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Abstract-The Low Energy Demonstration Accelerator(LEDA) 
being constructed at Los Alamos National Laboratory will serve 
as the prototype for the low energy section of Acceleration Pro- 
duction of Tritium(APT) accelerator. This paper addresses the 
problem of the LLRF control system for LEDA. We propose a 
control law which is based on exact feedback linearization coupled 
with gain scheduling which reduces the effect of the deterministic 
klystron cathode voltage ripple that is due to harmonics of the high 
voltage power supply and achieves tracking of desired set points. 
Also, we propose an estimator of the ripple and its time derivative 
and the estimates based feedback linearization controller. 

I. INTRODUCTION where 

The low energy demonstration accelerator(LEDA) for the Pro- 
duction of Tritium(APT) is being built a t  Los Alamos National 
Laboratory. The primary function of the low level RF(LLRF) 
control system of LEDA is to control RF fields in the accelerat- 
ing cavity and maintain field stability within fl% peak to peak 
amplitude error and lo peak to peak phase error[S]. 

This paper addresses the problem of the LLRF control system 
used for LEDA. We propose a control law which is based on exact 
feedback linearization[3] coupled with gain scheduling[lO]. The 
purpose of exact feedback linearization coupled with gain schedul- 
ing is to reduce the effect of the deterministic cathode ripple that 
is due to harmonics of high voltage power supply[l2] and is t o  
achieve tracking of desired set points. Low frequency ripple does 
not deteriorate the current LLRF control system based on PID 
control method. As frequency of ripple increases, the effect of the 
ripple on the performance increases too. Simulation shows that 
0.3% high voltage power supply ripple yields 1.05O phase error at 
72kHz[5] and 1.0% high voltage power supply ripple yields 3.6' 
phase error a t  120kHz[12]. In order to suppress the high frequency 
ripple, the proposed controller makes use of not only the ripple but 
also the time derivative of the ripple. The usage of time deriva- 
tive of the ripple improve the controller performance[lO]. First, 
we assume that the deterministic cathode ripple is measurable 
and derive the controller. Second, we propose the tipple estima- 
tor which estimates the ripple signal itself and the time derivative 
of the ripple as well and derive the controller wupled with the 
ripple estimator. As is well known, in order to design the exact 
feedback linearization controller, the given system to be controlled 
must be well defined. Previous works[6],[12] modeled the klystron 
and RF cavity used for LEDA. Our current work is based on the 
klystron model and RF cavity model set up in Matlab/Simulink 
environment. 

11. KLYSTRON MODEL 

The klystron is the most commonly used linear accelerator RF 
power source. The klystron used in LEDA has two inputs, LLRFJ 
and LLRF-Q and two output HPRFl  and HPRF-Q. As interme- 
diate outputs, klystron has the normalized amplitude yf and the 
normalized phase gt. Let ul=LLRFI and let uz=LLRF-Q. The 
klystron in LEDA is modeled as 

il = --a121 + u1cos(z2)u1 + a1sin(zz)u2 

N 

(3) 
i= 1 
N 

(7) 

and fi, i = 1,2, .  . . , N and parameters q, i = 1,2 , .  . . , N, di, 
i = 1,2, .  . . , N are are given in Table 1. 

Table 1. Klystron Parameters 

The details of the klystron model is given in [6] of this proceed- 
ing. 

111. THE RF CAVITY 

Figure 1 shows the RF cavity model. 
RF cavity has four inputs, HPRFI, HPRF-Q, BEAMI, and 

BEAM-Q, two outputs, CAVELDJ and CAVELD-Q. 
Let up=HPRFl, u;=HPRF-Q, u$=BEAMJ, u;=BEAM-Q and 
let y,C=CAVELDJ, y+CAVELD-Q. Then, the RF cavity can 
be expressed in the state space form. 

X = A x + B u C  
y= = cx. 

System matrices A, B, C of RF cavity are given in [5],[ll]. 

given by 
Also, F L D l  and FLD-Q of the cavity Field Sample System are 

F L D l =  F A .  COS(GD) . yp - F A .  sin(GD) . qg (10) 
FLD-Q = F A .  sin(GD) .YE + F A .  COS(GD) . & (11) 

and FLDAMP and FLD-PHS of the cavity Field Sample System 
are given by 

F L D A M P  = d F L D J 2  + FLD-QZ 

F L D P H S  = tan-'(- F L D l  ) 
FLD-Q 
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where 

F A  = 0.00037809 

180 
T 

GD = - * (-0.039455). 

