
-
t .

I Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

TITLE: COMPLEXITY AND EFFICIENT APPROXIMABILITY OF TWO
DIMENSIONAL PERIODICALY SPECIFIED PROBLEMS

AUTHOR(S): M. V. Marathe, Harry B. Hunt, R. E. Stearns

S U B M l n E D TO: 37th IEEE Symposium on Foundations of Computer Science
Bulington, Vermont
NtwadJer 1996
d

By acceptance of this article, the publisher recognizes that the US. Government retains a nonexclusive royalty-free license to publish or reproduce
the published form of this contribution or to allow others to do so, for US. Government purposes.

The Los Alamos National Laboratoly requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

Los Alamos National Laboratory L o s A 0 a o s Los Alamos New Mexico 87545

DISCLAIMER

Portions of this document may be illegible
in electronic h a g e products. Images are
produced from the best available original
document.

.
,
L

Complexity and Efficient Approximability of Two
Dimensional Periodically Specified Problems

MADHAV V. MARATHE’ HARRY B. HUNT I11 RICHARD E. STEARNS~

Abstract

We consider the two dimensional periodic specifications: a method to specify suc-
cinctly objects with highly regular repetitive structure. These specifications arise natu-
rally when processing engineering designs including VLSI designs. These specifications
can specify objects whose sizes are exponentially larger than the sizes of the specification
themselves. Consequently solving a periodically specified problem by explicitly expand-
ing the instance is prohibitively expensive in terms of computational resources. This
leads us to investigate the complexity and efficient approximability of solving graph the-
oretic and combinatorial problems when instances are specified using two dimensional
periodic specifications. We prove the following results:

1. Several classical NP-hard optimization problems become N EXPTIM E-hard, when in-

2. In contrast, several of these NEXPTIME-hard problems have polynomial time approx-
stances are specified using two dimensional periodic speciiications.

imakion algorithms with guaranteed worst case performance.

Two properties of our results are:
1. For the first time, efficient approximation algorithms and schemes are developed for

natural NEXPTIME-complete problems. (Of course it is easy to devise efficient ap-
proximation algorithms for arbitrarily “hard” artificial problems.)

2. Om: results are the first polynomial time approximation algorithms with good per-
formance guarantees for “hard” problems specified using any of the kinds of periodic
specifications considered here.

‘Current ’4ddress: Los Alamos National Laboratory P.O. Box 1663, MS K990 Los Alamos NM 87545. Email:

‘Department of Computer Science, University at Albany - SUNY, Albany, NY 12222. Email addresses of authors:
madhavk3 .lnnl.gov. The work is supported by the Department of Energy under Contract W-7405-ENG-36.

{hunt, res}@cs . albany. edu. Supported by NSF Grants CCR 90-06396 and CCR94-06611.

http://lnnl.gov

,

1 Introduction and Motivation
Many practical applications of graph theory and combinatorial optimization in CAD systems, m e
chanical engineering, VLSI design, transportation networks and software engineering involve pro-
cessing large (but regular) objects constructed systematically from smaller and more manageable
components. Consequently, the graphs that abstract the structure and operation of the underly-
ing circuits (designs) also have a regular structure and are defined in a systematic manner using
smaller graphs. Such methods for describing large and regular objects by small descriptions are
referred to as succinct specifications. In this paper, we focus our attention on a class of succinct
specifications called the periodic specifications [CM91, HW95, IS87, K091, KS88, Or82a, Wa931.
Using periodic specifications, large objects are described as repetitive connections of a basic mod-
ule. The modules are repeated in one, two or higher dimensions. Two dimensional periodic
specifications arise naturally in the study of regular systolic arrays and VLSI signal processing
arrays [HW94, CS81, IS86, IS87, IS881, discrete dynamical systems such as the cellular automata
[Su95, W0841, parallel programming [HLW92, KMW671, etc. For example, in the design of Field
Programmable Gate Arrays (FPGA’s), the problem of compaction and routing can be modeled as a
shortest path problem in two dimensional periodically specified graphs [Br95]. Similarly the prob-
lem of mapping uniform recursive or iterative programs on a 2-dimensional mesh connected parallel
computer is modeled as solving systems of periodically specified systems of equations (aka. uniform
recurrence equations) IHLW92, KMW671. In digital signal processing periodic specifications are
used to design bit parallel FIR filter [CS81]. Finally, two dimensional periodic specifications can
also be easily seen as a way of representing the dynamic changes in the configuration of finite one
dimensional cellular automata over time (i.e the second dimension represents time} [Su95, W0843.
Using this representation the configuration reachability problem for a finite one dimensional cellular
automata is simply the circuit value problem for periodically specified circuits.

Typically, the periodic specifications studied in the literature are generalizations of standard
specifications used to describe objects. In general, periodic specifications can describe objects that
are exponentially larger than size of the specifications themselves. For example, the family of all
rectangular grids can be specified using periodic speciiications of logarithmic size. As pointed out
in [LW93, CS81, IS861, rectangular grids are an important class of graphs occurring in engineering
designs. Consequently, solving any periodically specified problem by first expZicitZy expanding the
design explicitly can be prohibitively costly in computational resources. For example, even a linear
time algorithm for the minimum spanning tree problem applied to the expanded object can take
time that is exponential in the size of the periodic specification. The situation is even worse since
the designs obtained by expanding the periodic specifications are frequently too large to fit into
the main memory of a computer [Le86, HLW92J. As a result, even the most efficient algorithms
incur a large number of page faults while processing graphs (or circuits) obtained by expanding the
periodic specifications [Le%, HLW921. Hence, algorithms designed for solving problems for graphs
or circuits represented in a standard fashion are often impractical for periodically specified inputs.

Thus it is of interest to investigate if the regular structure of the underlying objects can be
exploited to design efficient algorithms that take time/space that is a polynomial function of the
pera’odic specification rather than the expanded object. Motivated by the practical importance of
processing such engineering designs, we investigate the complexity (measured in terms of the input
specification) of solving classical graph theoretic and combinatorial problems specified using two
dimensional periodic specscations.

1

* ,

2 Summary of Results and Significance
Here we study the complexity and efficient approximability of classical graph theoretic and combi-
natorial problems specified using the following kinds of periodic specifications:

1. The %dimensional finite periodic narrow specifications of Wanke [Wa93], (referred as 2-
F(B,E)PN-specifications),

2. The %dimensional finite periodic narrow specifications with explicit boundary conditions (re-
ferred as 2-F(B,B)PN(BC)-specifications)

3. The 2-dimensional finite toroidal periodic narrow specifications of Hijfting and Wanke [HW94],
(referred as 2-F(B,B)PTN-specifications) and

Let I2 be a problem. We use the term standard specification to refer to the method or methods
commonly .used it the literature to specify an instance of II. Letting a denote any of the three
specifications 2-F(B,B)PN, 2-F(B,B)PN(BC) or 2F(B,B)PTN we use the notation a-ll to refer to
problem II specified by any of the four specifications. For example, 2-F(B,B)PN-3SAT denotes the
problem 3SAT when instances are specified using 2-F(B, B)PN-specifications and 2-F(B, B) PTN-3SAT
denotes the problem 3SAT when instances are specified using 2-F(B,B)PTN-specifications. We also
refer to any of the specifications mentioned above as succinct specifications. For the rest of the
paper we let II be one of the following problems

MAX-QSAT, MAX-SAT(S), MIN VERTEX COVER, MAX INDEPENDENT SET, MIN DOMINATING
SET, MIN EDGE DOMINATING SET, MAX H-MATCHING and MAX CUT

2.1

Here and in! [MH+95], we prove that a number of natural graph and satisfiability problems, are
N EXPTIM E-complete, when instances are specified by one of the periodic specifications considered
here. We also prove that most of these problems remain NEXPTIME-complete, even when restricted
to planar instances. Here, given these hardness results, we investigate the existence of polynomial
time approximation algorithms for these problems. We present a simple yet general approach for
developing efficient approximation algorithms and/or schemes for a number of natural optimization
problems, when instances are specified using one of the specifications a. The following theorem
summarizes our first main result.

