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ADAPTIVE FEEDFORWARD OF
ESTIMATED RIPPLE IMPROVES THE
CLOSED LOOP SYSTEM PERFORMANCE
SIGNIFICANTLY

Sung-il Kwon, Amy Regan, Y. M. Wang, and T. Rohlev
RF Technology Group
Accelerator Operations and Technology Division
Los Alamos National Laboratory
P.0.Box 1663
Los Alamos, NM 87544, USA
E-mail: skwon@lanl.gov

Abstract-The Low Energy Demonstration Accelerator(LEDA) being constructed at Los Alamos
National Laboratory will serve as the prototype for the low energy section of Acceleration Produc-
tion of Tritium(APT) accelerator. This paper addresses the problem of LLRF control system for
LEDA. We propose an estimator of the ripple and its time derivative and a control law which is
based on PID control and adaptive feedforward of estimated ripple. The control law reduces the
effect of the deterministic cathode ripple that is due to high voltage power supply and achieves -
tracking of desired set points.

1 Introduction

The low energy demonstration accelerator(LEDA) for the Accelerator Production of Tti-
tinm(APT) is being built at Los Alamos National Laboratory. The primary function of the
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low level RF(LLRF) control system of LEDA is to control RF fields in the accelerating cavity
and maintain field stability within +1% peak to peak amplitude error and 1° peak to peak
phase error{5].

This paper addresses the problem of LLRF control system attenuating the effect of ripple
on the klystron cathode voltage that results from the high voltage power supply ripple. We
propose a PID control law coupled with an adaptive feedforward of ripple estimate. The
purpose of control is to reduce the effect of the deterministic cathode ripple that is due to
harmonics of high voltage power supply[4] and is to achieve tracking of desired set points.
Low frequency ripple does not deteriorate current LLRF control system performance based on
current PID control methodology. As frequency of the ripple increases, however, the effect
of the ripple on the performance increases too. Simulation shows that 0.3% high voltage
power supply ripple yields 1.05° peak to peak phase error at about 72kHz [3] and 1.0% high
voltage power supply ripple yields 1.07° peak to peak phase error at about 20kHz[7]. In
order to suppress the high frequency ripple effect, the proposed controller makes use of a
feedforward control coupled with a ripple estimator. The high voltage power supply ripple is
coupled to the LEDA through a klystron. The effects of the ripple are on both the amplitude
and the phase of a klystron. In [6],[7], the influences of the ripple are modeled by algebraic
equations. A klystron is modeled by a nonlinear state space system[6],{7]. We, first, address
two coordinate transformations of a klystron model. Based on new coordinates, we extract
the ripple equation which is represented by algebraic equations of states of new coordinates.
The ripple estimator proposed in this work is based on the algebraic equation and it estimates
the ripple signal itself and the time derivative of the ripple as well. The estimate of ripple is
feedforwarded to the current LLRF control system whose frame is a PID control. This simple
addition of an adaptive feedforward greatly improves the closed loop system performance.

2 The Klystron Model

We consider a klystron model as shown in as shown in Figure 1.

It has two inputs, LLRFI and LLRF_Q and two output HPRF_I and HPRF.Q. As
intermediate outputs, Klystron has the normalized amplitude N_AMPLITUDE and the
normalized phase N_PHASE.

The first stage of a klystron are linear systems called FILTER AND AMPLIFIER.
Let u;=LLRF. and let u,=LLRF_Q. Let x; and z, be outputs of the systems whose transfer
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function are given by

Xi(s) 1
Ui(s) 3.54e7s+1 (1)
Xa(s) 1
Uax(s)  3.54eTs+1° (2)

In state space, transfer functions (1) and (2) are represented as

1 = —a171 + a1y (3)
Ty = —a1Tg + ajug (4)

+007
where a; = %ﬁ—.

A klystron model has two loop-up tables, called AMPLITUDE SATURATION and
PHASE SATURATION. The input of the two look-up tables is given by

K, 125 [ 2, 2
——9% __(0.01R(t) + 1) . /22 1+ ¢

where R(t) is the ripple, K, is the klystron gain, and K F,, is the maximum klystron power.
R(t), K,, and K P, are specified for a given klystron. For given A, the output of the look-up
table AMPLITUDE SATURATION can be represented by

Ay = L(4) (6)
and the output of the look-up table PHASE SATURATION can be represented by
On = I2(A) (7)

Table 1 and table 2 show data of look-up table AMPLITUDE SATURATION and data
of look-up table PHASE SATURATION, respectively.

