
A CRAY T3D PERFORMANCE STUDY

by

Asha Nallana and David R. Kincaid

CNA-283 May 1996

To be presented at the “First Workshop on Numerical Analysis and Applications,”
Rousse, Bulgaria, June 24-27, 1996.

Portions of this document may be illegible
in electronic image products. Images are
produced from the best avaiiable original
document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or process disclosed, or represents
that its usc would not infringe privately owned rights. Reference herein to any spe-
cific commercial product, process, or service by trade name, trademark, manufae,
turer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendktion, or favoring by the United States Government or any agency thereof.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof:

A Cray T3D Performance Study

Asha Nallana' and David R. Kincaid2

Interact, Inc., 9390 Research Blvd., Austin, TX 78758, USA
Center for Numerical Analysis, The University of Texas at Austin,

Austin, TX 78713-8510, USA kincaidQcs.utexas.edu

Abstract. We carry out a performance study using the Cray T3D paral-
lel supercomputer to illustrate some important features of this machine.
Timing experiments show the speed of various basic operations while
more complicated operations give some measure of its parallel perfor-
mance.

1 Introduction

Recently, high-performance computers have become an important tool for ob-
taining the solution of complex scientific problems. In spite of the enormous
advances in performance of machines and method, they fall short of providing
computational solutions to many important applications. To successfully solve
these problems, one needs an increase in computational power of several orders
of magnitude. Since the speed of the fastest processor already approaches the
limits set by the laws of physics, such an increase will only be feasible through
the integration of hundreds or thousands of powerful processors into a massively
parallel computer. In principle, there is no limit to the aggregate speed of par-
allel computers, although the growing communication requirements limit the
useful size for practical computer systems. Parallel computers are also superior
to conventional systems if one considers their cost-effectiveness-a parallel ma-
chine employing off-the-shelf processors is usually much less expensive than a
sophisticated serial computer.

The basic strategy for programming a massively parallel computer system
is to assign the work to the appropriate data locations while keeping all the
processors busy with the overall goal of solving the problem in the shortest
possible time. Thus, the algorithm chosen must be highly local and parallel. The
Cray T3D parallel supercomputer system is based upon the multiple instruction
multiple data (MIMD) multiprocessor computational model. It also supports the
single program multiple data (SPMD) and the single instruction multiple data
(SIMD) computational models.

The objective of this research is to become acquainted with the Cray T3D
computer and some of the modes of parallel programming available on it. To
do this, we perform some numerical experiments and analyze their performance.
In the report by Nallana [2], additional details concerning the Cray T3D are
discussed.

http://kincaidQcs.utexas.edu

2 Results

Following the procedures outline in [l], we present the results of some example
programs run on the Cray T3D. While this computer supports several styles of
parallel programming. we are mainly interested in data sharing and work shar-
ing. Data sharing distributes data, such as an array, over the memories of the
processing elements (PES) using mostly implicit communication. The goal is to
let as many PES as possible perform operations on their own data rather than
going off to another PE’s memory to get the data since operations on local data
are faster than those on remote data. Work sharing distributes the statements
of the application program among the computer’s PES with the goal of exe-
cuting them in parallel. For instance, iterations of a do-loop can be distributed
among the processors. Work sharing provides a combination of implicit and ex-
plicit communication. We consider examples divided into two classes-timing
and numerical.