Approximation Algorithms for Succinctly Specified Problems

Theorem 2.1 For each fixed E 2 1, and for each of the problems I2 stated above,3 the problem a-II,
has a polynolmial time approximation algorithm with running time O(RTn(Z2 - IC/)) with performance
guarantee* (“f)2-FBESTn. Here]GI denotes the size of the specification, FBESTn denotes the best
known performance guarantee of an algorithm for the problem II for non-succinctly specified instances
and RTn(n) denotes the running time of the algorithm with input size n which guarantees a performance
of FBESTn for the problem II.

As an example, using recent results in [GW94], we get that for all E > 0, the problems 2-
F(B,B)PN-, 2-F(B,B)PN(BC)-, 2F(B,B)PTN- and have polynomial time approximation algorithms
that output solutions within a factor of (1 + E) . 1.137 of an optimum solution. As a corollary of
Theorem 2.1 and the recent nonapproximability results of [AL+92], we get the following corollary.

31n fact we can show that the theorem holds for most problems a-lI such that
4For the sake of uniformity we assume that the performance guarantee is 2 1.

is in syntactic MAX SNP.

2

I

Theorem 2.2 1. For all the problems Il as stated above, the problems a-II have polynomial time

2. For all the problems II as stated above the problems a-n have polynomial time approximation

approximation schemes if and only if P = NP.

schemes (PTAS) when restricted to planar or toroidal instances.

The approximation algorithms find approximate solutions that intuitively have a large number of
“gaps” in them. We show that this phenomenon is inherent. Specifically, we define the “contiguous
versions” of the optimization problems II. (Roughly speaking such problems require maximum
cardinality solution that is contiguous.) We prove that finding any approximate solution for the
contiguous version of the problems II are NEXPTIME-hard. (See Section 6.)

2.2 Extension to Graph Families

In many instances engineering designs can represent a whole family of designs instead of a single
design. The large number of variants of a car is an example of such a family. The infinite family
of carry ripple adders of numbers with arbitrary lengths is another example. Today the underlying
circuits or graphs of such families is generated with a program called the cell generator. As pointed
out in [LW93], “the eflective analysis of cell generators is one of the difficult and unsolved problems
in CAD.” The question one is interested in solving for such design (graph) families is typically of
the form: Do all the graphs produced by the cell generator have a certain property. For example,
we might wish to check if each graph produced has a maximum independent set of size a t least
I C . The results presented above can be extended to solve precisely such problems. Specifically, the
approximation results presented can be extended to approximate lower/ upper bounds with similar
performance guarantees on the best solutions to several optimization problems when the periodic
specifications are extended to define families of graphs rather than a single graph. For this we first
extend the notion of periodic specifications to define finite number of graphs by allowing a finite
number of distinct substitutions. This is done along the lines of definitions for context free graph
grammars studied in Lengauer and Wanke [LW93]. Our work is motivated by the remark made by
Lengauer and Wanke kW931, stating that

‘(there is another respect in which our methods fall short of what is needed in prac-
tice. They cannot process certain families of graphs that are popular in a wide range of
applications such as family of all square grids.”

-

As noted earlier periodic specifications can represent families of all square grids. Thus our
results represent a step towards efficient processing of such regular families of objects.

2.3 Applications

We briefly mention two applications of the ideas developed in the previous Subsection. The details
will appear in the complete version of the paper.

1. We can show the our ideas in this paper can be applied to obtain polynomial time approxi-
mation algorithms and approximation schemes for NEXPTl M E-hard problems specified using
a subset of the hierarchical input language (HILL) studied by Bentley et al. [BOW83].

2. We consider two optimization versions of the domino or tiling decision problems studied in
[Ha85, Ha86, vEB831. For these problems we obtain both polynomial time approximations as
well as non-approximability results analogous to those in Section 2.1. (For details see Section
10 in the Appendix.)

3

2.4 Significance of results

1. Previously no hardness results were known for any of the problems ll considered in this paper,
when instances are specified using two dimensional periodic specifications.

2. Our results are the first polynomial time approximation algorithms and approximation schemes
in the literature for problems specified using the specifications 2(a), 2(b) or 2(c) and also for
optimization versions of “hard” domino problems. Our approximation algorithms are based
on extensions of the ideas in [MH+94]. The approximation algorithms given in this paper
have three desirable features: (i) they are conceptually simple, (ii) they apply to large
classes of problems II, and (E) they apply to problems specified using any of the periodic
specifications considered here.

3. To the best of our knowledge, the efficient approximability of natural NEXPTIME-hard prob-
lems has not been studied previously. Thus our results provide the first natural problems
for which there is a proven exponential (and possibly doubly exponential) gap between
the time complexities of finding exact and approximate solutions. Note that it is easy to
construct examples of problems, whose decision versions are NEXPTIM E-hard, that have
polynomial time approximation algorithms with good performance guarantees. Only re-
cently has there been work on the efficient approximability of PSPACE-hard problems. (See
[AC94, Co95, CF+93, CF+94, MH+94] and the references therein.)

4. Here and in [MH+95], our NEXPTIME-hardness show that the very regular structure of prob-
lems specified periodically by the specifications considered here do not sufEce to make prob-
lems easy. However, the efficient approximation algorithms and schemes developed here show
the fol Lowing:

The very regular structures of problem instances specsed by the periodic specifications
considered here suf6ce to make approximating many basic optimization problems easy.

In contrast, approximating many of the optimization problems considered here, when instances
are specified using the small circuit specifications of [PY86,LB89] is NEXPTIM E-hard, by
extensions of the arguments in [Ar94]. Thus our results also high-light one important difference
between multiple-dimension finite periodic specifications and small circuit specifications of the
same objects.

5. Polynomial time approximation algorithms for two general families of problems when instances
are specified periodically: namely, optimization versions of generalized CNF satisfiability prob-
lems SAT(S) studied by Schaefer [Sc78] (denoted by MAX SAT@) and matching problems
(MAX-H-MATCHING) for any fixed subgraph H . These results are signikant for the following
reasons.

(a) Several natural combinatorial optimization problems can be readily expressed as MAX
SAT(S) problems, for an appropriately chosen finite set of finite arity Boolean relations

5Previous non-approximability results show that many optimization problems are NP-hard or PSPACE-hard to
approximate beyond a certain factor. The results presented here show a provable exponential gap between approxi-
mation and decision problems.

‘Any MAX-3SAT formula obtained by a reduction from Turing machine computation for an NEXPTIME-complete
language can trivially be approximated within ratios arbitrarily close to 1. (by assigning to the variables values that
correspond to the all 0 tableau, virtually all clauses are satisfied.) But it is important to note that a similar comment
holds for NP-hard problems also.

4

I

(a) (b) (e)

Figure 1: (a)The static graph with 2-dimensional integer vectors associated with each edge. (b)
The graph G2t1 specified by I? = (G, 10,Ol).
(c) The toroidal periodic graph G2s1 specified by the same specification. Observe the wrap around
edges that are present. Note that we can specify that edges wrap around in only a some of the
dimensions. w

S. It is easily seen that all of the particular MAX SNP-complete problems including the ones
studied in [PY91] can be so expressed.

