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Abstract 

In the design of explosive systems the generic problem that one must consider is the 
propagation of a well-developed detonation wave sweeping through an explosive charge 
with a complex shape. At a given instant of time the lead detonation shock is a surface 
that occupies a region of the explosive and has a dimension that is characteristic of the 
explosive device, typically on the scale of meters. The detonation shock is powered by a 
detonation reaction zone. sitting immediately behind the shock. which is on the scale of 1 
millimeter or less. Thus, the ratio of the reaction zone t.hickness to the device dimension 
is of the order of 1/1000 or less. This scale disparity can lead to great difficulties in 
computing three-dimensional detonation dynamics. --in attack on the dilemma for the 
computation of detonation systems has lead to the invention of sub-scale models for 
it propagating detonation front that we refer to herein as program burn niodels. 'Tlie 
program burn model seeks not to resolve the fine scale of the reaction zone in the 
sense of a DNS simulation. The goal of a program burn simulation is to resolve the 
hydrodynamics in the inert product gases on a grid much coarser than that required to 
resolve a physical reaction zone. We first show that traditional program burn algorithms 
for detonation hydrocodes used for explosive design are inconsistent and yield incorrect 
shock dynamic behavior. To overcome these inconsistencies. we are developing a new 
class of program burn models based on detonation shock dynamic (DSD) theory. It is 
hoped that this new class will yield a consistent and robust algorithm which reflects the 
correct shock dynamic behavior. n 
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1 Introduction 

In the design of explosive systems the generic problem that one must consider is the prop- 
agation of a well-developed detonation wave sweeping through an explosive charge with 
a complex shape. A t  a given instant of time the lead detonation shock is a surface that 
occupies a region of the explosive and has a dimension that is characteristic of the explosive 
device, typically on the scale of meters. The detonation shock is powered by a detonation 
reaction zone, sitting immediately behind the shock, which is on the scale of 1 millimeter 
or less. Thus, the ratio of the reaction zone thickness to  the device dimension is of the 
order of 1/1000 or less. This scale disparity can lead to great difficulties in computing 
three-dimensional (3D) detonation dynamics. 

Assume (as we do for the rest of the paper) that the physical problem of modeling 
the dynamic propagation of the detonation and the motion of the reacted products in the 
following flow is completely described by a solution to the compressible Euler equations for 
a reactive flow, with a specified equation of state for the explosive and reaction rate of the 
form 

e = e (p .  v. A). r = r i p .  L'. A) . 

where p ,  v. X are the pressure. specific volume and the progress variable of chemical reaction. 
Note that X = 0 corresponds to unreacted explosive and X = 1 corresponds to completely 
reacted explosive. The prediction of the detonation dynamics can be achieved in principle 
by a direct numerical solution (DNS) of the Euler equations. In order to get a high quality 
solution to  the reactive Euler equations. it is essential to have enough points in the reaction 
zone. Unfortunately even with modern algorithms. as many as 20-50 cells in the streamwise 
direction may be required to resolve the detonation reaction zone to sufficient accuracy so 
as to compute the detonation speed. JVhen one then considers the consequences of such 
J, fine scale for the reaction zone. combined with the requirement for global temporal and 
spatial accuracy in the meter-sized domain of the engineering device. huge computational 
resources are required [ 11 (even given todays TeraFlop parallel computing resources i €or 
DNS of a detonation wave sweeping through a system. 

The computational barrier to 3D design of explosive systems through direct siniulation 
of the reactive Euler equations is not newly discovered. and dates back to the use of comput- 
ers to design explosive systems that started systematically shortly after IVJVII. -4 dileiiima 
of sorts presents itself. One needs to try to make predictions i n  engineering systems but 
one cannot overcome the stiff computational requirements needed to compute on the engi- 
neering device scale. One could compute DNS simulations that are resolved for very .mall 
dimensions. but those are at a minimum at least two orders of magnitude s n d l e r  than the 
engineering system scale. The dilemma posed above associated with trying to solve a phys- 
ically correct but computationally intractable model is similar in spirit to direct simulation 
of turbulence on engineering device scales. In that discipline the need to resdlve the physics 
of  turbulence on larger engineering scales has led to the invention of classes of sub-scale 
inodels for turbulence and most recently to large eddy simulation. 

-An attack on the dilemma for the computation of detonation sys tem 11% lead to the 
invention of sub-scale models for a propagating detonation front that we refer to herein as 
program burn (PB) models. The program burn model seeks not to resolve the fine scale 
of the reaction zone in the sense of a DNS simulation. The goal of a PB simulation (PBS) 
is to resolve the hydrodynamics in the inert product gases on a grid much coarser than 
that required to resolve a physical reaction zone. Thus a PBS must deposit a prescribed 



amount of energy (and more generally mass and momentum) into a uery few number of 
computational cells behind a pre-calculated shock front. The effective reaction zone in a 
PBS is always the region behind a pre-calculated shock front where source terms are added 
to account for the deposition of energy. For practical reasons. the effective reaction zone is 
always constrained to be a finite number of cells thick (between one and four say). 

The region where the source terms contribute. in the limit of zero cell thickness. limits to 
a sharp front across which there are jumps in the dependent state variables. The program 
burn source doses, while historically prescribed purely by the prescription of the discrete 
algorithm used in a particular code. must limit to a delta function source centered at 
the location of the sharp front, which is then externally prescribed by pre-calculating the 
shock location. The delta function source terms must, of course, be represented in the 
partial differential equations that represent the program burn model, independent of its 
discretization and the algorithms used to solve it. One thing is clear from this discussion. 
the solutions of the reactive Euler equations are not solutions of the equations of the program 
burn model. 

In this paper we consider the following problem: How does one make consistent and 
robust discrete approximations of physical detonation flows with a finite length reaction zone 
as modeled by the reactive Euler equations. with a discrete approximation to a program burn 
model for which the reaction zone and shock is collapsed entirely to a single discontinuous 
front? 

