u2 2)
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and f;, i« = 1,2,---, N and parameters c¢;, ¢ = 1,2,---,N, d;,
i=1,2,--., NV are are given in Table 1.
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Table 1. Klystron Parameters

The details of the klystron model is given in 6] of this proceed-
ing.

III. Tae RF CaviTy

Figure 1 shows the RF cavity model.

RF cavity has four inputs, HPRF.I, HPRF_Q, BEAM., and
BEAM_Q, two outputs, CAV_FLD_ and CAV_FLD_Q.
Let u§=HPRF, v§=HPRF.Q, u§=BEAM.I, uv{=BEAM.Q and
let y{=CAV_FLD., y5=CAV_FLD_Q. Then, the RF cavity can
be expressed in the state space form.

# = Az + Bu® (8)
y° = Cxz. (9)
System matrices 4, B, C of RF cavity are given in [5],[11].
Also, FLD I and FLD_Q of the cavity Field Sample System are
given by :
FLDI =FA cos(GD)-yf — FA-sin(GD) -y5 (10)
FLD.Q = FA-sin(GD)-y5 + FA - cos(GD) -y5 (11)

and FLD_AMP and FLD_PHS of the cavity Field Sample System
are given by

FLD_AMP = \/FLD_I? + FLD.Q?
FLDQ,

FLD_PHS = tan~1(
FLD_I
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where

FA = 0.00037809
GD = — . (—0.039455).
180

The RF cavity as given in (8), (9) is Hurwitz stable and is
inverse stable as well.
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Figure 1. A RF cavity Model and a cavity Field Sample System

IV. THE FEEDBACK LINEARIZATION CONTROLLER

Consider the klystron equation in z-coordinate given in previous
section.
Define a coordinate transformation given by

71 = (0.01R(8) + 1)1 %%z (12)
T

= 3. — . R(). 3

F2=22438. = R(t) (13)

In Z-coordinate, the klystron is expressed by
Z1 = —@171 + b211(F, R(E), R(£))w1 + ba12(Z, R(t), R(t))uz

+E1(R(t), R(t)) (14)
Z2 = byo1 (Z, R(t), R(t))'lu + b,22(Z, R(t), R(t))uz
+E.2(R(t), R(£)) (15)
N
y{c = Zcie_fiM;l (16)
2=1
N
vi = die MR 3y (17)
=1

where .
@1 = a1 — 0.0125(0.0LR(t) + 1)~ R(%)

b211(Z, R(t), R(t)) = a1 (0.0LR(t) + 1)1 Pcos(Z2 — 3 - & - R(t))
b212(Z, R(2), R(t)) = 01(0.01R() + 1)1 Psin(Z2 — 3 - &5 - R(t))
b:21(Z, R(%), R(t)) = ~a1 i“_’_‘iiz_—%‘_lr&ﬂ
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LetZ=[ %1 %o |Tandletu,=[ v1 wuz |T.
Define

AR, RN = & §].

EROKO) = 3. mpe |, 09

= - : b,11(Z R(t), R()) b,12(Z, R(D), Rt
Bz ooy = | pnE RO E0) pa SO S |-

Then, (14) and (15) are represented by
% = A(R(2), R(t))Z + B (%, R(t), R(t))u: + Ex(R(2), R(t)). (19)

Note that B (Z, R(t), B(t)) is invertible for any nonzero z;. In
Z-coordinate, state equations are dependent upon the ripple R(t)
but the output equations are independent upon the ripple R(t).
Assume that Z; # 0. Consider a controller

u, = B, (2, R(t), R(t)) (@ - E.) (20)

T=KZ+R, (21)
= | k1 +00125(0.01R(#) +1)"1R(H) 0 |34 [ 7]
0 ko 2
where R, is the control input that drives the steady state value Zs

of Z to the desired value of Z[2].
Then, (19) is reduced to

:.z' = chz + 12>< 2Rz (22)
where

A, = [ —alo+ k1 192 ] . (23)

A, is a constant matrix and is independent of R(t) and R(t). By
proper choice of k; and kg2, we can locate the eigenvalues of the
matrix ch that what we want,

R, is the solution of the following equation[2].

0=A.Z; +IzxoR,. (24)

The solution of (24) can be explained by the steady state value of
the transfer function from R, to Z.

T?Rz (S) = (SI - ch)—1]2x2.
For constant R, steady state value Z5 of Z is given by the equation
Zs == (OI - Ezc)—ll2x2Rz
Equivalently,
0= chzs + Iex2R,.
The solution R, of (24) is represented by the steady state value
Zs of Z and it is obtained as follow.

First, we consider the equations for FLD_I and FLD_Q as given in
(10) and (11).

FLD Q FA.sin(GD

[ FLDI ]: [ FAocosEGD; LW

—FA. sin(GD) ] [ 3% ] (25)

Let FLDI,; and FLD_Q, be the desired values of FLD.I and
FLD_Q. Then, the desired values yf,, y§, of ¥f, y5 are given by
the algebraic equation

¥$ FA-cos(GD) —FA-sin(GD) 171
[ uis ] = [ FA-;?S%G’D; FA.CZS?&D)) ] (8)
~ [ FLD.I, ]
FLD O |-

Second, we consider the cavity equation.