The normalized amplitude N_Amplitude, defined by y* and the normalized phase N_Phase,
defined by 3% of the klystron are expressed by

y7 = An=I1L(4) (8)
v o= 9N—I-tan"1( )+3 ﬁ R(t)
= Iz(A)'*"tan_l(‘x_l) 180 - R(t). 9)

In addition, for given y; and ys, HPRF_I and HPRF_Q) are given by

HPRF_I =10y/KP,, - y* - cos(y%) (10)
HPRF Q =10\ KFP, -y¥ . sin(yr). (11)
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A An A An A An A An
-0.1000 | 0.0000 || 0.0700 | 0.0000 | 0.1400 | 0.1900 || 0.5700 | 0.7500
0.7100 | 0.8700 || 0.8600 | 0.9800 f{f 0.9000 | 1.0000 || 0.9100 | 1.0000
0.3122 | 0.4143 || 0.3568 | 0.4724 || 0.4014 | 0.5305 || 0.4461 | 0.5886
0.4907 | 0.6467 || 0.5353 | 0.7048 || 0.5799 | 0.7585 || 0.5910 | 0.7680
1.0000 | 0.9900 || 0.4461 | 0.5886 || 0.6468 | 0.8158 || 0.6691 | 0.8349
0.0446 | 0.0000 || 0.0892 | 0.0521 || 0.6914 | 0.8540 || 0.7360 | 0.8891
0.1338 | 0.1732 || 0.1784 [ 0.2400 || 0.7806 | 0.9218 || 0.8252 | 0.9545
0.2230 | 0.2981 || 0.2676 | 0.3562 || 0.8921 | 0.9961 § 0.9367 | 0.9970
0.3122 | 0.4143 || 0.3568 | 0.4724 || 0.9813 | 0.9921
Table 1. AMPLITUDE SATURATION Data
A On A On A On A On
-0.1000 0.0000 {f 0.0700 | 0.0000 || 0.6400 | -0.0150 || 0.7100 | -0.0350
0.8600 -0.1370 || 0.9000 | -0.2440 || 1.0000 | -0.4770 || 0.0446 | 0.0000
0.4987 -0.0113 || 0.5445 | -0.0125 |} 0.5576 | -0.0128 || 0.6691 | -0.0233
0.0892 | -5.0552e-4 || 0.1338 | -0.0017 || 0.5712 | -0.0132 || 0.7140 | -0.0377
0.1784 -0.0029 || 0.2230 | -0.0040 || 0.8921 | -0.2229 || 0.4549 | -0.0101
0.2676 -0.0052 || 0.3122 | -0.0064 || 0.4483 | -0.0100 || 0.4014 | -0.0087
0.3568 -0.0075 || 0.7885 | -0.0884 || 0.9593 | -0.3821

Table 2. PHASE SATURATION Data

N
ON = Z die_fiA
i=1

L 5

Since the look-up tables have the limited number of data, we need to approximate the
look-up tables by linear or nonlinear curve fitting equations. Considering the characteristic

curve of a klystron, we choose nonlinear equations. We choose curve fitting equations of

AMPLITUDE SATURATION and PHASE SATURATION having the forms

N
Ay = el
=1




where f;, ¢ = 1,2,-.-, N and parameters ¢;, 1 = 1,2,---,N, d;, « = 1,2,---, N are to be
determined.

Higher order of a curve fitting equation may yield more accurate curve fitting equation.
For simplicity, we choose N = 7. Also, in order to reduce the number of coefficients to be
determined, f;, ¢t =1,2,---, N are given in Table 3.

| fo| fa| fo Fs)| fo| fr
05010751100 1.25]|11501|1.751 2.00

Table 3. Exponents of curve fitting equations

By using data given in Table 1 and Table 2, we obtain coeflicients ¢;, 2 = 1,2,---, N
and d;, 2 = 1,2,---, N, of the curve fitting equations (12) and (13). Coefficients ¢; and d;
obtained are given in Table 4. Figure 2 shows plots of data points as given in Table 4, Table
5 and plots of curve fitting equations (12) and (13) whose coefficients, f;, : = 1,2,---, N,
¢, t=12,---,N,d;; 1 =1,2,---,N, are giveh in Table 3 and Table 4 with appropriate
domain of A.