The whole scheme where a Program Burn model have solutions that are in some sense 
close to those of the Euler equations for a reactive flow depends very much on the accuracy 
of the approximate theory in regards to the shock dynamics. This issue must be decided 
irrespective of numerics. In section 2 we briefly present direct nuinerical simulations (DNS) 
of the reactive Euler equations that are to be used as the benchinark calculations for the 
rest of the paper. The geometry considered will be either planar. cylindrical or spherical. 
For cylindrical/spherical geometry. curvature of the lead shock is present. In section 3 we 
compare the solutions obtained from DNS to the recent asymptotic theory of detonation 
$hock dynamics (DSD). a key ingredient of the inore modern implementations of prograin 
liiirn. In section 4 we regress somewhat by presenting the traditional pressure-based pro- 
=rani burn ! TPBPB) model: such a description is essential for understanding the rest of the 
pdper. In addition. some numerical cdcuiations are presented showing the strengths arid 
n-eaknesses of the model. Section 5 contains a short description of the more modern imple- 
inentation of TPBPB, called the modified pressure-based program burn model (LlPBPB). 
There does not exist any reference which describes IIPBPB. and >o is presented here for 
the first time. SoIutions obtained from AIPBPB are compared with solutions obtained from 
TPBPB and DNS. The essential difference between TPBPB arid hlPBPB is that TPBPB 
uses a Huygen's construction for the shock propagation ruie (shock propagates with the 
Chapman-Jouguet speed). while if  curvature is present. LIPBPB uses a propagation rule 
based on DSD. It is shown that even with this modification in the propagation law. cer- 
tain features of the downstream states are incorrectly captured. -ittempts to resolve this 
inconsistency is the major focus of section 6. -4 class of new algorithms are proposed based 
on DSD theory. which we shall refer to as DSD program burn (DSDPB) models. Finall: 
conclusions are given in section 7. 



2 Direct Numerical Simulations 

In this section we present the reactive Euler equations that will be used as benchmark 
calculations for which the program burn models. presented in subsequent sections. \vi11 be 
compared too. We therefore assume that the DNS calculations are “exact”: and that any 
differences in solution structure will be due to  the various approximations inherent in the 
program burn models themselves. 

For the DNS calculations, the conservative formulation of the reactive Euler equations 
are given by 

where 
= [ p ,  pu, E ,  pXIT 

T F’ = [ p ~ :  pu2 t p .  u ( E  t pj, puX] . 
G - = -i [pu.pu’.u(E t p ) : p u A ]  T . 

X 
f =  [ O : O . O : l ] T .  

where p is the density> p the pressure: u the velocity. E the total energy defined by 

e the specific internal energy> and X the mass fraction of the deficient component (A = 0 
for unreacted material, X = 1 for completely reacted material). The geometric source terms 
from the flow divergence are represented explicitly by G‘. The choice of j determines the 
geometry; 2 = 0 for planar. j = 1 for cylindrical, or j = 2 for spherical geometry. If one 
assumes a cylindrical/spherical shock, the shock total curvature K is related to the radius 
.c from the center of the coordinate system by ,s = j / . z .  

To close the system. constitutive laws for the internal energy and the reaction rate must 
be given. For illustration purposes. we take the exaniple of a coiidensed phase explosive 
considered in 111. The equation of state is taken to be that of an ideal gas 

where y is the ratio of specific heats and Q is the heat of reaction for the detonation. The 
reaction rate is given by 

7 )  r = 2.5147p-‘(l  - ,\) ’ - .  
The values Q = 4mm2,’,us2 and -1 = 3 are taken. ivith upstream conditions po = 0. ,io = 2 
g/cc and u, = 0. These values give a Chapman-Jouguet detonation speed of DCJ = 
drnmjps. and a steady-state one-dimensional reaction zone length of 4nm. 

To carry out the DNS. these equations are solved by a high-resolution Euler solver. 
namely. a third-order TVD Runge-Kutta scheme with a fifth-order W E N 0  spatial scheme. 
[6). [7] and 181. The grid is assumed uniform with Ax = 0.lmm. which puts roughly 40 
grid points in the reaction zone. Results for twice the number of grid points. arid hence 
has 80 grid points in the reaction zone. gives essentially the same results. In all cases the 
CFL number was taken to be 0.4. Wave structures are presented in Figure 1 for the case 
of cylindrical geometry and in Figure 2 for the case of spherical geometry. 
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Figure 1: Plot of the structure for the case j = 1 (cylindrical) at time t = 401-1". 
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Figure 2: Plot of the structure for :he case J = 2 (spherical) at tiiiie t = 1 O p .  



3 DSD asymptotic theory and comparison to  DSD 
In this section we briefly state the asymptotic theory of detonation shock dynaiiiic (DSD) 
theory. a key ingredient of the program burn model that  d l  be presented in subsequent sec- 
tions. We also compare certain flow features between DSD theory and the DNS calculations 
of the reactive Euler equations presented in the previous section. 

3.1 DSD Theory 

Detonation shock dynamic (DSD) theory is an asymptotic theory which describes the motion 
of the detonation shock by means of a relation between the normal shock velocity D,, the 
shock curvature K ,  and their time derivatives. For a through review of the theory. its 
assumptions and limitations. see [4]. For our purposes here we shall only focus on the 
quasi-steady, one-dimensional theory. Following [lo. 111. the relevant equations. consistent 
with the reactive Euler equations presented in a nearly integrable form that reflects the 
conserved first integrals of the governing equations if the flow were steady and plane. are 

a 1 
d n  

(11) 

where n is the coordinate normal to  the detonation front. and C:, = lln - D, is the relative 
normal velocity in the shock-attached frame. 
-411 a1ternat.ive forin of the energy equatioii. tlubbed tlie muster t;quution. is found by 

using the chain rule 311 eip. p. A) ill (IO). iisiiig rhe i i i i ~ ~  quatioil  to subst.itute for the 
spatial derivative of p. and rhen using the Inoinentiiiii tcii:ntioii :o substitute for  he spatial 
tlerivative of t.he pressure p. IVith the standard definition or' the souiici speed by for an ideal 
EOS. c:! = ; /p /p ,  one obtains 

1; - (13) 

The generulzted CJ condilzons follow from the master equation. IVlien the flow is locally 
sonic and the velocity gradient is finite it follo~.s that when 

tlie right hand side of (12)  must also be zero. i.e.. 

i 13) 

The first condition is the sonzc condztzon. while the second is the thernzczty condztzon. 
These conditions hoid for detonations that travei near or at the CJ detonation velocity 
'The simultaneous requirement that the sonic and therrnicity conditions be satisfied require 



that there is a relationship between /E and D,. For such solutions one can find the sonic. or 
star (*). states. The solution of this nonlinear eigenvalue problem can be done numerically 
if desired and the star states can be found as a function of the local curvature li. X plot 
of the star states is shown in Figure 3 for the condensed phase example of the previous 
section. Note that for li = 0. the star states are the CJ states. and D,, = DCJ.  
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Figure 3: Plot of the shock speed D ,  and the star states as a function of K 

3.2 DSD-DNS Comparisons 

Comparisons of DSD theory with direct numerical simulations (DNS) have been carried out 
in 111 for the case of a two-dimensional ratestick problem. a converging cliaiinel probleni. 
m d  a diverging channel problem. In all three cases the shock front locations as computed 
from DSD theory and from DNS were compared and good agreement between the tn-0 v a s  
found. However. a more direct comparison between DSD and DNS can be carried out by 
considering cylindrical or spherical geometry where the curvature is explicitly knoxn and 



the equations are essentially one-dimensional. Such early comparisons \yere carried out by 
Buckiet. albeit with a very noisy random choice method for the DNS, i5). 

