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ESTIMATED RIPPLE IMPROVES THE 

CLOSED LOOP SYSTEM PERFORMANCE 
SIGNIFICANTLY 

Sung-il Kwon, Amy Regan, Y. M. Wang, and T. Rohlev 
R F  Technology Group 

Accelerator Operations and Technology Division 
Los Alamos National Laboratory 

P.O.Box 1663 
Los Alamos, NM 87544, USA 

Email: skwon@lanl .gov 

Abstract-The Low Energy Demonstration Accelerator(LEDA) being constructed at Los Alamos 
National Laboratory will serve as the prototype for the low energy section of Acceleration Produc- 
tion of Tritium(APT) accelerator. This paper addresses the problem of LLRF control system for 
LEDA. We propose an estimator of the ripple and its time derivative and a control law which is 
based on PID control and adaptive feedforward of estimated ripple. The control law reduces the 
effect of the deterministic cathode ripple that is due to high voltage power supply and achieves 
tracking of desired set points. 

1 Introduction 

The low energy demonstration accelerator( LEDA) for the Accelerator Production of Tri- 
tium(APT) is being built at Los Alamos National Laboratory. The primary function of the 



. 

low level RF(LLRF) control system of LEDA is to control RF fields in the accelerating cavity 
and maintain field stability within fl% peak to peak amplitude error and 1" peak to p e d  
phase error [5]. 

This paper addresses the problem of LLRF control system attenuating the effect of ripple 
on the klystron cathode voltage that results from the high voltage power supply ripple. We 
propose a PID control law coupled with an adaptive feedforward of ripple estimate. The 
purpose of control is to reduce the effect of the deterministic cathode ripple that is due to 
harmonics of high voltage power supply[4] and is to achieve tracking of desired set points. 
Low frequency ripple does not deteriorate current LLRF control system performance based on 
current PID control methodology. As frequency of the ripple increases, however, the effect 
of the ripple on the performance increases too. Simulation shows that 0.3% high voltage 
power supply ripple yields 1.05" peak to peak phase error at about 72kHz [3] and 1.0% high 
voltage power supply ripple yields 1.07" peak to peak phase error at about 20kHz[7]. In 
order to suppress the high frequency ripple effect, the proposed controller makes use of a 
feedforward control coupled with a ripple estimator. The high voltage power supply ripple is 
coupled to the LEDA through a klystron. The effects of the ripple are on both the amplitude 
and the phase of a klystron. In [6],[7], the influences of the ripple are modeled by algebraic 
equations. A klystron is modeled by a nonlinear state space system[6],[7]. We, first, address 
two coordinate transformations of a klystron model. Based on new coordinates, we extract 
the ripple equation which is represented by algebraic equations of states of new coordinates. 
The ripple estimator proposed in this work is based on the algebraic equation and it estimates 
the ripple signal itself and the time derivative of the ripple as well. The estimate of ripple is 
feedforwarded to the current LLRF control system whose frame is a PID control. This simple 
addition of an adaptive feedforward greatly improves the closed loop system performance. 

2 The Klystron Model 

We consider a klystron model as shown in as shown in Figure 1. 
It has two inputs, LLRFJ and LLRF-Q and two output HPRFJ and HPW-Q. As 

intermediate outputs, Klystron has the normalized _amplitude NAMPLITUDE and the 
normalized phase NPHASE. 

The first stage of a klystron are linear systems called FILTER AND AMPLIFIER. 
Let ul=LLRFI and let u2=LLRF-Q. Let x1 and x2 be outputs of the systems whose transfer 
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Figure 1: A Klystron Model 



function are given by 

In state space, transfer functions (1) and (2) are represented as 

x2 = -a122 + aqua (4) 
1,+00? where a1 = 3.54. 

PHASE SATURATION. The input of the two look-up tables is given by 
A klystron model has two loop-up tables, called AMPLITUDE SATURATION and 

where R(t) is the ripple, Kg is the klystron gain, and KP, is the maximum klystron power. 
R(t), K,, and KP, are specified for a given klystron. For given A, the output of the look-up 
table AMPLITUDE SATURATION can be represented by 

and the output of the look-up table PHASE SATURATION can be represented by 

Table 1 and table 2 show data of look-up table AMPLITUDE SATURATION and data 
of look-up table PHASE SATURATION, respectively. 