& = Az + Bu° 27)
¥°=Cxz (28)



Let Hoav(s) be the transfer function from u§ = HPRF.I and
u§ = HPRF.Q to y§f = CAV_FLD. and y§ = CAV.FLD.Q, as-
suming that v§ = BEAM. and v = BEAM.Q are given and
constants. Then, we obtain the relation represented by the trans-
fer function Hg 4y (8)

53] 9G] e

Note that Hoav(s) has no zeros at the origin in the complex
plane. Let 7§, 75 be the steady state value of y§, y§, respectively
and let @], w3 be the steady state value of u$, ug, respectively.
Then,

[ % ] :HCAV(O)[ % ] . (30)

Hecav(0) can be obtained by applying any steady state value
test{1],]7]. One method is step input test[?]. Select u$! as nonzero

constant, 5" as zero, and obtain y§ 1 and y . Next, select 'u,‘{2

as zero, ugz as nonzero constant and obtain yf 2 and ygz. Then,
Heoav (O) satisfies
1 c2
y1 yl — ul uf
[ v yg ] HOAV(O)[ wll ul? ] (31)

Since cavity has no zeros at the origin in the complex plane,
—C

3 |-
[ Uz

Since the input u{ is the klystron output HPRF_I and the input
u§ is the klystron output HPRF_Q and since cavity has no zeros
at the origin in the complex plane, plugging (5) and (8) to (29),
we obtain

[ y;e SZEZ;{) ] 10\/1— C'AV(S) [ gg ] (33)

Let 7%, 7% be the steady state values of yic, -yé“, respectively and
let 7§, 75 be the steady state values of y§, y§, respectively. Then,
the steady state relation is given by

H5L,(0) [ 3 ] . (32)

(358 - samrno[B] @
Setting

7 || Y ]
[ yé ] [ y%d
and plugging (26) into (34), we obtain

[ Ty - cos(T5)

7t m@é)] 10«/___ Ho iy ()

[ FA.-cos(GD) —FA-sin(GD) 1™ [ FLD.IL,
FA.sin(GD FA.cos(GD FLD._Qy

(35)

Define the right-hand side of the above equatlon tobe| 91 e ]T.

Then,

=¥ +93 (36)
7 = tan“l( ) (37)
where 'gj'l“ and y’; are the normalized amplitude and the normalized

phase of klystron which yield the desired value FLD 1, of FLD_I
and the desired value FLD_Q, of FLD Q.

The steady state values Z1 5, Z25, which are the desired values of
Z1, Z2, respectively are obtained by solving the algebraic equations
generated from (16), (17), (36) and (37).

N
Z cieiMZ1s — gk (38)
i=1

N
Z die~FiMZ1s 4 75, = 5. (39)
t=1

We have to solve Z1; and Za;. Instead of obtaining the analytic
solution of the system (38) and (39), we obtain the numerical
solution by resorting to an optimization method. Our approach is
the minimization in the least square sense given as follow:

minimize

N
(Z cief1M71s _ k)2
=1
N
+(Z die=FiMZis 75, —gF)2. (40)
i=1
The controller design procedure is as follows:
Controller design procedure
1. Obtain He 4v(0) by applying a step input test.
2. Given desired FLD 14 and FLD.Qy, obtain 7¥ and 7%.
3. For the solutions 'y"f and 17’2‘, solve the optimization problem
and obtain Z15; and Zgs. _
. Obtain k1 and ko so that the matrix A, is stable.

4
5. Find the solution R, of 0 = A,.Z7 + R..
6. Obtain the control input u. as given in (20) and (21).

V NUMERICAL EXAMPLE

We consider the klystron RF cavity system when there is 20,000H =

sinusoidal ripple and 720H 2z, 120H z ripples as well. The maximum
power KPy, and the klystron gain K, are given in Table 2.

[Kg | 84454 || KPm | 3.600e+0086 |

Table 2. Klystron gain and klystron maximum power

BEAM_I and BEAM_Q used for the steady state gain simulation
is in Figure 2.

p— e

Figure 2. BEAM.I and BEAM_Q

Following the controller design procedure, we obtain the follow-
ing data.
Il

Howr 0= [ 43580
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7 | 6.97080e-001
7% | 6.22858¢-004
Z1s T-20825 ||
2 0.0l

% | 5.64072e 006
o | -0.82486e 1007

[ 3.41312¢ + 006
R, = 3613871908 |-

Based on numerical values obtained, we implement the con-
troller (20) and (21) to drive the klystron-RF cavity system.

Figure 3 show the simulation results of the klystron-RF cavity
system in Matlab/Simulink environment.