(b) The results for MAX SAT(S) serve as a framework similar to the syntactic class MAX SNP for
NP-optimization problems. To see this note that in [HMS94], we showed that every problem
in MAX SNP is “equivalent” to a subproblem of some problem MAX SAT(S). The proof can
be extended so as to apply to periodically specified problems with “certain” constraints on
the relation types allowed in the specification of MAX SNP problems. Thus the results here
are an attempt to characterize periodically specified problems that have polynomial time
approximation algorithms using a logical/algebraic framework.

Due to lack of space, the remainder of the paper consists of preliminary definitions and selected
proof sketches.

3 Preliminary Definitions
In order to understand the results in this paper, it is useful to understand the concept of period-
ically specified instances. In what follows, we formally define 2-F(B, B)PN-specifications. A brief
description of other specifications can be found in relevant sections. We also refer the reader to
[HW94, HW95, CM91, Wag31 for formal definitions of the periodic specifications considered in
this paper. For the rest of the paper, we use 2 and N to denote integers and natural numbers
respectively.

2-F(B,&)PN-Specified Graphs

Given a labeled finite directed graph G(V, E) (called the static graph) such that each edge (u, w)
has an associated 2-dimensional integer vector (I, b) , the 2-dimensional infinite periodic graph
G”(V’,E’) is defined as follows: V‘ = {w(i , j) 1 ?I E V and i , j are integers] E‘ = { (u(i , j) , v (i +
I, v + b) I (I, b) is the label associated with (u, v) E E }. For a non-negative integer vector (m, n),
the %dimensional finite periodically specified graph Gmyn is the subgraph of G” induced
by the vertices fi = { v (i , j) I w E V and 0 5 i 5 rn , 0 5 j 5 n }. For a non-negative integer
vector (m, n), the 2-dimensional finite periodic toroidal specified graph Gmln consists of the
vertices VI = {v(i , j) I 21 E V and 0 5 i 5 m , 0 5 j 5 n }. There is an edge between u(i1,jl)

5

and w(iz,j2) if and only if there is an edge between u and IJ in the static graph with the associated
integer vector satisfying the condition 41 = 42 mod (rn + 1) and j1 E j 2 mod (n + 1).

A 2-dimensional finite periodic specification7 (denoted by 2-F(B,B)P-specification) of a
graph Gm,n is a three tuple I' = (G(V,E),m,n), where G is a static graph, and m and n, are
represented by binary numerals. (It is important to observe that m and n are specified using binary
notation.) 'The size of the 2-F(B,B)P-specification I' = (G(Tr, E), m, n) (denoted by size(r)) is given
by size(I') = [Vi + IEI + bits(rn) + bits(n), where bits(rn) and bits(n) are number of bits in m and
n. A 2-dimensional periodic specification r = (G(V, E) , m, n), is narrow if for all integer vectors
y =< y1,y2 > associated with the edges of G, yi E {-l ,O, l}, 1 5 i 5 2. We denote 2 dimensional
finite periodic narrow specifications by 2-F(B,B)PN-specifications. Figure 1(a) shows a static graph
G and the]Figure l(b) shows the periodically speciiied graph G2s1 specified by I? = (G, 10,01).*

It is sometimes useful to imagine a 2-F(B,B)PN-specified graph as being obtained by placing a
copy of the vertex set V at each non-negative integral grid point (qy), 0 5 IC 5 rn and 0 - < y 5 n ,
and joining vertices placed at neighboring grid points in a manner specified by the edges of the
static graph.

Due to space limitations the definition of 2-F(B,B)PN-specified 3CNF formula is given in the
Appendix. We only give an example of 2-F(B,B)PN-specified 3CNF formula to illustrate the concept.
Example 11: Let the set of static variables U = {IC, y, 2). The static clauses C is specified by
C(i , j) = [z(i,j) + y(4,j) + z(i,j)] A [z(i + 1,j) + y(i,j) + z(i + 1,j)l A [z(i,j + 1) + z (i , j)] . The
clauses C1ll specified by the specification (U, C(i,j), 01,Ol) is
[IC(0,O)+y(lD,O)+z(0,0)1A[~(O, 1)+Y(O, 1)+z(o , l) l~[~(l ,o>+y(l ,O)+z(l ,O)IA[~(1 ,1>+Y(L I)+
~(1,111 A[41,0> + Y(O,O> + z(1,O)l A [zC(l,l) + ~ (0 ~ 1) + z(l,1)1 A [40,1> + z(o,O>l A [41, 1) +z(l,o>l

4 Approximation Algorithms for 2-F(B,B)PN-specified problems
4.1 Basic Technique

The basic idea behind our approximation algorithms involves the conversion of solutions obtained
from a local algorithm on small sub-grids to a solution of the global problem. The method of partial
expansion involves the application of a divide and conquer algorithm iteratively by considering
different subsets of the given graph; solving each subset by a local algorithm, constructing a global
solution and finally choosing the best solution among these iterations as the solution to ll. The
method is similar to the shifting strategy devised by Baker [Bas], for finding efficient approximation
algorithms for several combinatorial problems.

We outline the basic technique by discussing our NC-approximation scheme for the maximum
independent, set problem (2-F(B,B)PN-IS) . Consider a 2-F(B,B)PN specifkation of a graph G, and
an integer IC > 1. To begin with, for each i, 0 5 i 5 I C , we partition the graph G into I disjoint sets
GI, - - - Gl by removing vertices with horizontal coordinates congruent to i mod (k + 1). For each
subgraph G19, 1 5 p 5 I , we find an independent set of size at least -& times the optimal value of
the independent set in G,. The independent set for this partition is just the union of independent
sets for each of G,. By an averaging argument, it follows that the partition which yields the largest
solution value contains at least (&)2 . OPT(G) nodes, where OPT(G) denotes the value of the
maximum independent set in G. (For simplicity, we use a symbol to denote a set as well as its
cardinality. The intended meaning will be clear from the context.)

'In the appendix, we briefly discuss the naming convention used to name the problems considered.
'The reader is strongly encouraged to go through the example of periodically specified graph given in Figure 1

and an example of periodically specified formula in the Appendix.

6

It is important to note that the size of the graph we are dealing with is in general exponential in
the size of the specification. Hence a naive application of the above idea will lead to algorithms that
take an exponential amount of time. However, as we shall see, the uregular” structure of the graph
allows us to solve the problems considered here in time polynomial in the size of the specification.

4.2 Approximation Scheme for 2-F(B,B)PN-MAX-IS

The details of the algorithm for solving ZF(B,B)PN-MAX-IS problem are given in Figure 1. The
proof of correctness of the algorithm and its performance guarantee follows from the following
lemmas.

Lemma 4.1 For each iteration of loop 2(c)i, the graphs G&Jk, 2 5 j 5 T - 1,2 5 jr, 5 S j - 1 (i.e.
the graphs G:::, Gi,r-l ii ,3, - - - Gi:;?;’) are isomorphic.

Proof Idea: Follows from the definition of periodic specification.
Let us define two subgraphs obtained in iteration 2.(a).i.A to be in the same equivalence class

if they are isomorphic. Then it is easy to see that the maximum independent set problem need
only be solved for exactly one member of each equivalence class. As a corollary of the above lemma
and by definition of periodic specifications we get that the number of equivalence classes are finite.
Furthermore, as result of our partitioning step, it can be shown that the size of the individual
pieces is 0(k2 -]GI). These crucial facts allow us to bound the running time of our algorithm by
o(RTrr(k2 - IGl)).