The normalized amplitude NAmplitude, defined by yk and the normalized phase NJ'hase, 
defined by & of the klystron are expressed by 

~f = AN = Ii(A) (8) 

y; 

(9) 

22 ?r 

X 1  180 
= ON + tan-l(-) + 3 * - - R(t) 

?i- 
= Iz(A) + t a n - ' ( s )  + 3 - - - R(t). 

2 1  180 
In addition, for given y1 and y2, HPRF-I and HPRF-Q are given by 

H P R F J  = 1OdE - y," ms(yg) 

HPRF-Q = 1OdE - yf. sin(y,k). 

(10) 

(11) 
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F 

11 0.7100 

11 1.0000 
11 0.0446 

I- 
11 0.3122 

A N  A A N  A A N  A A N  

0.0000 0.0700 0.0000 0.1400 0.1900 0.5700 0.7500 
0.8700 11 0.8600 I 0.9800 11 0.9000 I 1.0000 11 0.9100 I 1.0000 11 

~ 

0.4143 0.3568 0.4724 0.4014 0.5305 0.4461 0.5886 
0.6467 0.5353 0.7048 0.5799 0.7585 0.5910 0.7680 
0.9900 0.4461 0.5886 0.6468 0.8158 0.6691 0.8349 
0.0000 11 0.0892 10.0521 11 0.6914 I 0.8540 11 0.7360 I 0.8891 11 
0.1732 0.1784 0.2400 0.7806 0.9218 0.8252 0.9545 
0.2981 0.2676 0.3562 0.8921 0.9961 0.9367 0.9970 
0.4143 11 0.3568 I 0.4724 I( 0.9813 I 0.9921 11 I II 

Table 1. AMPLITUDE SATURATION Data 

U 

0.1784 -0.0029 0.2230 -0.0040 0.8921 -0.2229 0.4549 -0.0101 
0.2676 -8.0052 0.3122 -0.0064 0.4483 -0.0100 0.4014 -0.0087 
0.3568 -0.0075 0.7885 -0.0884 0.9593 -0.3821 

Table 2. PHASE SATURATION Data 

Since the look-up tables have the limited number of data, we need to approximate the 
look-up tables by linear or nonlinear curve fitting equations. Considering the characteristic 
curve of a klystron, we choose nonlinear equations. We choose curve fitting equations of 
AMPLITUDE SATURATION and PHASE SATURATION having the forms 

N 
A N  = %e-fiA (12) 

ON = die-fiA (13) 

i=l 
N 

i=l 

5’ 5 



f 

c 

where fi, i = 1,2,  
determined. 

- , N and parameters c;, i = 1,2,  - , N ,  4, i = 1,2,  e ,  N are to be 

Higher order of a curve fitting equation may yield more accurate curve fitting equation. 
For simplicity, we choose N = 7. Also, in order to reduce the number of coefficients to be 
determined, fi, i = 1,2,  - , N are given in Table 3. 

11 0.50 I 0.75 1 1.00 I 1.25 I 1.50 I 1.75 I 2.00 11 
Table 3. Expoiieiits of curve fitting equations 

By using data given in Table 1 and Table 2, we obtain coefficients q, i = 1,2 , . . . ,  N 
and di,  i = 1,2,  - - , N ,  of the curve fitting equations (12) and (13). Coefficients and di 
obtained are given in Table 4. Figure 2 shows plots of data points as given in Table 4, Table 
5 and plots of curve fitting equations (12) and (13) whose coefficients, fi, i = 1,2,  - - - , N ,  
q, i = 1,2, - e ,  N ,  4, i = 1,2,-  -, N ,  are given in Table 3 and Table 4 with appropriate 
domain of A. 

c1 0.05680429876058e+006 dl -0.14120739315590e+005 
c2 -0.3926435735396 le+006 d2 0.83084262097993e+005 
c3 l.l2805594234952e+006 d3 -2.01778226478032e+005 
c4 -1.72418545240933e+006 d4 2.5844 14 1275565 le+005 
c5 1.47878241712872e+006 ds -1.8368059571 1727e+005 

-0.67483667002473e+006 d~ 0+68453128529433e+005 
- c7 O.l2802296547207e+OO6 d7 -O.l0399245992504e+005 

Table 4. Coefficients of curve fitting equations 

Plugging (5) to (12) and (13)) curve fitting equations (12) and (13) are reduced to 

i= 1 

* 

6 



where 

The normalized amplitude y t  and the iiormalized phase yi of the klystron are 

In addition, for given yt and yk, HPRFJ and HPRF-Q are given by 

HPRF-Q = 10dKPm - yf - sin(yk). 

