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ABSTRACT 

The gyro-Landau fluid (GLF) model equations for toroidal geometry [R.E. Waltz, 

R.R. Dominguez, and G.W. Hammett, Phys. Fluids B 4, (1992) 3 1381 have been recently applied 

to the study ion temperature gradient (ITG) mode turbulence using the 3D nonlinear ballooning 

mode representation (BMR) outlined in [R.E. Waltz, G.D. Kerbel, and J. Milovich, Phys. Plasmas 

1, 2229 (1994)l. The present paper extends this work by treating some unresolved issues 

concerning ITG turbulence with adiabatic electrons. Although eddies are highly elongated in the 

radial direction long time radial correlation lengths are short and comparable to poloidal lengths. 

Although transport at vanishing shear is not particularly large, transport at reverse global shear, is 

significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of 

local shear and average favorable curvature. Transport is suppressed when critical ExB rotational 

shear is comparable to the maximum linear growth rate with only a weak dependence on 

magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport 

bifurcation at suffciently large r/(Rq). However the main thrust of the new formulation in the 

paper deals with advances in the development of finite beta GLF models with trapped electron 

and BMR numerical methods for treating the fast parallel field motion of the untrapped electrons. 
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I. INTRODUCTION 

This paper describes some recent advances in the simulation gyro-Landau (GLF) model 

equations for toroidal geometry as formulated by Waltz, Dominguez, and Hammett and applied 

to the study of ion temperature gradient mode (ITG) turbulence using a 3D nonlinear ballooning 

mode representation (BMR) outlined in a very recent paper by Waltz, Kerbel, and Milovich.% 

The present paper is intended to be read in close conjunction with the latter reference which dealt 

exclusively with the ITG turbulence assuming adiabatic (near Boltzmann) electrons in the 

electrostatic limit. Reference 2 should be consulted for numerous references to earlier and 

contemporary work on the simulation of ITG turbulence. The key results were that the toroidal 

turbulence is highly ballooning and the toroidal transport levels are more than twenty-fold larger 

than slab levels. The scaling of diffusion with shear 2, safety factor q and temperature gradient 

is found to be similar to the scaling of the linear mixing length model at least near threshold at 

moderate to strong shear (1 < ŝ  < 2). The mixing length diffusion is simply the product of 

growth rate for the maximally unstable ballooning mode and the square linear mode width [DML 

= y,,, Ax where Ax = l/(ky s  ̂ Oms) with ky the poloidal wave number of maximal growth 2 

and its poloidal extent Oms]. Diffusion increases with q and decreases with ŝ  but remains finite 

to vanishing shear (0 < s  ̂ < 1). No evidence of subcritical turbulence was found. Variations in 

the relative gyroradius @/a) showed no long wave condensation or deviations from gyro-Bohm 

scaling. The simulations in this mixing length regime were characterized in Ref 2. by a diffusion 

scaling x = 0.5 (q/s^)2 (c,p:/R)(R/+ - R/+-c,.it). There appears also to be a very 

strong temperature gradient regime in which the turbulence condenses to longer wave numbers 

and diffusion is weakly dependent on the driving gradient in contrast to the linear mixing length 

rule. A subsequent study by Dorland, Beer, Kotschenreuther, et using many more simulations 

and a more careful accounting of the variations of the critical gradient ratio R / b  crit with q 

and ŝ  as well as noting the (Ti/Te) dependence, showed that the weak shear regime and the 

strong temperature regime could be better described by a more general formula 

- 
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recent work4*5 has been that nonlinearly generated and linearly stable n=O “radial modes” provide 

stabilizing small scale ExB sheared rotations which can reduce the transport ten-fold in 

comparison to neglecting them. In addition the equilibrium scale ExB sheared rotation causes the 

transport to vanish if the Doppler shear rate exceeds the maximum linear driving rate (including 

the parallel shear drive). 

We return to electrostatic ITG turbulence with adiabatic electrons to treat several remaining 

issues not thoroughly discussed in Ref. 2: How to interpret the long wave structures apparent in 

instantaneous potential contour plots; the behavior of turbulence with reverse shear, Shafranov 

shift (or local shear), and magnetic well; scaling of the critical Doppler rotation shear for 

vanishing transport in the weak magnetic shear limit. And finally we treat self-consistent 

rotational shear stabilization and the transport of toroidal momentum leading to a momentum 

transport bifurcation. 

The main thrust of the new formulation in the paper however deals with advances in the 

development of GLF models and nonlinear BMR numerical methods for relaxing the adiabatic 

electron assumption and treating the electron physics at finite beta. This includes trapped and 

untrapped electron fluid models with collisional exchange and inclusion of electromagnetic terms 

allowing a treatment of turbulence approaching the ideal MHD beta limit. While we believe the 

models and numerical methods are well in hand, at present we can only test the models linearly. 