To compare with DSD theory. we show in Figures 4 and 5 the shock speed D, and the 
star states as a function of curvature K for cylindrical and spherical geometry. respectively. 
In each figure: the solid curve corresponds to DSD theory, and the circles correspond to the 
DNS calculations. The wave front was determined to be the value at which the reaction 
progress variable X was 0.1: the speed is then the time derivative. Note the good agreement 
for both cylindrical and spherical geometries as the curvature goes to zero, i.e.. the long 
time solution. For large values of the curvature, the agreement between the two diverge. 
either due to  the transient effects of the DNS calculations at the earlier times or due to the 
first order and quasi-steady approximation of DSD theory where the time derivatives have 
been ignored. 
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4 Traditionally implemented program burn models 

In this section we discuss the basic ideas behind the iniplenieiitation of prograni burn as it  
has traditionally been implemented in design hydrocodes used for explosive engineering. -41- 
though several versions exist. we shall discuss only one model. the traditional pressure-based 
program burn model (TPBPB). The other models have similar strengths and weaknesses. 
and only one model is sufficient to clarify the discussion. 

Program burn was first posed as a numerical algorithm. not as a differential system. One 
of the earliest published references to an algorithm of this type is found in [2]. The algorithm 
has the following ingredients: i) There is a pre-determined. computational grid and a chosen 
algorithm for the inert hydrodynamics. The grid defines the domain of the explosive and 
the algorithms are used to solve the Euler equations for the (inert) explosive products. ii) 
A graded set of "burn-times". t b .  are assigned to each computational cell on the grid. The 
burn-times are the times that the detonation shock front crosses the coordinates of the 
initial position of the computational cell. The  traditional way to compute the burn-times 
is to select the unreacted explosive geometry. pick tlie locus of an initial Chapman-Jouguet 
(CJ)  detonation. and then compute the motion of the detonation shock emanating from the 
initial locus by means of a Huygen's construction. The Huygen's construction propagates 
the shock normal to itself at the constant CJ  wave speed. DCJ.  iii) X cell-based algorithm 
either adds energy to designated burning cells or modifies the equation of state in cells 
during the interval of the shock passage over the cells. as dictated by the pre-calculated 
burn-times. The equation of state adjustment has been done in various ways through either 
increments in the pressure or specific volume. 

In what follows we give a description of a traditional pressure-based program burn 
algorithm which modifies the equation of state in the burning cells. The definitions of 
the burn-fraction. the burn-time field. pre-calculated shock motion and modification of the 
equation of state are key ingredients of the model. 

4 0 . 1  Burn-fractioii  

I3aseti on ii previously caicuiated assignment. c d i  c ~ l i  is nssigncd ;L burn-time. io. If the 
])resent time of a computational cell is lielow the 1)urii-tinie. ! < ti,. then the c ~ i l  is not 
burning and the burn-fraction 1- is assigned zero. If t > t,j. then the burn-fraction must be 
caiculated. The burn-fraction is usually assigned to be the voluine fract.ion of the undis- 
turbed cell that has been crossed by tlie detonatioii shock ;it that time, and hence lias a 
computed value. 0 < < 1. The details of tlie coiiiputat.ion depends on the specific grid 
and algorithm and whether the burn-times are stored a t  cell centers or at the nodes. If the 
whole cell has been crossed the burn-fraction is simply I.' = 1. 

4.0.2 Burn- t ime field 

Once the burn-fraction cdgoritlini is selected. the discrete field of burn-fractions can tie 
pre-calculated from the discrete field of burn-times. IVhile ( a s  the grid is resolvedi the 
burn-times limit to a piecewise continuous fieid in tlie domain of the unshocked explosive. 
the discrete burn-fraction field must limit to a singular Heaviside function which is attached 
to the contours of the burn-time field (i.e.. the pre-calculated shock position). Tlie burn-time 
field is pre-calculated and the traditional way to do this is to use a Huygen's construction. 
Thus. once the unreacted explosive geometry is selected. the initial locus of an initial CJ 
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detonation is picked. and the motion of the detonation shock that emanates from the initial 
!ocus is computed by means of a Huygen's construction. 

4.0.3 Shock surface motion and the limits of discrete fields 

The way to espress these ideas mathematically is as follows. Let the burn-time field. which 
has a discrete representation on a grid which limits to a piecewise continuous field in the 
domain of the unreacted explosive, be given by 

Then, at a k e d  time t o ,  the shock locations are the contours of the burn-time field 

The limit of the discrete burn-fraction field a t  a time t o  as the mesh is resolved is represented 
by the Heaviside function 

H ( z  - & ( t o ) ) .  

As an example. consider a one-dimensional detonation wave propagating with constant 
positive speed D c j .  Then. according to Huygen's construction. we have 

d X ,  -- - Dc;. 
d t  

(15) 

where x ,  is the location of the detonation front at time t .  Integrating we get [he motion 
rule for the front 

x s ( t )  = -c, 7- t D C J ,  i 16) 
where xo is the initial position. The domain x < x, is assumed to be completely reacted. 
and is unreacted for z > .zo. This relationship can be inverted to yield the burn-time field 

For the discrete approsimation. let the nuinerical grid have ri uniform rnesh. .cL. lvitli grid 
-pacing Ax. Then the discrete version of the burn-field c a ~ i  be written 3.2 

for .E, > x,. 

Note that the burn-time is not defined for 2,  5 J,. n-hich indicates that 
flow field has already reacted. Xlso note that the burn-time is piecewise 
unreacted domain. 

For the prescription of the burn-fraction, which we shall denote by 
according to  the rule 

.E ,  > .rs. 

18) 

this region 01 the 
continuous i!i the 

1:. n-e update Y,  

This particular description of the burn-fraction is defined over a single cell: more general 
rules can be defined without loss of generality. In the limit as A x  - 0. we see that the 
burn-fraction approaches a Heaviside function. Figure 6 shows a sketch of the shock position 
<is a function of time and a sketch of the burn-fraction I-. The use of the burn-fraction Y 
is described in more detail in the following section. 
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Figure 6: (A) Sketch of the shock location ~ , ( t )  Lis a function of time. (13) Sketch of the 
burn-fraction Y on a discrete grid. 