2.1 The Klystron in x-coordinate 

Consider the normalized amplitude yf and the normalized phase pi as given in (17) and 

Let 
(18). 

-1 2 2  

21 
22 =tan (-). 

We consider a transformation from x-coordinate to z-coordinate. In z-coordinate, the state 
equations (3)  and (4) are reduced to 

il = --alzl + alcos(z2)u1 + alsin(q)u2 
sin( z2) COs(z2) 22 = --a1 u1+ alp u2. 

Also, the curve fitting equations (12) and (13) are reduced to 
21 z1 

N 
= q e - f i w ( t ) z l  

i=l 
N 

9, = & - f i W ( t ) a .  

i=l 



C 

(b) Phase saturation curye fitting 

A 

Figure 2: Curve fittings 
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The normalized amplitude yt aiid the normalized phase yk are represented by 

Note that the exponents of the first term of (27) are the same as the exponents of the first 
term of (28). Also, note that the phase yt is linear with respect to z 2 .  

2.2 The Klystron in z-coordinate 

Consider the Klystron equation in z-coordinate. 

and 

where 

Define 

zl = ( o . o i ~ ( t )  + 1)1+25~,  (33) 

(34) 

The Klystron is expressed in Z-coordinate by 



where 

Note that pz(z, R(t), fi(t)) is invertible for any nonzero TI. In Z-coordinate, state equations 
are dependent upon the ripple R(t) but the output equations are independent upon the 
ripple R(t) . 

Define 

and 

1 -  bzl l (% W), fi(t)) bzl2(Z, W), m)) 
bz21(% R(t), k(t)) ba22(z, W),  .ti(t)) 

- 
&(z, R(t), = 

Then, (39) and (40) are represented by 

+ = ZZ(R(t), k(t))z+ E&, R(t), k(t))u, + E,(R(t), A@)). 

(43) 

(44) 

10 



3 The RF cavity 

Figure 3 shows the RF cavity model. 
RF cavity has four inputs, HPRF-I, HPRF-Q, BEAMJ, and BEAM-Q, two outputs, 

CAV-FLDJ and CAV-FLD-Q. 
Let u;=HPRFI, u",HPRF-Q, ug=BEAMI, ui=BEAM-Q and let yY=CAV-FLDJ, 
&=CAV-FLD-Q. Then, the RF cavity can be expressed in the state space form. 

where 

A =  

B =  

0 
0 
0 
0 
0 

2 
50 
- 

X = A X +  Bu" 
y" = cx 

1 1 0 0 0 g c 3  3 p 4  

a b 0 0 z c 3  5 jc4  

1 1 
C Z - ~ C ~  b - K c 2  0 

1 0 0 0 0 0 0 0  

0 1 0 0 0 0 0  
0 - z c 3  - 5 c 4  a - E c 1  b - ~ c z  0 0 
0 0 0 1 0 0 0  
0 - 3 c 3  - K c 4  - g c 1  - ~ c 2  a b 
0 0 0 0 0 1 0  

1 1 1 1 
-=c1 -5jC2 

1 1 1 1 

1 1 1 1 

-2eta 0 
0 0  0 0 
- o -Zeta O 
0 0  0 0 

o $ o -2eta 

0 0  0 0 

o & o -Zeta 
0 0  0 0 

50 

1 c1  c2  0 0 0 0 -c3 -c4 

0 0 c3 c4 c1 c2 0 0 
c= [ 

c1  = - 
7- 



K R  1 K D W  
7- 2KQo c2 = -(; - -) 

K R  
c3 = 

27 KQo 
K R  1 

2.rKQo T 
c4 = (- + 2KDW - KQo).  

Parameters of RF cavity are given in [6]. 
Also, FLD-I and FLD-Q of the cavity Field Sample System are given by 

FLD-I = F A  - COS(GD) * & - F A  - s h ( G D )  - & 
FLD-Q = F A  sin(GD) * & + F A  * COS(GD) ~ 2 "  

(47) 

(48) 

and FLDAMP and FLDJ'HS of the cavity Field Sample System are given by 

FLDAMP = ~ F L D P  + F L D - Q ~  

1 FLD-Q 
FLD-I FLD-PHS = tan-'( 

where 

FA = 0.00037809 

180 
7r G D z - .  (-0.039455). 