Lemma 4.2 Each of the subgraphs G:>j’ obtained in Step 2.(c).i.B is disjoint.

H

Proof Sketch: Follows from the property of instances specsed by 2-F(B,B)PN specifications;
namely a vertex defined at grid point (i,j) is adjacent only to vertices that are defined at grid
points (Z,rn) such that IZ - il, Irn - j l 5 1.

Next, we prove that the algorithm given above indeed computes a near optimal independent
set. That is, given any k: > 1 the algorithm will compute an independent set whose size is at least
(=) I C 2 times that of an optimal independent set.

First, we prove that of all the different iterations for d, at least one iteration has the property
that the number of nodes that are not considered in the independent set computation is a small
fraction of an optimal independent set.

Recall that for each i we did not consider the vertices which were placed at lattice points with
horizontal coordinates j1, j 2 - - jp such that j , = i rnod(k + l), 1 5 E 5 p . Let SO, SI, - - - S, be the
set of vertices which were not considered for each iteration i. Let ISopt(Si) denote the vertices in
the set Si which were chosen in the optimal independent set OPT(G).

Lemma 4.3

rn

Proof: The proof follows by observing that the following equations hold:

7

Algorithm AL G- 2-FPN-MAX-IS:

0 .input: An instance (G, m, n) of a periodic graph Psn and an E > 0

0 Output: A periodic specification of a near optimal independent set in Gmin whose
size is at least (1 - - FBEST . OPT where OPT is the size the maximum in-
dependent set in Gmln and FBEST denotes the best possible factor achievable by
any polynomial time approximation algorithm for the maximum independent set
problem specified using a standard specification.

01. Let IC = r l / C] - 1.
2. For each i, 0 5 i 5 IC do
(a) Partition the graph into ri disjoint sets Gill - - - Gi7ri by removing all the vertices

at grid points with X-coordinate congruent to i mod (I C + 1).
(b) Gi = UlgSr Gij
(e) For eachj, 1 < j ST^ do

i. For each il, 0 5 il 5 k do
A. Partition the graph Gi,j into sj disjoint sets G$’ - - - G:;” by removing ver-

tices at grid points with Y-coordinate congruent to il mod (k + 1).
il j l B. Gj. = Ul<jlSSj G,,

C. For each G$3’, 1 5 j 1 5 s j compute the optimal (near optimal) value of the
independent set denoted by IS(Gttjj’).
Remark: This can be done by running the algorithm on just three
graphs namely; G:>’, Gi>2 and GtlYs’ Zl.7

D. IS(Gfj.) = U l ~ j j l ~ s j IS(G:>”)
(4 IS(Gij) = m w < i l g IS(Gf j.)

3. IS(G) = rnaxo<iSk IS(Gi)
IS(Gi) = Ul<j<ri - IS(Gi j)

Fngure 1: Details of the algorithm to solve an instance of 2-F(B,B)PN-MAX-IS.

The proofs of the next two theorems follow by an averaging argument. We omit the proofk due
to the lack of space.

Theorem 4.4 IIS(Gij)l 2 (A) - FBEST IOPT(Gij)l.

Theorem 4.5]IS(G)I 2 (&)z . FBEST . JOPT(G)I. Here FBEST denotes the performance
guarantee of the best algorithm known to solve the independent set problem.

5 Hardness of 2-F(B, B) PN-3SAT

Theorem 5.1 2-F(B,B)PN-3SAT is NEXPTIME-complete.

8

Hence a NEXPTIME bounded TM can guess an assignment to the variables and then verify in
DEXPTIME that the assignment satisfies all the clauses.

Next, we discuss the reduction which shows the NEXPTIME-hardness of the problem. It is worth
pointing out the basic technique used behind the reductions. Since the static formula associated
with 2-F(B,B)PN-3SAT instance is the same for each time period, it is not possible to write a 3CNF
formula which says that the machine has the correct starting ID. This makes the task of constructing
the 3SAT instance more difficult. In order to overcome this diEculty, our reduction consists of two
phases. In the first phase, we start with a given Turing machine 4 with input z = (xi,. . . , xp)
and construct a new Turing machine (62 which simulates (9 on 2 and has the following additional
properties that

1. If Turing machine 4 does not accept x, then every possible computation of & halts within
2QP moves, else

2. If Turing machine 4 accepts x, then +x has a cycling computation, where the length of an ID
never exceeds 2dOP, for some given do.

The second phase consists of constructing an instance (U,(t, y), G,(t, y, t + 1, y + l), m, n)) of
2-FPN-3SAT by a polynomial time reduction from 4,. Now we know that each ID of the Turing
machine 4x is of length 2dop+ 1. From Property 2 above, we need to consider only 2d0P different ID’S
for our reduction. In order to understand the construction imagine each ID of the Turing machine
+x being placed vertically in the plane. Two consecutive ID’S of 4, are placed vertically next to
each other. For the sake of exposition we will refer to the X-axis as the time line. In the following
discussion, each grid point is referred to as (t, y). We now define the set of variables Ux(t, y) and
their intended meaning. Uz(t,y) consists of the following three digerent types of variables. (i)
TAPE c U,(t, y), such that TAPE@, y) encodes the yth symbol in the tth ID. TAPE(t, y) takes
values from the set (#} U U (Q x I?), where I? denotes the tape symbols and Q denotes the set of
states of &. The number of variables needed to encode TAPE(t,y) depends only on the machine
4,. (ii) In order to simulate the behavior of & properly we need to have two set of counter variables;
cy and ct. The counter cfr keeps track of the particular tape cell in a given ID. Let q = dop. The
counter can be simulated by means of (dop + 1) Boolean variables tcq, tcq-l, . . . tco. t~ represents
the least signiiicant bit and tc, represents the most significant bit. The counter ct keeps track of
the number of ID’S. The counter ct can be simulated by means of (&p+ 1) Boolean variables. We
use Boolean variables yco, yell ycz, . . , yc, to simulate the counter cy. (iii) Auxiliary variables for
making the resulting static formula narrow and in the 3CNF form.

The initial ID is of the form #(Qo, 2 1) . . . z , B ~ ~ ~ ~ - ~ , where B denotes a blank. The static formula
CNF formula Gz(t, y) is given by GJt, y) = fl(t, y, t+l , y+l)Afz(t, y, t+l, y+l)Af3(t, y, t = 1, y+l).
The counter updating formula f1 is designed for maintaining an implicit counter. The implicit
initialization formula fz serves as a way to implicitly initialize the clauses to reflect that the machine
starts out right whenever the counters are reset to 0. The initialization condition say that if both
the counter values are 0, then we have # as the tape symbol and so on. The consistency checking
formula f3 ensures the consistency of the tape symbols, i.e. that the contents of the tape cells i,
i + 1 and i + 2 in IDt determine the contents of the tape cells i, i + 1 and i + 2 in IDt+l. The details
of each of these formulas is given in the Appendix. The expanded finite periodic 3SAT instance is
A\y=o,t=o Gz(tl y, t + 1, y + 1), where rn = 22dop and n = 2 2 h P .

We now prove the correctness of our reduction. If the Turing machine 4 accepts 2 then we
know that 4, has a cycling computation. Hence by setting the counters ct(0,O) = cy(O,O) = 0 we
get that the first column of the grid contains the right initial ID. F’rom then on, the consistency

t=m,y=n

9

t=m - conditions c:nsures that the formula G,(t, y, t + 1, y + 1) is satisfied. Conversely, assume
that the formula is satisfiable. Since m and n are suitably large integers, it is guaranteed that the
following two conditions hold:

1. Since n is large enough, the simulation must be carried out for enough steps so that the Turing
ct = 2 d 0 P . This implies that machine q5z goes through the sequence ct = 0, ct = 1, ct = 2,.

the formulas f2(t, y) and f ~ (t , y) would be true from the time when the value of ct = 0.

