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Abstract 

It is shown from first principles that, in the periodic potential of a crys- 

talline solid, short-range (i.e., screened) binary Coulomb interactions can lead 

to a two-electron bound state. It is further suggested that these composite 

bosonic states ( charge -2e, and typically spin zero) could mediate an effec- 

tively attractive interaction between pairs of conduction electrons close to 

the Fermi 1evel.This necessarily short range attractive interaction, which is 

crucially dependent on the band structure of the solid, and is complemen- 

tary to the phonon-mediated one, may provide a source for the existence and 

properties of short correlation-length electron pairs (analogous to but distinct 

from Cooper pairs) needed to understand high temperature superconductiv- 

ity. Several distinctive and observable characteristics of the proposed pairing 

scheme are discussed. 

1 



I. INTRODUCTION AND MOTIVATION 

The energy spectrum of free electrons is a continuous function of their momentum (‘free 

electron parabola’). It is obvious and well-known that interaction via their mutual Coulomb 

repulsion, leads merely to scattering states; bound pair states are never formed. It is neither 

obvious nor well-known that, under certain well-defined conditions, a radically different 

conclusion holds for electrons moving in a periodic external potential. 

The energy spectrum of free electrons in a periodic potential is disconnected, and consists 

of allowed and forbidden bands; the band gaps arise due to Bragg reflections. Slater et al. 

and Hubbard [1,2] have shown that two interacting electrons moving in a periodic external 

potential can form bound states with spin zero or one and charge -2e, even if the effective 

interaction is repulsive! This conclusion is a characteristic result of the wave nature of matter 

and d.oes not apply to classical particles. It can be qualitatively explained by the fact that 

the Bloch spectrum implies negative effective masses for certain wave numbers (close to 

zone boundaries) and particles with negative effective masses subject to repulsive forces can 

form ‘bound states. A deeper explanation may, however, lie in the fact that Bragg reflection 

actually constrains two electrons to be close even though they repel each other, provided 

they both have energies close to a zone boundary. 

The purpose of this paper is to first provide a simple quantum mechanical calculation 

demonstrating that two electrons interacting through a short-range binary repulsion can 

indeed form a bound state in the periodic potential of a crystalline solid. The calculation is 

then extended to show that this interesting and relatively obscure phenomenon may persist 

in a many-electron system (a metallic solid, for example) where the Pauli principle places 

essential and nontrivial constraints on the bound state formation. We further suggest that 

a virtual exchange of these bound states (to be termed gap bosons, since they form in the 

Bloch band gaps, and are spin singlets in this work) could be instrumental in mediating a 
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new attractive effective interaction between real pairs of conduction electrons close to the 

Fermi level in much the same way that phonon or exciton exchange leads to Cooper pairing, 

as described in standard BCS theory. 

11. A TWO-PARTICLE MODEL 

We first exhibit a solution of the two-electron problem in one dimensional quantum me- 

chanics which illustrates the fact that bound electron pairs can be formed in the presence of 

a mutual repulsive interaction when the constituents move in a periodic external potential. 

We adopt a simple and direct approach which is quite distinct from those of earlier work- 

ers [1,2]. This problem, while exactly soluble in principle, is of course not strictly relevant 

to a real solid which has a very large number of electrons. We shall also discuss the latter 

case and show that under certain well-defined conditions) a very similar result applies. 

Consider two electrons a, b interacting with each other via a repulsive potential V,( 12, - 

in the presence of an external periodic potential &(x+d) = &(x). The time-independent 

Schrodinger equation, describing their motion is, 

In the absence of either Vp or V,, this equation may be solved to yield non-square inte- 

grable solutions corresponding respectively to ‘Bloch states) (I,$ = 0) or ‘scattering states) 

(Vp = 0). For a short-ranged (e.g., screened Coulomb) repulsive potential V,, we find that 

Eq. (1) admits solutions that are Bloch-like = eiKr W ( z ,  y) in the center of mass coordinate 

x = (x ,  + xb)/2 [W(z, y) is periodic in x with the lattice period 4, and localized in the rel- 

ative coordinate y = x, - xb. These eigensolutions are nondegenerate and are labelled by K ,  

the center-of-mass ‘wavenumber’. Thus the wave function @(x,, xb, K )  has a characteristic 

energy E(K) .  The proof applies mutatis mutandis to any reasonable periodic potential and 

to any purely repulsive potential which is sufficiently short-ranged. 
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In. the following, ~ ( k , n )  is the eigenenergy. For transparency of notation we use the 

reduced zone scheme in which k is the reduced zone wavenumber - r / d  5 k 5 r / d ,  and n 

is the band index. In the rest of this paper we will use < as a composite symbol for k and n 

with Jr E;=, s:$d(dk/27f) denoting integration over the allowed bands. The total (spin 

plus orbital) wavefunction must be antisymmetric. Since the potentials (by assumption) are 

independent of spin, we may look for spin zero (singlets) or spin one (triplet) solutions. For 

simplicity, we discuss the singlet case, corresponding to spatially symmetric wave functions. 