To do this we have made extensive use of Kotschenreuther’s gyrokinetic stability (GKS) 

ballooning mode stability code.6 

The outline of the paper is as follows: Section I1 deals with the complete formulation of the 

electromagnetic models with trapped electrons including the nonlinear equations of motion, the 

ExB and magnetic flutter transport equations, a review of the methods for the nonlinear BMR, 

and a description of the special implicit numerical methods required to handle the fast motion of 
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the passing electrons. Section I11 treats the remaining issues of ITG turbulence with adiabatic 

electrons. Finally Section IV numerically illustrates the fidelity of the new GLF electromagnetic 

trapped-untrapped electron models with respect to the GKS code and discusses the special 

physics of n=O radial modes with non-adiabatic electron physics. 
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II. 

A. 

FORMULATIONS 

Finite beta GLF models with electron physics 

For purely passing particle with no consideration of the mirror force, generalization of the 

electrostatic toroidal GLF model1 to finite beta is straightforward. We need only include the 

parallel magnetic vector potential in the parallel momentum equations 

and add the “magnetic flutter” nonlinearity to the ExB nonlinearity: 
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The cross field wave numbers are normed to the gyrorlength ps = Cs/Qi, and the parallel wave 

numbers and gradients to a, a typical minor radius of the plasma. The units for velocity and time 

are cs and des. The fields are normed to relative in gyrolength ps/a; e.g. $k = (e/Te) @k/(ps/a); 

Ak = (em,) Allk (cS/c)/(Pe/2)/(ps/a). M, = mi/ms; TL1 = Ts/Te; and es is the charge sign of 

species S ;  1s = dL\; qS = dL;; Pe = neT$(B2/8E). Quasi-neutrality and Ampere's law are 

given by 

-1 

where NL , U t ,  Pi are the gyrocenter density, parallel velocity, and pressure perturbations 

with Tk = Pk - Nk. [ ] are higher moments closed by assuming a perturbed Maxwellian and the 

Maxwellian deviations are represented by the closer fit coefficients xl = 2 ~ :  = [ &)2/& for 

parallel motion and p, = (0.80-0.57 iot), vlI = v i  = (1 - iot), vi = vf = 0 for curvature 

motion (with os = kll/lk~ll, ot = oD/lco~I). OD is the curvature drift frequency and O* is the 

drift frequency for electrons at unit density gradient length. The adiabatic compression indices are 

II 

II II 

r,, = 3, r, = 1, xII = 2, x, =3/2 

with 

cut-offs and b = 7;' Ms 

= ($lk + $2k)/2 and $23k = ($2k + $3k)/2 represent the Bessel function gyroradius 
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The ExB and magnetic flutter plasma and energy flows are respectively given by 

where P: = (1/3) F$k + (2/3) PL. ( ) represents a time average. Ampere's law forces 

electrons to flow with ions in magnetic flutter particle flow 

where in units of cs( ps2/a> 

This essentially corresponds to magnetic flutter heat flow with the Hammett-Perkins parallel 

collisionless diffusivity x,y = (Z/&) vtdlklll-' in physical units. The first term represents 

Rechester-Rosenbluth field line diffusion and the second term is the Kadomtsev-Pogutse back 

reaction term which prevents significant magnetic heat flow as the field line becomes isothermal 

{ Ak - kll Tsk/[qs (p&) ky] } + 0. It is unclear whether 1klll-l (which we interpret to be acting on 

Tk) really should be I k 11l-l which is difficult to interpret. In any case we believe magnetic flutter 

flows will be very small. There is a turbulent energy exchange from electrons to ions given by 



We model the trapping of electrons by dividing velocity space into a trapped region (Ivlll < 

&v) and untrapped regions (&v < lvlll < v) and assuming vi1 x 0 in trapped region which has 

no response to Ell. 6 = { (r/R) [ 1 + cos(@]/[ 1 + (~/R)cos(@] } *I2 is the local trapped fraction 

with 0 the poloidal angle. The electron fluid is broken into trapped and untrapped fluids. The 

trapped electron fluid equations are closed to fit the trapped electron response function or energy 

integral in electrostatic limit 

where Fmax = (2 /6)E1I2  exp(-E), veff = { v/[ 6(0)12} (1 - &), and an integration is made 

over trapped portion of velocity space vi1 e &v. For the trapped electron fluid the closure 
I 

I gives 

I where Ne = Nt + NU are the trapped and untrapped electron density, and 5~ = -0.7 + 0.8 i. PI; is 
I 

the trapped perpendicular pressure and the trapped parallel pressure is neglected. Since we have 