1.5
time(sec) X167

Figure 3. Field Amplitude, FLD_AMP and Field Phase,
FLD_PHS

IV. RIPPLE ESTIMATION

The purpose of the low level RF control(LLRF) system is to
maintain the field stability within £1.0% amplitude and 1.0° phase.
In the case that there is phase difference, only % phase difference
yields 1.12° field phase error. In the case that there is amplitude
difference, 40% gap of amplitude yields 1.156° field phase error.

For the remedy to the poor information on the ripple and its
time derivative, we can make use of Lyapunov redesign[4] after
we design the exact feedback linearization controller based on the
nominal values of the ripple and its time derivative. This addi-
tional controller compensates the uncertainties or unmodelled dy-
namics. Another possible remedy is to design the estimator which
yields the estimated ripple and its time derivative and based on
the estimated information, we design the controller.

In this section, we address the ripple estimator which estimates
the ripple R(t) and its time derivative %gﬁ, and the feedback
linearization controller based on the estimator.

First, we consider equations given by (5) and (6). From (5)
and (6), for given HPRF.1I and HPRF_Q, we obtain the normal-
ized amplitude yf and the normalized phase y§ of the klystron by

solving algebraic equations.

1
k

=~ _  /HPRFI*t HPRF.Q® (41
uh = — ,-—Kpm\/ + Q2 (41)
HPRF.Q

HPRFI ()

y3 = tan™}(

Second, we consider the normalized amplitude and the normal-

ized phase as given in (16) and (17) in Z-coordinate. The normal-

ized amplitude of the klystron is the output of the look-up table

AMPLITUDE SATURATIONI]6| and the input of the look-up
table AMPLITUDE SATURATION is given by

A=M=z%; (43)

in Z-coordinate. Also, there exists a region of (A,y") pairs where
there is an inverse look-up table of AMPLITUDE SATURA-
TION. This region can be extracted from data of the look-up ta-
ble AMPLITUDE SATURATION. We can obtain the curve
fitting equation for the inverse look-up table of AMPLITUDE
SATURATION. Based on the data of look-up table AMPLI-
TUDE SATURATION where the selected data of y"f and Zz1
guarantee invertibility, we obtain the curve fitting equation as fol-
lows.

N
B =,k
Ti= Y cfe (44)
=1

where N = 7, coefficients f7, ¢ = 1,2,.--, N are given and the
coefficients ¢f, i = 1,2,--, N are obtained by applying the opti-
mization toolbox of Matlab/Simulink. Table 3 gives the data of
the coefficients of the curve fitting.

246379.7012736
-1633291.8590640
4505197.5753121
-6618176.9043979
5460679.7305035
-2399431.110989s
438643.01506646

705 [
FZ 1075 ] c5
f5 | 1.00 || <5
fi [ 125 [ 5
I 1.50 [
fe | 175 ] c&
77 1200 ][ c

Table 3. Coeflicients of Curve fitting equation for Inverse
AMPLITUDE SATURATION

The estimate of the ripple B(t) and the estimate of the time

derivative %ﬁ of the ripple R(t) are obtained by considering

the klystron system both in z-coordinate and Z-coordinate. The
relation between z-coordinate and Z-coordinate is as given in (12)
and (13).

Z1 = (0.01R(t) + 1) P2 (45)
T

Z2 = 3. — - R(¢). 46

Za=22+3- = (#) (46)

When z; is obtained from the solution (1), (2) and also when y*
is obtained from (41), we can obtain Z1 by using (45). For given

z1 and %1, we can obtain the estimate R(f) of the ripple R(f) by
solving algebraic equation (45).

R(£) = 100(( w)” — 1.0). (47)
zl(t)

Also, the estimate R(t) of time derivative R(t) of the ripple R(t)
is obtained by differentiation of R(t)
The feedback linearization controller based on the estimate R(t)

and R(t) is given by
we =B, (2 R), RE)E - BB, R®))  (48)
@ = K(R(t), R()Z + R:, (49)



where

B.(z, R(), R(t) = {

b (2 B, R®)  baz(z RO, BE)
bz21 (E: R(t), R(t)) bz22(37 R(t)y R(t))

|

EL(R(b), R(t)) = [ 3. IR |

K(B(), R()) = [ k1 +o.o125(o.010R(t)+1)—11‘2(@ e ]

z =

(5]

Figure 4 shows the feedback linearization system in Matlab/Simulink
environment. KLYSTRON is the klystron model, RIPPLE is the
equivalent system which generates high voltage power supply rip-
ple. RF_.CAVITY is the RF cavity with Beam. Inputs of the ripple
estimator are HPRF.I, HPRF_Q, LLRF_I and LLRF_Q which are
measurable. The ripple estimator estimates both the ripple and
its time derivative. The time derivative information is used in the
feedback linearization controller and the usage of the time deriva-
tive information improves the closed loop performance{10].

Figures 5-6 show the simulation when the ripple is

R(t) = 1.0sin(2r fit) + 1.0sin(2x fat + —?:87-:)

where f1 = 120kHz, fo = 80kH=.
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Figure 4. The feedback linearization system with ripple estimator
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