LA-SUB--73-229

NONLINEAR RESPONSE OF PLAIN CONCRETE
SHEAR WALLS WITH
ELASTIC-DAMAGING BEHAVIOR

by
S. Yazdani and H. L. Schreyer

Departments of Civil and Mechanical Engineering
University of New Mexico
Albuquerque, New Mexico 87131

ABSTRACT

This report summarizes the theoretical and computational efforts on the
modeling of small scale shear walls. Small scale shear walls are used extensively
in the study of shear wall behavior because the construction and testing of full
size walls are rather expensive. A finite element code is developed which incor-
porates nonlinear constitutive relations of damage mechanics. The program is
used to obtain nonlinear load-deformation curves and to address the initial loss
of stiffness due to shrinkage cracking. The program can also be used to monitor
the continuous degradation of the fundamental frequency due to progressive

damage.

DISCLAIMER ﬁ%

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

TABLE OF CONTENTS

L INTRODUCGTION L.ttt sttt ete et cte v et sase s s ssneesaneanaennes 1
II. A CONTINUUM DAMAGE MECIIANICS MODEL ..vvcvvveerverenninienininnnnnns 3
II. THE GENERAL FORMULATION OF THE FEM PROGRAM 9
IV. PROBLEM AND RESULTS ..ttt 13
V. CONCLUSION oo s e s rabaababans 15
VI. REFERENCES, TABLES, AND FIGURESccccccccciiiiinnnninnnn, 16

VIL APPENDIX Lo 29

I. Introduction

Shear walls are important structural members which support gravity loads
and can be designed to resist horizontal forces due to wind or seismic action.
Since the full size construction and testing of shear walls are expensive, many
studies have been carried on scaled down models. One such investigation as a
part of an ongoing research program has been conducted by Endebrock, et al.
(1985) at the Las Alamos National Laboratory. In their work, shear wall models
with high surface to volume ratios were used. The test results show that small
scale models exhibit nonlinear behavior with an initial loss of stiffness and lower
fundamental frequency than those cdmputed with conventional linear elastic for-

mulation or those observed in prototype walls.

The observed nonlinearities in the behavior of lnon-homogeneous cementi-
tious materials arise from two distinct microstructural changes. One is the
development of plastic flow along preferred dislocation planes under a high
confining pressure. The second pattern involves the nucleation and propagation
of microvoids and microcracks. Since the design and behavior of most conven-
tional structural members, including shear walls, are under low or zero confining
pressure it is plausible to assume that the nonlinear behavior of shear walls is

strongly influenced by microcracking.

The presence of nonhomogeneities in the form of aggregate or reinforcement
has microstructurally two conflicting effects. It is known for example that weak
links develop at the interface of mortar and aggregate due to the accumulation of
water lenses. These weak interface bonds are the sources of nucleation and pro-
pagation of microcracks. On the other hand, aggregate particles serve as crack
arresters and help improve the strength and apparent ductility of mortar. The
idea that apgregate particles act as energy barriers have been used to explain
why high strength concrete behaves in a relatively more brittle fashion than nor-

mal strength concrete.

It is believed that reinforcement plays similar roles as manifested by
numerous experiments. For most effective reinforcing action, it is essential that
concrete and reinforcement deform together which in turn implies the necessity
of developing strong bonds between them. The bond strength between the rein-
forcment and concrete is developed through (a) chemical adhesion, (b) natural
roughness of the rebar, and (c) closely spaced rib-shaped deformation that pro-

vides a high degree of interlocking of the two materials. The majority of the

bond strength develops through the interlocking of the two materials. The

-9-

experimental investigations by Ervin and Jundi (1969) have shown that bonding
of rebars is nonlinear and in particular looses stiffness with alternating loading.
With this nonlinear characterization of the bonci and the nonlinear behavior of
concrete it is not surprising to see that a finite elemnent program with a linear
elastic material model overestimates that response stiffness. Since the reinforce-
ment plays little role during the early stages of loading, continuum damage
mechanics can be used to predict the associated anisotropic degradation in

stifflness of the shearwalls.

Another aspect of the behavior that may warrant consideration is the
shrinkage cracking of concrete. Shrinkage is caused by the evaporation of the free
water over what is needed for the hydration of cement gel. The rate and com-
pleteness of drying depends on ambient temperature, humidity, and the surface
area that is available for the heat outflux. The work of Troxell, et al. (1958) has
shown that, with the geometry of the mold unchanged, a chief factor which
determines the amount of final shrinkage is the water content of the fresh con-
crete. In their investigation the same aggregates were used for all tests, but in
addition to and independently of water content, the amount of cement was also
varied from four to eleven sacks per cubic yard of concrete. This very large vari-
ation of cement content had only very minor effects on the amounts of shrinkage,
compared with the effect of water content. Similar findings were reported by
Mckeen and Ledbetter (1970). On the other hand, Hanssen and Mattock (1966)
investigated the shrinkage characteristics of structural menbers made from the
same batch but with different surface areas and volumes. They considered the
surface to volume ratio to be the design parameter and concluded that members

with higher surface to volume ratios showed higher shrinkage deformations.

This study addresses the issues outlined above. A finite element program
incorporaling continuum damage mechanics is described which can predict the
nonlinear load-deformation curve and changes in the fundamental frequency of
the structure due to damage. The study also shows that if initial damage attri-
buted to shrinkage cracking is taken into account, a good correlation with experi-

mental data can be ohtained.

5 -

II. A Continuum Damage Mechanics Model

Continuous damage mechanics is concerned -with the progressive weakening
of solids due to the development of microcracks and microvoids. As the nuclea-
tion and growth of microcracks create voids in the system, the load carrying
capacity and stiffness are reduced and material is termed damaged. There is a
strong directionality associated with the process of damage in general. The detail
of the formulation will not be given here as it has been already compiled (Yaz-
dani and Schreyer, 1988).

Consider small and isothermal deformations and note that for small defor-
mations the additive decomposition of tensors of any rank is permissible. Let C
be the fourth-order material compliance tensor which is solely affected by the
extent of microcracking. If the initial material compliance is denoted by C° and

the added flexibility is given by C° the following relation holds:
C(k) = C° + C%(k) (1)

where k is a scalar parameter defining the extent of accumulated damage. The
Cauchy stress tensor and the compliance of the material are related by means of

Gibbs potential energy, G, as follows:

2 .
T _ o ®)

Jdodo

The integration of Equation (2) with respect to o and the use of Equation
(1) yields:

dG(o k) 0 ¢ r
e=—— =C:w + C'lk)o + € (k) (3)

Jo

where € denotes the total strain tensor and €' (k) arises as a variable of integra-
tion and is interpreted as the inelastic component of the deformation. If €' (k) is
set to zero, the conventional definition of an elastic-perfectly damaging behavior
is retained. This type of behavior is called elastic damage (Yazdani and
Schreyer, 1988) to distinguish it from any inelasticity that may develop from ine-
lastic fracturing. This inelastic feature may arise due to imperfect microcracking

and crack tip process zones. To understand the structure of Equation (3) better,

the rate form of this equation is needed:

é=Ci+ Clo + ¢ (k)

=&+)+ k) - (4)

where € is the ratio of the elastic deformation in the absence of any further
microcracking, éD(k) is the rate of deformation due to damage, and € (k) defines
the rate of inelastic strain tensor. In order to complete the theory two kinetic
relations must be postuIaDted and developed. One formulation is needed to

(

describe the evolution of ¢ k) and a second relation is required to define € (k).

The first task is the identification of a kinetic equation for C®(k) satisfying the

following relation
(k)= C(k): o (5)

Following the approach by Ortiz (1985) the stress tensor and the associated

rate of added flexibility tensor, C°, are decomposed into modes I and II of micro-

cracking as follows:

¢ (k) = (C°,(k) + C° (k) : (¢* + &) (6)

where ¢ and ¢ are the positive and negative cones of the stress tensor and
subscripts I and II refer to modes I and 1l of fracturing, respectively. Mode [
refers to the cleavage type cracking and is shown in Figure 1a. Mode II is a more
complicated type of cracking and involves crack sliding and surface opening
simultaneously (Figure 1b). It is implicitly assumed that these modes are decou-
pled in the sense that o leads only to mode I cracking and mode II is activated
if o is nonzero and satisfies the loading condition. Two fourth-order response

functions are further developed such that

C°, = kR, (7)
and
c‘,] =k R, (8)

These tensorial functions determine the direction of incurring damage.

Guided by experimental and other theoretical studies, the following form was

adopted for R,:

0'+® o’ .
Ry = ©
g 0

where the symbol & denotes the tensor product and : indicates a C'|, con-
traction operation. The compressive mode of cracking or mode I is the result of
simultaneous action of shear sliding of an existing inclined microcrack and the
opening of crack sides. It is also understood that the mean normal pressure
impedes the formation of mode II fracturing, while no damage can take place
under purely hydrostatic pressure. To accomodate these features and to address
the increase in the apparent Poisson’s ratio that cementitious materials exhibit,

R, is decomposed into two parts:

d h
R, =R, +RYy, (10)

The first part is postulated to be:

Q¢

R', = w — 2 (11)
g:0 /

where

G =0 -\l (12)

and where A is the maximum eigenvalue of o . The material parameter w
accounts for the relative strength of concrete in tension and compression. The
form for Rh” is given by Yazdani and Schreyer (1988) to be:

h

R, =waH-X)pl-1I81I), u=1 (13)

where « is a parameter that brings in the effect of lateral pressure en the stress-
strain response of concrete and X and (‘) are the minimum eigenvalue of ¢ and
the Heaviside function, respectively. I is the fourth-order identity tensor and p is
a scalar coefficient which is determined from experimental observations. These
formulations imply that damage occurs in the direction of minimum eigenvalues

(maximum absolute values) of ¢ and that no damage is predicted for a purely

-6-

hydrostatic compression path. Yazdani and Schreyer also proposed the following

simple evolution equation for the inelastic part of.the strain tensor:

. T

¢ (k) = kwS™ + kwBS” (14)

where (3 is a scalar coefficient that is determined from experimental records and
is greater than one for permanent deformation. The negative and positive cones
of o~ ¢, the deviatoric component of o, are denoted by S~ and S™, respec-
tively. In this approach it is assumed that the inelastic damage is only associated
with mode II cracking. If 8 = 1 no inelastic volumetric deformation is predicted.
A particular damage surface can be obtained by using the special forms of R;

and R;; and Equation 14 as follows:

1l . 4+ w_ 66 _ - 5 od
Y{g,k) = —0 :0 + "0 : w0 + w(S + BS)oc + —apH(—X)o:w0o
2 2 G:0 2
Jwa 9 1,
= H-R) P == %k)=0 (15)
2 2

where P is the mean pressure and t(k) denotes the damage function. The damage
function may also be called the critical stress (Ortiz, 1985). It is implicit in the
formulation that the form for t can be established from experimental data for
any stress path. An exponential function proposed by Smith and Young (1955) is
used in obtaining a continuous damage function as follows:

€, :
o,=f,— EXP(1- —) (16)

where f, and € are the tensile strength and the associated tensile strain of con-
crete, respectively. Since mode I cracking is assumed to be perfectly brittle, the
damage parameter ,k, can be interpreted as the added flexibility under uniaxial

stress so that for any point on the stress-strain curve the following relation holds:

g, = ——— - (17)

7

Equations (16) and (17) can be combined to yield the damage function. The
limit damage surface is obtained by setting t =. f,. For biaxial stress paths this
surface is shown in Figure 2 which also contains the average test values of Liu, et
al. (1972) and Andenaes, et al. (1977).