¢ | 0.05680429876058e+006 || d; | -0.14120739315590e+-005
¢ | -0.39264357353961e+006 || do | 0.83084262097993e4-005
c3 | 1.12805594234952e+006 || ds | -2.01778226478032e+005
cq | -1.72418545240933e+006 | dy | 2.58441412755651e+005
cs | 1.47878241712872e+4006 | ds | -1.83680595711727e+-005
cs | -0.67483667002473e+4006 || ds | 0.68453128529433e+005
cz | 0.12802296547207e+-006 || d7 | -0.10399245992504e+005

Table 4. Coefficients of curve fitting equations

Plﬁgging (5) to (12) and (13), curve fitting equations (12) and (13) are reduced to

N
Ay = 3 cie OVt (14)
=1
by 2 2
Oy =" die~Fre®/aTt] (15)
=1
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where

w(t) = ﬁfz_a(o.om(t) +1)+%, (16)

The normalized amplitude y* and the normalized phase y¥ of the klystron are
N
v o= Aw=)oe OV (17)
v o= On+ tan_l( ) +3- 180 - R(¢)

= Z die_f"w(t) Vel | tan” ( ) +3- - R(t). (18)
=1

180
In addition, for given y* and y%, HPRF_I and HPRF_Q are given by

HPRF_I =10y/KP,, - y¥ - cos(y) (19)
HPRF_Q =10/KP,, yl -sin(yk). (20)

2.1 The Klystron in z-coordinate

Consider the normalized amplitude y* and the normalized phase y¥ as given in (17) and
(18).
Let

21 =/ 3 + 3 (21)

T
zp = tan~}(2). (22)
Ty .
We consider a transformation from z-coordinate to z-coordinate. In z-coordinate, the state

equations (3) and (4) are reduced to

zZ1=—a11 + alcos(zg)ul + a15in(Z2)U2 (23)
22 = - ___S'L'I’Z(Zz)UI + az ——COS(ZZ) Us. (24)
21 2

Also, the curve fitting equations (12) and (13) are reduced to

N
= Z ;e fivt)z (25)
=1
N
=3 d;e~fiv®a (26)
i=1




(a) Amplitude saturation curve fitting
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Figure 2: Curve fittings




The normalized amplitude y¥ and the normalized phase ¥ are represented by

N

yr =Y e (27)
i=1
N P

ys = die7Fm®m o + 3. — - R(t). (28)
o 180

Note that the exponents of the first term of (27) are the same as the exponents of the first
term of (28). Also, note that the phase y¥ is linear with respect to z.

2.2 The Klystron in z-coordinate

Consider the Klystron equation in z-coordinate.

21 = —a121 + a1cos(zo)ur + ay5in(z2)us (29)
29 = —-a1ﬂ(£%)-ul + alf_o_s@zu,z. (30)
4| 2
and
N
y{c — qu—fiw(t)zl (31)
i=1
N T
yg — Zdie—fi‘W(t)Zl +22+3- —- R(t) (32)
p 180
where
w(t) = M(0.01R(¢) + 1)*%
K
M=—2 _.
10v/KP,"
Define
Z1 = (0.01R(%) + 1)%2 (33)
T
= . —— - R(}). 34

The Klystron is expressed in Z-coordinate by

?l = _6121 2F bzll (E, R(t)a R(t))ul + bz12(§, R(t)a R(t))'UQ + Ezl (R(t)’ R(t)) (35)




%o = by (2, R(), R(£))u1 + by22(Z, R(2), R(t)Yus + Ex2(R(2), R(2)) (36)

2
N S—
yp = ce A (37)
i=1
N —
b = Z die” M= 17, (38)
=1
where
@ = a; — 0.0125(0.01R(t) + 1)~ R(¢) (39)
bonn(%, B(t), B(t)) = a1(0.01R(t) +1)"Peos(z2 - 3 = - R(Y)),
boa2(Z, B(E), R(£)) = a1(0.01R(£) + 1) Psin(z, — 3- % - R(®),
ben (2, RO, () = —ay Z2E =2 s B,
1
) 5, — 3.2 . R(t
bz, RO, () = o0 2222 O
1

EA(R(t), R(2)) =0,

E(R(t), R(t) = 3- 75 R ().

