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Abstract. We carry out a performance study using the Cray T3D paral- 
lel supercomputer to illustrate some important features of this machine. 
Timing experiments show the speed of various basic operations while 
more complicated operations give some measure of its parallel perfor- 
mance. 

1 Introduction 

Recently, high-performance computers have become an important tool for ob- 
taining the solution of complex scientific problems. In spite of the enormous 
advances in performance of machines and method, they fall short of providing 
computational solutions to many important applications. To successfully solve 
these problems, one needs an increase in computational power of several orders 
of magnitude. Since the speed of the fastest processor already approaches the 
limits set by the laws of physics, such an increase will only be feasible through 
the integration of hundreds or thousands of powerful processors into a massively 
parallel computer. In principle, there is no limit to the aggregate speed of par- 
allel computers, although the growing communication requirements limit the 
useful size for practical computer systems. Parallel computers are also superior 
to conventional systems if one considers their cost-effectiveness-a parallel ma- 
chine employing off-the-shelf processors is usually much less expensive than a 
sophisticated serial computer. 

The basic strategy for programming a massively parallel computer system 
is to assign the work to the appropriate data locations while keeping all the 
processors busy with the overall goal of solving the problem in the shortest 
possible time. Thus, the algorithm chosen must be highly local and parallel. The 
Cray T3D parallel supercomputer system is based upon the multiple instruction 
multiple data (MIMD) multiprocessor computational model. It also supports the 
single program multiple data (SPMD) and the single instruction multiple data 
(SIMD) computational models. 

The objective of this research is to become acquainted with the Cray T3D 
computer and some of the modes of parallel programming available on it. To 
do this, we perform some numerical experiments and analyze their performance. 
In the report by Nallana [2], additional details concerning the Cray T3D are 
discussed. 

http://kincaidQcs.utexas.edu


2 Results 

Following the procedures outline in [l], we present the results of some example 
programs run on the Cray T3D. While this computer supports several styles of 
parallel programming. we are mainly interested in data sharing and work shar- 
ing. Data sharing distributes data, such as an array, over the memories of the 
processing elements (PES) using mostly implicit communication. The goal is to 
let as many PES as possible perform operations on their own data rather than 
going off to another PE’s memory to get the data since operations on local data 
are faster than those on remote data. Work sharing distributes the statements 
of the application program among the computer’s PES with the goal of exe- 
cuting them in parallel. For instance, iterations of a do-loop can be distributed 
among the processors. Work sharing provides a combination of implicit and ex- 
plicit communication. We consider examples divided into two classes-timing 
and numerical. 

2.1 Method of Timing an Operation 

We begin with a discussion of a procedure for timing elementary operations. 
The basic idea is to measure the time t that the computer takes to do a large 
number n of the same operation so that the individual operation time is given 
by t/n.  First, we set the initial time t i  before doing any operation, then we 
perform the operation a large number (ri) of times. We measure the new time 
t 2  after this computation. These two function calls return the floating-point 
value of the real-time clock (in clock ticks). The difference between the two 
timings ( t2  - ti) is the elapsed time. This elapsed time includes the overhead 
for the loop control arithmetic which should not be included in the operation 
time since it is just an artifact of the technique we use to measure the time. 
To remove the loop overhead, we time the operation once again. This time we 
start with time t3,  perform the computation again with a different number (r2) 
of repetitions, and measure the new time t4. Since the overhead for both do- 
loops is the same, the time for the loop control arithmetic is cancelled out by 
the expression ( ( t2  - ti) - (t4 - t3)) and we store it in dtime. Hence, the 
variable dtime represents the elapsed time for nrep*dup executions of the state- 
ment containing the operation. Here nrep is the number of repetitions in the 
timing loops. The variable dup is the difference between r2  and ri which is 
the effective number of operations timed. We use ( r i ,  r2)  as either (16, 8) or 
(2, 1). We repeat this procedure nsamp times and collect dtime into sumt ime .  
Expression sumt ime  contains the time for performing (nsamp * nrep * dup) rep- 
etitions of the operation. Thus, the average time for one execution of the opera- 
tion is given by sumt i m e  divided by (nsamp*nrep*dup). Apart from calculating 
the average operation time, the code also calculates the average rate of exe- 
cuting the statement in millions of floating-point operations (mf lops) which 
is (number of floating-point operations) divided by [(average operation time) * 
lo6]. In the following tables, all timing results are given in seconds. 



2.2 Timing Examples 

Arithmetic Operations. Using the procedure outline above, we begin by tim- 
ing the basic arithmetic operations of addition, multiplication, and division. 
Values of the scalar quantities x and y used are 0.0 and 0.1, respectively. Here 
(rl r2) = (16 2 ) .  We present the results in Table 1. 