It should be mentioned that the alteration of elastic properties and its effect
on the structural stiffness is solely predicted by the elastic damage relations. For
this reason, the finite element program is developed for the elastic-perfectly
damaging material. The inclusion of the inelastic damage relation in the damage

surface is for the completeness of the theory.

Initial Stiffness and Shrinkage Cracking

The theoretical and experimental investigations by Picket (1946) have shown
that a reasonable agreement between measured shrinkage strains and values cal-
culated from the diffusion equation can be achieved. Picket has suggested that
shrinkage deformation of concrete follows approximately the laws of diffusion
similar to those expressing the flow of heat. Hanssen and Mattock (1964) fol-
lowed the approach by Pickett and produced experimentally obtained design
curves as is shown in Figures 3a and 3b. They concluded that although
volume/surface ratio does not reflect perfectly variations of both sizes and
shapes, nevertheless, the degree of correlation found between the theory and

experiment is satisfactory for purposes of engineering modeling and design.

These investigations have not addressed the effect of shrinkage cracking on
the material and structural stiffnesses. Al the present time the material parame-
ters obtained from the standard cylinder tests are used by analysts to calibrate
the theoretical models. There are convincing experimental results to indicate that
the use of values from cylinder tests (volume/surface area = 1.5) may become
inappropriate. One such attempt was made by Endebrock, et al. (1985) to
analyze the deformation characteristics of model shear walls. The finite element
prediction of the structural stiffness has overestimated the measured response by
as much as three times. Such discrepencies are believed to lie in the use of inap-
propriate material parameters. The shear wall used by Endebrock, et al. (1985)
is sketched in Figure 4 and has a volume to surface ratio of 0.47. The design
curves of Hannsen and Mattock (1966), Figures 3a and 3b, indicate that for this
ratio, the shrinkage deformation is 1.4 times greater than that of standard
cylindrical specimens after 50 days of casting. This can, at least partially, explain

the observed discrepencies.

- 8-

To improve on this perceived problem, it is plausible to assume that shrink-
age cracking has no preferential direction so that the degradation in the initial

stiffness is isotropic. Let C° be the initial compliance tensor to be defined as

=B, +B)I-B,I® I iftr(e)=0 (18)

where I and I are the fourth order and second order identity tensors, respectively,
and B, and B, denote material parameters to be determined from two different
loading paths. The effect of these parameters on the structural responses are illus-

trated and discussed in section IV of the report.

III. The General Formulation of the FEM Program

It can be seen that the governing constitutive equations outlined in section II
of this report are nonlinear and therefore an incremental approach should be
taken in the solution algorithm. Let K'7! be the global stiffness matrix of the
structure corresponding to the ith loading step assembled from the information
obtained at the previous step i-1. The governing matrix equation for the static

problem is given by

(K7 [Au'} = [AP] (19)

where Au' is the global incremental nodal displacement vector at the ith step
and AP’ denotes the incremental loading vector also at the ith step. Equation 19
yields the nodal displacement vector, Au’, which can be used to obtain the

corresponding incremental nodal strain vector, Ae', for each element as follows:

[Aeielem] = [Bielem] [Auielem} (20)

where [B] is the strain-displacement matrix. Since the stiffness terms are com-
puted numerically at the Gauss points, the program was modified to interpolate
strains over the element using the element shape functions, N. The resulting

expressions were evaluated at Gauss points:

{Aeielem,k] = [Nelem } [Aeielem} (21)

where Ae’ , denotes the incremental strain vector corresponding to an ele-

elem
ment "elem" and a Gauss point "k". The strains at the Gauss points are desired
because damage is computed at Gauss points and the damage subroutine is a
strain driven algorithm. Let A T be the transformation matrix which can be used

to transform a given matrix, M, to a diagonal matrix ,D, as follows:

(D)= (A7) (M) [4)] (22)

Such an operation can be done with respect to the components of the strain ten-
sor to obtain the corresponding eigenvalues to be used in the damage subroutine.

With this, the following subsection explains the structure of the solution algo-

rithm used in the numerical integration of the anisotropic damage model.

-

-10 -

The structure of the damage solution algorithm

A numerical code for solving nonlinear- constitutive relations is presented in
this section. The code applies to an elastic-damaging material where the damage
function has both hardening and softening features. The continuous alteration of
elastic properties is a major feature of damage theory. For a given load incre-
ment, and after solving Equation 21, the governing set of equations that need to

be solved are:

€ =g, + Ae (23a)
o=2D:¢ (23b)
€ =e—¢e? (23¢)
el = ¢ Do + A® (23d)
D v
AP = Ak — (23¢)
do
k =k, + Ak (23f)
Y(o,k) = 0 (23¢)

where etD represents the components of the total strain tensor, €, due to elastic
damage. The elastic strain tensor for an undamaged material is denoted by €
and subscript o refers to the previous time step as before. An increment is indi-
cated by A and k is a scalar measure of cumulative damage. The damage surface
is given by W, and o and D represent the updated stress and stiffness tensors,
respectively.

The underlining problem is that given an increment in total strain obtained
form the previous step, € ,e D ,o0,D and Ak are unknown. An iterative
approach for solving [quations 23 is explained as follows:

Step 1: Enter the damage subroutine with an increment in total strain.

Step 2: Assume step is elastic.
Ae® = Ae

I =0 (] = iteration count)

Step 3: Adjust the strain increment for the particular path chosen, compute

the increment in stress., and update the stress.

- 11 -

Ao = D : A€’ (24)
o, =0, t Ao

I=1+1

Step 4: Compute the damage function and check the damage condition.
(a) If Wi < € and I = 1 (i.e. the first step), then the solution is elastic and
the stress o is correct. Go to step 7.
(b) If W1 < € and I > 1, where € is a specified tolerance, then a damage
solution has been obtained and the stress ¢ is correct. Go to step 7.
(c) Else, go to step 5

Step 5: For I = 1, prescribe an initially small increment of Ak.

For I > 1, use the Secant Method:
WI
(Ak), = —(Ak),_, — (25)
v, -y

-1

Step 6: Calculate the added flexibility, increments of elastic and inelastic dam-

age strains and update all variables.

(AC%), = (Ak), R (26)

where C° is the added flexibility tensor and R is the fourth order response tensor

determining the direction of incurring damage given by Equation (20). Then
(CC)I = (Cc)j_l + (ACC)[(27)

C=C_, +(C% (28)

where C is the current compliance tensor.

D =" (29)
o

(@), = (Ac%),_, + (Ak); () (30)
dao [
oW

) (31)

(Aee)l = (Aee)l_1 -—(Ak), (
Jda I

-12 -

k =k, + (k) (32)

0

Go to step 3.
Step 7: Update elastic, damage and total strain.

e =€, + A€ (33a)
e? = e¥00 + Ae? (33Db)
e="¢ +e” (33c)

Step 8: Return to the main program for another load increment,

The plain stress condition of shear wall problems is handled during each
loading increment in the damage subroutine. As was explained in step 3 before,
the strain increment vector is adjusted for a particular path. For the plain stress

path, the increment in the third normal strain component is:

e _ € e
A€ g3 = —[Dygg D€ | + Dygpole po] / Dygaag (34)

where D ., 1, Doy, and Dg,., tepresent the components of the updated stiffness

tensor, respectively. The components of the elastic incremental strain vector are

q A€ ALE e
given by Ae |, , de ,, , and Ae ;.

- 13 -

IV. Problem and results

The finite element program developed was used to obtain the theoretical
response features of the model shear wall used by Endebrock et al. (1985). Fig-
ures 5 and 6 show different mesh sizes, boundary conditions, loading functions,
and the resulting load-deformation curves for the convergence study. It was
determined that with 24 elements, convergence is sufficiently achieved and that
this mesh arrangement would be used for the other examples. The material
parameters for Figure 6 are given in Table 1. It should be mentioned that for a
monotonic .convergence to the damage surface in the constitutive equation sub-
routine, the strain increment of the order E-06 to E-05 should be used. This can
be achieved Dby specifying small increments in the loading function. Loading
increments of 5E-04 kips to 5E-03 kips were used and the resulting load-

deformation curves were practically identical.

For the initial cracking and its effect on the material stiffness the following
modification of Equation 18 is considered. Let E and v denote the Young’s
modulus and Poisson’s ratio, respectively, of a material obtained from standard

cylinder tests. For the first load increment when tr{Ae) = 0, define two other

v
parameters «, and a, such that 8, = «; — and B, = —a, ~. For a special

1 1

condition where o, and «, are both one, the conventional isotropic compliance

tensor corresponding to the standard cylinder parameters are obtained.

Figure 7 shows the load-deformation curve and the nonlinear character that
is associated with progressive damage. The linear elastic response also obtained
from the program and the experimentally obtained values for the initial stiffness
by Endebrock, et al. (1985) is also plotted. The material parameters for this
example are tabulated in Table 2. It should be mentioned that a significant
reduction in the material stiffness and its subsequent effect on the nonlinear
load-deformation curve becomes only noticeable when material elements are
strained beyond the limit state into the softening regime. A real structure can
not sustain such a degree of distress and the role of reinforcing steel becomes
important. Steel reinforcement was not modeled in this analysis. Figure 7 also
illustrates the evolution of the damage and its effect on the response.

The variation of the initial stiffness due to varying values of «, is plotted in
Figure 8 where the material parameters of Table 3 are used. It was found that
the response is more sensitive to the variation of o, when the mesh arrangement

is more coarse. The reason is that the value of a, is implemented only under the

- 14 -

condition when the trace of the total strain increment is positive. It was also
found that the variation of the second parameter, «,, keeping o, constant, does

not introduce any noticeable change in the load-deformation curve.

The changes of the fundamental frequencies of the structure due to progres-
sive damage can be obtained by solving the characteristic equation
det|[K — M wz] = 0 where global stiffness and mass matrices are given by K and
M, respectively, and w denotes a natural frequency of the system. The eigen-
values were obtained at each load level using an eigenvalue solver program avail-
able at the University of New Mexico. The fundamental frequency is plotted
with respect to the applied loading in Figure 9 for the material parameters of
Table 2, and the plot shows that the eigenvalue decreases with progressive degra-
dation of the structural stiffness. This finding is consistent with the experimental
work of Endebrock, et al. (1985) where the fundamental frequencies of several

shear walls are found to decrease with progressive damage.