2. Similarly, since m is large enough, the grid is sufliciently long in the Y-direction so that the
counter value goes through a sequence of values cy = 0, cy = 1, cy = 2,. - cy = 2 h P . This
implies that the first part of the implication in f2 is true and from then on, it is ensured that
the TM

The above two conditions imply that if the formula /\t=O,tG G,(t, y, t + 1, y + 1) is satisfied
goes through the simulation correctly.

t=m -n

then the Turing machine q5 accepts 5.

6 Contiguous Versions of the problems
Definition 6.1 CONT-ZF(B,B)PN-MAX-3SAT: Given an instance 3CNF formula Fm,n(Um,nI Cm+)
specified by I? = (U,C(i, j) ,m,n) and integers k,E 2 1, do there exist integers i l , i z , j l , j 2 such that
(i) 15 il 5 i 2 5 M
(ii) 1 5 j , 5. j 2 5 N , such tha t
22 - 21 = k -. 1, and j 2 -j1 = I - 1, and the subformula Ai15i5i2,j lgg2 C(i, j , i + 1, j + 1) is satisfiable.

The above definition can be extended to define other CONT-2-F(B,B)PN-Max-Sat(S) problems
and to graph theoretic problems. In the latter case, we insist that the the projection of the solution
on some cortnected contiguous subgraph be maximized/minimized.

. .

Theorem 6.2 1. If I C , E are specified using Unary notation then CONT-2-F(B,B)PN-MAX-3SAT is

2. If one of E , E is specified using Binary notation and the other is specified using Unary notation then

3. If k, I are specified using Binary notation then CONT-2-F(B,B)PN-MAX-3SAT is NEXPTIME-

NP-coimplete.

CO NT-2- F(B, B) P N- MAX-3SAT is PS PACE-corn plete.

corn p I e t e .
Proof Sketch for Part (3): Membership in NEXPTIME holds for arbitrary instances of these
problems. The indicated hardness results follows by reduction from the acceptance problems for a
2n time bounded NDTM M Starting from M with input x we first construct a Turing machine A41
that cycles i€ and only if M accepts IC. Now we do a standard reduction from MI to the problem say
l-F(B,B)PN-.3SAT. If M accepts IC, then MI cycles and l-F(B,B)PN-3SAT has a solution in which
clauses in a mk x nk area, for suitably large k, can be simultaneously satisfied. If M does not accept
x then, A41 does not cycle on x, and hence the maximum contiguous area of clauses that can be
simultaneously satisfied is no more than O(m) x O(n).

The extension of the above proof also shows that finding any E approximation for these problems
is NP-, PSPACE- and NEXPTIME-complete respectively. Exactly analogous hardness results hold
for the contiguous versions of many of the problems II considered here.

We can show exactly analogous results hold for natural problems in MAX SNP such as MAX
3sAT. Thus we can show that all approximations for the maximum number of simultaneously
consecutive satisfiable clauses of a 3CNF formula F are NP-hard. Note that this is a natural
definitions of the contiguous problems for standardly specified formulas.

10

Acknowledgments
We thank Sanjeev Arora, Pascal Brisset, Jos4 Balcbzar, Anne Condon, Ashish Naik, V. Etadhakrish-
nan, S. S. Ravi and Egon W a d e for several useful discussions and pointers to literature throughout
the course of writing this paper.

References
[AC94]

[Ar94]

[AL+92]

[Bat331

[Br95]

[BOW831

[Bu62]

[CS81]

[CM93]

[CM91]

[cog51

[CF+93]

[CF+94]

[GJ79]

S. Agarwal and A. Condon, ‘On Approximation Algorithms for Hierarchical MAX-
SAT,” Proc. of the 10th IEEE Conference on Structures in Complexity Theory, July,
1995.
S. Arora, “Proof Verification and Hardness of Approximation Problems”, Ph.D. Thesis,
Department of Computer Science, University of California, Berkeley, 1994.

S. Arora, C. Lund, R. Motwani, M. Sudan and M Szegedy, ”Proof Verification and
Hardness of Approximation Problems”, Proc. 33rd IEEE Symposium on Foundations
of Computer Science (FOCS), 1992, pp. 1423.

B.S. Baker, “Approximation Algorithms for NP-complete Problems on Planar Graphs,”
24th IEEE Symposium on Foundations of Computer Science (FOCS), 1983, pp 265-273.
(Journal version in J. ACM, Vol. 41, No. 1, 1994, pp. 153-180.)

P. Brisset, “Algorithms for the PLacement and Routing of FPGA’s,” Technical Report,
Ecole Polytechnic April 1995.

J.L. Bentley, T. Ottmam, P. Widmayer, “The Complexity of Manipulating Hierarchi-
cally Defined set of Intervals,” Advances in Computing Research, ed. F.P. Prepamta
Vol. 1, (1983), pp. 127-158.

J.R. Buchi, “Turing Machines and the Entscheidungsproblem,” Math. Ann. 148, 1962,

P.R. Cappello and K. Steiglitz, “Digital Signal Processing Applications of Systolic Al-
gorithms,” Proc. CMU Conference on VLSI Systems and Computations, H.T Kung, B.
Sprodl and G Steele eds. 1981.

pp. 201-213.

E. Cohen and N. Megiddo, “Strongly Polynomial-time and NC Algorithms for Detecting
Cycles in Dynamic Graphs,” Journal of the ACM (J. ACM) Vol. 40, No. 4, September

E. Cohen and N. Megiddo, “Recognizing Properties of Periodic graphs”, Applied Geom-
etry and Discrete Mathematics, The Victor Klee Festschdfi Vol. 4, P. Gritzmann and
B. Strumfels, eds., ACM, New York, 1991, pp. 135146.

A. Condon, “Approximate Solutions to Problems in PSPACE,” SIGA CT News: Intro-
duction to Complexity Theory Column 9, Guest Column, July, 1995.

A. Condon, J. Feigenbaum, C. Lund and P. Shor, ‘Probabilistically Checkable Debate
Systems and Approximation Algorithms for PSPACEHard F’unctions” , in Proc. 25th
ACM Symposium on Theory of Computing (STOC), 1993, pp. 305-313.

1993, pp. 791-830.

A. Condon, J. Feigenbaum, C. Lund and P. Shor, “Random Debaters and the Hardness
of Approximating Stochastic functions for PSPACEHard function^,'^ Proc. 9th IEEE
Annual Conference on Structure in Complexity Theory, June 1994, pp. 280-293.

M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the Theory of
NP-Completeness, Freeman, San Francisco CA, 1979.

11

[GW94]

[Ha861

[Ha851

[HLW92]

(HW95]

[H W94]

[HMS 941

[IS861

[IS 871

[IS881

[KMW67]

[KO911

[KS88]

[LW93]

[Le861

[MH + 941

M.X. Goemans and D.P. Williamson “.878 Approximation Algorithms for MAX CUT
and MAX ZSAT,” Pmc. 26th Annual ACM Symposium on T h w y of Computing,
(STOC), May 1994, pp. 422-431.

D. Harel, “Effective Transformations on Infinite Trees, with Applications to High Un-
decidability, Dominoes, and Fairness,” Journal of the ACM (J. ACM) , Vol. 33, No. 1,
January, 1986, pp. 224-248.