Table 1. Arithmetic operations: x = x op y 

arep nsamp dUP 
16384 10 8 

op avg. op. time mflops X 

+ 3.97073-08 25.18 1.0000601 
* 3.98163-08 25.12 O.OOOOE+OO 
/ 4.16773-07 2.40 0.0000E+OO 

Serial Dot Product. This example calculates the dot product of two vectors 
(dp = xTy = Cy='=l xi  * yi) using the routine SDOT from the Basic Linear Algebra 
Subprograms (BLAS). In the code, each of the vector elements xi and y; are 
assigned the value 1.1. Here (rl, r2) = (16, 2). The average operation time 
is for a single dot-product operation and we count 2n floating-point operations 
per dot-product operation. The results are given in Table 2. 

Table 2. Serial Dot Product 
n nrep nsamp 

16384 50 10 

avg. op. time mflops dP 
1.22473-03 26.8 1.98253+04 

Parallel Dot Product. This example calculates the dot product of two vectors 
but the difference between it and the routine discussed above is that in this one 
the computation is distributed over p nodes-each doing approximately l/p of 
the computation. Hence, each node computes a portion of the dot product 

X i  * yi + 2i+1 * ~ i + 1  + . . . + t i+k * Yi+k 

where k x n / p  and n is the length of the vector. We use the Cray MPP Fortran 
programming model knows as CRAFT and use some compiler directives such 

(1) 



Fig. 1. Speed-up (Table 3) 

Table 3. Parallel Dot Product 
n nrep nsanp 

16384 50 10 
P 

1 
2 
4 
8 

16 
32 
64 

128 
256 

avg. op. time 
1.22763-03 
6.22603-04 
3.21083-04 
1.69213-04 
9.3824005 
5.62043-05 
3.71743-05 
2.7604005 
2.32873-05 

mflops 
26.7 
52.6 

102.1 
193.6 
349.2 
583.0 
881.5 

1187.1 
1407.1 

dP 
1.98253+04 
1.98253+04 
1.9825Ef-04 
1.98253+04 
1.98253+04 
1.98253+04 
1.98253+04 
1.98253+04 
1.98253+04 

as CDIR$ SHARED V(:BLOCK), CDIR$ DOSHARED (K) ON V(K), CDIR$ MASTER, 
and CDIR$ BARRIER. The first one relates to the data sharing and it distributes 
the data among the memories of the various PES ensuring that each processor 
works on its own data. The second one relates to work sharing and it causes 
the execution of different iterations of the loops to be distributed over different 
PES with the goal of executing then in parallel. Communication among the PES 
is mostly implicit. A subroutine call is used to force shared-teprivate coercion 
which allows one to call the BLAS routine SDOT on the local data. Here (rl, 
r2) = (2, I). The results are given in Table 3. 

Next in Table 4, we not only double the number of processors used but also 
double the problem size to give some indication of the scalability. 

Rather than calling the routine SDOT, if we had written the dot-product 
calculation in Fortran, then various programming tricks would be necessary to 
obtain optimal performance on the Cray T3D; e.g., a four-way unrolled loop plus 
read-ahead would improve the number of cache hits. However, this version runs at 
approximately 15 mflops per node while the SDOT version goes at approximately 
26 mf lops per node. 



Fig. 2. Speed-up (Table 4) 

Table 4. Parallel Dot Product: Scalability 

nrep nsamp 
50 10 

P n avg. op. time mf lops dP 
1 16384 1.22763-03 26.7 1.98253+04 
2 32768 1.2281343 53.4 3.96493+04 
4 65536 1.22883-03 106.7 7.92993+04 
8 131072 1.22843-03 213.4 1.58603+05 

16 262144 1.2281603 426.9 3.17193+05 
32 524288 1.22833-03 853.7 6.34393+05 
64 1048576 1.22813-03 1707.7 1.26883+06 

128 2097152 1,2284343 3414.5 2.53763+06 
256 4194304 1.22833-03 6829.4 5.07513+06 

Alternatively, one could use the Parallel BLAS (PBLAS) dot-product routine 
PDDOT from ScaLAPACK. The PBLAS are written as an internal component of 
this library so little effort was made to simplify their use. Also, the PBLAS is not 
a stand alone library and they require the use of an additional set of routines 
(BLACS) to handle the data distribution and communication. Consequently, 
their arguments are a bit difficult to understand if viewed only in the context of 
the PBLAS. Fortunately, an example of a dot-product program is available a t  
the URL site:http://wuu.netlib.org/blacs/BLACS/Ex~ples.html 

Now we present an interesting numerical result. When timing a Fortran par- 
allel code for computing the distributed dot product, we move the global sum 
to the end so that it is outside the timing loops. Hence, the code does just 
the multiplications and additions on p processors and, consequently, it is ideally 
parallelizable since the global sum communications are not timed. (Assuming an 
efficient global sum, the multiplications and additions should be the most time 
consuming part of the calculations.) The results are given in Table 5. We note 
that as the number of processors increases by powers of 2 the relative speed-up 



Fig. 3. Speed-up (Table 5) 

