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Further consequences of the inductive inference model of anomaly and misuse detection are presented. The 
results apply to the design of both probability models for the kductive inference framework and to the design of 
W&S rule bases. The issues considered include: the role of misuse models M A ,  the selection of relevant sets of 
attributes and the aggregation of their values, the effect on a rule base of nonmaximal rules, and the partitioning 
of a set of attributes into a left hand and right hand side. 
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1. Introduction 

We build on the research presented previously to establish a collection of basic principles for rule base design. 
The issues addressed include: the effect on the rule base of nonmaximal rules, the selection of relevant attri- 
butes, the aggregation of the values of the relevant attributes, the partition of a rule's attributes into left hand 
and right hand sides, abstraction of values, and the effect of competing probability models. 

Section 2 presents an overview of design issues, focusing on the role of probability models in testing, and 
considers models for some specific types of misuse. Also considered in these terms is the relationship between 
anomaly and misuse detection, and the consequences of competing models. Section 3 generalizes the results of 
[HelmWa]. In IHelmWa] we presented a two field model which demonstrated that nonmaximal rules can al- 
ways be forced to lead to inconsistencies in scoring. This result was derived for several specific MA models, 
and the specific scoring function used in [vacc89]. Section 3 generalizes this result in several important ways, 
demonstrating that the result holds for transactions over arbitrarily many fields, and for large and natural classes 
of MA models and wring functions. Section 4 considers the partioning of a rule's attributes into left and right 
hand sides. Section 5 explores a criterion for the selection of attributes and the partitioning of their values. 
Section 6 translates these results into a few suggested modifications and extensions of W&S. 

2. An Overview of Rule Base Design Issues 

In this section we present an overview of the rule base design issues considered in the remainder of the paper. 
Some of these issues are summarized as first presented in [Helm89,Helm90a], others are presented in refined 
form, and other issues are new. While this paper analyzes thoroughly several of the issues, we just scratch the 
surface of others; however, we feel that we have come a long way in identifying what issues are important and 
in developing techniques for addressing these issues. 

Our primary vehicle for studying the rule base design issues of interest is the inductive inference-based hy- 
pothesis testing model for anomaly and misuse detection developed in [Helm89]. This model is useful because 
it provides a framework for studying rigorously design questions pertaining directly to W&S and similar sys- 
tems. 

The subsections that follow review and refine the components of our hypothesis testing model, consider the 
relationships between our model and W&S, and summarize what what we believe to be the fundamental design 
issues. 

2.1 The Role of the Models MN and MA 

As before @Ielm89,Helm90a], we begin by assuming that one of two probabilistic processes, MN (the "good", 
normal process) or MA (the "bad, misuse process) has generated the transaction under consideration. The prob- 
lem is to rank incoming transactions based on the likelyhood that a given transaction was generated by MA. 

Before reviewing the details of our testing procedure, we make two remarks reflecting recent research: 
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ueiy were generareu DY some specific process 01 collcern. in xction L.3 we view anomruy detection as a 
special case of misuse detection, a case in which the model MA has special characteristics. We note that 
from this perspective, results in this paper and in IHelm89JIelr1 ! address the general problem of 
misuse detection. As *wh, MA is perhaps bad notation (the A u.iginally was meant to stand for 
anomalous; MM , for misuse, is now seen to be more appropriate); however, for consistency with our previ- 
ous work, we shall continue to use the notation MA. 

2. To simplify our introductory discussions, we assume only two possible models, MN and MA. However, as 
the current paper argues, the concept of competing models (for both MN and MA) is extremely important. 
In the framework of competing models, we perform testing of each transaction under alternative models, . 
and use techniques for combining the results which the models yield. For example, we might compute a 
linear combination of the results yielded by competing models, where the weights in the combination are 
adjusted by means of learning. More on this perspective in Section 2.4. 

With these remarks in mind, we review now the details of the proposed transaction testing mechanism. Sup 
pose we were able to compute, for each transaction t , Pr ( t  1MN ] and Pr ( I  IMA 1. In this case, we could use 
Bayes' formula to test the hypothesis: "The n o m 1  process MN generated t ." 

Pr { t  IMN}*fr  (MN} 
Pr ( IMN } *Pr ( MN }+Pr ( t I M A  ] *Pr ( M~ } P r ( M N l t }  = 

One issue that arises from the use of this formula is that the u priori values Pr (MN ] and fr (MA ] are re- 
quired. While in some contexts it is reasonable to estimate these values, in others, it's not. However, often it 
suffices to consider the ratio 

Pr ( t  lMN } 
R ( t )  = 

Pr { r  IMA) - 
Since the value Pr (MN It] is monotonic in R ( t ) ,  R ( t )  is all that is required to rank incoming transactions ac- 
cording to their level of alarm. 

The above formulae highlight the importance of the model MA to the hypothesis testing problem. In partic- 
ular, when considering the gened misuse (as opposed to anomaly) detection problem, it does not suffice to 
idenhfy rare transactions. Intuitively, rare is a relative quality and, almost always, individual transactions will 
be rare. The transactions of interest are those that are rarer under MN than MA. Consequently, it seems highly 
desirable to hypothesize and study various models for MA. Additionally, it seems highly desirable that a detec- 
tion system be parameterable to the MA models of interest (and to the a priori values we associate with them) 
for given applications. 

We propose for consideration several simple, sample MA models. These models include: 

Independence model MA(,$ Attributes take on values with the Same distribution as in MN, but associations 
break down. Thus: 

k 

I =1 
P r ( t [ B l ] = v l , .  . . ,t[Bk]=vkIM~(,)} = ? P r ( ~ [ B ~ ] = v ~ h 4 ~ } .  

Constant value model MA(,-): Probabilities are calculated as a function of domain sizes. Domain sizes can 
be assigned by the expert, or can be inferred from observations of the historical datahe. (See [HelmWaI 
for more details.) In either case, frequencies observed in the historical database play no role. This class of 
models is intended to reflect misuse characterized by the user performing seemingly (with respect to normal 
behavior) haphazard actions. 