4.0.4 Modification of the equation of state and apparent weak detonation 
structure 

In the t,raditional pressure-based program burn algorithm one assumes an  equat,ion of state 
for the inert products 

Since condensed explosives are being considered. the initial pressures (oiie l ~ r r  j are ex- 
tremely small compared to the detonation pressures behiiid the lead slioclc i !iuiidreds of 
Iiilo-bars) such that the pressure ahead of the shock iil the wireacted explosive raii be 
considered to  be zero. This is similar to the strong shock approximation. In a PBS in :he 
liurning cells: where the burn-fraction Y is between zero and one. the equation of state 
is modified by replacing p with p / Y  to obtain eproducts (p jY .  ti). This is equivalent to re- 
placing the pressure 1vit.h a partial pressure which is reduced by the burn-fraction for that 
cell. When Y = 1. the equation of state for the products is recovered. Finally. in the 
unburnt cells in the unreacted explosive one must give an energy that is consisrent with 
the heat of detonation. This is done in the following way. One considers the standard 
Rankine-Hugoniot relations for a gasdynamic discontinuity for a steady Chapman- Jouguet 
discontinuity traveling a t  laboratory speed DCJ.  One t.hen sets the energy datum eo in the 
iinreacted explosive consistent with that algebra. The EOS for TPBPB c i ~ n  thus be written 
as 

e = eo(1 - H ( Z -  Y s ( t ) > }  + H ( F  - . ~ ~ ( j t ) ) e p r o d l c c t s ( I ) , j Z ' - .  v i .  30) 

An example of selecting eo is presented in the following section. 
Thus. during a PBS. as one looks at  the pressure variation across the shock. the pre: <sure 

starts out from zero and is brought up to a high value near the CJ-pressure. Indeed. when 
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the burn-fraction Y is zero then the pressure is necessarily assumed to be zero. in fact the 
scheme computes the pressure based on an assumed equation of state and so the underlying 
hydrodynamic algorithm increments the pressure in such a way that the internal energy 
is assumed to be finzte. simple conclusioii is that the effective reaction zone structure 
of traditional program burn starts at the unreacted state at  the ambient pressure. and 
not at the shock state. If the program burn algorithm can be interpreted in terms of an 
effective distributed rate law. then the corresponding detonation structure looks like a weak 
detonation, and not a strong detonation. Note that the argument against a weak detonation 
structure is absent in a PBS, since the precalculated shock motion provides the sequenced 
burn-times for the cells that trigger the change in the equation of state in the vicinity of 
the shock. An alternative interpretation is that the PB scheme is a capturing scheme which 
intends to capture states that are near or at the steady state equiIibrium CJ-values and 
hence cut off, or do not represent in any way. a physical reaction zone structure from the 
inert unreacted shock state (the von Neumann spike) to the sonic point that normally would 
be computed as part of the reaction zone in a DNS. 

4.1 Example: Ideal EOS 

To illustrate the traditional implementation of program burn. we will start with an equation 
of state (EOS) for the detonation products. e ( p ,  c) and be even more specific by using the 
gamma law equation of state 

To compute the C.J-states. lve first assuiiie that the unburrit ilpstreal11 state (n-ith the strong 
shock approximation) ahead of the wave is Eiven bv 

31) ,p = Po;  ( 1  = 0. p = 0. t3 = e O' L- 

n-it11 ci) unspecified a t  this point but n.i!l be ciiosen iii t!ie ('ourse cii the itiialysis. Let 
L .  I - ( ,lo - [ ), denote the jump in  a quantity across tlie iiiterface rroiii the u-state (1 -  = tJ'1 

io the completely burnt state (Y = 1) denoted by a 6-subscript. 'The iiormal ,jiiiiip conditions 
across the interface nioviiig with speed D,, are given by 

- _ ,  

q9) [ p p n  - 4)] = 0. 

[pun ( 1 1 ,  - DJ +- pj = (I. 

[E( un - D n )  + unp]  = 0. 

, - - I  

(231 

' 24) 

where E is the totai energy defined earlier. With the &sumption of the ideal EOS in 
the burnt products, the algebra of the above jump conditions are reduced to a cjuadratic 
iquation in the normal particle 1.elocity un, say. If we identify the speed D,, AS the CJ value 



The CJ  state is associated with the zero of the argument of the radical and lead to the 
identification of either the DCJ in terms of the energy e0 or vice a versa. Since we generailp 
regard D ~ J  as being given experimentally. we choose to write the condition as 

Then the CJ states are 

(25) 

It also follows (not demonstrated) that the CJ state is locally sonic. Note that in working 
out the Rankine-Hugoniot jump conditions across a program burn discontinuity, from the 
unreacted explosive to the burnt explosive where the burn-fraction Y is set equal to one. one 
obtains exactly the same Rankine-Hugoniot algebra as the reactive Euler equation where 
X is set equal to one. Thus. the variation of a burn-fraction variable has no effect on the 
calculation of the CJ-states themselves. 

-1s an example. we take the condensed phase explosive found in [1]. With Y = 3. po = 2 
m d  DCJ = 8. we get for the C J  states 

(27) 

4.1.2 Equa t ion  of state w i t h  modified p re s su re  a n d  effects o n  t h e  s t r u c t u r e  

In keeping with the notion that one replaces p with p/Y in the burning cells with 0 < Y 5 1. 
the ideal EOS becomes 

.Again one assumes that in the fresh inaterial one lias t lie saiiie initial specific internal energy 
eo. and the roie of eo is the same as the !]eat of detonation. 

To further analyze this structure let I.:,,I = i l .?  - D,, be the relative normal veiocitv in  the 
hock-attached frame. For a quasi-steady rra-,-eiing -cave. the RH-relations hold throu@iout 
the structure. except now the internal energy tias the dependence on the burn-fraction I- .  
-1s before. one can again solve the RH-relatioris 

for it. quadratic equation iii Cn with solutions 

[l - i- - l ) Y ] D n  + v ' D i  - - l ) l r ; 2  t L- - l)Y]eo c'-_ n -  ' 33) 
2 f !-  - 111- 

Ij-lien 1- = 0 the plus root corresponds to the illreacted flox state. and hence to the starting 
;>oint for a weak detoiiation structure. 

Un = -Dn. or ;in = I ) .  



The root associated with the minus sign is pathological and has Gn = 0 or un = D,, and 
corresponds to a finite pressure but infinite density. In contrast. the standard strong shock 
state LTn = -(y - l)/(? + l ) D n  is achieved if the equation of state e = p/(-! - 1) is used 
instead of the modified equation of state e = ( p / Y ) z . / ( ; i  - 1). 

The  issue is which state is selected. and we turn to  the acoustic character of the dis- 
tributed structure next. From the fundamental definition of the sound speed. 

c- = p / p 2  - 8 e j d p  
a e / d p  

we have 

c2 = q 1  + (y - 1)Y]. 
P 

Next. if we use the energy equation e + p / p  + LT:/2 = D</2 + eo and use the definitions of 
e and the last result for c2.  we can eliminate p / p  in favor of c and write an expression for 
the sonic parameter. 7 ,  as follows 

r 1  - 1  

L 'z J 

If the detonation wave starts out on the weak branch. then at Y = 0. c = 0. and Cn = -Dn. 
the sonic parameter 71 = - D i  < 0. and the wave is supersonic a t  the point of the lead 
disturbance. In fact one can compute the sonic locus in a (U;. Y) - plane by setting c' = U; 
to obtain 

q = cL - u; = / e 0  + -p i  - Vi)] (-, - 1)Y - b;. 