.15 -

V. Conclusion

A finite element program was developed. to incorporate the nonlinear
material behavior due to progressive damage. The program requires a large
amount of memory since the stiffness and flexibility matrices, the stress vector,
the critical stress, and the cumulative damage parameter, among others, are
stored for each Gauss point of every element. This is, however, a problem with

most nonlinear codes and is not exclusive to the damage mechanics model.

A simple approach to the loss of stiffness due to shrinkage cracking is also
outlined and its effect on the structural response is shown. With the lack of
experimental investigations on the pattern of shrinkage cracking, an isotropic
degradation of the initial stiffness is suggested. The use of initial damage, how-
ever, can explain the discrepancy in observed initial elastic response of two

different sizes of models for shear walls.

The last part of the study was concerned with the changes in the fundamen-
tal frequencies with progressive damage. The reduction in natural frequency with

the load is consistent with experimental observations.

This report shows that continuum damage mechanics is a potentially useful
framework for reflecting the effects of initial shrinkage cracks and the reduction
in natural frequencies of loaded concrete members. Although the development of
such models is relatively new, there is a significant potential for accurately
reflecting the behavior of concrete structures that display damage. However, for a
direct correlation between theoretical and experimental data, the effects of rein-
forcing steel should be incorporated in the numerical simulation of the response

of the shear walls.

Acknowledgment
This invesligation was supported financially by the Los Alamos National

Laboratory.

- 16 -

VI. References

- Andenaes, E., K. Gerstle and H.Y. Ko (1977), "Response of Mortar and Con-
crete to Biaxial Compression," J. Engng. Mech. Div., ASCE, Vol. 103, p.515.

- Endbrock, E.G., R.C. Dove, and W.E. Dunwoody (1985), "Analysis and Tests
on Small Shear Walls," Report no. LA-10433-MS

- Ervin, S. P. and N. Jundi (1969), "Pullout Bond Stress Distribution Under
Static and Dynamic Repeated Loadings," ACI, Vol. 66, No. 28, pp. 377.

- Hanssen, T.C. and A.H. Mattock (1966), "The Influence of Size and Shape of
Member on the Shrinkage and Creep of Concrete," ACI Journal, Vol. 63, p.26.

- Liu, T.C.Y., A.-H. Nilson and F.O. Slate (1972), "Stress-Strain Response and
Fracture of Concrete in Uniaxial and Biaxial Compression", Proc. ACI, Vol. 69,
No. 5, p. 291

- Mckeen R. G. and W. B. Ledbetter {1970}, "Shrinkage-Cracking Characteristics
of Structural Light Weight Concrete," ACI, Vol. 69, No. 44, pp. 769.

- Picket, G. (1946), "Shrinkage Stresses in Concrete," ACI Journal, Vol. 42, no.
3, p-165.

- Smith, G.M. and L.E. Young (1955), "Ultimate Theory in Flexure by Exponen-
tial Function", Proc. ACI, Vol. 52, No. 3, p. 349

- Troxell, G. D., G. I&. Raphael, and II. E. Davis (1958), "Long-Time Creep and
Shrinkage Tests of Plain and Reinforced Concrete," ASTM Proceedings, Vol. 58,
pp. 1101-1120.

- Yazdani, S. and H.L. Schreyer (1988}, "An Anisotropic Damage Model for Con-

crete with Dilatation," Mechanics of Materials, to appear.

-17 -

Parameters Values
E 4000 ksi (Young’s modulus)
v 0.20 (Poisson’s ratio)
f. 4 ksi (Uniaxial compressive strength)

f .5 ksi (Uniaxial tensile strength)
o 0.00112

w 0.0067

L 1

o, 1.0

o, 1.0

Table 1. Material parameters for the results shown
in Figure 6.

- 18 -

Parameters Values
E 4000 ksi (Young’s modulus) .
v 0.20 (Poisson’s ratio)
f. 4 ksi (Uniaxial compressive strength)
f .5 ksi (Uniaxial tensile strength)
a 0.00112
w 0.0067
i ol
o 0.80
a, 1.0

Table 2. Material parameters for the results shown

in Figures 7 and 9.

- 19 -

Parameters Values
E 4000 ksi (Young’s modulus) '
v 0.20 (Poisson’s ratio)
/. 4 ksi (Uniaxial compressive strength)
f .5 ksi (Uniaxial tensile strength)
a 0.00112
w 0.0067
B 11
o, Variable
o 1.0

[-]

Table 3. Material parameters for the results shown
in Figure 8.

20

+
o T m 0'+
n
(a) Mode 1
o

(b) Mode II

Figure 1. Schematic representation of crack opening
in modes I and II.

21

*{opow 3bewep

9y} U0 paseq 3384du0d J40j adoiaAua yibuauls |eixerq y 2 a4nbi4

Zl (0]} 9 1 4 Z 0 -
1 1 I 1 (] Y
7
a.w\—b
\\\\\\\\tl\\\\lnlxlxlslll.\ -
(££61) e 39 ‘sdeuspuy v \\
(2461) Lo 39 “n17 @ _\\ -2
\\
/
d rv
7/
/
\\ 0o > A 7 |\ v - 9

VNS FIVIWYQ

NIVWOQ JILSV13

5 Fot

22

1627 - , -
1400 & -
Projected Final Values
» 1200~) & / -
I
z \\T\\
9 v d .
o
:‘ 10CC - A -
3 ; ~ i
I : 1200 Daoys
z :
s sco~ + 400 -
- | f
iz | |
g f , 2oc ;
S Suoi— A =
2 i
£ :
‘a i o 152
400~ -
‘ a 50
220 - —— Cclculgted =
|
| ' .] l]
o] { 2 3 4 5 [7

YZLUME / SURFACE RATIO — IN,

(a) Sand-stone'aggregate concrete

[N

SHRINKAGE STRAIN - MHILLIONTHS

8 ——y
; —— lzizulgted \:' 120)
| a o
L . ; il 1 | 1 |
0 | 2 3 4 5 6 7

YOLUME / SURFACE RATIO — IN.

(b) Elgin gravel aggregate concrete

Figure 3. Variation of shrinkage with volume/surface ratio,
at different ages (Hanssen and Mattock, 1966).

23

/

I.OII

l LOAD

3.25"

7.50"

4.0"

T 18.0"
— 8.0"-5/

Figure 4. A schematic representation of the one-story
model shear wall used by Endebrock, et al.
(1985).

Load Load
—_—)
(a) 4-Element Mesh (b) 8-Element Mesh
Load

(c) 16-Element Mesh

Load

(d) 24-Element Mesh

Load

(e) 32-E1ehent Mesh

Figure 5. A schematic representation of mesh arrangement,
loading, and boundary conditions.

. 120E-01
No. of
Lead] elements = 4
kips =8
= 16
= 24
= 32
~o
(o7
0.0
0.0 Deflection, inches . 15E-04

Figure 6. Load-deflection curves for a convergence study based on
the mesh arrangements of Figure 5.

26

"J0LARYSQ BULAN]IRAS-D1]SRLD YILIM [[BM apays
91940U00 ute|d © 404 SAUND UOLFIB|JOP-PRO| [BDL1IBU08Y] ‘7 Bunbi4

¢0-31°

Sayoul ‘uot3odajjag

0°0

Aa09y)
[ejuswiaadxl

9beureq JL3se|] aedut

0°0

sdiy
‘peot

0°S

27

10 JO sanjeA us43441p 404 SBAUND UoL333|4ap-peo] g aunby4

£0-31-

S9YIUL “uoL3da|Jag

00

ysouw Juauwd|j-g
Ysaw JUBMR| I~ ——— ——w

0°g
0°1
¢°0

[£5)

i

]

0°0

sdiy

‘peol
1o

10-306°

28

-abeuep 03 3anp daJ4nIdNals

3yl 40 Adudnbaay |ejuswepuny 40 uorjepesbap auyy ‘6 a4nbrd

0g”

sdiy ‘peo]

0°0

"(G861) "L®
713 ©3D040Q9pul] Wou}
an|eA (ejuawiaadxy e

0°1¢

“ZH
¢ fouanbau 4
{ejuawepuny

0°¢S

- 29 .

VII. Appendix

The listing of the finite element progrém together with a simple flow chart
representation and a sample of an input data is given in this section. The pro-
gram consists of a driver and twenty one subroutines. Some of the subroutines
are taken from a graduate level finite element class taught by Drs. Roy Johnson
and Walter Gerstle in the department of Civil Engineering at the University of
New Mexico. These include subroutines input, stif, stifQ4, elast, n4, nnd4, disout,
recovr, jacob, mult, matadd, aeqnum, band, assmbl, and solver of which the first
eight were modified to be compatible with the nonlinear character of the prob-
lem. The remaining subroutines were devel'oped by the authors and include pro-

grams eldam, damage, matinv, principal, and principall. The latter two use an

eigenvalue solver subroutine, dsyev, available at the University of New Mexico.

- 30 -

I'low chart of the program:

Program main General control.
Call input Reads in all data.
Call aeqnum Assigns equation no. to the degrees of freedom.
Call band Determines the band width of the stiffness matrix.

-[A]- Start the main do-loop:

Call stif Develops updated stiffness matrix.
Call stifQ4 Calculates the stiffness of a 4-noded element.
Call elast Sets up the initial material stiffness.
Call nn4 Specifies local coordinates.
Call n4 Computes shape functions and derivatives.
Call jacob Forms the Jacobian and its inverse.
Call stdisp Sets up strain-displacement relationships.
Call mult An algorithm for multiplication of matrices.
Call matadd An algorithm for addition of matrices.
Call assmbl Assembles the stiffness matrix.
Call principall Finds frequencies (normally first).
Call solver Solves the system of equations.
Call disout Obtains displacement increments.
Call recovr Obtains strains {rom displacements.
Call nn4
Call n4
Call jacob
Call stdisp
Call mult Increment of strains are avialable at this pt.
Call eldam Sets up the data for the damage relations.
Call damage Determines damage parameter and damage strain.
Call principal Finds eigenvect. for transf. to global coord.
Call matinv Obtains stiffness from flexibility.
Go to -[A]- Repeat for new load increment.

- 31 -

A sample output for the shear Explanation

wall shown on page 32:

"Compression Member’

15,8,1,2,20,.005 - No. of elements, nodes, analysis code,
Guass integration points, no. of load
increments, and the magnitude of the
load increment.

1,1,2,5,4,0,0,0,0.4,100 - Element connectivity input: element no.,
2,2,3,6,5,0,0,0,0,4,100 nodes in that element specified in a
3,4,5,8,7,0,0,0,0,4,100 counter clockwise direction (max. of 8
4,5,6,9,8,0,0,0,0,4,100 nodes per element. Here 4-noded quads
5,7,8,11,10,6,0,0,0,4,100 are used. For higher order elements,
6,8,9,12,11,0,0,0,0,4,100 zeros must be replaced by node nos.),
7,10,11,14,13,0,0,0,0,4,100 material type, and material property
8,11,12,15,14,0,0,0,0,4,100 number,

1,0.0,0.0,20 - Nodes and the corresponding coordinates:
2,3.75,0.0,80 the node number, the X-coordinate, the
3,7.5,0.0,70 Y-coordinate, and the label for the
4,0.0,4.5,20 node based on the boundary condition of
5,3.75,4.5,80 the node.