Masquerader model MA(Q): Associations between attributes in hiAca) are like those in MN, but with some 
values "crossed over." For example: 

Pr { t [User ]='Smith' A t [Port ]='try 9' A t [Process]='nn' IMA ( Q ) )  

Pr ( t  [~ser]='~ones'  A c [Port ]='try 9' A t [Process]='nn' kN } 

This model seems to hold a good deal of promise, and we propose to investigate it further in the future. 

Negative correlation model M A ( A ) :  Probabilistic quantities in M A c A ,  are inversely related to corresponding 
quantities in MN. In particular, this is the family of models characterized by the property that whenever .. .. 



Definition: If DE is ir .IistOrical database of transactions, EPr {S=t iu, I MN A DB } denotes the estimate 
of Pr { S = t  [S 1 I MN } obtained by sampling DB . That is, 

number of transactions t in DE with t [S ]=S 
n u d e r  of transactions in DB { S = r  "1 I M~ A 

Similarly, EPr {S=r [SI I W=t[Wl A MN A DE I denotes the estimate of Pr {S=t [SI 1 W=t[W] A MN } ob- 
tained by sampling DB . That is, 

EPr { S = t  [SI I W=t [W] MN A DB }= 

When we say that a value is computed against DB, we shall mean that estimates of the above f m  are 
used in the computation. Quantities of the form EPr(S=t [S ]  1 MA ADB) and 
EPr (S=t [SI I W=t [W] A MA A DB 1 denote probabilities for MA that are derived from probabilities com- 
puted against DB. 

number of transactions t in DB with t[S]=S A W=t[W] 
number of transactions in DB with t[S]=S 

Definition: The model MA is consistent with piecewise sampling (we shall say simply that MA is a 
piecewise model) if it obeys the following condition. 

Suppose that A is the set of transaction attributes, and that DB and DE2 are historical databases, 
such that for every S d  we have that for transaction t: 

EPr (S=r[S]IMN ADB~}~;EP~(S=~[S]IM~ ADB~}. 

Then it is the case that 

It is fairly easy to demonstrate that independence and constant value models are piecewise. Negative corre- 
lation models clearly are not piece-wise. It remains an open question what types of masquerader models are 
piecewise and what types are not. 

One reason for interest in piecewise models is that the results first presented in [Helm9oa] and generalized 
in Section 3 of the current paper demonstrate a sense in which W&S is not consistent with any piecewise model, 
if W&S's rule base includes nonmaximal rules. There are several interpretations of this result which are ex- 
pIored at various points throughout the paper. At this juncture, we make the following general comments re- 
garding what we hope to gain from the type of analysis performed in Section 3. 

a) One of the primary goals of our research is the identification of criteria for pruning and searching the 
space of probability models (rule bases, in W&S terms). The results of Section 3 support the pruning of 
rule bases containing nested des, whenever we are attempting to detect a type of misuse reflected in a 
piecewise model. 

b) More generally, if W&S wishes to approximate the testing supported by the inductive inference frame- 
work, for some specific class of misuse models, the type of analysis performed in Section 3 can be used to 
"parameterize" W&S (Le., by designing its rule base) so as to make it consistent with the models of in- 
terest. 

c) Additionally, it has been established experimentally that W&S performs quite well in many environments. 
The type of analysis performed in Section 3 also can be used to discover characteristics of the MA model 
that W&S is implicitly assuming. For example, it may be that W&S performs well in anomaly detection. 
If we can lean the details of the negative correlation model with which W&S is consistent, we could then 
add such a model to our collection of competing models to be used in the inductive inference framework. 

2.2 Selection of Attributes and the Aggregation of tbeir Values 

The identifiratinn nf rnnrlelc fnr M. is nnp rtitiral a w r t  nf the dpcion and annlicntinn nf transartinn tmtinv A 
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form of a rule base (i.e., rule bases containing nonmaximal rules) which should be avoided in many contexts. 
Section 4 proposes a further .ning of the solution space based on an an?' 's of the effects of multiple rules 
that are different partionings , a a left hand side (LHS) and a right hand s. (RHS)) of the same collection of 
attributes and values. 

In the current section, we introduce three additional aspects of the design problem: The selection of attri- 
butes to be used in the estimation of the probability distribution of transactions: the aggregation of attribute 
values; and, a proposed criterion for addressing these design problems. Section 5 presents a more rigorous 
analysis of the proposed criterion. 

The Attribufe Selection Problem 

If we could compute accurately for every transaction t the ratio R ( t )  (with respect to one or more models for 
MA), we would have a method of ranking transactions by their level of suspiciousness. Unfortunately, R ( t )  can- 
not be estimated well empirically from a finite historical database when t is rare. This is likely to be the case 
when transactions have many attributes, when attribute domains are large, and, of course, when one or more at- 
tributes form a key (making each transaction unique). 

Our solution to this problem is to search for subsets B = (Bl, . . . ,Bk) of the set of all attributes 
A = ( A l , .  . . , A N )  such that: 

(1) The quantity Pr { t [B J,  . . . , t [Bk]  IMN ) is accurately reflected in the historical database, OUT sample popu- 
lation. 

(2) The behavior of R (t  [B  . . . , t [Bk I) reflects that of R (t ). 

In effect, we approximate the hypothesis test 

with the hypothesis test 

Because of the exponential number of candidate subsets, we require heuristics to lead us to the most promis- 
ing subsets. 

Aggregation of Values 

Additionally, it might be beneficial to apply aggregation (also called abstraction) to the values that the attri- 
butes can take on. This leads us to consider quantities of the form: 

for sets X i  of values. We shall argue in Section 5 that using aggregations of attribute values, rather than single 
values, may be a reasonable method for obtaining "good" tests which are likely to apply often to random tran- 
sac tions. 

Selection Criterion 

Attribute selection and value aggregation are two dimensions of choice in the design of probability models and, 
of course, in the design of rule bases for W&S. 