(29) 

The character of the structure of the (weak) detonation can be characterized by plotting its 
t.rajectory in a (LTn. Y )  - plane. The weak CJ solution trajectory starts from the undisturbed 
state. L'n = -D, and terminates at tlie sonic state. Figure 7 shows this tra,jectory for the 
specific case of D,  = D c j .  Not,e [lie square root behavior in C',, as I" - 1. siiggesting 
that the normal derivative has a square root singularity. This is clue to the fact that [lie 
therrnicity condition in the master equation does not vanish at the sonic point. 

The other required ingredient for a weak detonation is a supersonic trigger. Ordinarily 
the supersonic trigger is regarded as a-physical. But for its application as a iiurnericai 
algorithm, program burn assigns times at which the cell releases its energy. Specifically. the 
value of the burn-fraction is changed from Y = 0 to Y = 1 in proportion to how much of 
the particle cell has been crossed by an assumed shock ivave. Therefore. the clistribution 
of times when tlie cell is crossed by a shock is know a-priori. and is used to create the 
supersonic trigger. For steady: one-dimensional flow for a CJ detonation. t.he burn-times 
simply and exactly reflect the CJ detonation velocity. 

We note that the state variables do depend on the burn-fraction if the burn-fraction were 
distributed in a discrete representation; i.e.. not resolved to a Heaviside step function. Then 
the burn-fraction distribution on a finite mesh has the appearance of a pseudo-reaction zone 
structure. In the following discussion. for convenience. we will iiiodel this distribution not 
by a difference based scheme. but instead modeled by an  "effective" rate law in the steady 
cletonation frame. 
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where R(Y) is an effective rate. In actual practice this rate is not given at all. rather the 
numerical scheme that defines the burn-fraction merely makes an assignment for the increase 
in Y such that it goes to Y = 1 when the detonation shock crosses the computational cell 
completely and R(Y) is inferred from the details of that assignment. But certainly R(Yj is 
both grid and algorithm-dependent. 

Integration of (30)? with the weak-structure relation between U, and Y and the condition 
that Y = 0 at 2 = 0 (which is equivalent to  the specification of the triggering event at  the 
program burn-time), leads to a distribution function Y ( x >  which has the basic profile shown 
in Figure 6. 

An important observation is that the thickness of the heat-release zone in the program 
burn reaction zone will be a function of the grid thickness and can be computed asymptoti- 
cally as O(Az), such that as Ax --+ 0. the program burn reaction zone vanishes. as measured 
relative to any physical length scale. Thus the effect of the numerical algorithm that R(Y j 
imitates is to approximate a delta function. centered at  the burn-times and spaces on the 
grid as dictated by the burn table. 

4.2 Numerical results of TPBPB and comparisons to  DNS 

We present some numerical results comparing the solutions obtained using t,he traditional 
pressure-based program burn model (TPBPB) to the solutions obtained from a DNS calcula- 
tion. We use the condensed phase explosive described in [l]. The equations and numerical 
scheme for the DNS calculations were presented in detail in Section 2. For the TPBPB 
model we solve the corresponding non-reactive Euler equations with the EOS given by (20) 
and (25). Although current codes use a second-order scheme. we choose to m e  the same 
high-order scheme that is used for the DNS calculations to minimize errors resulting from 
iiifferent numerical algorithms, thus isolating any differences between the t.wo solutions as 
rising froin the varioiis assumptions in the TPBPB model itself. To restate. we assume that 
:he DNS calculations are "exact". and that any differences in solution structure n-ill be due 
T O  the 1-arious approximations inherent in  the 'TPBPB model. -1 iiiesii n-iiicli lias oniv one 
grid point in the reaction zone (/?.E = 'Lrnm) is used. The reason we choose this pzrticuiar 
..I :rid size is that typical implementation of the program burn Inethodologjv uses only a h ie  
enough grid to resolve the liydrodynamics behind the wave front. The grid chosen liere is 
:hus typical of that used in  engineering practice: 110 attempt is made here to optimize nor 
study the effect of grid spacing on the solution structures. 

Figure 8 shows the structure from the DNS (solid) and from t.he TPBPB (circles] cal- 
culations for planar geometry. In ea.ch case. the solutions were stopped when the shock 
iocation reached x s ( t )  = 100mm. The arrival times of the two calculations is seen to be 
approximately the same (for DNS. t = 1 2 . 7 2 , ~ ~ :  for TPBPB. f = 12.05ps). tlie 5% relative 
difference being due to differences in the grid resolutions and to the modeling assuniptions 
of tlie reaction zone by the TPBPB model. Note liow \veil the program burn model captures 
the overall structure. The only differences are seen in the density plot. where the DNS cal- 
culates a weak densit$ jump downstream of the lead shock while the TPBPB calculations 
iivith the coarser grid) does not. and in the shock region lvliere the DNS calculations shoLv 
ii strong detonation profile and the TPBPB calculations show a weak detonation profile. 
\Ye also ran long-time solutions. until the shock was located at  . cs ( t )  = 900mm (Figure 9). 



The arrival times of the two calculations have a relative difference of less than 1% (for DNS. 
t = 1 1 2 . 7 7 ~ ~ :  for TPBPB. L = 1 1 1 . 9 7 ~ ~ ) .  -1gain. note how well the program burn model 
captures the overall structure. 

The major weakness of the TPBPB model. however. occurs when curvature is present. 
Figure 10 shows the structure from the DNS and from the TPBPB calculations for the case 
of cylindrical geometry. Since the TPBPB uses a Huygen's construction to  propagate the 
shock. we see that the arrival time of the shock to the location x, = lOOmm is much quicker 
(t  = 12.075ps) than that of the DNS calculations ( t  = 1 5 . 3 ~ ~ ) ;  this represents roughly a 
21% error in the arrival times. This large difference is not due to grid resolution. but rather 
to the TPBPB modeling of the shock speed using a Huygen's construction. Since Huygen's 
construction over-estimates the speed of the shock when curvature is present, we also see 
noticeable differences in the solution structures downstream of the lead shock. As in the 
planar case, we also ran long-time solutions. until the shock was located at xs(tj = 900mm 
(Figure 11: a close up look at  the structure is shown in Figure 12). The arrival times of the 
two calculations is seen to be converging (for DNS, t = 127.5~s:  for TPBPB. t = 112.0ps). 
a relative difference of about 12%, which is still unacceptably too large for most engineering 
applications. In terms of the structure, the program burn inodel does seem to capture 
rather well the overall structure at  the longer times. -A closer look a t  the time behavior can 
be examined by comparing the shock speed and the star states to those obtained from DSD 
theory (see Figure 13). Note that the shock speed over-predicts the shock speed obtained 
from DSD. and that the star states are only asymptotic to the star states obtained from 
DSD theory. 