I preserved the proportionality Pt = (2/3 )<E> between pressure and energy, the energy transport is 

still given by adding the trapped pressure to the untrapped pressures. The trapped electrons carry 

no current so Ut = 0. The collisional detrapping model7 is 

(detrap- retrap),, =v/[ &(O)]" [ (1 - &)(Fnn N' +Fnp Pt)-&Fnf Nu] (21) 

(detrap-retrap)p =v/[&(O)]2 [(1-&)(Fpn N' +FPP Pt)-&Fpf Nu] (22) 
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where v is the electron-ion collision frequency in units of cs/a. The energy bin fractions giving 

the same first and second moments as a Maxwellian are th = 4.08, tc = 0.918, fh = 0.184,fc = 

0.816 with Fn, = [(th/tcy/2 - (t~/th)~'~]/[th - tc], Fnp = (3/2)[(l/Q'" - ( l / t ~ ) ~ / ~ ] / [ t h  - tc], Fnf= 

(fh/th)3/2 + (fc/tc)'l2, Fp n = (2/3) [(th/tc)'/2 - (tc/th)'l2]/[th - tc], Fpp = [(1/th)lI2 - 

(l/t#2]/[th - tc], and Fpf = (2/3) [(f$h)1/2 + (fc/tc)1/2]. Detailed balance and particle 

conservation are satisfied by the collision model and the trapped electron response becomes 

adiabatic (for passing electrons adiabatic) for n large. 

For the untrapped electron fluid, we integrate over the untrapped portion of velocity space 
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II The adiabatic untrapped electron response is obtained for k,, + 03 by the xl term forcing ( 1  - 

6) Pllfk +N: and ohm's law forcing Pllfk + $k so that N; + (1 -&) $k . However the 

(1 - &) P,: term required to get the adiabatic limit is difficult to handle numerically. 

Thus we replace (1 - 6) P{k - Ni  with Pik -NL in the P;;k equation and insert (1  - &) 

factors in front of the $k and Ak terms in Ohm's law UL equation. Thus apart from the electric 

and magnetic potential terms reflecting a reduced portion of velocity space, the fluid closure is 

the same as the purely passing electron model closure given above. Unfortunately this closure has 

the feature that the non adiabatic or Landau resonance portion of the electron response at small h 

= (o/klivFh) falls off incorrectly as h1 instead of h3 required by the subtracted Z functions 

response for untrapped electrons: 

in the electrostatic limit without curvature. Thus the Landau resonance of the untrapped electrons 

is over weighted. There appears to be no way to avoid this without going to higher moments in 

the closure. 

It is straightforward to show that combining the purely passing ion fluid with the trapped 

and untrapped fluids, that the one fluid incompressible ideal MHD high-n ballooning mode 

equations are obtained in the k l +  0 limit provided the compression terms proportional to iq-, @k 

and i kll are explicitly dropped. However under the assumption that the pressure perturbations 

are close to isotropic, compression will not change the critical MHD beta. 

B. Nonlinear ballooning mode representation 

Reference 2 gives a complete formulation and discussion of the nonlinear ballooning mode 

representation (BMR) and numerical methods. Here for convenience and completeness we note 



that the BMR is a cross field Fourier transform of the field line following “twisted eddy” basis8 

(k i ,  k;,z’) where kx = k;+g(z’/Rq)k; with shear $ = dlnq/dlnr, the ballooning mode angle 6 

= -kk/(gk;), k, = k; = (nq/r) refers to the toroidal mode number n. z’ = Rqe is the distance 

along the field is related to the extended poloidal angle 8 and ikll = a/a z’ = (l/Rq) a/%. Thus 

(6, n, 8) or (kk , k;, z’ are interchangeable labels for the perturbed fields. The finite-n fields F are 

made periodic in the physical poloidal angle by including p labeled “image modes” in phase with 

p=O “primary” modes F, +2q(O)=exp(-ip2mq) F, ( 8 - 2 q )  The n=O (k; = 0 but finite ki) 

“radial” modes are naturally 27c periodic. For a sheared magnetic field we must also replace kll 

with lql - i (i/Rq) (kykx/k:) b rb(b)/ro(b). In this notation the curvature drifts become OD = 

(2a/R)o*[cos(B) - Xmw + i8-g6-asin(B)]sin(B)] for the i -  a shifted circle equilibrium. Here 

Xmw represents the possibility of a magnetic well or average favorable curvature. Treatment of 

real geometry along the field line in magnetic angle coordinates is in fact quite straightforward 

for the nonlinear BMR; this is formulated in Waltz and Boozer9 for stellarator geometry but 

applies equally well to general tokamak geometry. 