In Section 5 we propose as a heuristic measure of a candidate solution how well it separates the competing 
models (Le.. MN from some model for M A ) .  If we expect a given probabilistic quantity to differ significantly 
under the two models of interest, it is worthy of consideration because it potentially can yield much information. 
As is explored later: 

a) Methods are required (e,g., experimental feedback) to assess the quality of candidates chosen by this 
hriirictic in  mrticiilar m d e l  cennmtinn is not cuffirirnt t n  enciire thnt n cnndidnte cnliitinn nmvir3r.c o n 4  
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the measure are difficult (probably NP-hard). Hence, search heuristics are required to build the candihte 
solutions. 

23 Design Issues in the Specific Context of Anomaly Detection 

In order to present a simple illustration of the attribute selection and value aggregation problems, and in order to 
view anomaly detection in the framework we have presented, we summarize briefly some recent work with G. 
Liepins [HelmWb]. As observed earlier, biep901 defines anomaly detection, as opposed to misuse detection, as 
the identification of rare transactions. This is viewed as a special case of the misuse detection problem studied in 
this paper, where a negative correlation model is used for MA .* 

. 

We observe that we can describe anomaly detection, without explicit reference to an MA model, simply as 
the identification of those transactions t such that Pr { t IMN ] is smallest. Notice that, in the specific context of 
anomaly detection, rareness relative to MN suffices, because the characterizing property of negative correlation 
models MA ( A )  is that Pr { t )<pr { f I M ~  } implies Pr { t lMA (A , )>pr  ( t' IMA )]. Hence, "t rarer than t' in M~ " 
implies "R (t)& (r') with respect to any negative correlation model." 

Despite this simpler statement of anomaly detection, the phenomenon described in Section 2.2 which leads 
to the problems of attribute selection and value aggregation is present in anomaly detection as well. That is, 
Pr ( I  lMN 1 cannot be estimated well empirically from a finite historical database, when t is rare. Thus, while it 
should not be too surprising that the naive detector kiep901 worked well relative to W&S when the empirical 
sampling is accurate (because of only two fields and two values), in the general case where transactions are ex- 
pected to be rare, we require estimation techniques similar to those described in Section 2.2. 

Helman and Liepins [HelmWb] have proposed that, in the context of anomaly detection, attribute selection 
and value aggregation be stated as finding probabilistic quantities (e.g., Pr { t [B ,I, . . . , t [Bk]!MN )) that accentu- 
ate the tails of the distribution under sampling (Le., by peaking the distribution), while preserving the relative 
frequencies of the transactions. This appears to be a special case of the model separation criterion proposed in 
Section 2.2, and we propose to investigate the relationship between heuristics for the more general problem and 
the anomaly detection problem. 

2.4 Competing Models and Pruning the Search Space 

Observe that if we somehow knew that a given selection of attributes and aggregation of their values were og- 
timal, and if we knew the MA model we were attempting to detect, we would implement a single test of each 
transaction, based on a single ratio R ( r ) .  Similarly, under this assumption, W&S's rule base would contain a 
single rule. 

In reality, however, we have only conjectures as to good selections of attributes, aggregation of values, and 
models of MA. To handle this uncertainty, we propose a general framework in which a single transaction t is 
analyzed simultaneously under many competing models for MN and MA. That is, we compute for r many R (t ) 
based on different, selections, aggregations, and models for MA. We then (for example) take a linear combina- 
tion of the results. The learning problem, which does require some expert feedback, adjusts the weights attached 
to the existing models, and creates new models when appropriate. From this perspective, a W&S rule b e  is a 
collection of competing probability models, and its scoring functions (e.g., TFOM) are methods of combining 
the results yielded by the competing models. 

The main thrust of our research is to develop techniques for determining which competing models to build 
and include in our tests. Because of the enormity of the search space, we require: (1) Heuristics for pruning the 
search space before any optimization is performed, (2) Heuristic measures which can be evaluated very quickly 
and indicate which candidates should be explored further, and (3) Search heuristics which explore, based on the 
heuristic measures, the solution space resulting from the pre-search pruning. Examples of heuristic pruning are 
suggested by the results of Sections 3 and 4. Note that such pruning eliminates entire classes of models, based 
on heuristic criteria. Section 2.2 introduced informally a heuristic measure which is explored more thoroughly in 
Section 5. We are just beginning to investigate search heuristics in the fi-ameworlr of the problem that has 
resulted from this work. 

3. The Effect of Nonmaximal Rules 

A rerent chance in the imnlementntinn nf W&S Wac tn dicallnw nilm nver Rttrihiite wtc whirh %re nested hv P I -  



In particular, suppose that, through experimentation and learning, we discover that the Bayesian hypothesis 
test should be performed wi' t one or more piecewise models 
should be used for MA. We L.,.rionslrate that when a W&S rule base contail., ,iny rule which does not reference 
all the attributes in A ,  W&S scoring is not consistent with the hypothesis testing framework outlined in the pre- 
vious section. We interpret this result to mean that: (1) If a W&S rule base is to approximate a final, static pro- 
bability model, and if MA is piecewise, then the rule base should contain only rules which reference all the 
relevant attributes since, otherwise, W&S scoring in some cases will be inconsistent with our hypothesis testing 
model; (2) While we cannot say that it is always detrimental to have nested rules in an initial rule base that is to 
undergo modification in response to learning, the fact that the rules over nested sets necessarily give conflicting 
information is construed as strong evidence for pruning from the search space rule bases that contain nested 
rules. 

\spect to a specific set A of attributes, an<' 

. 

Suppose that A = ( A I ,  . . . ,AN } is the set of attributes that is used to approximate the distribution of transac- 
tions in MN and MA. That is, we compute 

Pr  (MN It ) 

as 

A is said to be the relevant set of attributes. Suppose the W&S rule base RB contains a rule 

R : (B l=v . 1 (Bk=vk)+(B =r),  where 

{ B ,B I ,  . . , , Bk ] is a proper subset of A .  Rule R is said to be nonmaximal. 

We shall demonstrate that, relative to piecewise MA models, "W&S-like" scoring functions exhibit certain 
types of inconsistencies whenever the rule base contains one or more nonmaximal rules. To this end, let R be 
the nonmaximal rule above, and B' a relevant attribute not appearing in R .  Consider a fixed transaction T 
which fails the nonmaximal rule R (Le., T[B,]=vir 14&, F[B]=v#r). We shall establish a sense in which 7 is 
scored in a manner inconsistent with the Bayesian hypothesis test. The proof strategy is as follows. In the next 
subsection we introduce pairs (DB1,DB2) of historical databases, such that DB, is obtained from DB1 by means 
of a simple transform, and compare the Bayesian test of a transaction against DB with the Bayesian test against 
DB,. The following subsection exhibits the inconsistency by performing the same analysis on a class of W&S- 
like scoring functions, against a rule base containing nonmaximal rules. 