D. Harel, “Recurring Dominos: Making Highly Undecidable Highly Understandable,”
Annals of Discrete Math. , Vol. 24, 1985, pp. 51-72. A preliminary version of the paper
appeared in Proc. Conference on Foundations of Computation Theory, LNCS Vol. 158,

F. Hofting, T. Lengauer and E. Wanke, “Processing of Hierarchically Dehed Graphs
and Graph Families,” in Data Structures and EBcient Abgorithms (Final Report on the
DFG Special Joint Initiative), Springer-Verlag, LNCS 594, 1992, pp. 4469.

F. Hoeing and E. Wanke, “Minimum Cost Paths in Periodic Graphs,” SIAM J. on
Computing, Vol. 24, No. 5, Oct. 1995, pp. 1051-1067

F. Hofting and E. Wanke, “Polynomial Time Analysis of Toroidal Periodic Graphs,”
Proc. of 22nd International Colloquium on Automata, Programming and Languages,
1994.
H. B. Hunt 111, M. V. Marathe and R. E. Stearns, “Generalized CNF Satisfiability
Problems and Non-Efficient Approximability,” Proc. 9th A CM Conf. on Structure En
Complexity Theory, June-July 1994, pp. 356-366.

pp. 177-194.

K. Iwano and K. Steiglitz, “Optimization of onebit full adders embedded in regular
structures,” IEEE Transactions on Acoustics, Speech and Signal Processing, 1986.

K. Iwano and K. Steiglitz, “Testing for Cycles in Infinite Graphs with Periodic Struc-
ture,” Proc. 19th Annual ACM Symposium on Theory of Computing, (STOC), 1987,
pp. 46-53.

K. Iwano and K. Steiglitz, “Planarity Testing of Doubly Connected Periodic Infinite
Graphs,” Networks, No. 18, 1988, pp. 205-222.

R.M. Karp, R.E. Miller and S. Winograd, “The Organization of Computations for
Uniform Recurrence Equations,” JournaZ of the ACM (J. ACM), Vol. 14, No. 3, 1967,
pp. 563-590.

M. Kodialam and J.B. Orlin, “Recognizing Strong Connectivity in Periodic graphs and
its relation to integer programming,” Proc. 2nd A CM-SIAM Symposium on Discrete
Algorithms (SODA), 1991, pp. 131-135.

K. R. Kosaraju and G.F. Sullivan, “Detecting Cycles in Dynamic Graphs in Polynomial
Time,” Proc. 27th IEEE Symposium on Foundations of Computer Science (FOCS),

T. Lengauer and E. Wanke, “Efficient Decision Procedures for Graph Properties on
Context-Free Graph Languages ,” Journal of the ACM (J. ACM) , Vol. 40, No. 2, 1993,

‘T. Lengauer, “Exploiting Hierarchy in VLSI Design,” Proc. A WOC ’86, Springer-Verlag,

M.V. Marathe, H.B. Hunt 111, R.E. Stearns and V. Radhakrishnan, “Approximation
;Schemes for PSPACEComplete Problems for Succinct Specif~cations,’~ Proc. 26th A CM
Annual Symposium on Theory of Computing (STOC), 1994, pp. 468-477.

1988, pp. 398-406.

pp. 368-393.

LNCS 227, 1986, pp. 180-193.

12

[MH+95]

[Or82a]

[Or84b]

[PY86]

[PY91]

[Sc78]

[Su95]

[vEB83]

[Wag31

[Wo84]

M.V. Marathe, H.B. Hunt 111, D. J. Rosenkrantz, RE. Stearns and V. Radhakrishnan,
“Periodically Specified Satisfiability Problems with Applications: An Alternative to
Domino Problems,” submitted, November, 1995.

J.B. Orlin, “The Complexity of Dynamic/Periodic Languages and Optimization Prob-
lems,” Sloan W.P. No. 1679-86 July 1985, Working paper, Alfred P. Sloan School of
Management, MIT, Cambridge, MA 02139. A Preliminary version of the paper appears
in Proc. 13th ACM Annual Symposium on Thwsy of Computing (STOC), 1978, pp.
21&227.

J.B. Orlin, “Some Problems on Dynamic/Periodic Graphs,” Progress in Combinaton’aI
Optimization, Academic Press, May 1984, pp. 273-293.

C. Papadimitriou and M. Yannakakis, “A note on Succinct Representation of Graphs,”
Infomation and Computation No. 71, 1986, pp. 181-185.

C. Papadimitriou and M. Yannakakis, “Optimization, Approximation and Complexity
Classes,” Journal of Computer and System Sciences (JCSS), No. 43, 1991, pp. 425440.

T. Schaefer, “The Complexity of Satisfiability Problems,” Proc. 20th A CM Symposium
on Theory of Computing (STOC), 1978, pp. 216-226.

K. Sutner, On the Computational Complexity of Finite Cellular Automata,” Journal
of Computer and System Sciences (JCSS), No. 50, 1995, pp. 87-97.

van Emde Boas, “Dominoes Forever,” Proc. 1st GTI Workshop, Paderborn, 1983, pp.

E. Wanke, “Paths and Cycles in Finite Periodic Graphs,” Proc. 20th Symposium on
Math. Foundations of Computer Science (MFCS), LNCS 71 1, Springer-Verlag, 1993,

S. Wolfram Theory and Applications of Cellular Automata, World Scientific, Singapore,
1987.

76-95.

pp. 751-760.

13

Appendix

7 Additional Definitions
Generalized satisfiability problems

The generalized satisfiability problems SAT(S) were first introduced in Schaefer [Sc78]. This concept
is also discussed in [MH+95]. The reader is assumed to be familiar with the problem 3SAT. Many
other types of satisfiability problems have also been studied in the literature.

Definition 7.1 (Schaefer [Sc78])
Let S = {RL , R2, . .. , &} be a finite set of finite arity boolean relations. (A boolean relation is defined
to be any subset of {O,l}P for some integer p 2 1. The integer p is called the rank of the relation.)
An S-formula is a conjunction of clauses each of the form &(el,&, -..), where 51, &, are distinct,
unnegated variables whose number matches the rank of &,i E { l , . - -m} and & is the relation symbol
representing the relation l-&. The S-satisfiubility problem is the problem of deciding whether a given
S-formula is satisfiable.
Given a S-fcmnula F , the problem MAX SAT(S) is to determine a (0,l) assignment to the variables of
F so as to rnaxirnize the number of clauses that can be satisfied.

Definition 7.2 Let S be a finite set of finite arity boolean relations and le t f be a SAT(S) formula
with set of variables V and set o f clauses C.

1. The bipurtite graph of f , denoted by BG(f), is the bipartite graph (VUC,E), where e = (c , ~) E
E if and only if the variable 'u occurs in the clause c.

2. f is said to be plunur if and only if the graph BG(f) is planar.

7.1 Periodically specified satisfiability problems
For the rest of the paper, let Z and N denote the set of integers and natural numbers respectively.