2.1 Method of Timing an Operation

We begin with a discussion of a procedure for timing elementary operations.
The basic idea is to measure the time t that the computer takes to do a large
number n of the same operation so that the individual operation time is given
by t/n. First, we set the initial time t i before doing any operation, then we
perform the operation a large number (ri) of times. We measure the new time
t 2 after this computation. These two function calls return the floating-point
value of the real-time clock (in clock ticks). The difference between the two
timings (t2 - ti) is the elapsed time. This elapsed time includes the overhead
for the loop control arithmetic which should not be included in the operation
time since it is just an artifact of the technique we use to measure the time.
To remove the loop overhead, we time the operation once again. This time we
start with time t3, perform the computation again with a different number (r2)
of repetitions, and measure the new time t4. Since the overhead for both do-
loops is the same, the time for the loop control arithmetic is cancelled out by
the expression ((t2 - ti) - (t4 - t3)) and we store it in dtime. Hence, the
variable dtime represents the elapsed time for nrep*dup executions of the state-
ment containing the operation. Here nrep is the number of repetitions in the
timing loops. The variable dup is the difference between r2 and ri which is
the effective number of operations timed. We use (r i , r2) as either (16, 8) or
(2, 1). We repeat this procedure nsamp times and collect dtime into sumt ime .
Expression sumt ime contains the time for performing (nsamp * nrep * dup) rep-
etitions of the operation. Thus, the average time for one execution of the opera-
tion is given by sumt i m e divided by (nsamp*nrep*dup). Apart from calculating
the average operation time, the code also calculates the average rate of exe-
cuting the statement in millions of floating-point operations (mf lops) which
is (number of floating-point operations) divided by [(average operation time) *
lo6]. In the following tables, all timing results are given in seconds.

2.2 Timing Examples

Arithmetic Operations. Using the procedure outline above, we begin by tim-
ing the basic arithmetic operations of addition, multiplication, and division.
Values of the scalar quantities x and y used are 0.0 and 0.1, respectively. Here
(rl r2) = (16 2) . We present the results in Table 1.

Table 1. Arithmetic operations: x = x op y

arep nsamp dUP
16384 10 8

op avg. op. time mflops X

+ 3.97073-08 25.18 1.0000601
* 3.98163-08 25.12 O.OOOOE+OO
/ 4.16773-07 2.40 0.0000E+OO

Serial Dot Product. This example calculates the dot product of two vectors
(dp = xTy = Cy='=l xi * yi) using the routine SDOT from the Basic Linear Algebra
Subprograms (BLAS). In the code, each of the vector elements xi and y; are
assigned the value 1.1. Here (rl, r2) = (16, 2). The average operation time
is for a single dot-product operation and we count 2n floating-point operations
per dot-product operation. The results are given in Table 2.

Table 2. Serial Dot Product
n nrep nsamp

16384 50 10

avg. op. time mflops dP
1.22473-03 26.8 1.98253+04

Parallel Dot Product. This example calculates the dot product of two vectors
but the difference between it and the routine discussed above is that in this one
the computation is distributed over p nodes-each doing approximately l/p of
the computation. Hence, each node computes a portion of the dot product

X i * yi + 2i+1 * ~ i + 1 + . . . + t i+k * Yi+k

where k x n / p and n is the length of the vector. We use the Cray MPP Fortran
programming model knows as CRAFT and use some compiler directives such

(1)

Fig. 1. Speed-up (Table 3)

Table 3. Parallel Dot Product
n nrep nsanp

16384 50 10
P

1
2
4
8

16
32
64

128
256

avg. op. time
1.22763-03
6.22603-04
3.21083-04
1.69213-04
9.3824005
5.62043-05
3.71743-05
2.7604005
2.32873-05

mflops
26.7
52.6

102.1
193.6
349.2
583.0
881.5

1187.1
1407.1

dP
1.98253+04
1.98253+04
1.9825Ef-04
1.98253+04
1.98253+04
1.98253+04
1.98253+04
1.98253+04
1.98253+04

as CDIR$ SHARED V(:BLOCK), CDIR$ DOSHARED (K) ON V(K), CDIR$ MASTER,
and CDIR$ BARRIER. The first one relates to the data sharing and it distributes
the data among the memories of the various PES ensuring that each processor
works on its own data. The second one relates to work sharing and it causes
the execution of different iterations of the loops to be distributed over different
PES with the goal of executing then in parallel. Communication among the PES
is mostly implicit. A subroutine call is used to force shared-teprivate coercion
which allows one to call the BLAS routine SDOT on the local data. Here (rl,
r2) = (2, I). The results are given in Table 3.

