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Abstract. It is shown that the plasma axial shear flow instability satis- 
fies the Klein-Gordon equation. The plasma instability is then shown to be 
analogous to spontaneous particle-pair production when a potential energy 
is present that is greater than twice the particle rest mass energy. Stability 
criteria can be inferred based on field theoretical conservation laws. 
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1. Quantum Relativistic Analogy for the  Axial Shear Instability 

The purpose of this note is to illustrate a remarkable similarity between the equation 
for axial shear instability in an inhomogeneous plasma and the Klein-Gordon equation 
in relativistic quantum mechanics. 

[ (adt + iecp)2 - h2c28: + m2c4] .rlt = O? (1) 

In the presence of a large enough potential variation, the Klein-Gordon equation 
creates particle-antiparticle pairs. We will show that this creation process in the Klein- 
Gordon equation, is the instability mechanism for the axial shear flow plasma problem. 
Further, we will discuss how the conservation laws associated with the quantum mechan- 
ical problem gives us insight into the plasma stability problem. 

First we summarize the plasma problem. Instability from axial shear flow was 
first recognized by Kad0rntsev.l He investigated a flute mode for a plasma on an open 
homogeneous magnetic field line when there is an equilibrium E x B flow that varies 
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*long the magnetic field line. When the ends are terminated by an insulating end-wall, 
the response that arises due to ion inertia and quasineutrality leads to the condition, 

1% dz = -69 [w - WE(Z) I2  dz = 0, 
0 i 0 

where Sp is the perturbed potential, and W E ( Z )  = k~ - VE = IC1 - &(E(z) x B). This 
dispersion relation is always unstable when w ~ ( z )  varies along the axis. Such variation 
is consistently described by the two fluid MHD2 equation when there is present both 
a longitudinal electron pressure gradient Vllpe and a transverse electron temperature 
gradient VlTe. The axial shear instability has also been investigated in later works3p4 
in application to tandem mirror stabilization due to finite Larmor radius effects. In 
a more recent paper5 the axial shear instability was investigated for the semi-infinite 
space problem. Both the insulating end-wall and conducting end-wall with the Kunkel- 
Guillory6 boundary condition was studied for a plasma with zero resistance but with 
finite Larmor radius (FLR). 

In Tsidulko et al.? the following linear equation was derived and analyzed, 

where the field line displacement is related to $ by = i ( k l  x BIB)$ and 

k * (B x Vpi) 
Bn m i w ~ i  

w*(z) = 

is the ion diamagnetic drift frequency. The boundary condition for an insulating end- 
wall is a$/& = 0, while the Kunkel-Guillory boundary condition for a conducting wall 
relates the perturbed longitudinal current, 

to the perturbation of the potential drop across the Debye sheath, 

Specifically, one finds, 

where w11 is longitudinal plasma flow velocity into the conducting wall. Note that the 
boundary condition takes on its simplest form when expressed in terms of the Lagrangian 
displacement 69~. In fact in terms of this variable the boundary condition is mathemati- 
cally identical to the Kunkel-Guillory condition which was derived without consideration 
of an equilibrium transverse flow. 

It was found that the axial shear instability appears when the change of the function 
W E  along z is greater than w* and when the end-wall coefficient a oc 2111 is either sufficiently 
large or sufficiently small. 

2 



Another instability resulting from Eq. (2) arises even when there is no variation in 
the flow speed (i.e. WE is spatially homogeneous) but there are conducting wall boundary 
conditions (given by Eq. (3)). This instability was studied in Berk et ~ 1 . ~ 9 ~ 9 ~  Such a 
flow is readily established in plasmas on open field lines when there is a temperature 
gradient perpendicular to the magnetic field. It was found that instability appears when 
0 e R e w  < WE. The maximum growth rate corresponds to the case when 2111 close to 
( Ic lp i ) 'V~.  It leads to almost total absorption of an incident wave without reflection 
when the group velocity and phase velocity have the same signs. However, when the 
signs are opposite there is instability due to spontaneous wave emission. 