Unless otherwise stated, in the following the label !P refers to the symmetric spatial orbital. 

This orbital wave function is expanded in terms of symmetrized products of one-electron 

Bloch states, eikZUk(z) and satisfies, when substituted in Eq. (l), an integral equation for 

the amplitude 8. 
The solution is of the form Q ( c < b )  = S(K-k,-kb)F(k,, K-k,,  n,, nb) with F satisfying 

These spatially symmetric solutions are even in y = z, - xb. The kernel of the 

equation is obtained straightforwardly by transforming to the center of mass z and the 

relative coordinate y [z, = z + y/2, xb = z - y/2, dx, d X b  dz dy] ,  exploiting the periodicity 

of the Bloch functions, and using the standard identity ~~~~~ exp[inO] = 2 4 8 )  for - - 7 ~  5 

where Aa(b) [Ui(x) U,(z)],(6) are periodic in z,(b), and the double integral is p .  
We simplify Equation (3) [essentially equivalent to Eq. (l)] to elucidate the basic physics 

of Coulomb pair-formation by putting Bloch functions equal to unity, by modelling the 

repulsive potential by V, = VodS(y) leading to = V,d2, and by restricting the k integration 
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only to the two relevant bands n = 1,2. Defining new dimensionless variables IC = kd/27r, 

K = Kd/27r(-1/2 5 k , K  < 1 /2 ) )  u = k - K / 2 ,  and remembering the constraints on k i  

integration, Eq. (3) leads to the integral equation/dispersion relation, 

1 du 
2vo a,j E - Ez(U - K / 2 )  - €j(U + K/2) ‘  (4) 

This equation is clearly a generalisation of Hubbard’s [2]. Given the singleparticle energy 

spectrum (i.e., ~ ( k ) )  and the interaction potential Vo, this equation is readily solved numer- 

ically to give the energy E ( K )  and the two-particle wave function in terms of the relative 

coordinate y. It admits of course various ‘scattering states’ which are not square integrable 

in y. We shall be more interested in the bound states. Even without solving Eq. (4), it is 

evident from the nature of the energy denominators that when E lies in the two-particle gaps 

caused by non overlapping Bloch bandenergies, the equation has nontrivial solutions which 

correspond to bound states of the two electrons. It can be seen from elementary arguments 

that the pair wave function in this case is localized in y (i.e.) J-”,” IQ(~,y>1~dy < IC12). 

We present as an explicit example, numerical solutions based on the one-particle disper- 

sion relation cos 2 7 r ~ l / ~  + (sin 2 7 r ~ ~ / ~ / 2 7 r 8 / ~ ) Q o  = cos 27rk corresponding to the well-known 

Kronig-Penney potential &(x) = Qo(A2/rnd) CEE?w 6(x - n d ) ,  Qo = (rnd/fi2)Qb, where 

Q(b)  is the strength (range) of the potential. Here we show a typical strong potential 

(Qo = 5) example for which the gap size is comparable to the band width. In Fig. 1, we plot 

the functions €1 (IC) [single-particle ‘valence) band], €2 ( I C )  [single-particle ‘conduction’ band] 

and E ( K )  for V, = 0.5 (a typical value when the screened Coulomb potential is approxi- 

mated by a delta function). The precise location of the energy eigenvalue E ( K )  will depend 

on the strength of the repulsive potential VO. The plot of E ( K )  as a function of K shows 

the minimum pair energy occurs at K = 1/2 and the slow K variation (high effective mass) 

of the pair energy for the present conditions. In Fig. 2 we display a plot of the relative 

probability density lQ(x, y)I2//Q(z, 0)12 = p(y )  as a function of y (measured in d )  for the 
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most tightly bound K = 1/2 state. The probability density falls off rapidly implying a short 

coherence length e N d,  the lattice period. The pair size remains between 1 - 10d for all 

reasonable values of QO and VO. 