The  above results illustrates the strength and weaknesses of using the traditional pro- 
gram burn mode! to capture the physics of real detonations. For the planar case. the shock is 
propagated at the correct CJ speed, and the structure is represented well with only l140th 
the number of grid points. This represents significant computational savings. However. 
Ivhen curvature is present there are major differences in not only the shock locatioii but 
also in the structure of the solution. These differences are due to the fact that Huygen's 
construction over estiiiiates the speed of the propagating shock. Siiice curvature is present 
in almost all engineering devices. it is essential to properly take into account effects due to 
c'urvature. It is this wakiiess that vie address in the subsequent sections of this paper. 

5 Modified pressure-based program burn model (MPBPB) 
In tlie previous section we have seen that when curvature is present. rile traditionai pressure- 
hased program burn model is deficient in that the use of Huygen's construction over es- 
timates the speed of tlie detonation front. leading to significant differences of the shock 
location and the structure between the DNS and the TPBPB simulations. A simple modi- 
fication can be made by extending the theory to include a shock speed which is curvature 
dependent. as is found in DSD theory. TVe modify the burn-times to include the curvature 
dependence. and we pre-compute the upstreani internal energy as 

31') 

n-here D, = D,(K)  is the speed of the front with curvature dependence determined from 
DSD theory (see Section 3 for details). \Ye refer to this iiiodificatioii of the burn-times m d  
the upstream internal energy using DSD theory as the iiiodified pressure-based program 
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burn model. or hlPBPB. Figure 14 shows results for the condensed phase explosive described 
in [l] in cylindrical geometry. Note that a simple change in the way the burn-times x e  
computed and in the definition of the upstream internal energy can lead to significant 
changes in the errors. As before. the solutions were stopped when the shock location reached 
.rS(t) = 100mm. The arrival times of the two calculations is seen to be approxiniateiy the 
same (for DNS. t = 1 5 . 3 , ~ ;  for hlPBPB. t = 14.2~~). the 7% relative difference being 
a major improvement when compared to the 21% relative difference in the arrival times 
between TPBPB and DNS. Comparing Figures 10 and 14. we see that the LIPBPB inodel 
captures the overall physics better than the TPBPB model. The long time solution. when 
.rs(t) = 900mm. is shown in Figures 15 and 16. and should be compared to Figures 11 
and 12. respectively, from the TPBPB model. 

However. the MPBPB model fails to capture the correct sonic (or star) states. Capturing 
the correct star states is an important indicator of how well a given scheme does since both 
the strong detonation and the weak detonation should terminate a t  this point. We plot 
in Figure 17 the star states as computed here from the numerical simulations to the star 
states determined from DSD theory. There is still an unacceptably large discrepancy in tlie 
star states. This shows that although the correct speed can be modeled using DSD theory. 
the overall structure is still not correct. This is a major deficiency of the model. lye show 
in Figure 18 the star states for a grid resolution of Arc = 0.5mm. In these caiculations 
the energy released is still over a single grid point. so reducing C3: reduces the effective 
reaction zone. Alternatively. one could keep tlie reaction zone fixed so that reduciiig LL 
would imply more points in the reaction zone: we have not done this comparison but plan 
to do so in the future. Note that there is better agreement in the star states. .Also note 
that the oscillations in the shock speed D,, observed in Figure 17 have been reduced by grid 
resolution. A further refinement would violate the spirit of the prograni burn model. a i d  
SO no further grid refinements were carried out. 

One final comment. .Although the major TPBPB codes n-ere iiiodifieci to include curva- 
riire dependence using DSD theory (xv!iicli we referred here <is the 1IPBPB nlociel, i n  the 
iiiid-1990's. no coniparisons between TPBPB cind I IPBPB to DNS l l c~v t~  h e n  1)1lhliJl~ci. 
rhis paper constitutes the first discussion of rliese models. 

6 DSD Program Burn Model 

In  tlie previous two sections we shoiveci that when curvature is present arid for siiiall tiiiies. 
;, i )  the traditional pressure-based program burn (TPBPB) riiodei fails to capture tlie correcr 
shock speed and structure. and (ii) a simple inociificatiori of the burii-times usiiig DSD theory 
ithe hlPBPB model) corrects the shock speed difficulty, but the solution structure reiiiains 
incorrect in that the sonic states are not captured correctly. Since a simple grid resolution 
does not remedy these difficulties without grossly violating the spirit of a program burn 
model. one must turn to the basic model and include certain feat.ures that, are absent in  the 
previous two models. How this might be done is the subject of this section. 

In this section we present t.he program burn equations that are used to niotlel the reactive 
Euler equations described in Section 2. The Program Burn equations are the same as the 
inert Euler equations if the source terms are dropped. Then tlie ecluatiolls of the Prograrii 
Burn model are 
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i 33) 

(34) 

IT 4 c = [p.pu.Ej . 
- r  T 
F = [pu. pu” + p .  u ( E  t p)1 . 

and again E is the total energy defined by 

( 3 5 )  

and e is the internal energy, Specific choices for e will be given below. Note that the PB 
equations are a three equation system instead of a jour equation system. Also note that 
R J ( ~ - ~ ~ ( ~ ) )  is a delta function centered on the program shock locus 2 = zs( t )  and is assumed 
to be known. The geometric source term G is identical in its first three components to its 
DNS counterpart. The choice of arid RJ will be made later in the course of the analysis. 

We will consider two models for the internal e n e r a .  The first model mimics the TPBPB 
model and is written. for an ideal gas. as 

4 

where y is the ratio of specific heats and Y is the burn fraction with 0 5 Y <_ 1. ’The 
upstream value of the internal energy is given by (31). We will refer to this as Model I. The 
second model is the standard equation of state without the burn fraction. and for an ideal 
gas is written as 

P e =  
P(’ - 1) , 

The ;ipstreani value of the internal energy is gii-en by €0 = 0. consistent with rile .rrong 
~liocl; approximation. \Ye \vi11 refer to this as Lloclel 11. 

6.1 

To c.ompletely specify the prograiii burn PDEs oiie must icieiitif>- the source term >treiistli 
(2. I’arious specifications are made arid analyzed below. 

Specification of the source strengths (5 

6.1.1 

One way to determine values of Q‘ is to make the quasi-steady assumption and neglect the 
explicit dependence of curvature in the program burn equations. The lead shock is taken 
to be at z = zs ( t )  with speed D,. which can depend on curvature and is given by the D r l ,  h 
relation from DSD theory. ,?icross the shock n-e d10w for closes to the inass. iiionientuxn 

Quasi-steady assumption without explicit curvature 

energy. and the jump conditions across the program-burn shock are given by 
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where io] = bo - d*. and the star states are determined using DSD theory. Xote that in 
writing down these normal jump conditions we assumed that RJ = d Y / d n .  where n is the 
normal coordinate. Since the shock location is known. and both the upstream states and 
the star states are known: the jump relations become formulas for explicit evaluation of the 
doses 0. 