Let U = {ul,. . . , %} be a finite set of variables (referred to as static variables). A literal of U
is an element of the set U1 = (~1,. . . , an,-,. . . , %}. Define the following sets. -

V t E Z , ul(t,Y)={%(t,Y) I l < k < n ,)

uz = u Ul(t,Y)

UN = u W , Y)

UmP = u Ul(t,Y>

GYEZ

t,yEN

t,yEN, K m , Yln

(In our proofs, variable U k (t , y) denotes the variable Uk at grid point (t, y).)
If w is a literal of U, then w(t, y), is a literal of UZ,'. Let C(t, y) be a parameterized conjunction

of 3 literal clauses such that each clause in C(t, y, t+l, y+ l) consists of variables u k (t , y), U k (t + l , y+
l), u k (t , y + l), U k (t + 1, y) with the constraint that at least one variable is of the form U k (t , y). We
refer to the clauses C(t , y, t+ 1, y + 1) as static nurrow clauses. Let Cziz = A C(t , y, t + 1, y + 1)
and CN*N = A C(t, y, t + 1, y + 1). Given Urn+ and CZiz, let

t,YE'

t , y E N

14

Definition 1.3 A 2-dimensional two way infinite (finite) periodic narrow specification (denoted by 1-
PN (FPN)-specification) of a 3CNF formula FZiZ(UZiZ, Cziz) (P i n (U m i n , Cmin)) is given by (I? =
(U, C(t, y, t + 1, y + l)), (I' = (U, C(t, y, t + 1, y + l), m, n)), where, U is a finite set of variables,
C(t, y, t + 1, y + 1) is a collection of static narrow 3 literal clauses. (In case of finite specifications
m,n are non-negative integers specified in binary.) The size of the specification denoted by size(I') =
IVl + IC(t,y,t + 1, y + 1)l. (In case of finite specifications size(I') = IUl + IC(t,y,t + 1,y + 1)1 +
bits(rn) + bits(n), where bits(m) and bits(n) denote the number of bits used to represent m and n
respectively.)

is the problem of determining if a 3CNF formula Fziz(Uztz, CZlz) specified by I' = (U, C(t, 3)) is sat-
isfiable.

Similarly, the problem 1-F(B,B)PN-3SAT (problem 3SAT specified using 1-FPN-specifications) is
the problem of determining if a 3CNF formula Fmin(U"jn, Cmin) specified by I? = (U, C(t, y), rn, n) is
satisfiable.

The problem 1-P(Z, Z)N-3SAT (problem 3SAT when instances are specified using 1-FPN-specifications)

As in the case of periodically specified graphs, it is useful to imagine a narrow periodically
specified formula Gzlz as being obtained by placing a copy of the variable set U at each grid point
in the X-Y plane (or the time line). Furthermore, assume that the clauses C(t , y, t + 1, y + 1) are
placed at grid point (t, y). With this notation, we can now refer to variables U (t , y), as the set of
variables at grid point (t, y,) and the clauses C(t, y, t + 1,y + 1) as the set of clauses at grid point

For each finite set S of finite arity Boolean relations, it is straightforward to extend the above
definition so as to define the problem 2-F(B,B)PN-SAT(S) and hence we omit these definitions.
Observe that 2-F(B,B)PN-specified graphs or formulas can be exponentially larger than their input
specifications. The above definition can be applied to define satisfiability problems for variants
of periodic speciilcation. We do this in the next paragraph. We can now define various other
satisfiability problems.

(t, Y).

7.2 Note on Naming Convention

Since we have a large number of parameters, it is necessary to state the notation used throughout
this paper for naming problems. The naming convention follows the one given in [MH+95]. We use
F and I to denote finite or infinite graphs respectively. Observe that while this is the property of
the expanded object, we choose to use this as a way to classify the specification itself. The symbols
U, B in the brackets following F specify, whether the finite bounds are specified in unary or binary
notation. The symbols N, Z following I specify whether the graph is infinite in one direction or
both the directions. We have already explained the concept of naxrow and wide specifications. We
use N and W to denote narrow and wide specifications respectively. Dimensions of the expanded
Graph: {1,2,. . . d } denote the dimensions in which the static graph is translated. Some instances
of problems arising in practice have a periodic specification of the graph or a formula along with
explicit initial and final conditions. We call such periodic specifications as periodic specifications
with boundary conditions (BC).

7.3 Meaning of Approximation Algorithms for Periodically Specified Problems

It is important to understand what we mean by a polynomial time approximation algorithm for a
problem n, when Il's instances are specified by 2-F(B,B)PN-specifications. We illustrate this by the
following example:

15

Example: Consider the maximum independent set problem, when graphs are specified be
2-F(B,B)PN-specifications. We provide efficient algorithms for the following versions of the Approx-
imate Maximum Independent Set Problem:
(1) The Approximation Problem: Compute the size of a near-maximum independent set in G.
(2) The Query Problem: Given any vertex v of G determine whether v belongs to the approxi-
mate independent set so computed.
(3) The Construction Problem: Output a 2-F(B,B)PN specification of the set of vertices in the
approximate independent set.
(4) The Output Problem: Output the approximate independent set computed.
Our algorithms for (l), (2) and (3) above run in time polynomial in the size of the 2-

F(B, B)PN-specification rather than the size of the graph obtained by expanding the specification.
Our algorithm for (4) runs in time linear in the size of the expanded graph but uses space which is
linear in the size of the periodic specification.

We provide results with similar time bounds for the Approximation, Query, Construction, and
Output problems associated with the problems ll in Table 1, when instance are specified by 2-
F(€3, B) P N-, 2- F(B 6) PN(BC)- or 2F(6, B) PTN-specifications.

8 Details of the Proof €or Theorem 5.1

Counter Updating: Formula fi

fl
fi”
fl”

= f! A f f A f: A f t , where each fj, 1 I i 5 3 is given as follows:
= [ct(t+l, y) = (ct(t, y)+l) (mod 2d0p+1),] f; [O I .y(t, y) < adop 3 ct(t , y+l) = ct(t, y)]
= [cy(t,y+l) = (cy(t,y)+l) (mod ZdoP+1)] ft [0 I ct(t,y) < 2d0P 3 cy(t+l,y) = cy(t,y)]
f f says that the value of the counter ct at grid point (t + 1, y) is 1 more than the value of the

counter at ithe grid point (t, y). Moreover, the counter is reset after every Zd0P + 1 time units. ff
says that the counter value for a given vdue oft is the same for all y. Conjuncts f; and ft describe
the desired properties of the counter cy in a manner similar to ft and f;.

Implicit Initialization: Formula f 2

[(cy(t, Y) = 10) A (ct(t , Y) = 0) =$ TAPE(t, Y) = #]A [(Cy(t, Y) = 1) A (ct(t, Y) = 0) 3 TAPE(t, ’y) =
(~041 A

[(~ y (t , Y) = n) A (ct(t , Y) = 0) * TAPE(t, Y) = zn] A[(n + 1 I ~y(t , Y) _< 2n) A (c t (t , y) = 0) *
TAPE(t,y) = B]

fi can be thought of as a way to implicitly initialize the clauses to reflect that the machine
starts out right whenever the counters are reset to 0. The initialization condition say that if both
the counter values are 0, then we have # as the tape symbol and so on.

Consistency Checking: Formula f3

(0 5 ~ y (4 Y) I 2dop) A (2n + 1 1. ct (4 Y) 5 2 d0P) j

Consistent(TAPE(t, y), TAPE(t, y+l),TAPE(t, y+2),TAPE(t+l, y), TAPE(t+l, y+l), TAPE(t+l, y+2))

f3 ensures the consistency of the tape symbols, i.e. that the contents of the tape cells i, i + 1
and i + 2 in IDt determine the contents of the tape cells i, i + 1 and i + 2 in IDt+l. The Consistency
function of course depends on the state transition relation.

16

Although, the above formula contains clauses which are not narrow, it is easy to transform them
to a narrow set of clauses by adding temporary variables. We omit the details in this abstract. Now,
it is easy to see that these equations can be transformed into an equivalent narrow 3CNF formula
G,(t, y) whose size is polynomial is in n, (recall that n = 1.1.)