1 
I 9  6 

[ 

C. Special numerical methods for simulation of electron models 

There are two critical numerical difficulties in treating untrapped (or passing) electrons. The 

equations are stiff in time in the sense that the speed of the waves which we want to follow are 

much slower that the electron transit along the field line (i.e. there is a very large coefficient in the 

equations Mili2 ). In the ballooning mode representation we represent the distance along the field 

line by the extended poloidal angle 8 (z = Rq 8). The equations are also stiff in space in the sense 

that the fluid electron dynamics (or Landau resonance point) is confined to a very narrow region 

near the singular surface where kll = (i/Rq) &a0 is small. This corresponds to a long slow 

interchange like component to the ballooning modes in %space. 
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To handle the time stiffness we use a small storage implicit “response matrix” method 

developed by Kotschenreuther6 for a gyrokinetic ballooning mode gyrokinetic code. Rather than 

advance some 300 or more components of energy-pitch angle space per species we advance 4 

moments. Only terms involving kll and the inductive term [AAk/& - iO*(l + Ile) Ak] need be 

handled implicitly. The drift terms as well as the collisional and nonlinear terms are slow enough 

to be done explicitly. Unlike Ref. 6 which is done exclusively in 0-space, the time advance for the 

fluid moments is done in kll or 0-transform space whereas only the quasi-neutrality/Ampere’s law 

and the compensating response matrix calculation to update the potentials is done in @-space. 

The moments are first updated with zero potentials, then the advanced potentials are calculated 

with quasi-neutrality/Ampere’s law and the response matrix compensating for use of moments 

advanced with zero potentials, then the moments are finally updated with the advanced 

potentials. 

The space stiffness is best understood in terms of the Nyquist relation for grids: the grid 

spacing is Akll= n:/(Rq ems). If we resolve the electron Landau layer inside kllres = O/Vthe, we 

are forced to have large emax. If we use a reasonably small Omax (a few X I S )  the fluid electron 

layer represented by the kll= 0 grid point is “over weighted” in the sense that it assigns “fluid” 

limit electron dynamics kit cc kllres to too large a portion kll-space and the overall untrapped 

electron response is far from adiabatic [Le. N’k is not near (1 - &)@k]. To avoid this we use 

“sine-cosine” transforms with zero boundary conditions at emax for “sin-fields” $k,Nuk,Puk and 

zero gradient boundary conditions for the “cos-field” Uk (rather than cyclic boundary conditions 

imposed by standard Fourier transforms). This forces the kll= 0 component to be zero. The end 

result is that the ballooning mode growth rates are independent of emax at much lower values of 

Omax than obtained with cyclic boundary conditions. Independence of boundary condition is the 

final test of validity and we are able to work sensibly down to Omax = 3n: when Je(0) is large 

enough to have a significant trapped electron response. However at very small where the 

passing electrons dominate, emax beyond 1 On may be required. 
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The response function technique6 is a relatively low storage method in which the 

field storage (and computational time) scale as k x j where j is the number of 8 grids and 

k is the number of (kx,ky) modes plus the storage of the response matrix scaling as k x 

(2j)2. The latter storage however is not insignificant. We believe that a completely 

general implicit Kyrlov method** which requires only field storage will untimately prove 

to be the most practical. 

D. Rotational shear stabilization and rotational momentum transport 

Profile effects or gradual inhomogeneities are generally &/a small and ignorable. The 

exceptions are when the plasma is spun up to have large equilibrium potentials with e@,/T, >> 1 

or when sharp gradients of in the radial electric field build up near the plasma edge as it balances 

the diamagnetic rotation. In either case the sheared flow cEh/B rate can be comparable to the 

mode growth rate y (kx/ky). Homogeneity is broken. This can be accounted for within the BMR 

by including a linear coupling between the kh modes 

where YE is the total Doppler shear rate. In general it is given by 

*/E=[ a(VE/r)/~-vi,/(Rq/i)]/(cs/a) 

where VE is the equilibrium ExB velocity and Vi1 the parallel velocity. in effect x = 2 is replace 

by -id/&:. When evaluated in x-space this represents a linear variation in flow velocity across 

the “simulation box’’ but when evaluated in kx-space one must be careful to use a harmonic 

derivative.2 Shear in the parallel velocity drives a Kelvin-Helmholtz like instability. A term 

-iwk’ @ must be added to the right hand side of the parallel ion motion (Uk) equation where 
Y k  
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Yp = Vi/(c,/a). For purely toroidal rotation typical of tokamak cores 'YE = (r/q) 

[d(V$/R)/dr]/(c,/a) which is not quite the same as the shear in the ExB velocity d(rV$/qR)/dr = 

cEk/B. Furthermore Yp = d(V@r)/(cS/a) so Yp = (Rq/r)YE. 