3.1 A Class of Database Transforms and their Effect on the Bayesian Measure 

We consider a class of simple transforms to historical databases. 

Definition: Let t be a fixed transaction, and A i A i  a pair of relevant attributes. Historical database DB2 
is obtained from historical database DB by means of a simple (t ,Ai ,Aj)-transform if every I that differs 
between the D B 1  and DB2 is such that in DB t' agrees with t everywhere but on A i J j ,  and in DBz t' 
agrees with t everywhere but on A i .  

In the following analysis, we shall be concerned exclusively with pairs (DBl,DB2) of databases such that 
DB, is obtained from DB by means of a simple (78 8') transform, where 7 8 ,  and B' are as defined previous- 
ly. In this case, we shall say simply that (OB ,,DB2) is a simple transform pair. 

Theorem 3.1: Let (DB1,DBZ) be a simple transform pair, and suppose that the Bayesian hypothesis test is 
performed with respect to some piecewise model for MA. Then 

(Pr  {MN IT} computed against DB 2 (Pr {MN 171 computed against DB2). 

That is, T is ranked as being more suspicious in DB, than in DB 1. 

Proof: Observe first that 

(Pr 1 ~ M N  1 computed against DB 1) = (Pr ( h 4 ~  } computed against DB 2). 



The significance of this )rem is that when RB contains one or mc onmaximal rules, transform pairs 
(DB,,DB2) can be constructeu so that any scoring function in the class defined in the following subsection ranks 
rsuch that: 

(Score (3 computed against DB > (Score (r) computed against DB2).  

That is, contrary to the Bayesian hypothesis test (assuming a piecewise model for MA), such scoring functions 
rank 7 as being more suspicious relative to historical database DB than relative to historical database DB2. 

3.2 A Class of Rule Base Scoring Functions 

We now define a large class of transaction scoring functions which includes most imaginable variations to the 
W&S scoring function of IVacc891. 

Generally speaking, a scoring function is a function of the transaction f being scored, the rule base RB , and 
the database DB of historical transactions. Property 1 restricts the manner in which a scoring function may 
depend on DB . 

Property I :  Score ( I  ), computed against RB and DB , is a function 

where R 1 ,  . . . , Rn are exactly the rules in RB fired by I ,  ai is the number of transaction in DB which fire 
R i ,  and bi is the number of transactions in DB which fail rule R , .  

Notice that a scoring function obeys this property if Score (t)  depends on DB as a function of only the con- 
ditional probability 

for each rule 

that t fires. 

Property 2 stipulates that the scoring function interprets in the natural direction a change in any rule's 
(#hed/#fa.iled) ratio. We first need the following definition. 

Definition: A collection of #fired,#failed values for some or all of the rules in a rule base is consistent if 
there exists a historical database yielding these values. A collection of values that is inconsistent, but in 
which #fired 2 #failed for each d e ,  is called a pseudo-database. 

In what follows, as a definitional convenience, we assume that a scoring function is defined (as an abstract func- 
tion) over pseudo-databases, as well as over consistent #fired,#failed values. 

Property 2: Score(t)  is monotonic in the following sense. Let R be any rule and t any transaction. If 
the (#fired R,#failed R) values are varied while the #fired,#failed values for all other rules are held fixed, 
then: 

If t fails R, Score (t ) is nondecreasing as the ratio (#fired R / #failed R) is increased. 

If r passes R, Score ( I )  is nonincreasing as the ratio (#fired R / #failed R) is increased. 

In the special case where #failed R is 0, Score(t)  is nondecreasing as #!ired R is increased, if t fails 
R; if t passes R, Score ( t )  is nonincreasing. 

In the specid case where #failed R = #fired R, Score(t)  is nonincreasing as #fired R and #failed R 
are increased by the same amount, if t fails R if t passes R, Score(t)  is nondecreasing. 



Definition: Let V be a u.ector of fixed (#hed,#failed) values for somL C of the rules in RB . A 
&neighborhood S(V)  is the set of vectors V’ specifying (#fired,#failed) values to this Same collection C 
of rules such that if the triple (R ,a ,b ) appears in V then the triple (R ,a’ ,b’) appearing in V‘ is such that 

The required sensitivity condition is as follows. 

Property 3: 

3.1: Sensitivity to change within a constant-size neighborhood is bounded uniformly. 

Let Ai and A; be any attributes in the relevant set A and let t be any &ansaction. Let V be a fixed vector 
of consistent values for all rules that t fires which contain Ai in the LHS and A; in the RHS. Then for 
every constant 6, there exists an E such that for every vector X of values for the remaining rules, 

IScore ( t i , ~ ~ ) - S c o r e  ( t  ,VX)I<E, 

for alI V d ( V ) .  

3.2: Sensitivity to unbounded change is unbounded. 

Let Ai be any attributes in the relevant set A ,  t be any lransaction, and Y be a fixed vector of consistent 
values for some subset of the rules with Ai in the RHS, such that this subset does not include at least one 
such rule failed by t .  Let RP 1, . . . .RPp and R F I ,  . . . , RFf (f 21) be the rules with Ai in the RHS 
respectively passed and failed by t which are not assigned a value by Y. Then for every constant A, there 
exists a constant 6 such that for every assignment Z to the rules not containing B in the RHS: 

Score ( t  SRF I P  b ),..., (RFf P ,b ),(RP l,a 4 - b  1, ..., (RPp P ,a-b >,YZ) 
- Score ( t  ,(RF l,a’ b’) ,..., (RFf ,a’,b’),(RP l p f  ,a’-b’) ,..., (RP, ,a‘@’-b’),Y 2) > A, 

a a’ 
b b’ whenever - - -4 and a ,b ,a’b‘a. 