Note that B,(z, R(t), R(t)) is invertible for any nonzero ;. In Z-coordinate, state equations -
are dependent upon the ripple R(t) but the output equations are independent upon the
ripple R(t).

Define
A,(R(t), R(t) = [ _Oa ' g } : (40)
z=[f1], u=[“} (41)
zZ9 U2
E.(R(t), R(t)) = [ _0 A) } ; (42)
and
— [ bz RELE@) bz RE), R())
A B RO~ [ bz, OB banm BOLRE) |
Then, (39) and (40) are represented by
% = A,(R(t), R(t))Z + B.(z, R(t), B(t))u. + E:(R(2), R(?))- (44)
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3 The RF cavity

Figure 3 shows the RF cavity model.

RF cavity has four inputs, HPRF.I, HPRF_Q, BEAM.I, and BEAM_Q, two outputs,
CAV_FLD_ and CAV_FLD_Q.
Let u§=HPRF_I, u§=HPRF_Q, u§=BEAM._I, u§=BEAM_Q and let y$=CAV_FLDI,
y5=CAV_FLD_Q. Then, the RF cavity can be expressed in the state space form.

z = Az + Bu° (45)
y°=Cxzx (46)
where
a— e b—de 0 0 0 0 A e |
1 0 0 0 0 0 0 0
—5—10c1 —%02 a b 0 0 31'603 %64
0 0 1 0 0 0 0 0
A= 1 1 1 ’
0 0 —-%Cg, —504 a-—-'s—o-cl b—%-62 0 0
0 0 0 0 1 0 0 0
0 0 —EC;; _5604 5001 —%02 a b
i 0 0 0 0 0 0 1 0 |
_% 0 —2eta 0 |
0 O 0 0
% 0 —2eta 0
B 0 (2) 0 0 ,
0 % 0 —2eta
0 O 0 0
0 % 0 —2eta
| 0 O 0 (U
c_la @00 00 - —
o o c3 ¢ ¢ ¢ O 0
2
a= ——
-
1
b= —(5 + KDW?)
T
KR
C = ——




_KR,1 KDW

2 T (;_ 2KQ0)
KR
CS_2T-KQ0
KR |1
cy = 2”_I{Qo(;—1-2KDVV~KQO).

Parameters of RF cavity are given in [6].
Also, FLD_I and FLD_Q of the cavity Field Sample System are given by

FLD.I =FA-cos(GD)-y; — FA- sin(GD) - y§ (47)
FLD Q= FA.sin(GD) -y; + FA-cos(GD) - y5 (48)

and FLD_AMP and FLD_PHS of the cavity Field Sample System are given by

FLD_AMP = \/[FLD_I? + FLD Q?
FLDQ,
FLDI

FLD_PHS = tan™%(
where

FA = 0.00037809

T
GD = 80 (—0.039455).

The RF cavity as given in (45), (46) is Hurwitz stable and is inverse stable as well.

4 RIPPLE Estimation

The purpose of the low level RF control(LLRF) system is to maintain the field stability
within +1.0% amplitude and 1.0° phase. The present LLRF control system is based on
PID control scheme(4],[5],[6]. As has been investigated in [3],[7], the high voltage power
supply ripple has influence on the LLRF PID control system. Low frequency ripple does not
deteriorate the performance of the closed loop system seriously but high frequency ripple
deteriorates the performance of the closed loop system seriously.

For the remedy to the poor performance of the PID controlled LLRF control system due
to the high frequency high voltage power supply ripple, we propose a feedforward control of
the estimate of the ripple. The feedforward improves the performance significantly([1].

In this section, we address the ripple estimator which estimates the ripple R(t) and its
time derivative %9.