Rotational shear stabilizes the turbulence and not only reduces heat and particle transport 

but also the transport of rotational momentum. The toroidal ion momentum balance equation 

discounting the momentum source is 

We define the toroidal viscosity IlQx by nQX = M no r\QX (aV@/dx). (The electron momentum 

can be neglected.) The projection of the parallel nilx and perpendicular nix stress tensors into 

the toroidal direction gives II$. nllx + (Be/B@)nl, with (Be/B$) = r/Rq. For l l ~ ~ ,  l l l ~ ~ ,  

and nix in units of noTo the toroidal viscosity ?lex in diffusion units csp:/a, and the 

toroidal rotational shear yp = (-dV@/dx) in units of cs/a we can write Il@. = r\qX '@. In terms 

of the normalized field fluctuations 

where the first term is ExB and the second is diamagnetic flow. [It should be noted that the 

relative sign between YE and Yp must be tested to insure pure toroidal motion and sign between 

the nilx and nix  terms, i.e. the sign of (Be/B+), can be checked to insure pure cross field 

viscosity is positive in the large (Bg/B+) limit.] 
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111. TOROIDAL ITG TURBULENCE WITH ADIABATIC ELECTRONS 

Unless otherwise stated, the numerical illustrations here and below have standard case 

parameters q=2, :=l, a/Ln=l, a /L~=3,  a/R=1/3, 7-l= Time =1. Similarly the local shear, 

magnetic well, beta, and collision frequency are nil (a=O, xmw=O, pe=O, v=O) and where relevant 

for trapped electrons r/R=1/6. The k’ , k’ grid spanning 0 < k’ < 1 has a 10 x 40 quadrant with 

40 k’ = 0 radial modes for a total of 850 complex ballooning mode amplitudes. Omax = x 

implies k’ =in. This corresponds to a cross field box with Ax’=Ay’(4/6n)=80ps. Along the 

field line, 64 grids span -2n: < 8 < 2n: with sufficient image modes2 (having 6> z or 6<- z) to 

( Y  4 Y A 

Y 

‘max 

make the net amplitudes and diffusion 2n: periodic. For the adiabatic electrons model treated in 

this section N[ = ( Gk -(q)t) where the average potential along the field line (4)k is 0 for finite- 

n (finite k’ ) ballooning modes but is not zero for the n=O radial modes. From Ref. 2 the standard 

case diffusion has a flux surface average Xi = 1.9 cspz/a (with 8:l out/in asymmetry) which 

Y 

I 

about 3 times D m ;  ( p “ /  po)ps/a (with 2:l out/in asymmetry); and (0 = 0) = 6.5 p$a. 

The peak diffusion and turbulence level is at k’ = 0.2 down shifted from the location of peak 
Y 

growth at k; =0.3 

A. Long radial wavelength structure and short correlation lengths 

There are several ways to represent the nonlinear turbulent state. For example Ref. 2 shows 

an instantaneous color contour plot of the density fluctuations projected into real space as annulus 

at fixed toroidal (0 = 0) angle spanning -n: < 8 < n: in Fig. 5; and a contour and slice summation 

plot of the time average k k density spectrum n( k:, ki) / no at @=O, 8=0 in Fig. 6 .  

However there appears at first to be a curious inconsistency between the instantaneous real space 

plot and the time average k-space spectrum. The Ref. 2 Fig. 5 contour plot clearly shows eddies 

which are highly elongated in the radial direction being as much as 40 ps in radial half width but 

only about 5 ps in poloidal halfwidth. Afull radial width of 80 pscould be in some cases a 

( ;? ;) (I- I), 
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sizable fraction of a typical tokamak radius. (In this illustration the annulus is Ax = 160 ps wide 

since it was done with a 10 k‘ x 80 k i  quadrant grid and hence twice as wide as the standard 

case). In contrast the if we represent the time average spectral function (1; ( k: , ki / no)  ms as a 

Gaussian exp { - (k; - kyO)/( 21/2 6ky)r-[  kk/( 2’/2 &,,)TI then the correlation function in 

real space n ( x ’ , y ’ ) i ( O , O ) ) /  ( i ( O , O ) n ( O , O ) )  will be c o s [( z/2 )( y‘ 1 y 011 

exp { -[ y /( 21/2 Sy r ]’ - [ x/( 2’/2 S X ) ~ }  with 6x = l/6kx, 6 y  = 1/6ky, and yo = (W2)/kyo. [Note 