The RF cavity as given in (45), (46) is Hurwitz stable and is inverse stable as well. 

I 4 RIPPLE Estimation 

The purpose of the low level Rl? control(LLRF) system is to maintain the field stability 
within f l . O %  amplitude and 1.0" phase. The present LLRF control system is based on 
PID control scheme[4],(5],[6]. As has been investigated in [3],[7], the high voltage power 
supply ripple has influence on the LLRF PID control system. Low frequency ripple does not 
deteriorate the performance of the closed loop system seriously but high frequency ripple 
deteriorates the performance of the closed loop system seriously. 

For the remedy to the poor performance of the PID controlled LLRF control system due 
to the high frequency high voltage power supply ripple, we propose a feedforward control of 
the estimate of the ripple. The feedforward improves the performance significantly[l] . 

In this section, we address the ripple estimator which estimates the ripple R(t) and its 
dR(t) time derivative dt . 

12 
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Figure 3: A RF cavity Model and a cavity Field Sample System 



We first consider equations as given in (21) and (22). 

z1 = 2/24 + x; 

where x1 and x2 satisfy 

and ul=LLRFI, u2=LLRF-Q. Given LLRFl and LLRF-Q, we can obtain z1 and 2 2  by 
solving differential equations (51), (52) and algebraic equations (45), (46). 

Second, we coiisider equations given by (19) and (20). 

From (53) and (54), for given HPRFJ and HPRF-Q, we obtain the normalized amplitude 
yf and the normalized phase yi of the klystron by solving algebraic equations. 

1 
dHPRF-12 + HPRF-Q2 

y: = 1odE 
k HPRF-Q 

HPRFJ 1. y2 = tan- ( 

(55) 

(56) 

Third, we consider the klystron model as given in Figure 1, In Figure 1, the normalized 
amplitude of the klystron is the output of the look-up table AMPLITUDE SATURA- 
TION. The input of the look-up table AMPLITUDE SATURATION is given by 

in z-coordinate, or 

in Z-coordinate. Also, there exists a region of (A,  yf) pairs where there is an inverse look-up 
table of the look-up table AMPLITUDE SATURATION. This region can be extracted 
from data given in Table 1 and Table 2. As in the case of AMPLITUDE SATURATION, 
we obtain the curve fitting equation for the inverse look-up table for AMPLITUDE SAT- 
URATION. Since, in controller design, we make use of the output equations (31) and (32) 

14 
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or (37) and (38) which are based on the curve fitting equation, in order to obtain the curve 
fitting equation for the inverse look-up table for AMPLITUDE SATURATION within 
the region of invertibility, we use the output equation as given in (37). Based on the gen- 
erated data pairs from (37) where the selected data of y: and Z1 guarantee iiivertibility, we 
obtain the curve fitting equation as follows. 

where N = 7 ,  coefficients f”, i = 1,2, , N are given and the coefficients cz, i = 1,2, - - , N 
are obtained by applying the optimization toolbox of Matlab/Simulink. Table 5 gives the 
data of the coefficients of the curve fitting. The nonlinear least square algorithm in Mat- 
lab/Simulink guarantees 1% accuracy of the curve fitting. 

Table 5. Coefficients of Curve fitting equation for Inverse AMPLITUDE 
SATURATION 

The estimate of the ripple R(t) and the estimate of the time derivative 9 of the ripple 
R(t) are obtained by considering the klystron system both in z-coordinate and z-coordinate. 
The relation between z-coordinate and Z-coordinate is given by 

z1 = ( o . o i ~ ( t )  + 1)1.25~1 
z2 = 22 + 3 * - - R(t). 7r - 

180 
Whenever x1 and 2 2  are obtained from (51) and (52), then we can obtain z1 by using (49) 
and (50), and also whenever yf is obtained from (55), we can obtain z1 by using (59). For 



given z1 and TI ,  we can obtain the estimate R(t) of the ripple R(t) by solving algebraic 
equation (60). 

Also, the estimate h(t) of time derivative h(t) of the ripple R(t) is obtained by differentiation 
of R(t ) .  