When the Debye sheath conductivity coefficient goes to zero (an insulator) or in- 
finity (a common choice for the conducting boundary condition in ideal MHD theory) 
the growth rate goes to zero. The latter two boundary conditions are what has been 
most frequently used in the literature, and this accounts for the relative lateness of the 
realization that there is such an  instability mechanism in the scrape-off layer of a plasma. 

To explicitly exhibit the analogy between Eq. (1) and Eq. (2) we make the following 
associations: 

VA * c, (4) 

(5 )  

and 

Then the only the difference between Eqs. (1) and (2) is that in the plasma equation 
[Eq. (2)] VA and w* can vary along z-axis, whereas in the Klein-Gordon equation, c, the 
speed of light and the particle mass m are constants. Henceforth for simplicity, we shall 
neglect variation of VA, but w* will be assumed to be a function of space. 

2. Positive and Negative Energy Waves in an Axially Homogeneous System 

Let us consider Alfvdn waves, using the usual definitions of wave momentum and wave 
energy found in the theory of electrodynamics of continuous media. 

We use for the dielectric function the definition, 

(7) 
4Ti 

eap(w, k)SEp 3 SE, + -Sj,, 
W 

which leads to the following form for the Maxwell wave equation 

kakp - k2Sap + X c a p  SEp = 0. (8) ( w2 C ) 
The wave energy expressed in terms of Hermitian part of the dielectric function tensor 
eap(w, I C )  = (cap + /2, is given by the following1* 

8 2  6E;ISEp 
W = - ow [- w (kakp - k26ap) + weap] 1 6 ~  . (9) 
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b The simplest way to calculate the Alfvh wave energy is the following. We first 
calculate the energy density W’ in a moving frame where the equilibrium electric field E is 
zero and we then transform to the laboratory frame, where the frequency is w = w’+lc.v,, 
using the general relation 

W w = w + VE *PI = -w, 
W I  

where P‘ = JW’ k is wave momentum density (prime corresponds to the frame with 
E = 0). 

The dielectric function tensor in the case E = 0 for a low pressure plasma, where 
vekll << J << wsj and pi << kI1 << L1 (where ve is sound speed, wgi the cyclotron 
frequency, pi = zyi/wgi is ion Lannor radius and LI is scale length of transverse variation 
of plasma parameters) has the form, 

with b, the component of unit vector along the equilibrium field. For the plasma we 
find, m 

W Z  

WBi 
€1 = -+ (1 - 5) ,  

where w& = 47rne2/m and €11 -, 00, when me and the collision frequency are taken as 
arbitrarily small (this forces the perturbed electric field component along B to vanish). 

From Eqs. (8) and (10) we obtain the dispersion relations for the compressional 
Alfv6n wave, 

w’(w’ - w,) = k 2 V i  

and the shear Alfvkn wave, 

The energy density is found to be, 

2 2  ~ ’ ( w ’  - w*) = kII V,. 

where < = ic[SE x B]/(w1B2) is displacement. In the laboratory frame we find for the 
shear Alfvkn wave, the dispersion relation 

and the wave energy density 

Now let us use the dispersion relation to express the frequency w(vgr) as a function 
of the group velocity 

(17) 
- dW kIIY.2 us.=-= 

dkll W - WE - w*/2’  
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\Then eliminating lcll we find the following relation, 

where the upper sign corresponds to the case with w > WE + w,/2 and the lower sign 
corresponds to 
energy density, 

where 

and 

the opposite case. Then we can rewrite Eq. (16), the expression for the 
as follows, 

W = N & ,  

If we now use the transformations to the relativistic quantum system [Eqs. (4)-(6)] 
we immediately see that this relation corresponds to the standard expression for energy 
of an elementary charged particle in an electrostatic potential c p  where we have, 

We see that we have an analogy where w > WE + w,/2 corresponds to a particle of 
charge of say +e and then w < WE + w,/2 corresponds to antiparticle with charge 
-e. The positive value JV is to be interpreted as the particle (or antiparticle) density. 
If elpI > rnc?/(l - .,”/c~)’/~ the antiparticles have negative energy if ey, > 0 and the 
particles have negative energy if ep  < 0. Note, that the range ecp-m? < hu < ey,+m? 
corresponds to imaginary value of lcll (.,” < 0) in our problem and to virtual particles 
(antiparticles) in the quantum analogy. 