2 Y 

- 

for a Gaussian 6x is related to the rms 6x and the “half width at half max” by 6 x  = 6xms = 

From Fig 6. of Ref 2. 6k,  = Sky = 0.1 (using the 70% point of 

n( kk, k;) / no ), and kyO = 0.2, from which we can infer Xhwhm = 14 Ps, Yhwhm = 14 Ps, 

and yo = 8 ps. These characteristics are consistent with experimental observations1 of time 

average correlation functions. The real space time average radial correlation function I(x,O) is 

shown in Figure l(a), the poloidal or vertical correlation function I(0,y) in Figure l(b) with 

averages over time of 300 and 60Odcs. ( The 14 ps half width at half max suggested by Gaussian 

spectral functions are shown by I-bars.) [We define the correlation functions with time averages 

c > by Z(x,y)  =< ~ ( x , y ) n ( O , O )  > /[< n(x,y)n(x,y) >< n(O,O)n(O,O) The radial 

correlation functions are in fact rather slow to form on the time scale of the simulations and a 

long radial correlation component takes some time to die out. The experimental correlation 

functions are taken over much longer times than shown here. It is clear however that time average 

correlation lengths are longer than than eddy widths in the poloidal direction and considerably 

shorter than eddy widths in the radial direction. The elongated eddies are intermittent and 

essentially short lived. Thus we can not infer from experimental short radial correlation lengths 

that long wave structure do not exist, at least over short times. 

IL 
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B. Transport a reverse global shear, with local shear, and average favorable curvature 

Previous work2*3 has explored the behavior with q, positive global shear s^, with 

temperature gradients, and also in Time ratio.3 Here we fill out some of this parametric 

dependence on reverse global shear (s^ < 0), local shear (a), and average favorable curvature or 

magnetic well (xmw). Shear reversal causes the geodesic curvature (sine term) to work against 

rather than with the normal curvature (cos0 term). Thus it is not surprising that the driving rates 

and the resulting transport decrease. Figure 2 show a full range of normal and reverse shear. For 

example s  ̂ = -0.5 to -1 .O has almost four-fold less transport than ŝ  = 0.5 to 1 .O and transport is 

not particularly large at vanishing shear. - 
2 

1 

0 
L 

-1 0 A 1 2 
S 

Fig. 2. Diffusion a t  both positive and negative shear. 

At moderate global shear (s^=l) the local shear acts to decrease the effective s..ear (se- 

asine) near 8=0 where the modes live; thus we expect that driving rates to increase. Just as in the 

case of the s-a model for ideal MHD where the critical beta (critical a) boundary is split to a 

lower first stable boundary and a higher second stable boundary, small a drives but high a does 



not. Also as in ideal MHD at large a (approaching the second stable boundary), the maximally 

unstable 6 does not occur at 6 =O. Figure 3(a) shows the maximum growth rate and Fig. 3(b) the 

heat diffusion versus a. Even well into the second ideal MHD regime at a = 3 (At i= l ,  afirst 

-0.5, asecond =2.), there is no marked change in the ITG diffusion levels bearing in mind that this 

is an electrostatic (p = 0) simulation and thus somewhat artificial. 

0.2 , I I I 1 I 1 

0.1 

0.0 

0 1 2 3 
a 

Fig. 3. Maximum growth rate (a) and diffusion (b) versus Shafranov shift a. 

19 



Going to vanishing shear at finite beta makes little sense in the usual ;-a model without 

average favorable curvature. In this case the critical beta for the ideal modes is zero at zero beta 

whereas in fact at low shear (say s  ̂ 50.2) there is no local beta limit when the average favorable 

curvature or magnetic well is included. Here we ask what average favorable curvature does 

electrostatically. One may expect-that since this subtracts directly from the curvature at 8=0, the 

toroidal ITG modes driven by the curvature would have a larger driving rate. In fact small 

curvature (LT/R) drives whereas very large curvature forces the ion response to adiabatic; thus 

the toroidal ITG instability (for Ln/R > 1) becomes stable at a critically large LT/R. For example 

at a typical value for magnetic well xmw = 0.5, although the low ky modes have less drive or 

are more stable and the high ky modes are significantly more unstable, ’Ymax is almost unchanged 

(0.087 compared to 0.082) at ~ / L T  = 3 and the heat diffusion is virtually unchanged. At ~ L T  = 

2.2 closer to the threshold of 1.8, ’Ymax is actually larger (0.037 compared to 0.027) and the 

transport is also larger (1.3 compared to 0.93). We can conclude again at least near threshold (at 

moderator to strong shear) diffusion scales like the linear mixing length formula. Further although 

magnetic well has an extremely important effect on low shear in finite beta, it has a small or even 

slightly unfavorable effect at moderate shear an low beta. 