Theorem 3.2 The W&S scoring function TFOM in [Vacc89] obeys Properties 1-3. 
PrW It is obvious that the function depends on the historical DB only as permitted and is monotonic. 
We now verify that the two sensitivity conditions are obeyed. 

3.1. Sensitivity to change within a constant-size neighborhood is bounded uniformly. 

Let B and B’ be the attributes in question, t the transaction in question, R P l ,  . . . ,RP, the rules with B 
in LHS and B ’ in RHS that t passes, RF 1, . . . , RF, the rules with B in LHS and B’ in RHS that t fails, 
OP,, . . . , OP, rules without B in LHS and with B’ in RHS that t passes, O F 1 ,  . . . ,OFq the d e s  
without B in LHS and with B’ in RHS that t fails. 

By inspection of the scoring function, the values associated with these rules influence only the FOMw 
component. FOMB~ can be written as: 

m 
D c o r e  (RF, ) 
i=l 

P 4 
(&core (RPi)+%core (RFi)+)tCScore(OPi)+Dcore (OFi) )In 
i=l i =1 i=l i=l 

Q 

i=l 
s c o r e  (OFi) 

+ 
n m P P 

i=l i=l i= l  i=l 
( B c o r e  (RP; )+=core (RF;   COR ( O P ~  ) + B e o r e  H OF^ ) )l‘’ 



m m 

ZScor 7 i )  m c o r e  (Mi ) t 
i=l 

1, - i = l  
m rn 

i=l  i=l i=l i =1 

I 
( s c o r e  (RPj )+I;Score (RFi))"' (&core ( R P i ) + m c o r e  (RFi) +kZ ) ' I2 

where k l  and k 2  are constants depending only on V and 6. Since the values Score(RFi) and 
Score (RP; ) depend only on V and not X , there is a bound on the term's change that is valid for all 
values X. 

(b) The contribution to the difference between Score (t ,V X) and Score ( t  ,V',X) of the second term is 
no greater than 

4 4 
s c o r e  (OFi ) u c o r e  (OFi)  

I i-1 - I i d  
~ 

& S c o r e  (0Fi))'I2 (&core (OFi)  +k)"' " 
i=l i=l 

4 

i =l 
where k is a constant depending only on V and 6. While B c o r e  (OFi)  can be made arbitrarily large 

4 4 
D c o r e  ( O F i )  m c o r e  (OFi ) 
i= l  i=l 4 

approach (I;Score (OFi))ln as 
i=l and 4 

by varying X ,  both 
(&core (OFi))ln ( p c o r e  (OFi) +k)"' 
i=l  i =1 

4 

i=1 
9 

i=l  

B c o r e ( O F i )  grows. Hence, the sensitivity of this term to a change from V to V decreases as 

p c o r e ( O F i )  is increased. Therefore, there is a bound on the term's change that is valid for whatev- 

er value X induces in P c u r e  (OFi).  
4 

i-1 

3.2. Sensitivity to unbounded change is unbounded. 

Let B be the attribute in question, f the transaction in question, and Y the hed set of triple values. By 
inspection of the scoring function, changes to the alb ratios of the rules RFi and RPi influence only the 
FOMB component. Let c be the largest ratio in the given Y .  Write FOMB as a sum of terms: one term 
for each failed B-rule assigned a value by Y and a single term for the remaining failed B-rules. (A B-rule 
is any rule with B in the RHS.) 

The largest term among those for the failed B-rules assigned a value by Y is no larger than 

C 

(sum grades of all B-rules)ln ' 

Hence, when we change values, the largest change to the overall function contributed by each of these 
terms is not more than c (the denominator is never less than 1). a constant depending only on Y (and not 
on Z,a ,b pf 8). 

Let f be the number of failed B-rules not assigned a value by Y and p the number of passed B-rules 
not assigned a value by Y. When these rules are assigned the (6red,.failed) values of (a&)  and (a ,a-b) 
respectively, the contribution of these rules to FOMB is: 

, 
+k)'" U U (f*-+p*- 

b (a-b) 

where k is a constant depending only on Y (and not on Z). For sufficiently large values of this can be 

made arbitrarily close to (f*-ft)'".  When values (a'b') and (a',u'-b') are used, the contribution of this 
b 

" "f  " f  " b 



- arbitrarily close to cf*=)”’ , and to make 
6 

large enough to make 

( f * ; ) l n  - ( f * $ ) l n  arbitrarily large. 

+k)lQ a a (f*-+p*- 
I 6 ( ~ 4 )  

Observation: It appears, based on an informal description of the scoring function used in the current im- 
plementation of W&S, that this function obeys Properties 1-3 as well. However, more detailed informa- 
tion on this function is required before a formal analysis can be performed. 

3 3  An Inconsistency Result 

In order to establish inconsistency when a nonmaximal rule is present, we consider 3 classes of rules. Nonmaxi- 
mal rule R , attributes B and B’, value v , and transaction tare  as defined at the beginning of Section 3. 

Rule Classes 

WR(a): 
WR(b): i f i res  rule, B appears in RHS, B’ does not appear 
RFk 

fires rule, (B =v) appears in LHS, B’ does not appear 

Tfires rule, (B=v) appears in LHS, B’ appears in RHS 

Observe that by the construction of r, rule R is in class WR(b). Observe also that of the 3 classes, only RR can 
contain maximal rules. 

Theorem 3.3: If DB is obtained from DB by a simple transform, then every rule fired by r whose 
(#fired,#failed) values differ between DB and DB2 is in one of the 3 classes WR(a), WR(b), or RR. 
PmF: Consider any rule whose (#fired,#failed) values differ between DB and DB 2. 

(a) If B does not appear anywhere in the rule, it is clear that the rule’s (#fire,#failed) values do not 
change between DB and DB 2. Hence, B appears in the rule. 

(b) If any (C#r[C])  appears in the LHS, then r does not fjre the rule. Hence, if B appears in the 
LHS, it must appear as (B=T[B]). 