P 

Figure 4: The ripple estimator 
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5 Feedforward Control of the estimate h(t) 
The work in [7] shows that the AMPLITUDE DEPENDENCE of the high voltage 

power supply ripple is not seriously effective to the performance of tracking set points of 
the LLRF control system. The main effect of the high voltage power supply ripple is due to 
PHASE DEPENDENCE. 

In this section, we propose a feedforward control of the estimate @t). The feedforward 

We consider the output equations as given in (27)) (28) and (55) ,  (56). 
control improves the tracking performance of the field phase significantly. 

HPRF-Q 
H P R F J  y; = tan-’( 

where 

w(t) = M ( O . O I R ( ~ )  + 111.25. 

Also, the amplitude and the phase of the high power FW(HPRF) amplifier are 

H P R F A M P  = .\/HPRF-12 4- HPRF-Q2 
HPRF-Q 
H P R F I ) .  H P R F T H S  = tan-’( 

In (64)) the normalized phase & is affected by the PHASE DEPENDENCE term 

3 . - .  n- R(t). 
180 

When R(t) is estimated within a satisfactory accuracy, a feedforward control loop from the 
estimate h(t) to &(t) can attenuate the effect the high voltage power supply ripple R(t) to 
the phase of the klystron and so the phase of field. 

Define a feedforward loop gain from the estimate k(t) as 

’ 17 

n- -3. - 
180 



and consider H P R F A M P ,  H P R F P H S  defined by 

H P R F - A M P  = H P R F A M P  
HPRF-PHS = H P R F - P H S  - 3 - - R(t) 180 

Plugging (68), (66), and (64) into (72), we obtain 

H P R F P H S  = yZk-3.180. n- R(t)  

7r N 
- - p.-fiw(t)"' + z2 + 3 . -(R(t) - k(t)). 

i=l 180 . 
(73) 

If there exists a bounded function ~ ( t )  < 1.0 such that 

then, we can attenuate the effect of the high voltage power supply ripple R(t) to the phase 
of the field. The estimate k(t) as given in (62) is defined by the solution of an algebraic 
equation (60). z1 is given by (49) whose variables are the state of the exactly same system 
of FILTER AND AMPLIFIER of a klystron. Zl is given by the curve fitting equation 
(59) of the lookup table of inverse AMPLITUDE SATURATION. The accuracy of the 
estimate k(t) is determined by the curve fitting equation (59). The nonlinear least square 
algorithm used for the curve fitting guarantees 1% accuracy. 

Of course, we have to consider the AMPLITUDE DEPENDENCE represented by 
(O.OlR(t) + l)1.25(l%ripple). However, this amount does not have an influence on the phase 
of the field significantly[3],[7]. 

F'rom (71) and (72), we reconstruct MHPRF-I and MHPRF-Q which drive the RF 
cavity. 

M-HPRF-I  == H P R F A M P  W S ( H P R F _ P H S )  
M-HPRF-Q = H P R F A M P  - sin(-. 

Figure 5 shows the feedforward loop of the estimate k(t). 
Figure 6 shows the LLRF control system including PID controller, the ripple estimator 

and the feedforward loop of the estimate &t). 

(74) 

(75) 
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Figure 7 through Figure 10 show the simulatioii results of the proposed LLRF Control 
System with adaptive feedforward of the estimate f i( t) .  The ripple is 

R(t) = sin(2nf t ) ,  f = 40kHz.  

The peak-to-peak amplitude error is 0.864% and the peak-to-peak phase error at steady 
state is 0.0474'. As shown in Figure 9, the phase error of the field is greatly reduced(438X 
improvement). 

In order to compare the performance, we also simulate the closed loop system without 
the feedforward of the estimate h(t). Figure 11 and Figure 12 show the results. The peak-to- 
peak amplitude error is 0.922% and the peak-to-peak phase error at steady state is 2.0752'. 

I 

z h 

5 i a  

Figure 5: The Adaptive Feedforward of the Estimate k(t) 
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Figure 6: The LLRF Control System with Adaptive Feedforward of the Estimate h(t) 
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Figure 7: Ripple R(t) and its time derivative d R ( t ) / d t  and their estimates EST_R(t) and 
EST-dR(t)/dt 
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Figure 10: LLRFl and LLRF-Q with feedforward control of the Estimate R(t) 
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Figure 12: Phase of Field, FLDJ'HS without feedforward control 