9
9.1 Toroidal Specifications
We now briefly discuss how the ideas of Section 4 can be refined to obtain a polynomial time
approximation schemes for problems specified by 2-F(B, B)PTN-specifications. Again, we consider
the MAX-IS problem for purposes of illustrations. The basic algorithm for solving 2-F(B,B)PTN-
MAX-IS remains the same as given in Figure 1. Therefore, we only point out the essential differences.
In Step 2(a) of the algorithm, we may get (7- - 1) disjoint pieces instead of r. Specifically the pieces
Gill and Gi,r are not necessarily disjoint due to the wrap around edges in the Y-direction. Moreover
these are the only two subgraphs that are connected due to the fact that the specification is narrow.
Also observe that since we remove vertices at grid points that are distance (k + 1) apart, we have
that the “width” (number of rows) of the connected graph G ~ J U Gi, is no more than 2(k + 1).
Next, consider Step 2(c)iA of the algorithm outlined in Figure 1. Again for a given value of i and
j , the graphs G::’ and Gf;” are possibly connected due to the wrap around edges in X-direction.
Therefore, we get s j - 1 connected subgraphs to work with. Moreover, the size of each subgraph
can be as big as 2(k + 1) x Z(k + 1) in terms of the numbers of grid points. The rest of the analysis

Approximation Algotihms for Other Specifications

remains the same as in the case of 2-F(B,B)PN-MAX-IS.

9.2 Extension to d-dimensional specifications
By applying the shifting strategy once for each dimension. we can obtain similar results
dimensional periodic narrow specifications, for any fixed d. The performance guarantee
exponentially in d. Thus we have the following theorem.

for d-
grows

Theorem 9.1 For all d > 0, E > 0, each d-dimensional periodic specified problems II in Table 1 has
a polynomial time approximation algorithm with performance guarantee (1 + E) ~ F B E S T ~ .

10 Domino Problems
Domino (or Tiling) problems were introduced in the early 1960’s have been studied extensively in
the literature. (see [vEB83, Ha85, Ha86, Bu62] and the references therein.) They have proven useful
in obtaining hardness results, especially for decision problems for various logical theories. Usually a
domino system is described as a finite set of tiles or dominoes, every tile being a unit square with a
fixed orientation and colored edges; we have an unlimited supply of copies of every tile. A domino
problem asks whether it is possible to tile a prescribed subset of the Cartesian plane with elements
of a given domino system, such that adjacent tiles have matching colors on their common edge and
perhaps with certain constraints on the tiles that are allowed on certain specific places (e.g. the
origin).

We consider the following two optimization versions of the domino or tiling decision problems
studied in [Ha85, Ha86 vEB831.

1. Maximum Area Tiled (MAT): Given a fixed collection of dominoes of size 1 x 1, the aim is to
tile the plane so as to maximize the area covered by the tiles or the dominoes. (Observe that
we do not demand the area be contiguous.)

17

2. Contiguous Maximum Area Tiled (CMAT): Given a fixed collection of dominoes of size 1 x 1,
the aim is to tile the plane so as to maximize the contiguous area covered by the tiles or the
dominoes.

When the bounds on the area to be tiled are specified in unary, we show that

1. the problem MAT has a polynomial approximation scheme, and that

2. there $exists E > 0 such that approximating the problem CMAT within performance guarantee
of n' is NP-hard.

The contrast between the complexities of approximating the problems MAT and CMAT becomes
more pronomced when bounds on the area to be tiles are specilied in binary. In this case, we show
that

1. the problem MAT still has a polynomial approximation scheme and that

2. there exists E > 0 such that the approximating the problem CMAT with performance guarantee
of ne is NEXPTIME-hard; thus CMAT provably does not have a polynomial time approxima-
tion algorithm with performance guarantee.

Non-approximability results similar to those obtained for CMAT can also be obtained for peri-

We start; with some preliminary definitions. Let S be a finite square (0,. . . m} x (0,. . . m}. The
odically specified graph and satisfiability problems. We omit the discussion due to lack of space.

classical domino problem as describe in the literature may be formulated as follows:
Instance: D consisting of a finite set D and a binary relation H, V c D x D.
Question: Is there a tiling T : S + D such that for all (2, y) E S we have

T (Z , Y) = C& A T (Z + 1, y) = dj + (d i , d j) E H and T (Z , y) = di A T(Z, Y + 1) = dj +- (di, d j) E V

The formulation is equivalent to the more intuitive description of the tiling problem in terms of
unit squares with colored edges. We consider the following decision versions of the above domino
problem.

B1: Given 'D and n specified in Unary; can D tile an n x n square.

B2: Given 'D and integers n and m, where n denotes the width of the board (width in terms of Y-
axis) is specified in unary and m the length of the board (in terms of X-axis) which is specified
in binary, can D tile the n x rn rectangle ?

B3: Given 'D and integers n and rn, where n denotes the width of the board (width in terms of
Y-axis) is speciiied in binary and m the length of the board (in terms of X-axis) which is
specified in binary, can D tile the n x m rectangle ?

It is shown in [Ha85, Ha86, vEB831 that

1. B1 is NP-complete;

2. B2 is PSPACE-complete;

3. B3 is NEXPTIME-complete.

Given a problem II E (B17B2,B3}, MAT-II denotes the non-contiguous version of the above
problems and CMAT-II the contiguous version of the optimization problems.

Theorem 1.0.1 (1) The problems MAT-B1, MAT-B2, and MAT-B3 have polynomial time approxima-
tion schemes.
In contrast, there exists E > 0 such t h a t getting an approximation within n' times optimum is

18

(2) NP-hard for the problem CMAT-B1,

(3) PSPACE-hard for the problem CMAT-B2, and

(3) NEXPTIME-hard for the problem CMAT-63.
Proof Sketch:
Part 1: The idea is similar to the one described for solving the independent set problem for period-
ically speciiled graphs. We describe the ideas for MAT-B1. Extension to MAT-B2, MAT-B3 follows
along the lines of Algorithm in Figure 1. Given an e > 0, we first find the corresponding integer I C .
To begin with, for each i, 0 <, i 5 k, we partition the plane S into I disjoint sets GS1, - - - GSl by
removing strips 1 unit thick with horizontal coordinates congruent to i mod (k + 1).

Since the bound on X-axis is specified in unary, it follows that the length of each strip is
polynomial in the size of the input and the width of each strip is a constant for a given E > 0. Using
this fact, it is easy to devise a dynamic programming algorithm running in linear time that finds if
the strip can be tiled or not. The same algorithm can also be used to find the way to tile the strip
so as to maximize the tiled area. We can also choose to further subdivide each strips so that we are
left with disjoint squares of size (k + 1) x (I C + 1). This is useful to solve problems where the bounds
on the plane to be tiled are specified in binary notation. Thus for each strip GS,, 1 5 p 5 I , we
solve the problem optimally. The solution for this iteration is just the union of the solutions for
each strip GS,. By an averaging argument, it follows that the partition which yields the largest
solution value contains at least - OPT(G) nodes, where OPT(G) denotes the value of the
optimal solution for tiling S.
Part 2: Again, we give an argument for B1. Starting with a NDTM M that is O(n) time bounded
and an input string x, we construct a Turing machine MI that cycles if and only if M accepts x.
Now we do a standard reduction from MI to the domino problem. If M accepts z, then MI cycles
and CMAT-B1 has a solution in which nk x nk area, for suitably large k, can be tiled contiguouslyg.
If M does not accept x then, MI does not cycle on x, and hence the maximum contiguous area
that can be tiled is no more than O(n) x O(n). IU

DISCLAIMER

This report was prepared as an amount of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

'A n x n area is said to be tiled contiguously if the area is completely tiled

19
r r *