Evaluating the jumps leads to the following specifications for the components of 0 

A plot of the star states was given previously in Figure 3 for the condensed phase explosive 
example given in [l]. The values of 8 as computed from these formulas is shown in Figure 19 
for both Models I and 11. respectively. Results for the two models are given in Figures 20-23 
for Model I and in Figures 24-27 for Model 11. Comparing these figures to those of the 
MPBPB shows that we have only slightly improved the errors in the structure and in the 
star states, but still too large for practical purposes. -Us0 note that there are oscillations in 
the shock speed when using hlodel I (see Figure 22) but absent in hlodel I1 (compare with 
Figure 26). Before we complete this section. we address the following question and issue. If 
discrete approximations are taken for then a discrete analysis is needed to show 
how the solution varies on the grid for the discrete analog of a quasi-steady traveling wave. 
and to  ascertain if the desired end-states are captured by various algorithms. We do this in 
the appendix and show that there can indeed be oscillations in the solution structure when 
using Model I but absent when using Model 11. 

We now turn to other formulations or specifications of 0 below. 
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6.1.2 

Let us again assume that the structure is quasi-steady, but now keep the explicit dependence 
of curvature in the equations. In this case normal jump relations can not be written down. 
and we turn to the DSD framework to determine Q. For hlodel I where the EOS is given 
by (3i). the quasi-steady analysis with curvature leads to the following system of equations 

Quasi-steady assumption with explicit curvature 

where 
1)Y] * (46) c'l = - [1 + (?, - 3 . 7  P 

P 
q- = c- - (. - q 2 ,  

is tlie local sonic condition. and 

is the thermicity condition. These equations assume that the burn fraction Y is continu- 
ously differentiable in the effective reaction zone. In writing down these equations we have 
switched to a coordinate system where the burn fraction k' is the independent variable. 

For Slodel I1 where the EOS is given by (38). the quasi-steadv analysis with curvature 
leads to the following system of cquations 

- is the thermicity condition. 
\Ve plan to  use both models above to  determine 4. and then use these \dues  in our 

;irogram burn code to determine if accounting for curvature helps to correctly capture the 
qonic states. 



7 Conclusions 

TVe have presented a comprehensive review of the traditional program burn algorithm. and 
have compared solutions to those of a direct numerical simulation. It was shown that if 
curvature is present. then the traditional program burn alogrithm not only overpredicts the 
shock speed. but also incorrectly captures the downstream sonic states. A slight modifica- 
tion to the burn times. based on detonation shock dynamic theory. can correct the shock 
speed difficulty but the downstream sonic states are still not correct. We are currently 
exploring alternative algorithms which not only will have the correct shock speed. but will 
also capture the correct downstream sonic states. 



A APPENDIX 
In this appendix we present an analysis of discrete representations of steady traveling n-aves. 

A . l  Numerical Scheme I 
We start out by illustrating the ideas set forth in this section with a simple first order 
numerical scheme. First we discretize using a uniform mesh in x and take uniform steps in 
time 

z = A x .  i = -N,...,O,....-V. t = n n t ,  n = 0 , .  . . (53) 
We assume a first order finite difference scheme for (32). using a forv~ard difference scheme 
for time. and a backward difference scheme for the spatial derivative. resulting in 

where 3 = dR6. The initial conditions correspond to the strong shock approximation. and 
are 

p = po,  u = 0. 11 = (1. t_ = eo. I' = 0. (55) 

for the downstream state. arid 

P = P * !  11 = .ll*. p = p* .  ( 3 6 )  

for the upstream state. with e,  given by either (37 )  of Model I or by (38) of Slodel 11. The 
star states are computed from a D,, - ii code xi th  a particular value of ii. the curvature. 
See Figure 3 for a specific example. 

A . l . l  S t eady  Wave Analysis 

TYe impose a constraint that we seek a solution to tile difference relations that corresponds 
to  ii steady traveling wave at speed DrL.  Thus. 

- -  
which has as the solution c' = U ( x  - D n t ) .  \ l e  ~low discretize using tlie first-order sLhme 
given above. and write 

TVe now choose to require (54) and (58) to hold simultaneously. as a requirenient that tlie 
discrete wave be steady. Eliminating C;2'L+' results in 

- + 

This iast equation is a nonlinear recurrence relation reiating b-r m d  C-,"-, . Thus. given 
state 1 .  we can find state I - 1. 
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A.1.2 End State Analysis 

We determine the admissible end states that are consistent with the trayeling wave recursion. 
.Assume that the wave structure is centered on the grid from 1 = --\- to L = 0. 11-e now 
inultiple (59) by Ax and then sum over the wave structure. Many of the sums that ,ippear 
can be simplified by appealing to the following summation rules 

z=o 
tot - 0 L - I )  = 0 0  -o-\.y-l] 

,-- L- .v 
for ally function 0. Applying these suniinatioii rules results 111 

:=o 

Now suppose that the summation is over a large enough domain so that 

i 63) 

(65) 

ivliere the star states have been determined according to a D,, - ti cutie. Furthermore. iet 
11s dssllnle that 

ii-here Y is the burn fraction and is zero ahead of the s11oc.k goes t u  oiie i i i  t!ie (mipierti:; 
reacted state behind the silock. lye do iiot put any restrictions on the forin of 1’ citiier riiaii 
i t  be continuous, so that 

Solving for yields 

whicli. i n  component 

... - ... 8 = Dn(G0 - lT*) - (Fa - F*) 

form. is identical to (42). 
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-4.1.3 Results 

We wish to solve the nonlinear recursion formula(59). subject to the initial conditions (55;. 
The goal is to obtain the correct end states (56). 

For the numerical results to  be presented below. we first, define .CR to be the length of 
the reaction zone behind the shock. If /SR/ is small. then we dump the heat into the system 
rather quickly: if J X R /  is large, the opposite is true. We also define tlie parameter 

which gives the number of grid points in the reaction zone. We shall use X: as the parameter 
that  we vary instead of Az; once k is chosen the corresponding Az can easily be found from 
the above relation. In all calculations. we take At = Ax/2. which satisfies the CFL condi- 
tion. The parameters which characterizes the solutions are k. p.  and XR. A11 calculations 
are stopped when the numerical solution has reached a constant state. -At this location we 
define the relative error as 

where the star states are those from a D ,  - i; code. a ~ i d  n u m  iiieaiis the star states obtained 
nunierically from the recursion formula. 