Next in Table 4, we not only double the number of processors used but also
double the problem size to give some indication of the scalability.

Rather than calling the routine SDOT, if we had written the dot-product
calculation in Fortran, then various programming tricks would be necessary to
obtain optimal performance on the Cray T3D; e.g., a four-way unrolled loop plus
read-ahead would improve the number of cache hits. However, this version runs at
approximately 15 mflops per node while the SDOT version goes at approximately
26 mf lops per node.

Fig. 2. Speed-up (Table 4)

Table 4. Parallel Dot Product: Scalability

nrep nsamp
50 10

P n avg. op. time mf lops dP
1 16384 1.22763-03 26.7 1.98253+04
2 32768 1.2281343 53.4 3.96493+04
4 65536 1.22883-03 106.7 7.92993+04
8 131072 1.22843-03 213.4 1.58603+05

16 262144 1.2281603 426.9 3.17193+05
32 524288 1.22833-03 853.7 6.34393+05
64 1048576 1.22813-03 1707.7 1.26883+06

128 2097152 1,2284343 3414.5 2.53763+06
256 4194304 1.22833-03 6829.4 5.07513+06

Alternatively, one could use the Parallel BLAS (PBLAS) dot-product routine
PDDOT from ScaLAPACK. The PBLAS are written as an internal component of
this library so little effort was made to simplify their use. Also, the PBLAS is not
a stand alone library and they require the use of an additional set of routines
(BLACS) to handle the data distribution and communication. Consequently,
their arguments are a bit difficult to understand if viewed only in the context of
the PBLAS. Fortunately, an example of a dot-product program is available a t
the URL site:http://wuu.netlib.org/blacs/BLACS/Ex~ples.html

Now we present an interesting numerical result. When timing a Fortran par-
allel code for computing the distributed dot product, we move the global sum
to the end so that it is outside the timing loops. Hence, the code does just
the multiplications and additions on p processors and, consequently, it is ideally
parallelizable since the global sum communications are not timed. (Assuming an
efficient global sum, the multiplications and additions should be the most time
consuming part of the calculations.) The results are given in Table 5. We note
that as the number of processors increases by powers of 2 the relative speed-up

Fig. 3. Speed-up (Table 5)

Table 5. Parallel Dot Product: Golbal Sum Not Timed
n ==P nsamp

16000 50 10
P
1
2
4
8

16
32
64

128
256

avg. op. time
3.2760603
1.63353-03
8.1685604
4.08753-04
2.11923-04
4.93093-05
1.99393-05
1.00343-05
4.9701E-06

mflops

9.8
19.6
39.2
78.3

151.0
649.0

1604.9
3189.3
6438.5

dP
1.93603+04
1.93603+04
1.93603+04
1.93603+04
1.93603+04
1.93603+04
1.93603+04
1.9360E+04
1.93603+04

from p - 1 to p processors, Tp/Tp--l, is approximately 2 for all cases except for
32 and 64 processors which are 4.3 and 2.43, respectively. Consequently, we ob-
tain superlinear speed-up as shown in Fig. 3. The reason for this is that as the
number of processors increases the amount of work per node decreases until at
32 processors the data just fits into high-speed cache. The data size is 2 x 16000
and on 32 PES the data fits in the 8 Kbyte = 1 Kword cache: 32000/32 = 1000.
So for 32 PES and above, the code is running from cache at approximately 20
mf lops while for least than 32 PES it is running from memory at approximately
10 mflops.

2.3 Numerical Examples

Next, we discuss the results of some parallel numerical examples; namely, poly-
nomial evaluation and numerical integration.

Polynomial Evaluation. The first numerical code computes a short table
of the values of the polynomial x3 + 2x2 + 32 + 4 for equally spaced argument

values on the interval [0,1]. Here all the processors share the computation for each
argument. In this program, the argument values are dependent on the number of
processors being used. Here we exploit both the data-sharing and the do-shared
loops of the work-sharing method of programming. Special compiler directives
CDIR$ SHARED P J A L U E , CDIR$ DOSHARED, and CDIR$ MASTER are used to assign
the shared data and direct the parallel do-loops utilizing this data. From a sample
output of this program with eight processors, we obtain the results in Table 6.