C. Critical rotational shear stabilization at weak magnetic shear 

We showed in Ref. 2 (see discussion of Fig. 7) that Doppler shear rates comparable to the 

maximum linear growth rate including the destabilization effect of parallel shear drive (YE =: ’ 

Y,,,) is sufficient to cause the transport to vanish. We found this to be true at moderate shear 

( ;=1) and even at vanishing shear (;=O). This appears to be at odds with the “convection rule” 

‘YE = n; Ymax. The convection rule derives from the fact that linearly ExB rotational shear cause 

ballooning modes to rotate in their ballooning angle 6 at the rate YE/?, thus one might expect to 

see stability if the mode rotates faster from 6=0, where it is most unstable, to 6= n, where it is 

stable, faster than it can grow. While this may be reasonable for moderate magnetic shear, the 
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convection rule at weak shear would imply that even infinitesimal Doppler shear rates would be 

able to cause vanishing transport. However the convection rule is unlikely to hold at vanishing 

shear for two reasons. The first is that at weak shear, say s^= 0.1, 6= n: is not stable. For example 

in the standard case at s  ̂ =1,  'Ymm = 0.083 at 6= 0 and 6= n: is completely stable. However at s  ̂= 

0.1, 'Ymm = 0.12 at 6= 0 and 'Ymax = 0.10 at 6= n:. In the last case, although the mode is centered 

about 6 = 'TC, its peak amplitude is at 6 = -0.1 n: and 6 = 0 . 1 ~  + 2n:, i.e. it lives in two the bad 

curvature regions. In fact there is little variation of growth rate with 6 at ŝ  =0.1. The second 

reason that the convection rule may fail at even moderate shear is that the ballooning mode may 

be broken up by the turbulence before it has a chance to convect a significant distance in 6. 

Figure 4 shows an example of the convection rule partially or approximately holding at moderate 

to strong ŝ  but breaking down for weak shear (s^ < 0.5 for ~ / L T  = 3). It also breaks down at 

stronger driving or at least in the saturated temperature gradient regime (all ŝ  at ~ / L T  = 4). We 

have not found a case in which 'YE less than about half 'Ymm causes the transport to vanish. 

,. 
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I 10 k.. x41 Dk open 
Y X 1 30 k.. x30 k- closed 
Y 1 

r 
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0.0 0.5 
A 
S 

1 .o 1.5 

Fig. 4. Critical Doppler shear rate versus shear s^. 
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D. Turbulent rotational momentum transport and transport bifurcation 

The core of a tokamak normally achieves significant ExB or Doppler rotational shear to 

effect the stability and transport only when it spun up by beams which are tangentially directed. 

Because magnetic pumping in the poloidal direction prevents significant poloidal rotation, the 

rotation is almost purely toroidal. In this case the parallel shear which drives the ITG mode (see 

Fig. 7 of Ref 2.) is directly related to the Doppler shear rate by Yp = (Rq/r)YE where (Rq/r) = 

B$/Be. Thus if (r/Rq) is too low, the Doppler shear stabilization can not keep up with the parallel 

shear destabilization. As the rotational shear rate increases both the turbulent heat diffusion and 

the turbulent viscosity transporting the toroidal momentum and determining the rotation and 

rotational shear will decrease monotornically. However at some sufficently high (rRq) Doppler 

shear stabilization wins out over parallel shear drive. A transport bifurcation can result. 

Figure 5(a) shows a low (r/Rq) case Yp = 12Y~ without bifurcation and Fig. 5(b) shows a higher 

(r/Rq) case with Yp = 9 'YE with a momentum transport bifurcation at 'YE = 0.06. In the latter case, 

the toroidal momentum flow rI@x required to sustain high rotations decreases with increased 

rotation; thus the plasma quickly spins to a higher rotational state at the same flow. The higher 

rotational state has a smaller heat diffusion and therefore can support a larger temperature 

gradient and hence improved confinement at the same momentum and heat (power) flow. This 

could be origin of the H- to VH-mode transition in DIII-D.I2 It should be noted that this 

momentum transport bifurcation is likely the opposite extreme of the L- to H-mode bifurcation at 

the extreme edge. There ExB rotation is nearly in balance with diamagnetic rotation and there is 

little change in the local plasma rotation; the bifurcation is within the heat transport system. A 

higher temperature gradient hence diamagnetic and therefore ExB rotation can have lower heat 

diffusion than a lower gradient state at the same heat flow.13 Clearly a mixture of heat and 

momentum transport bifurcation's are possible. 
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IV. LINEAR TESTS OF FINITE BETA TRAPPED ELECTRON GLF MODELS 