6,7.5,4.5,90

7,0.0,9.0,20

8,3.75,9.0,80

9,7.5,9.0,90

10,0.0,13.5,20

11,3.75,13.5,80

12,7.5,13.5,90

13,0.0,18,30

14,3.75,18,80

15,7.5,18,70

20,0.0,0.0,1,0 - Node label identification: label number,
30,0.0,0.0,1,1 displacement or force in the X-direct.,
70,0.0,-.000625,0,0 displacement or force in the Y-direct.,
80,0.0,0.0,0,0 1 if X-displ. is specified 0 if X-force
90,0.0,-.00125,0,0 is specified, 1 if Y-displ. is specified

0 if Y-force is specified.
,4000.0,0.20,1.0,1.0,1.0,1.0 - Properties for a particular element:
element property number, Young’s modulus,
Poisson’s ratio, and thicknesses at nodes.
0.9,1.0,15,1,.000303313 - model, mode2, the particular node whose
deflection is computed, a switch Lo
solve eigenvalue problems, total mass
of the structure. Model and mode2
are the initial cracking parameters.
0.10e-05,.50,.0066964,0.00112,1.0 - initial arbitrary and small damage
used to get started in the damage
subroutine, uniaxial tensile strength,
w, alpha, mu. The last three are
referenced in the text.
4.,0,.0001,0.0,0.0 - Uniaxial compression strength, switch
for hydrostatic compression, epsilon
which is used as a measure of tolerance,
reference stress and pressure.

10

<

2.4,1,1

- 32 .

- ipss.itest.iwl.ip]. See damage and main
for the explanation.

A model shear wall corresponding to

the input‘ sample of page 31

4 at 4.5"

13 14 15
@
10 11 12
® | ©®
7 8 9
® | ®
4 5 6
© | ®
1 2 3
3.75" 3.75"

| 0.000625 kips
iO'OOIZS kips
10.00125 kips
10.00125 kips

}0.000625 kips

-33-

c
program main
c
. .
c
¢ This Finite Element Program incorporates non-linear damage constitutive
¢ relations.
c 05/26/1988
c
c
c implicit none
c
C s
double precision coord(2,50)
c
¢ coord l,n; = X_coordinate of node n
¢ coord(2,n) = Y_coordinate of node n
c
c
double precision bc(2,20)
c
¢ be{l,s) = X_force or displace. of set s.
c bcé‘z,s; == Y _force or displace. of set s.
¢
@
integer bccode(3,20)
c

¢ beecode(l,s) = 0 if X_force is specified.

¢ becode(2,5) = 0 if Y_force is specified.

¢ becode(l,s) = 1 if X_displacement is specified.
¢ becode(2,5) = 1 if Y_sidplacement is specified.
¢ becode(3,s) is the label for this set.

c
c
integer beset(50)
c
¢ beset(i) is the boundary condition set of this node
c
c
integer elconn(10,40)
c
¢ elconn(i,n) is the element connectivity array where:
¢ (9.n) = element_type of element n
¢ {10,n) = mat_prop of element n
¢ {;m,n) = mth node in element n, m = 1,...,8
c
c
integer numnod
c
¢ numnod = number of nodes in structure
c
c

double precision displ(50,2)
c

- 34 -

displ(50,2) is the displacement at nodes.

[I B!

integer numelm

numelm is the number of elements in structure.

OO 66

integer numeq

c
¢ numeq is the number of equations to be solved.
c
C 4
integer code
c
¢ code -------- 1 = plain stress
c 2 = plane strain
c
c
double precision matpro(7,10)
c :
¢ matpro{l,s) = label for set
¢ matpro(2,s) = Young’s modulus
¢ matpro(3,s) = Poisson’s ratio
¢ matpro{4,s) = thickness of material at node 1
¢ matpro(5,s) = thichness of material at node 2
¢ matpro(6,s) = thickness of material at node 3
c matpro(7,s) = thickness of material at node 4
c

double precision d(6,6,40,4)

d(6,6,40,4) is the updated elasticity matrix in the
principal directions.

[I B e I o

integer eqnum(2,50)

eqnum(d,n) is the equation number of node n, direction d
(d = 0,1 if node is fixed in this direction)

OO 000

double precision A(200,200)
double precision B(200)
c
¢ A(200,200) is the [Kff] in semibanded form.
¢ B(200) is the {F{}-[Kfs}{ds} forcing vector.

c

double precision delk,ft,w,alpha,mu,fc,epsl,sgl,pl
c

double precision displt(50,2

double precision eigen1(100) -

double precision load,xx

double precision deflection
c

c displt(n,i) is the total displacement of node n

- 35-

¢ in the direction of 1 = x-direction.
c 2 = y-direction,
¢ load is the total force the structure is subjected after
¢ n increment.
¢ xx is the total incremental load.
¢ Deflection is the deflection at the node of interest.
c
integer width

width is the semibandwidth of [Kff].

QO 0000

integer: Gauss

Gauss is the order of integration.

SO OO0

integer nbeset

integer nmaset

integer nn,iw

integer ij,ii,y

integer ipss,itest,iwl,ipl,jp

double precision model,mode2,mass

nbeset is the num_bc_set.

nmaset is the num_mat_sets.

ij is the counter.

ii is a particular node where the calculation

and plotting of the deflection is desired.

y is an integer switch if y = 1 then solve eigenvalue problem,

if y not equal to one, do not sove the

eigenvalue problem.

nn is the total number if increment that is specified.

iwl determines at what interval of the loading increment

the eigenvalue problem should be solved.

ipl is the controlling mechanism for plotting. Not used here.

ipss,itest,jp are explained in the damage subroutine.

open input and output files.

QOO 0000000006060 6O0

open(unit=1,file="input.dat’ status=’old’)
open(unit==6,file="output.dat’,status="old’)
open(unit=>5file="pluni’,status=’old")
open{unit=7 file="pleig’,status="0ld")

input all data.

[¢]

call input(coord, be, becode, beset, elconn, numnod,
numelm, code, matpro, Gauss,
nbcset, nmaset,
nn,delk,ft,w,alpha,mu,fc,jp,epsl,sgl,
pl,ipss,itest,iwl,ipl,xx,
model,mode2,ii,y,mass)

- 36 -

c
c assigen equation numbers to {ree degrees of freedom.
c - .
call aeqnum(bccode, beset, numnod, eqnum, numeq,
! nbeset)

c
¢ calculate semibandwidth of [Kff].
c

call band(elconn, eqnum, numelm, width)
c

do 49 i=1,50
do 48 j=1,2
displt(i,§) = 0.0d0
48 continue
49 continue

load = 0.0d0
write(5,*) displt(4,1),load
iw=20
c
do 100 ij = 1,nn
c
¢ nn is the number of load steps taken.
C
c
¢ calculate element stiffness matrices and write them to stiff.dat.
c
call stif(coord, elconn, numelm, matpro, nmaset, code, d, ij)
c
c
¢ assemble the structure stiffness matrix [Kff| and the
¢ corresponding forcing vector {{Ff} - [Kfs}{ds}}
c
call assmbl{elconn, beeode, beset, be, eqnum, numeg,
! numelm, numnod, width, A, B,
! nbcset)
c

if(y.eq.1) then
iw =1iw + 1
if(iw .ne. iwl) go to 21
call principall(A,eigenl,numeq,mass,numelm)
21 continue

else

continue

endif
c
¢ Call semibanded equation solver:
c

call solver(numeq,width,A,B)
C
c
c call subroutine to output displacements
c

call disout(coord, be, beset, becode, elconn,
! numnod, B, eqnum, output, numeq,

- 37 -

! nbeset, displ, displt,nn,ij)
c
¢ Call subroutine to compute and output strains and stresses.
c

call recovr(elconn, becode, beset, be, eqnum, numeq,

! numelin, numnod, coord, output,

! code, matpro, displ, ninaset, d,

! delk,ft,w,alpha,mu,fc,jp,epsl,sgl,

! pl,ipss,itest,iwl,ipl,ij,nn,

! model,mode2)

(o]

c 13
load = load + xx
deflection = dabs(displt(ii,2))
write(5,*) deflection,load
if(y.eq.1) then
if(iw .ne. iwl) go to 22
iw =0
write(7,*) load,dsqrt(dabs(eigenl(numeq)))
22 continue

else
continue
endif
100 continue
c
close(1
close(6
close(5
close(7
c
stop
end
c
c
C -
c
subroutine input(coord, be, becode, beset, elconn, numnod,
! numelm, code, matpro, Gauss,
! nbcesel, nmaset,
! nn,delk,ft,w,alpha,mu,fc,jp,epsl,sgl,
! pl,ipss,itest,iwl,ipl,xx,
! model,mode2,ii,y,mass)
c
c
c

¢ This Subroutine reads the input data to the finite element
¢ program from a file called ’input.dat’. The information
read is echoed to an output file called ’output.dat’.

C
C

C
C
C
C

implicit none

- 38 -

¢ Varinbles not described here are explained in the main program.

‘ double precision coord(2,50) : .

) double precision bc(2,20)

¢ double precision matpro(7,10)

) double precision delk,ft,w,alpha,mu,fc,epsl,sgl,pl,xx
double precision model,mode2,mass

c

integer bccode(3,20)
c 4
integer beset(50)

c
integer elconn(10,40)
c
integer numnod
c
integer numelm
c
integer code
c
integer Gauss
c
integer nn,ipss,itest,iwl,ipl,jp
c
character*72 title
integer i,ii,y
integer j
in cger nbcset
integer niaset
integer node
integer elem
integer flag
c
¢ node is the node number.
¢ elem is the element number.
c
c
c
c read and write the title of the problem
c
read(1,*) title
write(6,1011
write{6,1000
write(6,*) title
C
¢ read and write some problem parameters.

c

read(1,*) numnod, numelm, code, Gauss, nn, xx
write(6,1011
6,1020) numnod, numelin, code, Gauss

write

-39 -

¢ read and write element connectivity, type, and material number.
c
do 101 = 1, numelm .
read(1,*) elem,(elconn(j,elem), j = 1, 10)
10 continue
wvritegﬁ,l()ll%

write(6,1025
write(6,1010

do 15 i = 1, numelm
write(6,1030) i, (elconn(j,i), j = 1, 10)
15 continue

c 4
¢ determine how many material property sets there are:
c

nmaset = 0

do 25 elem = 1, numelm

flag = 0

do20i=1,elem-1

if(elconn(10,elem) .eq. elconn(10,i)) then

flag = 1
else
continue
endif

20 continue
if(flag .eq. 0) nmaset = nmaset + 1
25 continue

read and write nodal coordinates and boundary condition sets.