Table 6. Parallel Polynomial Evaluation

z Value
0.
0.14285714285714285
0.2857142857142857
0.42857142857142855
0.5714285714285714
0.71428571428571419
0.8571428571428571
1.

Polynomial Value
4.
4.4723032069970845
5 A4373 17784256557
5.73 17784256559765
6.5539358600583082
7.5276967930029146
8.6705539358600578
10.

Numerical Integration. This example computes the value of the integral

X I 2
sin3(x)dx

using Simpson’s rule with a fixed number of partition points. The exact value
of the integral is J;l2 sin3 z dx = -$ cos z(sin2 z + 2)1, - $. In this example,
the work is shared by all the nodes with each doing the same amount of work. In
particular, each node is assigned to work on a different subinterval of the interval
of integration obtaining a portion of the integral value. In the code, the outer
do-loop uses the number of processors assigned to determine the limits for the
inner d-loops which are executed in parallel. Contributions from each node are
added as soon as they become available. The compiler directive CDIR$ MASTER
is used to add all the contributions on a single processing element. In the results
in Table 7, the eight processors finish in order 1, 6, 3, 4, 7, 5, 2, 0.

* I 2 -

3 Summary

In doing performance tests, one has to think about the behavior of the cache. For
example when putting code inside a do-loop for timing purposes, sometimes the
vector lengths may exceed the cache size and result in a cache miss while other
times they may be totally within the cache. If there is a cache misalignment

Table 7. Parallel Simpson's Rule

Number of processors = 8
Number of panels = 80
Lower l i m i t = 0, Upper l i m i t = 1.5707963267949001
Value of the Integral = 0.66666666635697946

there could be a thmshing of the cache. Since any of these situations may effect
the timing results, one has to be very careful t o determine what actually is going
on before trying to analyze the results.

Our experience with CRAFT is that there are definite tricks that need to
be used; e.g., shared-to-private coercion. The processors used in the T3D have
limited memory bandwidth so the results can be disappointing using CRAFT.
On the other hand, the new Gray T3E preserves the macroarchitecture and
programming environment of the Cray T3D as well as having faster processing
and communication speeds which are coupled with a larger memory. With the
Gray T3E, the memory bandwidth is increased and there is a secondary cache
with a three-way associativity. Moreover, the CRAFT model is simplified to
improve its performance.

Comparing the results from the serial and the parallel dot-product routines,
we come to the conclusion that parallel computation gives much improved per-
formance. This is clearly evident from the speed-up graphs. This reiterated the
effectiveness of parallelism and of the Gray T3D supercomputer, in particular.

Acknowledgments

This work was supported, in part, by the National Science Foundation grant
CCR-9504954, Gray Research, Inc., grant LTR DTD, and the Texas Advanced
Research Program grant TARP-266 with The University of Texas at Austin. The
work was accomplished with the aid of the Gray T3D at the National Energy
Research Supercomputer Center. We thank Alex Kluge and Robert Harkness of
the Computation Center at The University of Texas at Austin. Also, Bob Num-
rich of Cray Research, Inc., was helpful in explaining some of our parallel timing
results. In addition, we thank the University of Colorado High Performance Sci-
entific Computing Group for the use of their excellent material [I].

References
1. Fosdidc, Lloyd D., Jessup, Elizabeth R., Schauble, Carolyn S. C., Domidc, Gitt: An

Introduction to High Performance Scientific Computing. MIT Press, Boston, 1995.
(URL: http://uuu.cs.colorado.edu/95-96/courses/materials/hpsc.html)

2 . N d a n a , Asha: Cray-T3D Performance Study, Report CNA-281, Center for Nu-
merical Analysis, University of Texas at Austin, December 1995.

This article was processed using the P'&X macro package with LLNCS style

http://uuu.cs.colorado.edu/95-96/courses/materials/hpsc.html