3. Lagrangian Approach for Complex w and Spatial Inhomogeneity 

In order to study in more detail the properties of our equation, we examine the La- 
grangian for equations (1) and (2). To simplify the expressions we denote 

dz x 

W* ecp u(s) = W E  + - c+ - 
2 f i ’  

Iw*l rnc2 m(s) = - - 
2 t i ’  

and we assume that VA varies sufficiently slowly (v) << min (e, &). Then, both 
our equations can be written in the form, 

[ (8, + iu)2 - a,” + m2] $ = 0. 

5 



This equation can be derived from the well-known Lagrangian density” for zero 
spin charged particles. In the case where there is only an electrostatic potential, the 
appropriate Lagrangian is 

L($,$*? ...) = la,$ + iu$I2 - ps$12 - m21$I2. (23) 

and its Euler-Lagrange equation is Eq. (22). 

transformation, 

where A is real. Hence, according the Noether’s theorem if the action S = Cdtds is 
invariant with respect to transformations given by x, + x p  + XFXy with 21” = [ t ( p  = 
O),s(p = l)], double index implies summation and $k 4 $k + q k J V  ($k are $J and 
$* in our case) the solutions exhibit current conservation aP JF = 0, where currents are 

We find two conservation relations. The first is energy conservation (the parameters 

Clearly, this Lagrangian is invariant respectively to time translation and gauge 

t - + t + S t ,  $ + $exp(iN, 

J 

J,” = - 9 k , y  - O$Xz and O$ = S$L - &&,$k is energy-momentum tensor. 
a(apd’k)  

for Noether’s theorem are X i  = 1, with the other X f :  = 0 and 9 k , v  = 0) 

&E + ass = 0, (24) 

where 

is the energy density and 

is energy flux density. The forms in Eqs. (25) and (26) use 

11 K exp(-iwt), w = W, + ir. 
Let us redefine the energy density and the energy flux density as follows, 

W = fi - 3, Re($J*as$), S = 3 + at Re(v&$). 

Then substitution into Eq. (25) 

in agreement with our previous expressions calculations of the wave energy given in 
Eq. (16) for real w. The expression for the energy flux density S for $ oc exp(-iwt+ilcllz) 
is 

in agreement with usual relation S = V g r W ,  where wgr is defined in Eq. (17). 

in Noether’s theorem are X, = 0, 

S = wr(i$as$* + c.c.), (28) 

The gauge transformation leads to “electric charge” conservation (the parameters 
= ie$ and 9 2  = - i e V )  

at& + &J- = 0, 
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$where + - ul$I2 + c.c.) = 2e(wr - u)1+12 (30) 

is the “electric charge” density and 

3 = e(i$a,$* + c.c.) (31) 

is “electric current” density. (If .II/ oc exp(-iwt) the (‘charge’) conservation condition gives 
us additional information only for the case w, = 0.) 

4. Reflection Problem 

We can now make the following conclusions regarding the nature of wave reflection, for 
a wave with real frequency w for the situation illustrated in Fig. 1. In this figure u(s) is 
drawn as a monotone function of s with u, > u-,, but in principle the shapes of u(s) 
and m(s) are arbitrary, except that they asymptotic to constant values as Is1 -, 00. 