The RF cavity as given in (8), (9) is Hurwitz stable and is 

Then, (14) and (15) are represented by 

i = &(R(t), A(t))Z + Z ( Z ,  R(t),  A(t))u, + E,(R(t), A@)). (19) 

Note that R(t), k(t)) is invertible for any nonzero Zi. In 
?-coordinate, state equations are dependent upon the ripple R(t) 
but the output equations are independent upon the ripple R(t). 
Assume that 51 # 0. Consider a controller 

- 
inverse stable as well. 

u, = B,-l(f ,  R(t),  A@))@ - E,) (20) 
Ti= KZ+ R, (21) 

- - [ ki  + 0.0125(0.01R(t) + l)-'&t) 0 ] z+ [ ;; ] 
0 k2 

where Rz is the control input that drives the steady state value Zs 
of Z to the desired value of Z[2]. 
Then, (19) is reduced to 

where Figure 1. A R F  cavity Model and a cavity Field Sample System 

IV. THE FEEDBACK LINEARIZATION CONTROLLER x,, is a constant matrix and is independent of R(t) and k(t). By 
proper choice of k1 and k2, we can locate the eigenvalues of the 
matrix ZZc that what we want. 
Rz is the solution of the following equation[2]. 

Consider the klystron equation in z-coordinate given in previous 

Define a coordinate transformation given by 
section. 

zl = (o.oiR(t) + 1)1.25z1 

z2 = 22 + 3 .  - . R(t). - 7r 

180 

0 = x z c Z s  +12x2R2. (24) 

The solution of (24) can be explained by the steady state value of 
the transfer function from R, t o  Z. 

In Z-coordinate, the klystron is expressed by 

For constant R,, steady state value B, of B is given by the equation 

fs = (OI - ;iizc)-14x2Rz 

Equivalently, 

The solution Rz of (24) is represented by the steady state value 
f, of Z and it is obtained as follow. 
First, we consider the equations for FLDJ and FLD-Q as given in 
(10) and (11). 

Let FLD& and FLD-Q, be the desired values of FLDl  and 
FLD-Q. Then, the desired values yPd, ygd of YE, y; are given by 
the algebraic equation 

Let Z =  [ Bi 
Define 

B2 IT and let u, = [ ui  UZ IT. 
Second, we consider the cavity equation. 

j. = A z  + BuC 
yc = cx 



Let HCAV(S)  be the transfer function from uLLp = H P W J  and 
u?j = HPRF-Q to  y; = CAVELDJ and y$ = CAVELD-Q, as- 
suming that us = BEAMJ and u; = BEAM-Q are given and 
constants. Then, we obtain the relation represented by the trans- 
fer function HCAV(S) 

Note that HCAV(S)  has no zeros at  the origin in the complex 
plane. Let s, g; be the steady state value of yf, y& respectively 
and let ET, E; be the steady state value of up, us, respectively. 
Then, 

HcAv(O) can be obtained by applying any steady state value 
test[1],[7]. One method is step input test[7]. Select uE1 as nonzero 
constant, us1 as zero, and obtain yp1 and ysl. Next, select 
as zero, 7& as nonzero constant and obtain yf2 and y;', Then, 
HCAV (0) satisfies 

Since cavity has no zeros at the origin in the complex plane, 

Since the input u? is the klystron output HPRFJ and the input 
$ is the klystron output HPRF-Q and since cavity has no zeros 
at the origin in the complex plane, plugging (5 )  and (6) t o  (291, 
we obtain 

Let $ , $ be the steady state values of y t  , & , respectively and 
be the steady state values of yf, yf, respectively. Then, let gT, 

the steady state relation is given by 

Setting 

and plugging (26) into (34), we obtain 

-' [ Fk:ad 3 ' 
(35) 

Define the right-hand side of the above equation to be [ $1 
Then, 

$2 IT. 

5; = d m  (36) 
y$ = tan- 1 (- $2 

(37) 
$1 

where g! and fj$ are the normalized amplitude and the normalized 
phase of klystron which yield the desired value FLD& of FLDJ 
and the desired value FLD-Q, of FLD-Q. 

The steady state values T i s ,  TzS, which are the desired values of 
HI, 5 2 ,  respectively are obtained by solving the algebraic equations 
generated from (16), (17), (36) and (37). 

i=l 
N 

(39) 
i=l 

We have to solve hs and FzS. Instead of obtaining the analytic 
solution of the system (38) and (39), we obtain the numerical 
solution by resorting to an optimization method. Our approach is 
the minimization in the least square sense given as follow: 

N 

minimize ( C G e - f t M r l s  - - k  Y1) 2 

i= 1 
N 

+ ( E d i e C f t M 4 .  +TzS - @$)2. (40) 
i=1 

The controller design procedure is as follows: 

Controller design procedure 
1. Obtain HcAv(O) by applying a step input test. 
2. Given desired FLD& and FLD-Q,, obtain 7jf and 35. 
3. For the solutions jj? and gg, solve the optimization problem 

and obtain ?is and Ezs. 
4. Obtain kl and 
5. Find the solution R, of 0 = A,&'+ R,. 
6. Obtain the control input u, as given in (20) and (21). 

so that the_matrix zZc is stable. 

V NUMERICAL EXAMPLE 

We consider the klystron RF cavity system when there is 20, OOOHz 
sinusoidal ripple and 720Hz, 120Hz ripples as well. The maximum 
power KP, and the klystron gain K, are given in Table 2. 