12
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Figure 3: A RF cavity Model and a cavity Field Sample System
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We first consider equations as given in (21) and (22).

zg = tan‘l(—{g (50)
51
where z; and z, satisfy
I, = —a1x1 + a1y (51)
To = —ajT2 + aius (52)

and u;=LLRF., uo=LLRF_Q. Given LLRF_I and LLRF.Q, we can obtain z; and 2z, by
solving differential equations (51), (52) and algebraic equations (45), (46).
Second, we consider equations given by (19) and (20).
HPRF I =10y KPy, -y* - cos(y) (53)
HPRF Q = 10y/KP,, -y - sin(yF). (54)

From (53) and (54), for given HPRF.I and HPRF_Q), we obtain the normalized amplitude
y* and the normalized phase y¥ of the klystron by solving algebraic equations.

k1 2 2
w=1g \/_KTm\/HPRF_I + HPRF_Q (55)
_, HPRF.Q
k __ 1
v2 = tan (gpRFT - (56)

Third, we consider the klystron model as given in Figure 1. In Figure 1, the normalized
amplitude of the klystron is the output of the look-up table AMPLITUDE SATURA-
TION. The input of the look-up table AMPLITUDE SATURATION is given by

K,
A = W(OOIR@) -+ 1)1'25 4l (57)
in z-coordindte, or
K
A=—"92 > 58
10VK P, (58)

in Z-coordinate. Also, there exists a region of (A, y¥) pairs where there is an inverse look-up
table of the look-up table AMPLITUDE SATURATION. This region can be extracted
from data given in Table 1 and Table 2. As in the case of AMPLITUDE SATURATION,
we obtain the curve fitting equation for the inverse look-up table for AMPLITUDE SAT-
URATION. Since, in controller design, we make use of the output equations (31) and (32)

14




or (37) and (38) which are based on the curve fitting equation, in order to obtain the curve
fitting equation for the inverse look-up table for AMPLITUDE SATURATION within
the region of invertibility, we use the output equation as given in (37). Based on the gen-
erated data pairs from (37) where the selected data of y* and Z; guarantee invertibility, we

obtain the curve fitting equation as follows.
N v Zok
= ce i (59)
i=1

where N = 7, coefficients f?, i =1,2,---, N are given and the coefficients ¢, i = 1,2,---, N
are obtained by applying the optimization toolbox of Matlab/Simulink. Table 5 gives the
data of the coefficients of the curve fitting. The nonlinear least square algorithm in Mat-
lab/Simulink guarantees 1% accuracy of the curve fitting.

F21050 || & | 246379.701273592
f2 1 0.75 || & | -1633291.85956396
f2 100 & | 4505197.57531207
f2 | 125 | = | -6618176.95439792
F2 1 1.50 || cz | 5460679.73050349
f2 1 1.75 || ¢z | -2399431.11098975
721200 [ 2 | 438643.015066461

Table 5. Coefficients of Curve fitting equation for Inverse AMPLITUDE
SATURATION

The estimate of the ripple R(f) and the estimate of the time derivative QZ% of the ripple

R(t) are obtained by considering the klystron system both in z-coordinate and Z-coordinate.

The relation between z-coordinate and Z-coordinate is given by

Z1 = (0.01R(¢) + 1)1z, (60)
Z=2+3 1%0 - R(t). (61)

Whenever z; and z, are obtained from (51) and (52), then we can obtain z, by using (49)
and (50), and also whenever y¥ is obtained from (55), we can obtain Z; by using (59). For

15




given z; and %), we can obtain the estimate R(t) of the ripple R(t) by solving algebraic
equation (60).

Z1(t)
(1)

R(t) = 100((Z2)08 — 1.0). (62)

Also, the estimate R(t) of time derivative R(t) of the ripple R(t) is obtained by differentiation
of R(t).

1]
A
R
—()
N
0 :IHdH_@
L)
| JddH @

[ )
|
0 NAYHSNVHLATY

RENaE A
=IAYEQ

REP
l
N ESNLATH

OBL-xL)
=AVHQ

0 2
(D= o=
0

()¢

Figure 4: The ripple estimator
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5 Feedforward Control of the estimate R(t)

- The work in [7] shows that the AMPLITUDE DEPENDENCE of the high voltage
power supply ripple is not seriously effective to the performance of tracking set points of
the LLRF control system. The main effect of the high voltage power supply ripple is due to
PHASE DEPENDENCE.

In this section, we propose a feedforward control of the estimate R(f). The feedforward
control improves the tracking performance of the field phase significantly.
We consider the output equations as given in (27), (28) and (55), (56).