The solution for s -+ --oo consists of the incident and reflected waves 

exp (-iwt - ikls) exp (+ut + i b s )  + - A0 $-, = - 
llco11/2 

A1 

lkl11’2 

with an “electric current” 

The solution for s + +m consists of the transmitted outgoing wave only 

A2 exp (-iwt + i k 2 ~ )  &a = i - p  
with “electric current” 

(33) 

(34) 

The direction of wave propagation is defined by sign of the group velocity which equals 
UgUgr E dw/akll = J/Q = S/W,  i.e. it is the direction where “particles” (“antiparticles”) 
“carry their own charge and energy.” 

There are five regions (a)-(e) to discuss. We introduce the following notation for the 
longitudinal wavenumbers of either particles or antiparticles in the asymptotic regions 
(where u and m are constant). The wavenumber, ko, is associated with the positive 
group velocity wave as s -, -00, the wavenumber, k l ,  is associated with negative group 
velocity wave as s + -m and the wavenumber k2 with positive group velocity wave as 
s -+ 00 or the decaying wave in the case when IC2 is imaginary. 

The region (a) depicted in Fig. 1 is where w > u, + moo we consider an incoming 
particle from s = -w. Then, 

2 2 ko = [(w - U-,) - ~.t-,]”~ > 0, 
2 2 kl = -[(w - u-,) - m-,]’/2 < 0, 
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,and 
k2 = [(w - u,)~ - TTIL]''~ > 0. 

From J-- = &, we conclude 

and therefore the reflection coefficient 

Thus, if there are Z incoming particles, lr12Z particles are reflected and (1 - Ir12)Z 
particles are transmitted. 

In region (b), uoo - mco < w < u- + moo, we are still only dealing with particles 
and IC0 > 0, kl < 0. Now, however k2 is pure imaginary. In this case Jb, = 0, so that 
A2 = 0, and we conclude that 

IAoI2 - [All2 = 0. 

Hence, 1.1 = 1, and all the incoming particles are reflected. 
In region (c), (arising only if urn - u-- > moo + m-,) u-, + rn-- < w < 

uoo - moo, b and IC1 are the same as before, but in order for k1 to have aw/ak > 0 as 
s + 00, we need to choose, 

In this case we have an incoming particle, a reflected particle and a transmitted antipar- 
ticle. Further, from J-, = 3- and using Eq. (33), we have 

IAoI2 - IA1I2 = -IA2I2. 

Hence, ]All2 > IA0l2 so that 
Irl > 1. 

We see that for a given input flux of incoming particles, even more particles are reflected. 
Notice also that particles and antiparticles are created in pairs, with the total flux oc 
IA112-IAo12 of particles going to the left, is equal to the flux of antiparticles cc IA2I2 going 
to the right. The specific effect described here is a special case of general description 
described in Kull et d.12 which shows how a reflection coefficient greater than unity 
arises in stable systems when there are positive and negative energy waves. Of course, 
there is possible the reversed process of particle annihilation in the region (c), when 
waves coming from $00 and -00 simultaneously are considered. 

In region (d), u-- - m-- < w < u - ~  + m--, we cannot have any incident wave 
from the left. 

Finally, in region (e), w < - m--, 

corresponds to an incoming antiparticle, and 
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corresponds to a reflected and transmitted antiparticles respectively. The condition 
J-- = Jw implies 

IAo12 - IA112 = IA2l2. 

Hence, 

< 1. lAll 
IT] = - 

I A0 I 
The picture described above applies in an analogous way to antiparticles (w < 

u-, - m-,) and particles (w > u-, + m-,) when they impinge on the potential 
structure from the right, with the order (a) to (e) reversed. 

As an illustration, we present the expression for the reflection coefficient of a step 
profile. We consider the potential 

u(s) = u-00 + (u, - u-,)H(s), 

where H ( z )  = 0 for x < 0, H ( z )  = 1 for z > 0 and if we assume m = const, we have 

kl + k2 
ko - k2’ 

T =  

(the choice of the signs for the roots IC0 and k2 in the different regions was discussed 
above). Note, that the step profile can have an infinitely large reflection coefficient in 
the region (c). 