o

do 30 i = 1, numnod
read{1,*) node, (coord(j,node), j = 1,2), beset(node)
30 continue

write(6,1029

write(6,1010

do 351 = 1, numnod

write(6,1040) i, (coord(j,i), j = 1,2), beset(i)
35 continue

writeg(i,l()l 1§

c
¢ determine how many boundary condition setls there are:
c

nhcset = 0

do 45 node = 1, numnod

flag = 0

do 40 i = 1, node - 1
if(beset(node) .eq. beset(i)) then

flag = 1
else '
continue

endif

40 continue
if(flag .eq. 0) nbeset = nbeset + 1

- 40 -

45 continue
c
¢ read and write none zero applied force or displacement
¢ boundary conditions.

c
do 50 i = 1, nbeset
read(1,*) becode(3,1),(be(j,i),j=1,2),(bccode(j,1),
! 1—
N J_ 3
50 continue
c

write{6,1011
write(6,1045
write(6:1010
write(6,1036
write(6,1038
write(6,1039
write(6,1010
do 551 = 1, nbecset
wriLe(G,1050)bccot)ie(3,l),(bc(j,i),j=1,2),(bccode(j,i),
! j =12
55 continue
c
¢ read and write material properties for each material type.
c
do 60 i = 1, nmaset
read(].,*)(matpro{j,i),j = 1,78
write(6,*)matpro(1,1),matpro(2,1),matpro(3,1),matpro(4,1)
60 continue
c
write(6,1011
write(6,1053
write(6,1010
write(6,1055
write(6,1010
do 65 i = 1,nmaset
write(6,1060) idint(matpro(1,i)),(matpro(j,i),j=2,4)
65 continue

c
write{6,1011
write{6,1070
write(6,1010
c
read(1,*) model,mode2.ii,y,mass
read(1,*) delk,ft,w,alpha.mu
read(1,*) fc,jp,epsl,sgl,pl
read(1,*) ipss,itest,iwl,ipl
return
c
1000 format(’ OUTPUT OF PROGRAM MAIN

1010 format(/)

1011 format(//)

1020 format(’NUMBER OH NODAL POINTS =15/
! 'NUMBER OF ELEMENTS =I5
! 'ANALYSIS CODE = "Ji§

- 41 -

! 'INTEGRATION ORDER = "15)

1025 format(’ ELEMENT NODAL CONNECTIVITY
ITYPE MATERIAL’) y

1029 format(’ NODES COORDINATES BC SETS’)

1030 format(13,’

1036 format(’
IFORCE 1')

1038 format(’ SET
'DISPLACEMENT”)

1039 format(’ X Y
'1'Y_CODE 1’)

1040 format(15,2{12.4, *I15)

1045 format{’ NONE ZERO PRESCRIBED NODAL BOUNDARY VALUE SETS’)

1050 format(15,2f12.5," ’,2110)

1053 format(’ Material Property Set’)

1055 format(’'LABEL YOUNG MODULUS
ITHICKNESS?)

' 815, °,215)

| 0 = SPECIFIED
(FORCE OR DISPLACEMENT) | 1 = SPECIFIED

| X-CODE |

POISSONS RATIO,

1060 format(15, ~ °,d17.2° ',d7.2,; °d25.4)
1070 fOrmat{’—-e-semmmmeer END OF INPUT PHASE —-ceemmemmem-)
c
end
c
c
¢
subroutine stif(coord,elconn,numelm, matpro, nmaset, code, d, ij)
c

¢ This subroutine calculates each element stiffness matrix and
¢ stores them in stifl.dat.
c

c implicit none

c
double precision d(6.6,40,4)
double precision coord(2,50)
double precision matpro(7,10)
double precision stiff(8,8)
double precision lcoord(4,2)
double precision thick(4)

c double precision x(100

c double precision y(100
double precision ym
double precision nu

c

c

c stiff{8,8) is the element stiffness matrix
¢ lcoord(n,i) are the global coordinates of nodes in the
c element under consideration.

¢ thick(4) are thickuesses at nodes.

c X%lOO are the x values.

¢ y(100) are the y values.

¢ ym is the Young’s modulus.

¢ nu is the Poisson’s ratio.

c

elconn(10,40)

numelm

integer
integer

Cc

- 42 -

integer nmaset
integer code
integer elem
integer 1
integer node
integer ij

¢ elem is the element number.
¢ 1 is the counter.
¢ node i1s the node number.

C
c

¢ Open a file for stifl.dat

c

C

open(unit=2,file="stiff.dat’ status="0ld")

¢ Compute the element stiffness for each element:

c

¢ start the main do loop

C

C

do 30 elem = 1, numelm

¢ Find the material properties for the elements:

c

C

do 10 i = 1, nmaset
if(elconn(10,elem) .eq. matpro(1,i)) then

ym = matpro(2,i
nu== matpro(3,i)

thick(1) = matpro(4,i
thick(2) = matpro(5,i
thick(3) = matpro(8,i
thick(4) = matpro{7,i
else

continue

endif

10 continue

c transfer element coordinate to global

C

do 20 node = 1, elconn(9,elem)

lcoord%node,lg = coord l,e]conninode,elem ;

lcoord{node,2) = coord(2,elconn{node,elem
20 continue

c
¢ Call and write stifQ4 to stiff.dat

C

C

C

c

call stifQ4(lcoord, thick, ym, nu, code, stiff, elem, d, ij)
do 21 i=1,8
write(2,*) (stifi(i,j),j=1,8)

21 continue

30 continue

- 43 -

close(2)
c
return
end
c
c
c
subroutine stifQ4(lcoord, thick, ym, nu, code, stiff, elem, d, ij)
c
¢ This subroutine calculates the stifiness matrix of a four noded
¢ element.
c
c implicit none
c
double precision d(6,6,40,4
double precision lcoord(4,2
double precision stiff(8,8)
double precision BT(8,3
double precision thick(4
double precision ym
double precision nu
double precision csi,eta
integer 1,
integer elem,kk
integer code
integer ij
. ,
¢ The expanations for some of the variables are as follow:
c

¢ BT is the transpose of the Strain-displacement matrix BSD.
¢ csi and eta are values for a given poiut of Gauss point.
¢ i,j,k are do loops counters

c
double precision ds(8.8)
double precision C(3,3)
double precision CB(3.8)
double precision BSD(3,8)
double precision jinv(2,2)
double precision sf(4)
double precision nesi{4)
double precision neta(4)

¢ double precision xccord&-i%

c double precision yeoord(4
double precision detj
double precision &

c :

¢ The explanations for some of the variables are as follow:

c
¢ ds(8,8) is the product [BT}[C][B]

¢ C is the elasticity matrix

¢ BSD is the strain displacement matrix

c q%8,8% is the product in the multiplication matrix
¢ d(8,8) is the sum of 2 #’s in matadd

¢ jinv is the inverse of the Jacobian matrix

- 44 -

c sf(1) are the shape functions at nodes

¢ nesi(4) are the partial of n wrt csi

¢ neta(4) are the partial of n wrt eta > .
¢ xcoord are the x coordinates of nodes

¢ ycoord are the y coordinates of nodes

¢ detj is determinant of Jacobian

c t is the thickness times sf.

c
c
c Initialize stiff(i,})
c
do20i=1, 8
do10j=1,8
stiff(i,j) = 0.0

10 continue
20 continue

c
c
¢ Call the elsticity matrix C
c
c
do 90 kk=1,4
c
call elast(ym, nu, code, C, ij, d, elem, kk)
c

¢ Use 2 Gaussian points

¢ Evaluate everything at 4 points

¢ For n==2, csi and ela are both .57735
¢ Construct a do loop for each point

c
call nnd(csi,eta kk)
call n4(sf,ncsi,neta,csieta)
call jacob(lcoord,ncsi,neta,jinv,detj)
c
¢ Calculate the thickness
c
t = 0.0
do40i=14

=t + sf(i)*thick(i)
40 continue

c
call stdisp(RSD.nesi.neta.jinv.sf,code)
c
¢ Calcluate B transpose
c
do60i= 1,8
do 50 j=1,3
BT(i,j) = BSD(j,)

50 continue

60 continue
c
¢ Multiply BT times C times B
c

call mult(C,BSD,3,3,8,CB)

- 45 -

call nult(BT,CB,8,3,8,ds)
c
¢ Multiply ds times thickness times w.f ,

c t(1) = [sf(1) sf(2) sI(3) sf(‘l)L""{thick(l)}

c thick(2
c thick(3
c thick{4
c
c

c For the case of 2 Gauss points w.f.(weithing function) is 1.0
¢ Multiply ds(i,j) times t times w.{.(1
c
do8i=1,S8
do70j=1,8
ds(i,j) = t*ds(i,j)*detj
70 continue
80 continue

c
¢ Add ds(i,j) into stifi(i,})
@
call matadd(ds,stiff,8,8,stiff)
c
90 continue
c
return
end
c
c
subroutine elast{ym,nu,code,C, ij, d, elem, kk)
c
¢ This subroutine sets up the initial stiffness matrix.
c
double precision d(6.6,40,4)
double precision ((3.3)
double precision ym
double precision nu
double precision con
double precision cons
c
integer code
integer 1,j,elem, kk,ij
c
¢ Some of the variables are explained as follows:
c

c C(4,4) is the elasticity matrix.
¢ con,cons, and const are some common values that are

c identified in the elasticity matrices.
¢ i,j,k are do loop counters.
C

if(ij. gt. 1) then

go to 100

else

continue

endif

I

- 46 -

¢
¢ Initialize Elasticity Matrix:
c

do 20 i=1,3

do 10 j=1,3

C(i,j) = 0.0d0

10 continue
20 continue
c
c
¢ Define the elasticity matrix for the plain strain problems:

if(code :eq. 2) then
con = ym/(1.0d0-nu**2.0d0)

C(1,1) = con

C(1,2) = con * nu

C(2,1) = C(1,2)

C(2,2) = con

C(3,3) = con * (1.0d0-nu)/2.0d0
else

continue

endif

c
¢ Define the elasticity matrix for the plain stress problem:
c

if(code .eq. 1) then

cons = (ym*{1.0d0-nu))/((1.0d0+nu)*(1.0d0-2.0d0*nu))
C(1,1) = cons
C(1,2) = cons*nu/(1.0d0-nu)
C(2,1) = C(1,2)
C(2,2) = cons
C(3,3) = cons*(1.0d0-2.0d0*nu)/(2.0d0*(1.0d0-nu))
else
continue
endif
go to 200
c
100 continue
c
C(1,1) = d§1,l,elem,kkg
C{1,2) = d{1,2,elem,kk
C(2,1) = ((1,2)
C(2,2) = d(2,2,elem,kk)
c
200 continue
c
return
end
c
c
c
subroutine n4(sf,ncsi,neta,csi,eta)
c

¢ This subroutine calculates the shape functions and the derivatives.

- 47 -

c
double precision sf(4)
double precision nesi(4)
double precision neta(4) :
double precision csi
double precision eta
double precision a,b,c,d

c

c sf(4) designate values of the shape function at each point.
¢ nesi(4) are the partial derivative of shape functions W.R.T. csi.

¢ neta(4) are the partial derivative of shape functions W.R.T. eta.