0 K ,  1 8449.4 11 K P ,  I 3.6UUe+UU6 u 
Table 2. Klystron gain and klystron maximum power 

BEAMJ and BEAM-Q used for the steady state gain simulation 
is in Figure 2. 

Figure 2. BEAMJ and BEAM-Q 

Following the controller design procedure, we obtain the follow- 
ing data. 

0.99987 -0.01452 
HCAV(o) = [ -0.00013 1.31809 1 3 



c 

. 
solving algebraic equations. 

3 41312e + 006 . 
Rz = [ 3:07291e+005 1 

Based on numerical values obtained, we implement the con- 

Figure 3 show the simulation results of the klystron-RF cavity 
troller (20) and (21) to drive the klystron-RF cavity system. 

system in Matlab/Simulink environment. 
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Figure 3. Field Amplitude, FLDAMP and Field Phase. 
FLDPHS 

IV. RIPPLE ESTIMATION 

The purpose of the law level FU? control(LLRF) system is to 
maintain the field stability within &l.O% amplitude and 1.0' phase. 
In the case that there is phase difference, only $ phase difference 
yields 1 . 1 2 O  field phase error. In the case that there is amplitude 
difference, 40% gap of amplitude yields 1.156' field phase error. 

For the remedy to the poor information on the ripple and its 
time derivative, we can make use of Lyapunov redesign[4] after 
we design the exact feedback linearization controller based on the 
nominal values of the ripple and its time derivative. This addi- 
tional controller compensates the uncertainties or unmodelled dy- 
namics. Another possible remedy is to design the estimator which 
yields the estimated ripple and its time derivative and based on 
the estimated information, we design the controller. 

In this section, we address the ripple estimator which estimates 
the ripple R(t) and its time derivative 9, and the feedback 
linearization controller based on the estimator. 

From (5) 
and (6), for given HPRFJ and HPRF-Q, we obtain the normal- 
ized amplitude yt and the normalized phase yg of the klystron by 

First, we consider equations given by ( 5 )  and (6). 

Second, we consider the normalized amplitude and the normal- 
ized phase as given in (16) and (17) in Z-coordinate. The normal- 
ized amplitude of the klystron is the output of the look-up table 
AMPLITUDE SATURATION[G] and the input of the look-up 
table AMPLITUDE SATURATION is given by 

A = A421 

in Z-coordinate. Also, there exists a region of (A, yt) pairs where 
there is an inverse look-up table of AMPLITUDE SATURA- 
TION. This region can be extracted from data of the look-up ta- 
ble AMPLITUDE SATURATION. We can obtain the curve 
fitting equation for the inverse look-up table of AMPLITUDE 
SATURATION. Based on the data of look-up table AMPLI- 
TUDE SATURATION where the selected data of yt and Fi 
guarantee invertibility, we obtain the curve fitting equation as fol- 
lows. 

N 

i= 1 

where N = 7, coefficients ft, i = 1 , 2 , .  . . .  N are given and the 
coefficients c:, i = 1,2, .  , . , N are obtained by applying the opti- 
mization toolbox of Matlab/Simulink. Table 3 gives the data of 
the coefficients of the curve fitting. 

Table 3. Coefficients of Curve fitting equation for In 
AMPLITUDE SATURATION 

verse 

The estimate of the ripple R(t) and the estimate of the time 
derivative of the ripple R(t) are obtained by considering 
the klystron system both in z-coordinate and Z-coordinate. The 
relation between z-coordinate and Y-coordinate is as given in (12) 
and (13). 

(45) 

(46) 

When z1 is obtained from the solution (l), (2) and also when y t  
is obtained from (41), we can obtain Z1 by using (45). For given 
z1 and Z1, we can obtain the estimate h(t) of the ripple R(t) by 
solving algebraic equation (45). 

(47) 

Also, the estimate h(t) of time derivative R(t) of the ripple R(t) 
is obtained by differentiation of k(t). 

The feedback linearization controller based on the estimate h(t) 
and h(t) is given by 

u, = % + l ( T , h ( t ) ,  h(t))(Z - E,(h(t), a(t))) (48) 

7i = k(l't(t), k(t))F + R,, (49) 



w 

c 

c 

where ....... 
~ ; 

9 

................... ................ ................ ............... 
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envir&ment. KLYSTRON is the klystron model, RIPPLE is the 
equivalent system which generates high voltage power supply rip- 
ple. RF-CAVITY is the RF cavity with Beam. Inputs of the ripple 
estimator are HPRFJ, HPRF-Q, LLRFl  and LLRF-Q which are 
measurable. The ripple estimator estimates both the ripple and 
its time derivative. The time derivative information % used in the 
feedback linearization controller and the usage of the time deriva- 
tive information improves the closed loop performance[lO]. 

Figures 5-6 show the simulation when the ripple is 
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R(t) = l.Osin(27rf1t) + l.Osin(27rf2t + -) 
where fi = l2OkHz, f2 = 80kHz. 

I I 

Figure 4. The feedback linearization system with ripple estimator 
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