Further, the absolute value of the reflection coefficient can be easily calculated 
analytically in the case when the WKB approximation is valid everywhere excluding 
the vicinities of points s1 and s 2  where the lines u(s) f m(s) - w vanish. If the linear 
approximation for these lines can be used in the vicinities, then in region (c) WKB 
technique yields 

In this case the largest value of the reflection coefficient can be Irlim = 2. 
The existence of regions where reflection coefficient is larger than unity clarifies the 

appearance of the instabilities we have discussed. In particular, if a profile for some w 
has two reflection regions separated by a space interval where the WKB approximation 
is valid and the product of the region reflection coefficients satisfies the condition 

then there has to exist an unstable solution. 

5. Instability in the Case with Conservative Boundary Conditions 

In this section we study stability properties that can inferred from the conservation of 
energy and “charge.” Such conservation applies to either a full space case, a half space 
case or to a space of finite length. For the cases when s -+ oc) or s + -00 the boundary 
condition is lim $ = 0. For the cases when one or two end-walls are present, we take for 

IsI-)= 
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&he boundary condition on the walls either a$/bs = 0 (insulating boundary condition) 
or .rl, = 0 (infinitely large Debye sheath conductivity coefficient). 

We are searching for an unstable solution. Obviously, an unstable solution has all 
conserved values equal zero: 

/ & d s = 0 ,  J Z d s = O ,  J w ~ s = o .  

We define the averaging operator 

with the integration over the entire range of the variable s. Then from our conservation 
relations we have, 

(36) 

and 

where IC -ia,$/$. Using the inequality 

we find from Eq. (36) and Eq. (37) that instability is possible only if the potential drop 

in agreement with the well-known statement that only when the a potential drop is larger 
than two particle masses can particleantiparticle pairs be produced. In plasma terms 
it means that the considered instability is possible only when 

In addition, we conclude that eigenfrequency of the unstable solution has to satisfy 
the following, conditions: 

1) The curve u - wr (see Fig. 2) has to vanish somewhere in order to satisfy the 
zero “charge” condition = ii. 

2) In order to have (w - u - m)(u - u + m) > 0, either w - u - m or w - u + m 
must vanish somewhere. 

Formally, the conservation relations in the form given by Eq. (36) and Eq. (37) give 
expressions for the real and imaginary parts of the eigenfrequency. The approximate 
averaging in these expressions can be made analytically in the asymptotic case when 
Au As << 1 and m As << 1, where, As is either the scale length of the region in which 
the functions u(s) and m(s) significantly differ from their asymptotic values in the infinite 
length case, s 4 f o o  or As = sT-sz is the distance between end-walls placed at positions 

In these cases the problem can be either stable or have only one unstable solution. 
Now, we briefly discuss this calculations for the different boundary conditions. Under 

SI and S r .  
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&he assumed condition the solution $ is almost constant so that in the region where u 
and m vary, the contribution from the term N lkI2 in Eq. (37) is negligible. Hence, for 
the case when As is the distance between two insulating end-walls the growth rate is 
given by the following expression, 

Sr 

r2 li J [(u - ur>’ - m2] ds/As, 
31 

with 
Sr 

w, fi 1 u ds/As. 
31 

The case where As is taken as a short distance between two end-walls and when 
the Debye sheath conductivity is arbitrarily large at least at one of the walls, is stable. 
This follows because the function $ is constrained to vary linearly within the distance 
As and therefore starting from $J = 0 at an end-wall with the Debye conductivity, we 
are unable to satisfy the conservative boundary condition at the other end wall. 