The crucial results of the preceding calculation can now be summarized: 

1. In a periodic external potential, two electrons interacting through a short-ranged 

repulsive potential can be ‘bound’ to form a spin zero compound boson with charge -2e and 

a spatial extent of the order of a lattice length. This result is remarkable in that each of the 

two potentials by themselves cannot lead to states localized in the re2utive coordinate (but 

Bloch-like in the centre of mass coordinate). 

2. An essential requirement for solutions of this type to exist is the disconnected nature 

of the single-particle energy spectrum (Le, the existence of distinct band gaps). 

3. Typically, the two-particle energy E ( K )  is a continuous function of the crystal mo- 

mentum K of the pair, and forms a band with higher energies than would be the case if both 

constituents had energies in the valence (i.e,, lower) band. Thus these pair states possess 

higher energies and are ‘excited) relative to the ground state of the two-particle system. This 

is perfectly understandable since the repulsive interaction can only ever increase the energy 

of a pair relative to the unperturbed system. 

4. The simplified analysis presented did not take account of umkhpp processes. These 

can be easily included rigorously (at the expense of some algebraic complexity). The integral 

equation is replaced by a coupled system of such equations, and a numerical solution yields 

the same qualitative results. 

111. MANY-BODY EXTENSION 

We now proceed to investigate if the two-electron bound state survives in a many-body 

environment. Let us consider a solid in which the filled shells of the periodic array of ion 
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cores can be treated as a ‘rigid’ external background. The valence electrons then obey, 

in the usual Hartree-Fock self-consistent approximation, the standard Bloch-Wilson single- 

particle equations. As a result we obtain the standard Bloch spectrum and the associated 

wavefunctions. Measuring energies from the lowest of these Bloch levels, we may form the 

associated Slater determinant for the ground state from the single particle Bloch states in the 

usual manner. We shall assume that the lowest band is not totally filled (Le., the substance. is 

a metal) and that the next higher band is empty at zero temperature. As in the two-electron 

problem, we shall assume that there is a definite gap between these two bands (i.e., they are 

non overlapping). 

We start with the above system at zero temperature and examine the effect of a short 

range binary repulsion between the electrons. The repulsive potential is assumed for sim- 

plicity to be of the same form as in Section 2. We adopt the standard [3] (in particular, 

see Section 7-1 of this reference) t-matrix approach based on Green’s functions. In the lad- 

der approximation, two-particle bound states are predicted in this approximation when the 

following integral equation is satisfied: 

Here the summation is over the two lowest bands considered. K is the centre-of-mass 

crystal wave vector. The Fermi occupation factor, f(z) = 1 for z < €Fermi, and zero otherwise. 

By assumption, E F ~ ~ ~ ~  < cya” < eyin, where, ~ y ~ , e y ~ ~  are the maximum and minimum 

energies of the lower and upper bands respectively. 

The integral in Eq. (5) arises from J &Goi(k)Goj(K - k), where Goi(k) is the Bloch 

electron propagator: 

1 
ko - Ei(k) + iq‘ Goi(k) = 

The infinitesimal q is positive if IC > kFermi and negative otherwise [3]. For factorizable 

potentials the t-matrix equation can be solved exactly by evaluating the integral over the 
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product of the Bloch propagators. This is done by using residue calculus (as in [3]) making 

use of the pole prescription. The Fermi occupation factors in Eq. ( 5 )  arise essentially as a 

result of this evaluation. 

Indeed, Eq. (5) is exactly equivalent to Eq. (7-6) of [3], upon making the appropriate 

changes of notation. Taking account of the fact that the single particle energies exhibit 

band-gap discontinuities, it is easily seen that two electron bound states can be found in the 

present case even though the potential is repulsive. This is in sharp contrast to the situation 

discussed in [3]. In addition, there will also be a contiuum of two-particle scattering states. 

These are are not localized in any sense and simply represent the ordinary Coulomb scattering 

of the two electrons. 

The nature of the two-particle spectrum predicted by Eq. ( 5 )  is best understood by 

considering K = 0 and using the fact that E(k) = E(-k). The dispersion equation becomes, 

where 112,122 are corresponding integrals involving energies from the upper band. The 

integral 111 can obviously be written in the form, 

The first, negative term (remembering that E > 2eyax) arises from the occupied states 

in the lower band, whereas the second term is the positive contribution of the unoccupied 

states between the assumed Fermi level and the band maxim&. This latter term, the only 

one responsible for giving a bound-state solution for positive Vo, can be made arbitrarily 

large and posit,ive by choosing the pair energy sufficiently close to 2ey". The integral 122 

also has a simple expression: 

de 
(9) 
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It is seen tha.t 122 is always negative and bounded, since E < ~ E Y  for regular solutions of 