(c) By the previous observation, if B’ appears in the LHS, it must appear as (B’=r[B’]). But if 
(B’=T[B’]) appears in the LHS, no t that changes between DB1 and DB2 can fire the rule, either be- 
fore or after t is changed. Hence, the (#fired,#failed) values are unchanged for such a rule. Thus, if 
B‘ appears in the rule, it must appear in the RHS. 

Consider intuitively the effect of a change from DB1 to DB2 on the #fired/#failed ratio of rules in the 3 
classes. When DBI is changed to DB2 by a simple transform, the ratio associated with each rule in WR(a) and 
WR(b) increases (or is unchanged) for rules passed by 7 and decreases (or is unchanged) for rules failed by 7. 
For the class of scoring functions defined in Section 3.2 (actually for any function obeying Properties 1 and 2), 
this implies that such a rule’s influence on the scoring of is to rank 7 less suspicious with respect to DB 2 than 
DB1, a conclusion inconsistent with the Bayesian hypothesis test. On the other hand, the ratio for rules in RR 
behave in the opposite manner, and hence such a rule’s influence on the scoring of T i s  consistent with the 
Bayesian hypothesis test. 

In order to demonstrate that an inconsistency in the scoring of tover all rules is always possible, we show 
that simple transform pairs (DBIDBi) always can be constructed so that the effects of WR(a) and WR(b) is ar- 
bibwily stronger than that of RR. Many constructions suffice to demonstrate this; we exhibit here a construction 
that is easy to describe and analyze, though the distribution of values in the database is perhaps a bit unnatural. 
It should not be construed, however, that only unnatural distributions exhibit these inconsistencies. 

We consider a family of historical databases (that will play the role of DB1 in transform pairs (DB1,DB2)) 
defined by three distribution parameters nI,n2 and n 3 ,  whose meaning is given as follows. For every S d ’ ,  
whereA’=A-{BJ‘): 

IDB I=n 
# (t  3 ( t  [S I=~[s 1)kn 
# ( t  3 (t [B ]=r[B 1) and (t [S  ]=r[S ]))=PI 



# ( t  a ( t [ B ] f t - [ B ] )  and (t[B’]#F[[B’]) and (t[S]=FIS]))=nl - (n2+n3)  

Figure 1. Form of the family of historical databases. 

The following theorem is this section’s main result. 

Theorem 3.4 Suppose that scoring function Score satisfies Properties 1-3 and that RB contains one or 
more nonmaximal rules. Then for every constant D ,  there exists transactions T and transform pairs 
(OB lf lBz> such that 

(Pr {MN 1;) computed against DB 1) s (Pr {MN IT} computed against DB2),  

Score (TpB P B  1) - Score (TRB p B  &D, 

where the Bayesian hypothesis test is computed with respect to any piecewise model for M A .  
P m t  Let the nonmaximal rule (with respect to relevant attribute set A )  in RB be 

R: (B l=v l)...(13k=vk)+(B =r ). 

Let 5- be any transaction which fires and fails R, and let E’ be an attribute that does not appear in R. As 
before, define A’=A -{ B 8’ }. Distribution parameters n l,n 2, and n 3 have the meaning given above. 

The construction of the required pair DB and DB2 is specified in the following steps. 

A. Let DB be the historical database defined by any integral values Fl,FF2,ii3 for the distribution parame- 
ter~ n 1,n2,~~3 such that 0<53<E2<51. 

In DB , the values for the rules fired by T thus are as follows, where S is any subset of A’. (The values 
are listed as (#fired,#failed) pairs.) 

(S=T[S ])+(B =T[B 1 )  : (51.b -Fz)) 
(S=T{S ])+(B G [ B  1) : (5l,(iiz>) 

(S=T[S ])(B’=T[B’])+(B =T[B 3 )  : (2*53,53) 
(S=F[S])(B’=T[B’])+(B *-[B I) : (2*K3,F& 

(S=T[S])(B =T[B ])+(B’=F[B’]) : (52,(52-53)) 
(S=T[S ] ) (B =T[B I ) - @ ’  G [ B ’ ] )  : (E253) 

(S=T[S])+(B’=T[B’]) : (F1,(Z1-53)) 
(S=T[S ])+(B’ #-[B’ 1) : (51,&) 

For any C different from B and B’, 

(Omitted here and from future discussions are the values of some additional rules not containing B’ in the 
RHS (Le., rules containing neither B nor B’, rules containing both B’ and B’ on the LHS, and rules con- 
taining B’ on the LHS and not containing B ) .  It is easy to see that the values of these omitted rules do 
not change between DB and DB2 and have no effect on the relationships established in what follows.) 

B. Select any integer constant 6pO. Let V be the values specified in DB for the collection of rules fired 
by ;containing B in the LHS and B‘ in the RHS. Find a bounding E with respect to neighborhood S,(V),  
whose existence is guaranteed by Property 3.1. 

C. Let Y be the triple values assigned in DB to B -rules containing B’ on the LHS and let hsD+&. Find 



- Score ( r  ,(RF l,af b’) ,... :(RFf ,ar ,b’);(RP 1,a‘ ,a’-b‘) ,..., (RP, ,a‘ ,a’ -b’),Y Z) > A, 

whenever a/b - a’/bfr _. Find integer p such that plE2 - p/(K2+6,, 
always exist, since 

&. Note that such an integer p 

and hence can be made arbitrarily large by selecting p sufficiently large. 

D. Let DB1 be the historical database with n2 and n3 equal to F2 and Z3 as in DB, and nl=p. In DB1, 
the values for the rules fired by F thus are as follows, where S is any subset of A’. 

(S=T[S])+(B =T[B]) : (p ,@-Ed) 
(S =F[S I)-@ u-[B I) : (p ,(Ed) 

(S=F[s ])(B’=F[B’])+(B =?[B I) (2*E3,E3) 
(S=F[S])(B’ =F[B’ I)+@ #-[B 1) : (2*E3,E3) 

b 

Note that the last two rules have the same values as in DB, i.e., values induced by Y. 

Note that the last two rules have the same values as in DB, Le., values induced by V. 