¢ csi and eta are the local coordinates of the elements.
¢ a, b, ¢, and d are for the ease of calculations.

c
¢ Define a, b, ¢, and d:

c
a = (1.0d0 + csi)
b = (1.0d0 - csi)
¢ = (1.0d0 + eta)
d = (1.0dO - eta)
c
sf(1) = .25d0 * b * d
sf(2) == .25d0 * a * d
sf(3) == .25d0 *a * ¢
sf(4) = .25d0 * b * ¢
c
¢ Calculate the Partials of Shape Functions W.R.T. csi:
c
nesi(1) = -.25d0 * d
nesi{2) = +.25d0 * d
nesi{3) = +.25d0 * ¢
nesi(4) = -.25d0 * ¢
c
¢ Calculate the Partials of the Shape Functions W.R.T. eta:
c
neta(l) = -.25d0 * b
neta(2) = -.25d0 * a
neta(3) = +.25d0 * a
neta 4§ = +.25d0 * b
c
return
end
¢
c
c
c234567
c
subroutine nnd(csi,eta,kk)
c
¢ This subroutine specifies local coordinates.
c

double precision csi
double precision eta
integer kk

- 48 -

C
if(kk.eq.1) then
csi = -.57735 .
eta = csi
else
conlinue
endif
if(kk.eq.2) then
csi = 57735
eta = -.57735
else
continue
endif ¢
c
if(kk.eq.3) then
csi == 57735
eta = csi
else
continue
endif
c
if(kk.eq.4) then
csi = -.57735
eta = 4.57735
else
continue
endif
c
return
end
c
¢
c
234567
subroutine jacob{lcoord,ncsi,neta,jinv,detj}
c

¢ This subroutine forms the Jacobian of transformation and
¢ its inverse.

c
double precision lcoord(4,2)
double precision j(2,2)
double precision jinv(2,2)
double precision nesi(4)
double precision neta(4)
double precision detj

c
integer i,k

c

¢ j(2,2) is the Jocobian matrix.

¢ jinv(2,2) is the inverse of the Jacobian.

¢ detj is the deterininant of the Jacobian matrix.
¢ n is the number of nodes.

c

¢ Initialize the Jacobian and its inverse Matrices:

- 49 -

do 20 i=1,2
do 10 k=1,2 2 .
j(i,k) = 0.0d0
jinv(i,k) = 0.0d0
10 continue
20 continue

c
¢ Multiply the matrix of shape function, {sf], by the coordinates
¢ of the nodes.
c
do30i=14
j(1,1) = j(1,1) + ncsi(i) * leoord(i,1
i(1,2) = j{1,2) + nesi{i) * lcoord(i,2
j(2,1) = j(2,1) + neta(i) * lcoord(i,1
i(2,2) = j(2,2) + neta(i) * lcoord(i,2
30 continue
c
¢ Calculatle the determinant of the Jacobian:
c
detj = j(1,1)*j(2,2) - j(2,1)*j(1,2)
c
¢ Calculate the inverse of j(2,2):
c
jinv(1,1) = j(2,2)/det]
jinv(1,2) = -j(1,2)/det]j
jinv(2,1) = -j(2,1)/det]
jinv(2,2) = j(1,1)/detj
c
c
return
end
c
c
c
c234567
subroutine stdisp(BSD,ncsi,neta,jinv,sf,code)
c

¢ Strain-displacement relations are formed in this subroutine.
c

double precision ~ BSD(3,8)
double precision jinv(2,2)
double precision nesi(4)

double precision neta{4)
double precision sf{4)
double precision q(4)
double precision p(4)

integer code
integer il

c
c BSD(3,8) is the Strain-Displacement Matrix.
c q(4) is the partial of

is the partial of

c pl4

sf| w.r.t. x.
sfl w.r.t. y

c
¢
¢ Initialize the B matrix:
c

do 20 i=1,3

do 10 [=1,8

BSD(i,l) = 0.0d0
10 continue
20 continue

¢
do 25 i=1,/4
q&i) = 0.0d0
p(i) = 0.0d0
25 continue
c
¢ Generate the B matrix:
c
do 30 i=1,4
q}i) = ncsi%i%*}inv?l,]) + neta(i)*jinv(1,2
p(i) = nesi(i)*jinv(2,1) + neta(i)*jinv 2,2%
30 continue
¢
BSD(1,1) = q(1
BSD(1,3) = q(2
BSD(1,5) = ¢(3
BSD(1,7) = q(4)
BSD(2,2) = p(!
BSD(2,4) = p 2;
BSD(2,6) = p(3
BSD(2,8) = p(4
BSD(3,1} = p(1
BSD(3,2) = (1
BSD(3,3) = p(2
BSD(3,4) = q%?
BSD(3,5) = p(3
BSD(3,6) = q(3
BSD 3,7% =R 4;
BSD(3,8) = qf4
c
c
return
end
¢
¢
c
c234567
subroutine mult(A,B,NRA,NCA ,NCB,CB)
c
¢ This is a multiplication algorithm for matrices.
c

integer NRA
integer NCA
integer NCB
integer 1,1,k

- 51 -

¢
double precision ~ A(NRA,NCA)
double precision B{(NCA,NCB)
double precision =~ CB(NRA,NCB) .
c
c

¢ CB(NRA,NCB) is the product of [A] and [B].
¢ NRA is the number of rows is A.
¢ NCA is the number of Columns in A.
¢ NCB is the number of columns in B
¢ i,j,k are the do loop variables.
c
c Initialize the [CB] matrix:
C +
do 20 i=1,NRA
do 10 j=1,NCB
CB(i,j) = 0.0d0
10 continue
20 continue
c
¢ Multiply [A] times [B]:
¢
do 50 i=1,NRA
do 40 j=1,NCB
do 30 k=1,NCA
CB(i,j) = CB(3,j) + A(i,k)*B(k.j)
30 continue
40 continue
50 continue

c
return
end
c
c
c
c234567
subroutine matadd(A,B,NRA,NCA D)
c

¢ This is an algorithm for addition of matrices.
integer NRA
integer NCA
integer 1,j

c
double precision ~ A(NRA,NCA
double precision B(NRA,NCA
double precision ~ D(NRA,NCA)

c

¢ NRA is the number of rows in the matrix A.

¢ NCA id the number of cloumns in the matrix A.
c i,j are the variables for do-loops.

c

¢ Add A to B3:
c
do 201 = 1, NRA

.59

do 10 j = 1, NCA
D(i,i) = A(i,j) + B(ij)
10 continue

20 continue . .
c
return
end
c
c
c
c234567
subroutine aeqnum(becode,beset,numnod,eqnum,numeg,nbceset)
c
¢ This subfoutine assigns a number for every equation at every
¢ degree of freedom.
c
integer bccode(B,QO;
integer eqnum(2,50
integer bcesel(30)
integer pumnod
integer numeq
integer nbcset
integer nodebce
integer label
integer idir
integer inode
integer i
c
¢ nodebe is the number of 1 node for that boundary condition.
c label is used to compare numbers.
c idir is the ith direction.
¢ inode is the ith node.
c i is the counter.
c
¢ Initialize numeq:
c

numeq = 1
c
¢ Search through each node and assign a value to label:
c

do 30 inode = 1, numnod

label = beset(inode)

c
¢ Now find the B.C. set that is equal to label:
c
do 10 i = 1,nbcset
if(bccode(3,i) .eq. label) then
nodebec = i
else
continue
endif
10 continue
c
¢ Search both the X and Y directions:

- 53 -

¢

do 20 idir = 1,2

if(becode(idir,nodebc) .eq. 0) then
eqnum(idir,inode) = numeq : .
numeq == numeq + 1

else
eqnum(idir,inode) = 0

endif

20 continue
30 continue
c234567
numeq == numeq - 1

c
return
end
c
c
@
c234567
subroutine band(elconn, eqnum, numelm, width)
c
¢ This subroutine finds the semi-bandwith of [Kfl].
c
integer elconn(10,40)
integer eqnum(2,50)
integer nuwnelin
integer width
integer eqelma
integer egelmi
integer elmdif
integer maeldi
integer nelnod
integer elem
integer idir
integer inode
c
¢ eqelma is the element’s maximum equation number.
c eqelini is the elemnet’s minimum equation number.
¢ elmdif is the difference between 2 nodes.
¢ maeldi is the maximum differnece of two equations in an element.
¢ nelnod is the number of element nodes.
c
¢ Initialize variables to zero:
c
elmdif = 0
maeldi = 0

eqelma = 0
2 Make eqelmi (EQ_ELEM_MIN) larger than your greatest number of
¢ equations(2000).
<c: Search each element:
‘ do 30 elem = 1, numelm

- 54 -

nelnod == eleonn(9.elem)
eqelmi = 3000
¢
¢ Search for each node: : e
c
do 20 inode = 1, nelnod
¢

¢ Search in the X and Y directions and find the maximum and
¢ minimum element equations;
c
do10idir=1,2
egelma == max(eqnum(idir,elconn(inode,elem}),eqelma)
egelmi = min(eqnuni(idir,elconn(inode,eleni)),eqelmi)
10 contihue

c
20 continue
¢
¢ Find the maximum difference:
c
elmdif = eqelma - eqelmi
c
¢ Find the maximum element difference:
c
maeldi = max({maeldi,elmdif)
c
30 continue
c
¢ Find the semi_bandwidth:
c
width = maeldi + 1
c
return
end
c
c
c
¢234567
subroutine assmbl{elconn,bccode,beset,be,eqnum,numeq,
* numelm,numnod,width,A,B,nbcset}
C
¢ This subroutine assembles the stiffness matrix.
c
c

integer elconn(10,40)
integer beccode(3,20
integer eqnum(2,50
integer beset(50)
integer numnod

integer numelm

integer numeq

integer width

integer node,elem,nl,n2
integer nodel,node2,dir,dr
integer row,col,i

_ 55 -

integer beflag
integer benum
integer nbcset

c
double precision A(200,200)
double precision B(200)
double precision stiff(8,8)
double precision be(2,20)
double precision spdisp
double precision spforc

¢

¢ A is the stiffness matrix KHf.

¢ B is the forcing vector.

¢ Stiff is the stiffness matrix.