For the general full space case, with the conditions Au As << 1 and m As << 1, the 
eigenfrequency can be obtained by using a technique derived in Tsidulko et a1..5 Here we 
just present the result for the case when u-- = uW and m-- = moo, where there is an 
unstable solution when the following condition is satisfied, 

W 

Y 1 [(u - urn)’ - (m - m,)2] ds > 2m,. (40) 
-W 

Then the solution has the growth rate given by 

r - f  2 \lo. 
In the opposite case when AuAs >> 1 (As is now the minimal scale of variation 

of the function ~ ( s )  and m(s)) instability always arises when the condition discussed in 
the previous section, given by Eq. (35), is satisfied. Note, that when there are end-walls 
(which have reflection coefficient equal to unity, because we consider only conservative 
boundary conditions in this section), one of the reflection coefficients in the inequality 
given by Eq. (35), can be the reflection coefficient of an end-wall. 

Suppose we have instability for the full space problem with even functions u(s) and 
m(s) as it shown in Fig. 2. Clearly, we can then place an insulating end-wall boundary 
condition for an even solution in the center of the potential well where as+ = 0 while an 
ideal conducting condition can be placed at  the zero of + if an unstable solution with 
a null exists. In this sense, the full space potential well problem is equivalent to the 
instability that has been found in previous w01-k.~ 

We also see that in principle the instability is not connected with the existence of 
an end-wall. It takes place when a proper potential u(s) - m(s) 0: w&) oc VAT, exists 
in the plasma and the .FLR term (“particle mass”) m o( Vl(nq)  is sufficiently small. 

A similar instability takes place in the potential of a nucleusI3 with a large charge 
number 2 although this case is somewhat outside our analogy. With increasing 2 the 
lowest eigenvalue reduces and when 2 > 137 it becomes lower than -m. As a result, two 
electron-positron pairs are born, the positrons escape to infinity and the total charge in 
vicinity of the nucleus becomes less than 137. 
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6. Conducting End-wall Case 

Let us now consider how the problem is modified if one end-wall satisfies the Kunkel- 
Guillory conducting wall boundary condition 

This condition leads to the absorption of energy at the wall with an energy flux given 
by, 

s=-  

As S has the sign of 
of “partides” is 

this energy flux is always flowing into the wall. Similarly the ALIX 

sp = - 1 4 2  
Vll 2wr 

lvAl  (kLpi )2  

Note that both fluxes tend to zero as the coefficient 

tends to either zero or infinity (in the latter case / $ I 2  is small by a factor 1/a2 for large 
o as 1/a2). The reflection coefficient for a WKB wave impinging on the Debye sheath 
is found from straightforward calculations to be 

where the dimensionless group velocity at the end-wall is determined by v;’ = = 

Let us consider a plasma terminated by a conducting end-wall, and a presheath 
region where the potential u varies by more than 2m, as shown in Fig. 3. In this case 
instability may arise if w is in region (c) (u, +my < w < urn - m,). In particular, if the 
WKB approximation has a region of validity for the “particle” between the wall and the 
presheath (i.e. one or more wavelengths of the particles fits into this region), instability 
will always arise if lrwrl > 1 is satisfied. Note that Eq. (43)) indicates that we must have 
lrwl < 1 in region (c). However, condition, lrwrl > 1 means that the rate of particle pair 
production in the presheath structure, exceeds the particle absorption rate at the Debye 
sheath. Hence, pair production continues without bound from any initial perturbation 
and we have instability. 

Now suppose the second wall is present on the right-hand side of the plasma (now 
consider Fig. 3 with the left end-wall as the left part of the full picture) and the frequency 

a W  

everywhere satisfies to the condition wru  > 0, i.e. 
apply. Then the end-wall reflection coefficient lrwl 
most unstable case is when frvl >> 1, which occurs 

the condition for being in region (e) 
can be made larger than unity. The 
when 
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\This is the “temperature gradient instability,” which appears even the axial shear is 
negligible (u = const). In OUT relativistic analogy it arises because the negative energy 
antiparticles are produced as a result of energy being absorbed at the Debye sheath. 