Table 5. Parallel Dot Product: Golbal Sum Not Timed 
n ==P nsamp 

16000 50 10 
P 
1 
2 
4 
8 

16 
32 
64 

128 
256 

avg. op. time 
3.2760603 
1.63353-03 
8.1685604 
4.08753-04 
2.11923-04 
4.93093-05 
1.99393-05 
1.00343-05 
4.9701E-06 

mflops 

9.8 
19.6 
39.2 
78.3 

151.0 
649.0 

1604.9 
3189.3 
6438.5 

dP 
1.93603+04 
1.93603+04 
1.93603+04 
1.93603+04 
1.93603+04 
1.93603+04 
1.93603+04 
1.9360E+04 
1.93603+04 

from p - 1 to p processors, Tp/Tp--l, is approximately 2 for all cases except for 
32 and 64 processors which are 4.3 and 2.43, respectively. Consequently, we ob- 
tain superlinear speed-up as shown in Fig. 3. The reason for this is that as the 
number of processors increases the amount of work per node decreases until at 
32 processors the data just fits into high-speed cache. The data size is 2 x 16000 
and on 32 PES the data fits in the 8 Kbyte = 1 Kword cache: 32000/32 = 1000. 
So for 32 PES and above, the code is running from cache at approximately 20 
mf lops while for least than 32 PES it is running from memory at approximately 
10 mflops. 

2.3 Numerical Examples 

Next, we discuss the results of some parallel numerical examples; namely, poly- 
nomial evaluation and numerical integration. 

Polynomial Evaluation. The first numerical code computes a short table 
of the values of the polynomial x3 + 2x2 + 32 + 4 for equally spaced argument 



values on the interval [0,1]. Here all the processors share the computation for each 
argument. In this program, the argument values are dependent on the number of 
processors being used. Here we exploit both the data-sharing and the do-shared 
loops of the work-sharing method of programming. Special compiler directives 
CDIR$ SHARED P J A L U E ,  CDIR$ DOSHARED, and CDIR$ MASTER are used to assign 
the shared data and direct the parallel do-loops utilizing this data. From a sample 
output of this program with eight processors, we obtain the results in Table 6. 

Table 6. Parallel Polynomial Evaluation 

z Value 
0. 
0.14285714285714285 
0.2857142857142857 
0.42857142857142855 
0.5714285714285714 
0.71428571428571419 
0.8571428571428571 
1. 

Polynomial Value 
4. 
4.4723032069970845 
5 A4373 17784256557 
5.73 17784256559765 
6.5539358600583082 
7.5276967930029146 
8.6705539358600578 
10. 

Numerical Integration. This example computes the value of the integral 

X I 2  
sin3(x)dx 

using Simpson’s rule with a fixed number of partition points. The exact value 
of the integral is J;l2 sin3 z dx = -$ cos z(sin2 z + 2)1, - $. In this example, 
the work is shared by all the nodes with each doing the same amount of work. In 
particular, each node is assigned to work on a different subinterval of the interval 
of integration obtaining a portion of the integral value. In the code, the outer 
do-loop uses the number of processors assigned to determine the limits for the 
inner d-loops which are executed in parallel. Contributions from each node are 
added as soon as they become available. The compiler directive CDIR$ MASTER 
is used to add all the contributions on a single processing element. In the results 
in Table 7, the eight processors finish in order 1, 6, 3, 4, 7, 5, 2, 0. 

* I 2  - 

3 Summary 

In doing performance tests, one has to think about the behavior of the cache. For 
example when putting code inside a do-loop for timing purposes, sometimes the 
vector lengths may exceed the cache size and result in a cache miss while other 
times they may be totally within the cache. If there is a cache misalignment 



Table 7. Parallel Simpson's Rule 

Number of processors = 8 
Number of panels = 80 
Lower l i m i t  = 0,  Upper l i m i t  = 1.5707963267949001 
Value of the Integral = 0.66666666635697946 

there could be a thmshing of the cache. Since any of these situations may effect 
the timing results, one has to be very careful t o  determine what actually is going 
on before trying to analyze the results. 

Our experience with CRAFT is that there are definite tricks that need to 
be used; e.g., shared-to-private coercion. The processors used in the T3D have 
limited memory bandwidth so the results can be disappointing using CRAFT. 
On the other hand, the new Gray T3E preserves the macroarchitecture and 
programming environment of the Cray T3D as well as having faster processing 
and communication speeds which are coupled with a larger memory. With the 
Gray T3E, the memory bandwidth is increased and there is a secondary cache 
with a three-way associativity. Moreover, the CRAFT model is simplified to 
improve its performance. 

Comparing the results from the serial and the parallel dot-product routines, 
we come to the conclusion that parallel computation gives much improved per- 
formance. This is clearly evident from the speed-up graphs. This reiterated the 
effectiveness of parallelism and of the Gray T3D supercomputer, in particular. 
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