Our finite beta trapped electron GLF code has not yet been run to the nonlinear stage but we 

believe it gives a satisfactory representation of the linear mode stability in comparison to 

Kotschereuther's gyrokinetic stability (GKS) code.6 Figure 6 shows that it reasonably well 

reproduces the onset of the ideal ballooning mode limit near Pe = 0.0055. Figure 7 shows the 

spectrum of growth rates in the collisionless limit at zero beta and at a beta value approaching the 

beta limit. It is apparent from the adiabatic electron points shown that the trapped electron physics 

has a significant destabilization effect on the ITG mode. At lower values of temperature gradient, 

the ITG ion branch can become stable and the normally subdominant electron trapped electron 

drift mode will remain unstable. Figure 8 shows the behavior of the collisional detrapping model 

in the electrostatic limit. Both the GLF and the GKS models should approach the adiabatic 

electron model (shown at right) at extreme collisionality where the trapped electrons are 

detrapped. The figure also shows favorable comparison of the simple GLF model with a 6- 

moment ion and 3-moment trapped electron GLF model having a pitch angle scaterring operator 

developed by Beer. l4 

I I I I I I 
0.6 

0.4 

0.2 

0.0 
0.00 0.004 0.008 

Pe 
Fig. 6. Trapped electron model growth rate spectrum versus pc. 

25 



0.3 

0.2 

0.1 

0.0 
0.0 0.2 0.4 0.6 

0.2 

0.1 

0.0 

Adiabatic Electrons 

1 1 I I I I 

\ 

0.0 0.2 0.4 0.6 

Fig. 7. Trapped electron model growth rate spectrum Be = 0 (a) be = 0.004, (b) with 
Pe-crit a t  0.0055. 



0.3 

n 0.2 
m 
0 = 
\ m 

* 0.1 

0.0 
0 1 2 3 4 5 6 

Fig. 8. Trapped electron model growth rate spectrum versus collision frequency v a t  k, 
= 0.3. 

One of the most important effects of including the electron physics is that the radial mode 

physics can be treated dynamically rather than with a model. The saturation level of the n=O 

radial modes appears to control the saturation level of the transport producing finite-n ballooning 

modes. Previous ~ o r k ~ - ~  assumed that since the electron motion along the field line is so rapid, 

the electrons will behave adiabatically and short out any deviations from the average potential 

N; = (qk-{q)k).  In effect this assumes that the electron response RF=NF/#, is close to o 

for radial modes which seems appropriate for kll close to zero. [Actually 

R;-(n;/n,)/(e,@,/T,) but this is the same as .:/ek since there is no significant 

polarization.] The surprisingly, using the actual electron dynamics shows that RE E -  (Ti/T,)RL 

[from quasi-neutrality] tends to be closer to -1 at least in the case of purely passing electrons. 

This means the ions tend to behave adiabatically (RZ=l). Recall that radial modes are 

automatically 2'~c periodic and require no images to make them physically periodic. {#)k is not 

zero and @ does not tend to zero at large 8. For the case of trapped electrons, only the larger kx 
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have R i  near -1 but in no case is Rg close to 0. Since the nonlinear driving of radial modes is 

proportional to $/(RE +k:) they will be less strongly driven with finite RL than in the case of 

the adiabatic electron model. On the other hand they appear to be much less damped with 'Yk = 

-0.025 k, for purely passing electrons or at least somewhat less damped with Yk = -O.Ik, in the 2 

trapped electron case compared to Yk = -0.2kx for adiabatic case [see Ref. 2 Fig. 2(d)]. 
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V. CONCLUSIONS 

Beyond the conclusions stated in Ref. 2 and reviewed in Section I, the present paper has 

arrived at additional conclusions: Although eddies are highly elongated in the radial direction 

long time radial correlation lengths are short and comparable to poloidal lengths. Although 

transport at vanishing shear is not particularly large, transport at reverse global shear is 

significantly less. Electrostatic transport at moderate shear is not much effected by inclusion of 

local shear and average favorable curvature. Transport is suppressed when critical ExB rotational 

shear is comparable to the maximum linear growth rate with only a weak dependence on 

magnetic shear. Self consistent turbulent transport of toroidal momentum can result in a transport 

bifurcation at large enough r/(Rq). We believe the new formulation in the paper for treating finite 

beta GLF models with collisionally detrapped trapped electrons and BMR numerical methods for 

treating the fast parallel field motion of the untrapped electrons are in satisfactory linear 

agreement with gyrokinetic stability codes and will allow a general and more physical simulations 

up to the ideal beta limit. 
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