¢ spdisp is the specified displacement.
¢ spforc is the specified force.

c
¢ Open file:
c
open{unit=2,file="stifl.dat’,status="0ld’)
c
¢ Initialize the matrix A:
c
do 1 i=1,numeq
do 1 j=1,numeq
A(i,j) = 0.0d00
B(i) = 0.0d00
1 continue
c
row = 0
col =10
c diag
do 60 elem = 1 , numelin
do 5 i=1,8

read(2,*)(stiff(i,j),j=1,8)
5 continue
do 50 n1=1,elconn(9,elem)
nodel=elconn(nl,elem)
¢ write(6,*)we are in subroutine assemble line #1224’
c writeéﬁ,* '1j=",ij,’kk=",kk
do 40 dir = 1,2
row = eqnum(dir,node1)
do 30 n2 = 1,elconn(9,elem)
node2 = elconn(n2,elem)
do 20 dr = 1,2
col = eqnum(dr,node2)
if(row.gt.0) then
if(col.gt.0) then
if({col-row+1).gt.0

) th
A(row,(col-row+1))

1en
= ASrow,(col-roW+Ig% + stiff({(n1-1)

* *2 + dir),((n2-1)*2 + dr
else

continue
endif

- 56 -

else
beflag = beset(node2)
do 10 i = 1,nbcset
if(bccode(3, 1) .eq. beflag) then : .
benum = i
else
continue
endif

10 continue
c
¢ Calculate {FI}-{Ffs}*{delts}:
c

spdisp = be{dr,benum)
B(row) = B(row) - stlff((nl 1)*2 + dir,(n2-1)*2 +
* dr)*spdisp
endif
else
continue
endif
20 continue
30 continue
40 continue
50 continue
60 continue

do 90 node = 1,numnod
do 80 dir = 1,2
if(egnum(dir,node).gt.0) then
beflag = beset{node)
do 70 i = 1, nbcset
if(bccode(3, 1) eq.bcflag)then
benum = i
else
continue
endif
70 continue
spforc = be(dir,bcnum)
B(eqnum(dir,node)) = B(eqnum(dir,node))+spforc
else
continue
endif
80 continue
90 continue

close(2)

return

end
c
c ------
c

234567
subroutxm disout(coord,be,beset,becode,elconn,numnod,
B,eqnum,output, numeq,nbcset d1spl dlsplt nn,ij)

- 57 -

c
¢ This subroutine calculates the incremental displacements.
c

integer elconn(10,40) ,

integer eqnumE2,5O .

integer becode(3,20

integer beset(50)

integer numeq

integer numnod

integer output

integer idir,inode,i

integer label,check

integer nbeset

integer nn,ij

@
double precision coord(2,50)
double precision bc(2,20)
double precision displ(50,2)
double precision displt(50,2)
double precision B{numegq)
double precision D(2)

c

¢ displ is the nodal displacement matrix.
¢ B is the displacement vector.
¢ D is a local variable for writing the displacements.
¢ output is the output number.
¢ label and check are prograinming flags.
c
c
if(3j.eq.nn)then
write(6,177)
177 format(’ G_NODE’,2x,’X DISP’,6x,’Y DISP’)
else
continue

endif

do 30 inode = 1,numnod
do 20 idir = 1,2
if(egnum(idir,inode).eq.0) then
label = beset(inode)
do 10 i=1,nbcset
if(label.eq.bccode(3,i))then
check =i
D(idir) = be(idir,check)
else
contlinue
endif
10 continue
else
D(idir) = B(eqnum(idir,inode))
endif
displ(inode,idir) = D(idir)
displt(inode,idir) = displt(inode,idir)+displ(inode,idir)
20 continue

- 58 -

if(ij.eq.nn)write(6,100) inode,(D(idir),idir=1,2)
30 continue

c
100 format(i5,2e12.4) .
c
return
end
c
c
c
c234567
subroutine recovr{elconn,becode,beset,be,eqnum,numeq,
! numelm,numnod,coord,output,
! s code,matpro,displ,nmaset,d,
! delk,ft,w,alpha,mu,fc,jp,epsl,sgl,
! pl,ipss,itest,iwl,ipl,ij,un,
! model,mode2)
@
¢ This subroutine computes strains from displacements.
c
integer elconn(10.40)
integer becode(3,20)
integer be(2,20)
integer eqnum(2,50)
integer bcset(50)
integer numeq
integer numelm
integer numnod
integer code
integer elem
integer node
integer nmaset,
integer gnode
integer i,kk
integer ipss,itest,iwl ipl,ij,nn
c

double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision
double precision

d(6,6,40,4)
nstrain(40,50,3)
gstra.iné4(),4,3)
coord(2,50)
matpro(7,10)
displ(50,2)
leoord(4,2)
BSD(3,8)
strain(3,1)
jinv(2,2)
delta(8)

sf(4)

nesi(4)

neta(4)

2(12)

csi

eta

det]

- 59 -

double precision ym
double precision nu
double precision delk,ft,w,alpha,mu,fc,jp,epsl,sgl,pl
double precision model,mode2 . N
c
c
C

if(ij.eq.1)then
write(6,123
123 format(//
write(6,124
124 format(’ ELEM’,3x,’G_NODE’,3x,’L_NODI’,3x,’STRAIN X,
* 5%,’STRAIN Y ’ 4x,’STRAIN XY’,4x,’STRAIN 0°)

else *
continue
endif
c
c234567
c
do 50 elem = 1,numelm
delta{1) = displ{elconn(1,elem),1)
delta(2) = displ{elconn(1,elem),2
delta(3) = displ{elconn(2,elem),1
delta(4) = displ{elconn(2,elem),2
delta(5) = displ{elconn(3,elem),1
delta(6) = displ{elconn(3,elem),2
delta(7) = displ{elconn(4,elem),1
delta(8) = displ(elconn(4,elem),2
c
do 10 node = 1, elconn(9,elem)
lcoord(node,1) = coord%l,elconn node,elem
lcoord(node,2) = coord(2,elconn(node,elem
10 continue
c
do 20 i = 1, nmaset
if(elconn(10,elem) .eq. matpro(1,i)) then
ym = matpro(2,i)
nu= matpro(3,i)
else
continue
endif
20 continue
c

do 40 node = 1, 4
if(node.eq.1) then

csi == -1.0d0

eta = -1.0d0
else

continue

endif
if(node.eq.2) then
csi = 1.0d0

eta = -1.0d0

else

- 60 -

continue
endif
if(node.eq.3) then
csi = 1.0d40 . .
eta = 1.0d0
else
continue
endif
if(node.eq.4) then
csi = -1.0
eta = 1.0
else
continue
endif

234567

call n4(sf,nesi,neta,csi,eta)
call jacob(lcoord,ncsi,neta,jinv,det})
call stdisp(BSD,nesi,neta,jinv,sf,code)

c
¢ Multiply B times delta to get strain:
c
c diag

call inult{BSD,delta,3,8,1,strain)
c

gnode = elconn{node,elem)
c

do 25 i=1,3
nstrain(elem.gnode,i) = strain(i,1)
25 continue

c
¢ Strain(3,1) is the strain matrix Ex,Ey Exy,E0.
c
if(ij.eq.nn) then
write(6,155) elem,node,elconn(node,elem),(strain(i,1),i=1,3)
else
continue
endif
c
155 format(i5,i7,i19,5x,4e12.4)
c
40 continue
c

do 41 node = 1 4

gnode = elconn(node,elem)

do 41 i=1,3

if(node.eq.1) z(i) = nstrain(elem,gnode,i)

if(node.eq.2) z(i+3) = nstrain(clem,gnode,i

if{node.eq.3) z(i+6) = nstrain(elem,gnode,i

if(node.eq.4) z(i+9) = nstrain(elem,gnode,i
41 continue

do 43 kk=1.4
call nn4{csi,eta,kk)
call nd(sf,nesi,neta,csi,eta)

- 61 -

do 12 i=1.3
gstrain(elem,kk,i) = sf(1)*z(i)+sf(2)*z(i+3)+sf(3)*z(i+6)
! +sf(4)*z(i+9
42 conlinue : .
c
¢ Call subroutine for damage.
c
call eldamggstrain,ym,nu,delk,ft,w,alpha,mu,fc,jp,epsl,
! sgl,pl,ipss,itest,iwl,ipl,ij,eleny,kk,d,nn,
! model,mode2)
c
43 continue
c
50 contifnue
c

150 format(i5,i7,i9,5x4e12.4)
¢ 60 continue
¢ 70 continue

c
return
end
c
c
c
c234567
subroutine solver(numeq,mband,A,B)
c

¢ subroutine solver solves a symmetric system of banded
¢ simulataneous linear equations using the method of
¢ Banachiewicz (Cholesky decomposition for symmetric
¢ matrices). The coefficient matrix [A] is a distorted
¢ array with the diagonal elements of the global
c stiffness matrix [K| stored in column 1 of [A].
C
integer numeq
integer mband
double precision A({200,200)
double precision B(200)
double precision diag
double precision air
double precision sum

c
integer i
integer il
integer j

J
integer jj

c integer k
integer |
integer m
integer n

integer nl

integer nhw
integer itrig
integer nred

- 62 -
integer lim

do 1 i=1,21

write(6,*)'B(’,i,")=",B(i)
1 continue

n = numeq

nhw == mband - 1

itrig = 0

nred = 0

lim == mband
10 if(nred + 1 -n) 20,100,100
20 nred = nred + 1

diag = A(nred,1)

O o0 o0e

¢
¢ Test for a Zero or negative diagonal element
c
¢ if(diag.gt.1.0d0E-10) then
if((diag-1.0d-30).gt.0.0d0) then
diag = sqri(diag)

else
go to 90
endif
c
¢ Drive row by square root of Diagonal element
c
do 40 j=1,lim
40 A(nred,j)=A(nred,j)/diag
c

c reduce remaining block of numbers
c
do 80 i = 1,nhw
l=nred + i
if(l-n) 50,50,80
50 air = A(nred,i+1)
c
¢ Skip this row if the multiplier air is zero.
c
if(air) 60,80,60
60 do 70 j=i,nhw
m=1+j-i
70 A(lL.m)=A(l.m)-air*A(nred.j-+1)
80 continue
go to 10
c
90 itrig = nred
¢ 100 continue
100 if(itrig) 110,120,110
c
¢ Matrix is singular or not positive definite

c
110 write(6,200) itrig
C stop
go to 190

- 63 -

120 continue
c
c
¢ Reduce the right hand side:
c
c

nred = 0

130 if(nred+1-n) 140,170,170

140 nred = nred + 1
c
¢ divide row by square root of diagonal element
¢ reduce the remaining block of numbers

c
B(nred) = B(ured)/A(nred,1)
do 1601 = 1, nhw
= nred + i
if(}-n) 150,150,160
150 B(l) = B(l) - A(nred,i+1)*B(nred)
160 continue
go to 130
170 B(n) = B(n)/A(n,1)
ni=n-1
do 190 ii = 1,nl
i=n-ii
sum = 0.0d0
do 180 jj=1,nhw
m == jj + i
if(n-m) 190,180,180
180 sum == sum + A(i.jj+1)*B(m)
B(i) = (B(i) - sumn)/A(j,1)
190 continue
¢
return
c
200 format(singular matrix at euation number’ 11/
posibble causes of the singularity are:’//
’1. sturcture is underconstrained permitting’/
rigid body motion.’/
’2. Material properties are improperly definrd.’/
’3. The Jacobian matrix is not posotive’/
definite. Check the order inwhich the ’/
element nodes are specified.’/
'4. Last but not leat check your input data’/
to make sure that all input quatities’/
are specified properly’)

e €D 00 =3 O T i €O DD b=

end

subroutine eldam(gstrain,ym,nu,delk,ft,w,alpha,mu,fc,jp,epsl,
! sgl,pl,ipss,itest,iwl,ipl,ij,

! elem,kk,d,nn,

! model,mode2)