Another surprising result of the “temperature gradient instability” is that we obtain 
instability when the flow velocity, V E ,  is constant. When the walls are not important, as 
in the case of the axial shear instability, the flow speed depends on the frame of reference, 
but it has no effect on the system’s stability properties. However, with conducting walls, 
we have a special frame (the lab frame) where the magnetic field lines are “at rest” and 
the inequality wru > 0 has a physical meaning. 

7. Summary 

We have shown that there is remarkable analogy between the Alfv6n wave of the two-fluid 
magnetohydrodynamic equation and the one-dimension Klein-Gordon equation for zero 
spin charged particles in an electrostatic potential. The role of the particle rest mass is 
played by the term in the Alfvh wave equation, which arises from finite Lamor radius 
effects. The role of the electrostatic potential in the Klein-Gordon equation is played by 
the parameter u(z)  = kl- V E  + w,/2. 

In contrast with the Klein-Gordon equation, the analog of mass for Alfv6n waves 
can be a function of the space coordinate. However, one can still construct conservation 
relations in both the Klein-Gordon problem and the plasma problem. The conservation 
relations follow from invariance of the appropriate Lagrangian with respect to time trans- 
lation and the gauge transformation. For the Klein-Gordon equation these conservation 
relations lead to energy and charge conservation respectively. In the analogous plasma 
problem, time translation symmetry can be related to wave energy conservation. The 
analogous charge conservation condition in the plasma does not lead to an obvious phys- 
ical quantity, but we have found it useful in the determination of stability properties and 
estimates of growth rates. Further, we have shown that the traditional expressions in 
continuous medium theory for the wave momentum and energy correspond to the usual 
for relativistic theory definitions of particle momentum and energy. 

The analogy is useful for analyzing and interpreting the stability problem. In 
particular, “the axial shear instability” for the relativistic particle analogy, is the well 
known effect of spontaneous emission of particle pairs, which can occur if the variation 
of the potential energy eu(z) is greater than 27722. Qualitatively one can say that 
“pair production” occurs in the vicinity of points where IC,, vanishes. Here when the 
wave reflection coefficient is larger than unity there can be instability. The “particle- 
antiparticle” pairs created by such reflection move in an opposite direction away from 
the place of birth and the total excited energy is zero. 

Note, that in the previous analysis of the “axial shear in~tability”~ the plasma- 
wall interaction was emphasized. However, as our consideration shows, the “axial shear 
instability” is not really connected with the presence of an end-wall. In contrast the 
“temperature-gradient in~tability”~ is due to a plasma wall interaction. It is an insta- 
bility arising from the self-excitation of a negative energy wave caused by sheath energy 
absorption (with corresponding “particle production”) by a Debye sheath at the con- 
ducting end-wall. 
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b Although OUT consideration was strictly only for cases with straight unperturbed 
magnetic lines without magnetic shear, our results can be applied to the cases with a 
curved magnetic field and to closed toroidal systems if the wavenumbers IC_L and lcll are 
large enough. 
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,FIGURE CAPTIONS 

FIG. 1. The curves u(s) f m(s) with the five discussed regions (a)-(e) are shown. In 
this example the U-value is placed in region (c). 

FIG. 2. Example of pair-production instability with the functions u(s) and u(s)  f 
m(s), where u(s )  = 0.23f(s) and m(s) = 0.03f (s ) ,  with f ( s )  = 1 + 
4 [l - exp(-{s - 201/3)l2. This result shows an unstable even eigenfunction, 
with the eigenvalue w1 N 0.598 + i0.069. For this case there is also an odd un- 
stable eigenfunction with the eigenfrequency w2 11 0.968 + iO.011. These results 
are obtained in a parameter range where the simplifying assumptions made in 
the text do not apply. 

FIG. 3. Example of the functions u(s) f m(s) for half space problem with a conducting 
end-wall at s = 0. The five discussed regions (a)-(e) are shown and the U-value 
is placed in region (c). 
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