(S=F[S])+(B’=F[B’ I) : (p ,(p-E3)) 
(S=F[S])+(B U-[B 1) : (p 5 3 )  

For any C different from B and B’, 

(S=i-[S])(B=F[B])-%(C=F[C]) : (F2,O) 
( S = i - [ S ] ) ( B = ~ [ B ] ) ~ ( C # F [ C  I) : (E2ji2) 

Straregy: We now consider the DBz obtained from DB by application of a simple transform in which a1 
transactions are changed in accordance with the definition of a (73 3’)-transform. The result is DB2 in 
which the distribution parameters are: 

n 1=P 
n 2=E&1 
n 3=K3 

It follows that the values for rules in DBz are as follows. 

For any C different from B and B’, 

(S=F[S])(B =F[B ])+(C=Y[CI) : (E2+6,,0) 
(S=i-[S ] ) (B =T[B I)+(C *-[c I) : (F2+6l,E2+6,) 



\. I ____ ------I-- ___-- ---.  - \ . - -  ‘, I-”.- ,. _ -  L, - . - -  ..-- --_I-- - - - - - - ~  ----, , .  - - -  .--____ - - _ .  - 
on two pseudodatabase PDB and PDB’, a collections of rule values which are inconsistent in that no dis- 
tribution parameters y these values. 

E. Create a pseudo-database PDB from DB by changing the values for the RFi rules from (RF; g ,E2) to 
(RFi ,p ji2+61) and the values for the RP; rules from (RPi .p g-52) to (RPi ,p .p-52-61). 

By the way p was chosen in step C (observe that the values in DB1 for the remaining B rules are as 
specs& by Y), 

Score (FDB l)-Score (i,PDB )>A. 

F. Create PDB’ from PDB by changing the values for all rules Q which rpasses containing B in LHS 
and B’ in RHS from 

(Q, 52,(K2-K3) ) 

to 

(Q’ 9 (52+61),(K,-Z3+61) )* 

and changing the values for rules Q’ of this form which t‘fails from 

(Q, 5 2 - 5 3  1 

to 

(Q’T (KZGl),(K3) ) 

Since the starting values are V and the resulting V’&,(V), we have that 

k o r e  (F,DB2)-Score (7,PDB )IC&. 

G. Create DB2 fkom PDB’ by changing the values for all rules W which +passes which contain B on the 
LHS and do not contain B’ from 

(W75290) 

to 

( W , 5 2 4 1 , 0 ) ,  

and changing the values for all rules W’ of this form which 5- fails from 

(W , 5 2 3 2 )  

to 

(W , 5 2 4  1 ,E241 1. 

By the special cases of the monotonicity condition, 

Score (7,PDB’)s;Score (7PDB ). 

Putting together our sequence of changes, we have that 

Score (T,DB +Score (T,DB 2 ) > ~  . 11 



, 4. Further Reducing the Search Space: The Equivalence of Joint 
and Conditional Probabiliti- with Respect to Hypothesis Testing ‘ .  

The previous sections focused on the problem of selecting probability models for the process that generates tran- 
saction and on the effects of including nonmaximal rules in a rule base. In this section we consider another 
question that arises in rule base and model design, by addressing the following question raised in [Helm89]: 

For a given collection C of attributes and a set X of value vectors for these attributes, how do we choose 
between the joint probability P r ( C e X }  and the many possible conditional probabilities 
P r { C l e X I I C 2 e X 2 }  (where C1 [ X I ]  and C2 [X2] partition C [ X I )  as the best quantities to include in MN 
and MA. 

. 

Observe how this question relates to the problem of partitioning a W&S rule into an LHS and an RHS. The 
main results of this section are surprisingly simple observations that allow us to eliminate this question as a di- 
mension of choice, thus yielding an enormous reduction in the size of the search space proposed in Welm891. 

The following theorem demonstrates that under the Bayesian hypothesis testing procedure we have proposed, 
the choice of joint versus conditional (and the possible partitionings into conditionals) is immaterial. The 
theorem states simply that the hypothesis tests supported by the joint quantity and any corresponding conditional 
quantity are identical in that the tests apply to the same transactions and yield identical results. 

Theorem 4.1: Let C be a set of attributes, X any set of value vectors for these attributes, and C1, C2 and X I ,  
X 2  any partitions of C and X .  The quantities Pr ( C e X  } and Pr ( C l e X l  IC2eX2} support the testing of the hy- 
pothesis Pr (MN It 1 for exactly the same transactions t , and yield exactly the same result.. 
Proof: The inclusion in the models MN and MA of either of these quantities supports the test Pr {MN If } of ex- 
actly those transactions t such that r[CIIeX1 and t [C2]eX2,  i.e., t [ C ] E X .  If the models include the joint proba- 
bility, then the hypothesis test approximates Pr (MN It ] of such a transaction by computing: 

If, instead of the joint probability, the models include the conditionals P r  ( t  [ C 1 ] e X 1  IMN A t [ C p X 2 }  and 
Pr ( t [C , ]EXIIMA A t [ C 2 J e X 2 } ,  we would approximate P r { M N I t )  by computing: 

i.e., the two forms of the test yield identical results. 

This result has several interpretations. First, when designing probability models to support the Bayesian hy- 
pothesis testing approach, we can reduce significantly the search space defined in Belrn891; reduction is by a 
factor proprtional to number of partitions of each selection of attributes and aggregation of their values. 
Second, assuming that W&S is indeed based on the Bayesian model (or approximates it), the rule base design 
decision of how to partition a potential rule into a LHS and RHS should be immaterial. Since the above 
theorem is valid regardless of the model assumed for MA or of the scoring function employed, its result imply 
there is no mathematical reason to estimate and test against conditional rather than joint probabilities. On the 
other hand, WBS’s structuring of rules in the form of conditional probabilities may be desirable for reasons of 
an efficient impIementation. Our results imply that this is perfectly valid mathematically; however, they imply 
also that there is no reason to consider different partitions into LHS and RHS of a given set of attributes and 
their values. 

A question left open by the above theorem is whether its results apply when the probabilities are obtained 
via empirical sampling. That is, could it be that the joint and conditional tests differ as a result of differences in 
the sampling? If so, it might be reasonable to consider alternative quantities since, in this case, they could yield 



appearing in Theorem 4.1. That is (simpling from DB), . 