Eq. (7). In order to write the integral I12 in its most transparent form, we introduce the 

function, V ( E )  defined by, 

It then follows that we may write 112 in the form of a single integral over E :  

112 = - / . ( E ) -  de 
26-E‘ 

Note that v is nonzero only when its argument varies between the range of variation of 

(El(k) + ~2(-k))/2. Naturally E has to be chosen below this range to keep the integral 

finite. Thus 112 is always negative and can be made arbitrarily large and negative. It is 

therefore evident that as E is varied over the allowed range (that is, the range over which 

all the 1 ’s  remain finite) the right hand side of Eq. (5) varies from an arbitrarily large 

positive value to an arbitratrily large negative value. The positive values correspond to a 

bound state for a repulsive potential. Thus for a given positive (repulsive) Vo, Eq. (5) has 

a unique regular solution provided the band structure of the single particle problem allows 

the necessary gap or the forbidden energy range. This always happens in one dimension 

but need not for all(indeed any) wave vectors K, k in higher dimensions. When the solution 

exists, it is clearly a two-particle bound state with localized wave function in the relative 

coordinate. These states will be referred to as ‘gap bosons’. 

It is therefore clear that gap bosons are not forbidden by the Pauli principle in the many- 

electron problem, provided the band structure has the required characteristics. However, in 

contrast to the two electron problem solved in the preceding section, the Pauli principle does 

‘block’ two electrons from interaction if they are in the Fermi sea. This then implies that the 

lowest pair energy occurs for K = 0 unlike the result for the two-electron problem. Indeed, 

Eq. (5) makes a straightforward experimental prediction: under suitable conditions, one 
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ought to be able to observe these pairs as real states by photo excitation of the ground state 

(Fermi sea). At finite temperatures, there will be a small but finite probability of thermally 

excited gap bosons, given by the Boltzmann factor, as in semi-conductors. It is perfectly 

clear however, that these excitations by themselves cannot form a Bose condensate and 

lead to macroscopically coherent behaviour. Like phonons, these composite bosons are not 

conserved in number and are in any event, excitations of the Fermi sea. For this reason, we 

believe that these gap boson excitations do not correspond to the real space pairs envisaged 

by Schafroth and others as capable of leading to superconductivity via the Bose-Einstein 

condensation mechanism [4]. 

IV. ELECTRON PAIRING AT THE FERMI LEVEL: THE GAP BOSON 

MECHANISM 

We now propose a model of electron pairing at the Fermi level mediated by the gap 

bosons. The mechanism is quite analogous to the phonon pairing of BCS theory [3] but 

with the essential difference that the correlation length associated with this mechanism is 

likely to be short. Let us consider a material in which gap bosons can exist and have some 

significance. If one starts with an insulator at T = 0 and dopes it with electron accepting 

impurities (as is the case in LazCu04 doped with Sr),  the Fermi level moves down slightly 

into the lower (Le., ‘valence’ band), the gap boson states can be regarded as virtual bosons 

which can affect the interaction of the electrons at the Fermi level. We consider a model 

Hamiltonian analogous to the F’rohlich Hamiltonian: 

H = €(k)a:(k)a,(k) + E(q)b+(q)b(q) + Kznt (12) 
s,k 

where a’s are electron operators including spin The b’s represent the bosonic excitations. The 

interaction term E WkmucT+(k)a,-(m)b+(k + m)+h.c., involves the matrix element 

for the basic electron-gap boson interaction. It gives the amplitude for two electrons at or 
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near the Fermi level to be scattered in to the gap boson state with energy E; this must be 

a virtual state since the gap boson energy E > 2qermi. The model Hamiltonian does not 

involve the two-electron scattering states. These are already accounted for in the standard 

Hartree-Fock theory to some extent. In principle, they could contribute a repulsive Coulomb 

correlation energy (over and above the Hartree-Fock smoothed out potential) that which 

must be taken into account in the same way as is done in BCS theory. 