N
yp =y e fein (63)
i=1
N ™
vh= 3 die O 4 25 13- T R(Y) (64
= 180
1 .
ke r2 2
= m\/HPRFJ. + HPRF.Q ~(65)
HPRF.Q
k_ g —1
where
w(t) = M(0.01R(t) + 1)1,
Also, the amplitude and the phase of the high power RF(HPRF) amplifier are
HPRF_AMP = \/[HPRF_I> + HPRF Q? (67)
HPRF Q
= tan™ ! (==opr)- 68
HPRF_PHS = tan (HPRF_I) (68)

In (64), the normalized phase 3% is affected by the PHASE DEPENDENCE term

3 1a5 " R- (69)

When R(t) is estimated within a satisfactory accuracy, a feedforward control loop from the
estimate R(2) to y5(¢) can attenuate the effect the high voltage power supply ripple R(t) to
the phase of the klystron and so the phase of field.

Define a feedforward loop gain from the estimate R(t) as

T
—3. — » 70
3 T80 (70)

» 17




and consider HPRF_AMP, HPRF_PHS defined by

HPRF_AMP = HPRF_AMP (71)
HPRF_PHS = HPRF_PHS — 3. - 8 5 - R(#). (72)

Plugging (68), (66), and (64) into (72), we obtain

e
HPRF_PHS = 180 - R(%)
N
— —fiw(®)=
i;dze +22+3- 180 - R(t) — 180 - R(t)
N A
= Sidie 0 45 4 3. Z(R@) - R(E). (73)

180

=1
If there exists a bounded function €(t) < 1.0 such that

R()

R(t I < (t)7 Vit 2 tO,

then, we can attenuate the effect of the high voltage power supply ripple R(t) to the phase
of the field. The estimate R(t) as given in (62) is defined by the solution of an algebraic
equation (60). z; is given by (49) whose variables are the state of the exactly same system
of FILTER AND AMPLIFIER of a klystron. Z; is given by the curve fitting equation
(59) of the lookup table of inverse AMPLITUDE SATURATION. The accuracy of the
estimate R(t) is determined by the curve fitting equation (59). The nonlinear least square
algorithm used for the curve fitting guarantees 1% accuracy.

Of course, we have to consider the AMPLITUDE DEPENDENCE represented by
(0.01R(t) + 1)*?3(1%ripple). However, this amount does not have an influence on the phase
of the field significantly[3],[7].

From (71) and (72), we reconstruct M_LHPRF_I and M_HPRF_Q which drive the RF

cavity.

M_HPRF_[ = HPRF_AMP - cos(HPRF_PHS) (74)
M_HPRF_.Q = HPRF_AMP - sin(HPRF_PHS). (75)

Figure 5 shows the feedforward loop of the estimate R(t). _
Figure 6 shows the LLRF control system including PID controller, the ripple estimator

and the feedforward loop of the estimate R(¢).
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Figure 7 through Figure 10 show the simulation results of the proposed LLRF Control
System with adaptive feedforward of the estimate R(t) The ripple is

R(t) = sin(2x ft), f=40kHz.

The peak-to-peak amplitude error is 0.864% and the peak-to-peak phase error at steady
state is 0.0474°. As shown in Figure 9, the phase error of the field is greatly reduced(438%
improvement).

In order to compare the performance, we also simulate the closed loop system without
the feedforward of the estimate R(t). Figure 11 and Figure 12 show the results. The peak-to-
peak amplitude error is 0.922% and the peak-to-peak phase error at steady state is 2.0752°.

N9
(HVAHO4033

AIRYO M

Figure 5: The Adaptive Feedforward of the Estimate R(t)
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Figure 6: The LLRF Control System with Adaptive Feedforward of the Estimate R(%)
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Figure 8: Amplitude of Field, FLD_AMP with feedforward control of the Estimate R(t)
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Figure 9: Phase of Field, FLD_PHS with feedforward control of the Estimate R(t)
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Figure 10: LLRF_I and LLRF_Q with feedforward control of the Estimate R(t)
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Figure 11: Amplitude of Field, FLD_AMP without feedforward control
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Figure 12: Phase of Field, FLD_PHS without feedforward control
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