EPr ( t [C J=V1 A 21=Vz I MN hDB 1 
= EPr{t[C1]=Vllr[C2]=V2"M~ ADB }*EPr{t[C2bV2AMN A D B ) .  

Proot The result follows ftom a simple combinatorial argument. Let 

N = I D  I 
N1 = #transactions in DB with t [ C l ] = V l  
N z  = #transactions in DB with t [C2]=V2 
N3 = #transactions in DB with t [Cll=V1 and f [ C 2 ] V 2  

Then, 

5. The "Distance from Unity" Optimization Criterion I 
In this section, we consider refinements to the "distance from unity criterion" proposed in IHelm891 as the ob- 
jective function value to be used in determining which quantities should be included in the models MN and MA. 

Consider again the attribute selection and value aggregation problems discussed in Section 2.2. The attri- 
bute selection problem requires us to find subsets { B 1 ,  . . . , B k ]  of the set of al l  attributes { A l ,  . . . , A N }  such 
that 

(1) The quantity Pr { t [B 11, . . . , t [Ek 1 ~ M N  1 is accurately reflected in the historical database, our sample popu- 
lation. 

The behavior of R (t [B 11, . . . , t [Bk] )  reflects that of R (t). (2) 

The only way we know of to test whether these conditions are satisfied for candidate subsets of athibutes is 
experimentally. In particular, this is one aspect of the problem for which at least a limited amount of expert 
feedback seems essential. With feedback, the conceptual solution to the problem would be simply to experiment 
with each subset of attributes and determine which does the best job of detection (Le., for what subsets B is the 
ratio R (c [B I )  a good detector). 

However, it is not computationally feasible to test these conditions experimentally as we attempt to design 
the model, even if feedback were readily available. What we propose is heuristics for constructing subsets B 
that are potentially interesting. We then would compute probability distributions for the candidate subsets, in- 
clude these quantities in one or more probability models, and test the models experimentally. 

Consider how we might determine quickly if a given subset B of attributes is potentially interesting. Ob- 
serve that when the distribution of 

Pr { t [ B 1 l = v l ,  . . . , ? [ B k ] = V k h f ~ ]  

is, for most values v i ,  similar to that of I 
the ratio R (t [B . . . , r [ E k ] )  often is near 1. This implies P r  (MN It ] is often calculated to be near P r  {MN ) 
and hence the test has little potential of yielding information. That is, if such a collection of attributes is includ- 
ed in one of the competing tests R (c), the test will often contribute information approximating the a priori value 
Pr {MN 1. It seems reasonable to conclude that such subsets B are not potentially interesting. In contrast, sub- 
sets that maximize the separation for most values vi should be considered good candidates, because such subsets 
provide the greatest discrimination between the models in the sense that a transaction to which the test applies 
will score either very much higher or lower than the a priori value and, hence, the test yields much information. 



Pr (t[BI]=vlIMN)* ...* Pr{f[Bcl=vkIMN} 

is far from 1, for most value, . . 
We emphasize the two comments made in Section 2.2: 

a) Methods are required (e.g., experimental feedback) to assess the quality of candidates chosen by this 
heuristic. In particular, model separation is not sufficient to ensure that a candidate solution provides good 
approximation to the hypothesis test Pr (MN It }. 

Even if the heuristic measure were a perfect criterion, the problem of building solutions which optimize 
the measure are difficult (probably NP-hard). Hence, search heuristics are required to build the candidate 
solutions. 

b) 

In order to focus on the attribute selection problem, the previous discussion simplified away the related 
problem of value aggregation. That is, once we have a candidate subset B , there remains the question of how to 
partition the values of B 's attributes. For a given aggregation XI, . . . ,& of values, the corresponding test is 
based on the ratio 

Since the number of possible attribute aggregations for a fixed subset B is exponential in the size of 8, we 
desire heuristics of similar spirit to the one discussed above. 

In [Helm891 we propose to apply the distance from unity criterion to this problem as well. While this cri- 
terion of maximizing information when the test applies is valid, the it is easy to see that the partition cell Xi (of 
each attribute Bi) which maximizes this measure will always contain only a single value. However, it is quite 
possible that the test corresponding to such an aggregation will apply to only a very small percentage of transac- 
tions. It therefore Seems reasonable that the measure of a given aggregation be based on the expected separa- 
tion, computed by weighting the separation of each potential test by the probability that the test will apply to a 
random transaction. 

6. Summary and Conclusions 

The analysis performed in the previous sections is an important first step in the development of a methodology 
for designing the probability models to be used in misuse and anomaly detection. This research has addressed 
three important aspects of the design problem: The role and selection of probability models, the identification of 
ciasses of models (and W&S rule bases) that can be pruned heuristically before the search begins, and heuristic 
criteria to be used in the search. 

The main results of this paper translate to the following basic principles for the design of a W&S rule base. 

1. Knowledge of the MA models of concern is required in order to analyze the quality of W&S rule bases. It 
appears that current W&S rule bases perform anomaly, rather than general misuse, detection as they ap- 
pear to be configured for negative correlation models. It may be possible in the future to configure W&S 
rule bases for other misuse models, such as piecewise and masquerader models, by applying model- 
specific principles to the design of the rule base. 

2. One model-specific principle implied by our results is that if the MA models of concern are piecewise, 
then rule bases containing nested rules should be pruned from the s.earch space. In particular, any rule 
which does not contain all relevant attributes, in some cases, influences in an incorrect direction the scores 
of certain transaction. 

3. Independent of the M A  models of concern, it appears that rule bases containing rules which are different 
partitions into LHS and RHS of the same attributes and values should be pruned from the search space. 

In addition to proposing a trimmed search space for the design problem, we have refined our criteria for 
evaluating candidate models. When searching for subsets of attributes and aggregations of their value, we pro- 
pose considering only candidates that are potentially interesting, in that they are likely to discriminate between 
the models of concern. We point out, however, that this criterion alone is not sufficient to identify probabilistic 
nnnntXoe th-t rhnrilA nn-nt in tha m&l Pvne-mnnhtinn .with fpnAh.w-L- ;e neFaeeamr in . r m i f . r  th-t .-a nitren 
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