For the prescription of the burn fraction. we update 1- according to the rule 

(71) 

Selected results are show-n in Figure 28 arid Tables (1) aiid (.2) for 1Ioc.iel I iiiici Figure 29 
;mci Table (3: for hlodel 11. Note that in all cases the relative error is an order of magnitude 
less than one percent. One interesting observation: the results for .\lotiel I1 are somewiiar. 
inore accurate than those of Model I. Although tlie codes are essentially identical. the root 
finding procedure finds the correct root for Alodel 11. n-hile it has trouble in Alodel I as fi 
increases. Indeed. the code did not converge for ri = 1 n--heii using .\Iode1 I. but converged 
to the exact root for Model 11. This suggests that numerical schemes iisiiig hIocle1 I might 
also experience this problem when the curvature gets large. 

.c R (mm.) 
0.1 
1 .0 
2.0 
1.0 

k = l  
0.006 
0.003 
0.003 
0.002 

k = 10 
0.036 
0.006 
0.005 
0.004 

X: = '0 
0.045 
0.016 
0.006 
0.00 5 

Table i: Table of relative errors RE in percent for = r) aiid K = c). Model I. 



2.8 

I 

X 

~~~ 25 

20 
P I  0 

I 5 t  
I n 

l o t  
I 3 

, 51 v 

n 
2 1 5  0 5  0 
0 '  

X 

0.8 1 

, 
0.6 1 

0.4 t 

0.2 1 

0 

0 

3 -  

0 
2 1 5  1 0.5 0 

Figure 23: Plot of structure for K = 0.  L L  = 0. . I 'R = 1 r r ~ r n .  ; u i ~  k = 3. 1Totit.i I. 
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0.0 0.003 0.005 0.005 0.006 0.016 

0.05 0.007 I 0.009 1 0.013 0.016 1 0.020 1 
0.1 0.006 1 0.008 i 0.012 j 0.015 i 0.018 

Table 2: Table of relative errors RE in percent for p = 0 and .TR = 1. 1Iociel I .  

Table 3 :  Table of relative errors RE in percent for p = 0 and .LR = 1. Model 11. 
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A.2 Numerical Scheme I1 

.An alternative numerical scheme is presented in this section. Following the analysis of 
section -1. we descritize (32) using a forward difference scheme in time and a centered 
difference scheme in space. We next impose the constraint of a steady wave, resulting in 
the following nonlinear recurrence equation 

-Dn(GZl - (72) 

Given states if 1 and i. we can find state i - 1. An end state analysis gives (42). The results 
are essentially the same as the scheme above for n close to  zero so we do not present any 
results here. However, as n increases from zero. the results for hIodel I gave solutions which 
had a limit cycle. one of them being near the correct end states. These oscillations can be 
removed with viscosity. As n increased further. the results using Model I not only had a 
limit cycle, but also gave incorrect end states. This behavior was not observed when using 
Model 11. Compare Figures 30 and 31 for example. The correct star states for /E = 0.3284 
are p* = 1.7389. u* = 0.6528 and p' = 7.5214. Again. this indicates that the iiumerical 
scheme. once chosen. is sensitive to the model used for the equation of state as K increases 
from zero. 

A.3 Numerical Scheme I11 
A third alternative numerical scheme is presented in this section. The numerical scheme 
is the hIacCormack finite-difference method (1969). which is a predictor-corrector scheme 
of the Lax-Wendroff type. In the predictor step we use a first-order backward difference 
stencil for the flux. while in the corrector step we use a first-order forward difference stencil. 
I'ariations of this include using a forward stencil in the predictor step and a backward 
stencil in the corrector step. or alternating between the two: Le.. forward differences in the 
predictor and backward differences in the corrector on the first tirile step. iiiid backward 
tliflerences in the predictor and forward differences in the corrector on the second time step. 
etc. The iiiesh is the same given in the previous sections. The predictor step at the grid 
point 1 is given by 

73 i 
- - 

1 

- i t  r -  , r tnfl /- '  = C-Il , F:l - F,'Li, - 1 t S ' ' .  
Ax L 

and for the corrector step 

n-here we use the notation Fir=,'" = F @ ; ) .  
'The initial conditions are given by (35) and the end states by 156). 

'741 

A.3.1 S teady  Wave Analysis 

Following the analysis of the previous sections. we impose a constraint that we seek a 
solution to the difference relations that corresponds to a steady traveling wave at speed D,. 
Thus. 

Gt + D,Cx = 0 (76) 
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which has as the solution 5 = /?(x - Dnt).  We now descritize using hlacCormack's scheme 

for the predictor step. and for the corrector step 

These two steps can be combined to  obtain 

(79) 

We now choose to require (73)-(74) and (79) hold simultaneously; as a requirement that the 
discrete wave be steady. Eliminating fi;" we obtain 

which can be simplified to 

- - -.. 
Equation (81) is a nonlinear recurrence relation relating L7r+l. C.?. and C,"-l. -1s before we 
can use this relation to  solve for o:-,. 
-4.3.2 End State Analysis 

Following the previous analysis. we determine the admissible end states that  are consistent 
with the traveling wave recursion. Xssume that the wave structure is centered on the grid 
from 1 = -_V to 1 = 0. JVe now multiple (81) by As and then sum over the Tvaye structure. 
Applying these summation rules results in 

:=o 
1 [$+1.:2 - qj 'n+il2 F n L l i 2  -. - 

-.v + Ff - F!, v-llj - A.z 1 - = pi 
,=-.v 

Sow suppose that the summation is over a large enough domain so that 

From (73) we see that if i = 0 or if i = -.V. then we have the approximations 
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and hence 
(85) 

The last expression shows 

Once the choice for 3 = ORs lias been made. the values of 0 are known explicitly. and it 
is then a simple matter to integrate the system to determine the structure. 

As before? we assume 

and hence 

Solving for 
Figure 32 shows results using Model I for h; = 0. Note that the structure is quite different 

than that of the numerical schemes presented in the two previous sections. The structure is 
more diffusive and the end states are achieved much further downstream. Results of both 
models are identical for K small. However. as K increases. the results using blodel I did not 
converge to  the correct end states. while those of Model I1 did. Compare Figures 33 and 34. 
The correct star states for h; = 0.3284 are p* = 1.7389, ZL* = 0.6528 and p* = 7.5214. -1gain. 
this suggests that the formulation using JIodel I is more difficult to resolve nuinericalls. than 
that using Model 11. 

yields (68). which in component form. is identical to (42). 

-4.4 Conclusions of the Steady Analysis 

In this study we considered two different models for the equation of state. The first model 
uses an EOS that is used in most codes today. The model includes the ratio of the pressure 
and the burn fraction. The second model is the standard equation of state. Three iiunierical 
schemes are presented. and results for each scheme using the two models are compared. 

Preliminary conclusions indicate that using the equation of state as defined in llodel 
11 have better numerical convergent properties than using the equation of state as defined 
in hlodel I. This fact seems independent of the underlying numerical scheme. In addition. 
MacCormack's scheme converges to the exact end states over a much larger dornain than 
when using the first order schemes due to the artificial damping mechanism h i l t  into the 
scheme. 
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