One can now either use standard second order perturbation theory or a canonical trans- 

formation method [6] to write the effective (or reduced) Hamiltonian by eliminating the gap 

bosons. Since E > 26, irrespective of the sign and the size of the interaction elements W ,  the 

effective interaction is attractive. The standard second-order perturbation theory [5] gives 

the reduced interaction for electrons with oppositely directed spins and momenta: 

where the spin indices are suppressed for clarity. Note that the initial and final energies are 

assumed same and only the lowest energy gap boson state is taken into account. This reduced 

interaction between electrons is always attractive (assuming, as in the phonon case [6] that 

the matrix elements are nearly equal). Indeed, the form is closely analogous to that obtained 

for the usual BCS Hamiltonian [5,6]. If one takes into account the phonons as well, the total 

interaction Hamiltonian would have the same form. The two interactions contribute to the 

total attractive (effective) interaction. The direct Coulomb repulsion between the electrons 

should not be included since the gap bosons are precisely the result of such forces. However, in 

principle, the two-electron scattering states could make a repulsive contribution (as in BCS 

theory). They are also reponsible for screening the effective Coulomb repulsive potential 

strength Vo and the gap states themselves. It thus appears that phonons and gap bosons (if 

they exist) can provide a net effective attraction between electrons at the Fermi level and 

hence result in superconductivity. 
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Just as in the phonon case, the excitations responsible for pairing are virtual states. Unlike 

the phonons, however, the gap boson mediated pairing does not involve ionic motion (absence 

or weakened isotope effect) but does involve very short range forces, leading to extreme type 

I1 superconductivity behaviour . The gap boson mediated pairs are called 'Coulomb pairs'. 

They are analogous to Cooper pairs in the sense that an effective attraction is reponsible for 

the pairing mechanism. They must be distinguished from the gap bosons themselves. The 

latter result from the combined effects of band structure and binary Coulomb repulsion. 

For the Hamiltonian proposed above, the calculation of the transition temperature and 

other thermodynamic properties are done exactly as in BCS theory. Thus, the energy gap 

A(0) at zero temperature can be estimated to be, 

A(0) N (E(0)  - 2p) exp -1/N(O)'& (14) 

where, N(0)  is the density of states at the Fermi level p at zero temperature and V,, is the 

effective (attractive) matrix element tending to cause the gap boson mediated pairing. We 

note that from the general perturbation theory result that V,, decreases is magnitude as 

the energy difference, E(0) - 2 p  increases for a given interaction amplitude W .  This energy 

replaces the Debye energy of the standard phonon-mediated BCS interaction. Its relatively 

large size may explain why gap boson mediated superconductivity, relying as it does on the 

strong Coulomb force, could be reponsible for higher transition temperatures than would be 

the case for purely phonon mediated superconductivity. Since the formation of gap bosons 

is essentially controlled by band gaps, it is expected that the energy gap A estimated above 

should be lattice dependent and anisotropic in general. 

The structure of the effective (attractive) matrix element qualitatively explains also why 

there should be an optimal doping since the difference between the Fermi level and E / 2  is 

controlled by the number of electron states available for pairing. The weak isotope effect 

and the relatively short coherence length as well as the sensitive dependence of the whole 
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mechanism to band structure (unlike phonon mediated pairing which can occur in principle 

in ‘jellium’) likewise seem natural to the mechanism suggested. A test of the model would 

be that superconductivity mediated by gap bosons should be lost whenever the external 

conditions are such as to lead to band overlap (eg. due to pressure). Materials close to the 

metal insulator transition would be expected to be ideal for observing gap bosons and their 

interact ions. 

In summary, the proposed model of gap boson mediated pairing seems to have qual- 

itatively the sort of mechanism needed to account for certain types of superconductivity. 

Among many current theories [7-111 currently under study, there are very few which can 

account for the simple fact that high temperature superconductivity involves very short co- 

herence lengths. F’rom the Uncertainty Principle, this means that the forces involved must 

be relatively strong and must certainly involve the Coulomb interaction and exchange inter- 

action of paired spins in an essential way. However, any such model must avoid the paradox 

that pure repulsion leads to pairing in real space and not merely in momentum space, as 

in the phonon case. The gap boson pairing mechanism seems capable of resolving this is- 

sue as well as others, such as the relatively weak or nondetectable isotope effect in high 

T‘ materials. The analysis presented makes stra.ightforward predictions (albeit qualitative 

at this point) which can be tested by experiment(e.g., as in [E]). The model presented is 

a possible ‘electronic’ mechanism [13] which can coexist with, and in principle enhance a 

phonon mechanism, although the latter is not strictly required. The dependence of the gap 

on the details of the band structure may account for the observed symmetries of the wave 

function, although this is an open question at this time. 
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Figure Captioils 

[I] Siiigie particle energies, el(  k) (valence lmnd), E Z (  k) (conduction lmnd) and pair energy 

(ie solution of the dispersion relation, Eq.(4) )  E(I<) for Q o  = 5 ,  Uo = 0.5. 

[2] The Coulomb pair coherence function p ( 9 )  (defined in the test) as  a function of the 

relative distance y for Q o  = 5 ,  Vo = 0.5, and K = 0.5. 
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