- 64 -

double precision [1(6,6,40,4),cc(6,6,40,4),cc1(6,6,40,4),
cc2(6,6,40 ,4),d(6,6, 40 4
double precision sg11(40 4),sg22(40 1),
sg33(40 4),5g12(40,4),p, sgl pl
double precision gstrain(40,1,3),stt11,stt22,stt33,stt12,dstt11,
! dstt22,dstt33,dstt12, stell ste22,ste33,stel2,
! stivol
double precision k(40,4),t(40,4),ft,delk,epsl
double precision std11,std22,s1d33,std12
double precision ¢i(40,4),fc,w,alpha,mu,ym,nu
double precision el,e2,tg,prl,pr2,pr3,pr4
double precision model,mode2,mean
double precision vector(3,3),eigen(3)
integer iswich,jp,iwl,ipl
integer ipss,itest,iter,ij,elem,kk
integer i,j,nn
open{unit==3,file=="output’,status="old’)

c
C
¢ This subroutine sets the data for the damage relations.
¢ The part from here to 10 is used to initialize variables and
¢ elastic matrices. Normally one goes directly to 10.
c

if(ij.gt.1) go to 10

iter = 0
iswich= 0
sttll = 0.d0
stt22 = 0.d0
stt33 = 0.d0
stt12 == 0.d0
sttvol= 0.d0
std11 = 0.d0
std22 = 0.d0
std33 = 0.d0
std12 = 0.d0
stell = 0.40
ste22 = 0.d0
ste33 = 0.d0
stel2 = 0.d0
p = 0.d0
pl = 0.d0

t{elem,kk) = 0.d0
k(elem,kk) = 0.d0
ci(elem,kk)= 0.d0
sgl1(elem,kk
sg22(elem,kk
sg33(elem,kk
sgl2(elem,kk
do 150 i=1,6
do 140 j=1,6
F(i,j,elen,kk) =
cc(i,j,elem,kk)
d(i,j,elem,kk)

= 0.d0
0.d0
0.d0
0.d0

Il

0.
0.
0

- 65 -

110 continue

150 continue
c iter is the iteration count.
c stt1l, stt22, stt33 are the total strains in 1-1, 2-2, and 3-3 directions.
c stdll, std22, std33 are the total damage strains in the three directions.
c stell, ste22, ste33 are the total elastic strain in the three directions.
c p is the pressure, pl is a limiting value of pressure, t is the critical
¢ stress, k and ci are the damage parameter and surface, respectively.
¢ sgll, sg22, and sg33 are the stresses in the three directions.
¢ F is the current flexibility tensor, cc is the added flexibility, and
¢ d denotes the current stiffness tensor,
c mean is the trace of the incremental strain tensor.

c
mean* = (dstt11+dstt22+dstt33)/3.0d0
c
prl = 1.-nu
pr2 = nu/prl
pr3 = 1. + nu
prd = 1./ (pr3 * (1.0 - 2.0 * nu))
el = ym * prl * pr4d
€2 = ym * nu * prd
tg = ym / pr3
t(elem,kk) = 0.0
if(mean.gt.0.0) then
el = model * el
e2 = model * e2
tg = model * tg
else
continue
endif
c
¢ Form elastic matrices for each element "elem", and Gauss pt. "k".
c
d(1,1,elem,kk) = el
d(1,2,elem,kk) = €2
d(1,3,elem,kk) = e2
d(2,1,elem,kk) = e2
d(2,2,elem,kk) = el
d(2,3,elem,kk) = €2
d(3,1,elem,kk) = e2
d(3,2,elem,kk) = €2
d{3,3.elem,kk} = el
d(4,4,elem,kk) = tg
d(5,5,elem,kk) =t
d(6,6,elem,kk) = tg
c
F

1,1,elem,kk) = 1./ym
if(mean.gt.0.0) then

F(1,1,elein,kk) = F(1,1,elem,kk)/model
else

continue

endif

F(1,2,elem,kk) = -nu * F(1,1,elem,kk)
Fé],S,elem,kkg = F(1,2,elem,kk)

- 66 -

F(2.1.elem.) L) = F(1,2,elem.kk
F(2,2,elem,kk) = F(1,1,elem kk
F(2,3, eIem kk) = F(1,2,elem,kk
F(3,1,elem,kk) = F(1,2,elem,kk i
F(3,2 elem kk = F(1,2,elem kk
F(3,3, elexn kk) = I'{1,1,elem,kk
F(4,4,elem,kk) = 1. /tg
if(mean.gt. 0. 0) then
I'(4,4,elem,kk) = F(4,4,elem,kk)/model
else
continue
endif
F§5,5,elem,kk§ = F(4,4,elem.kk;
I7(6,6,elem,kk) = F(4,4,elem, kk

¢

10 continue
c

¢ This is the entry point after initialization. Total strain increments
¢ assuined given in gstrain.

c
call principal{gstrain,nn,ij,elem kk,eigen,vector)
c
dstt11 = eigen(1)
dsit22 = eigen(2)
c
c
c call constitutive law subroutine damage.
call damage(l,cc,cel,cc2,d,sgl1,5g22,5¢33,5¢12,p,stt11,
! stt22,st133,st112,dstt11,dstt22,dstt33,dstt12,
! stell,ste22,ste33,stel2,sttvol,k,ft,t,delk,iswich,
! jp,std11,std22,std33,std12,fc,w,ci,alpha,mu,ym,nu,
! epsl,ipss,iter,ij,elem,kk,nn,vector)
c

go to (30,40,50,100) itest
30 if(sgll{elem,kk).le.sgl) go to 100
go to 200
40 if(sg11{elem,kk).ge.sgl) go to 100
go to 200
50 if(p.ge.p!) go to 100
c
100 continue
@
¢ Stop the program, one way is to set ij = nn
c
ij = nn
c .
200 continue
c
c itest is a switch as what we want to be done, if itest = 1 then
¢ the limiting value of the run is the stress, if itest = 2 then
the limiting value is also the stress but with ditferent implications,
if itest = 3 the the mean pressure is the limiting factor for the
run.

S 06606

- 67 -

return
end

(o]

>

subroutine damage(F,cc,ccl,ce2,d,sgl1,sg22,5g33,5g12,p,sttll,
! stt22,stt33,51112,dsti11,dst122,dst133,dstt12,
! stell,ste22,ste33,stel2,sttvol.k,ft,t,delk,iswich,
! jp.std11,std22,std33,std12,{c,w,ci,alpha,mu,ym,nu,
! epsl,ipss,iel,iter,ij,elem,kk,nn,vector)

doub\e precision F(6,6,40,1),cc(6,6,10,4),cc1(6,6,40,4),
: cc2(6,6,40,4),d(6,6,40,4
doubie precision sg11(4() 4),522(40,4),5g33(40,4),
! sg12(40,4),p
double precision stt11,stt22,st133,st112,dstt11,
! dstt22,dst133, dsttl? stell,ste22, ste33 stel2,
! sttvol
double precision k{40,4),t(40,4),ft,delk,epsl
double precision std11,std22,std33,std 12
double precision ¢i(40,4),fc,w,alpha,mu,ym,nu
double precision sgzl1,5g222,5g233,5g212
double precision sgnpl1,sgnp22,sgnp33,sgnnll,sgnn22,sgnn3l
double precision dedpl1,dedp22,dedp33,dednll,dedn22,dedn33
double precision dstd11,dstd22,dstd33,dstd12
double precision dstell,dste22,dste33,dstel?2
double precision dn,d21,d31,ac21,ac31
double precision tz,dsgl1,dsg22,dsg33,dsgl2
double precision traceb,tracel,trace2,trace3
double precision sgp11,sgp22,sgp33,sgnll,sgn22,sgn33
double precision minsg,sgell,sge22,sge33
double precision al1,a22,a33,a12,a13,a23
double precision ciz,second,third,fifth,dkz,dk
double precision aa(3,3),ainv(3,3)
double precision supll,sup22,sup33,sunll,sun22,sun33
double precision vector(3,3),vectort(3,3)
double precision TR1(3,3),TR2(3,3)

integer iswich,jp

integer ipss,iel,iter,ij,elem,kk
integer i,j,iterm,ji

integer iterz,nn

sk 5k ok Sk 3K ok 3k 3 5K ok 3K ok ok ok % sk ok 5 3k 3k ok sk ok sk ok 3 ok >k sk ok S ok ok ok ok ok ok ofe 3 ok sk 3k Sk ok ok 3k Sk ok ok ok ok ok ok ok ok ok ok

data iterm/10/,pib2/1.570796/

initialize parameters for this step.
iter = 0

dk =0.

iterz = iter

sgzll = sgll{elemkk

sgz22 = sg22(elem,kk

sgz33 = sg33(elem,kk

sgz12 = sgl2(elem,kk

- 68 -

c
sgnpll = 0.d0
sgnp22 = 0.d0
sgnp33 = 0.d0 .
sgnnll = 0.d0
sgnn22 = 0.d0
sgnn33 = 0.d0

c
do 10 i=1,6
do 5 j=1,6
ccelfi,j,elem,kk) = 0.
CCQEi,j,elem,kkg = 0.

5 continue
10 continue

do 12 i=1,3

do 11 j=1,3

vectort(j,i) = vector(i,j)
11 continue
12 continue

c Assume step is elastic.
dedpll = 0.40
dedp22 = 0.d0

dedp33 = 0.d0
dednil = 0.d0
dedn22 = 0.d0
dedn33 = 0.d0
c
dstd11 = 0.d0
dstd22 = 0.d0
dstd33 = 0.d0
dstd12 = 0.d0
c
dstell = dsttll
dste22 = dstt22
dste33 = dstt33
dstel2 = dstt12
c
c ipss is a path prescriber
c if ipss =1 ----- uniaxial stress,
c if ipss = 2 --—--- biaxial stress,
c if ipss = 3 ----- general stress path,
c if ipss = 4 ----- user prescribed path.

if(ipss.ne.4) go to 110
dn = 1.0 - nu * (ac2l + ac31)
d21= (ac21 - nu * (1.0 + ac31;§/dn
d31= (ac2l - nu * él.O + ac21))/dn
dste22 = d21 * dstell
dste33 = d31 * dstell

go to 150

c
110 if(ipss.eq.2) go to 130

- 69 -

if(ipss.eq.?) go to 150
dste22 = F'(2,L,elem,kk) * dstell / F(1,1,elem kk
dste33 = F 2,1,elern kk) * dstell [F(1,1, ‘elem, kk
go to 150
130 dste33 = -(d(3,1,elem,kk)*dstell + d(3,2,élem,kk)*dste22)/
d(3,3,elem, kk)
100 continue
tz = t(elem,kk)

c Update stresses.
dsgll = d{1,1,elem kk)*dstell + d(1,2,elem,kk)*dste22 +
! d(1,3, elem kk) dste33
dsg22 = d(z 1,elem ,kk)*dstell + d(2,2,elem,kk)*dste22 +
! «d(2,3, elem kk)*dqte33
dsg33 = d(3 1,elem kk)*dsiell + d(3,2,elem,kk)*dste22 +
! d(3,3, elem kk) dste33
dsg12 = d(4,4,elem,kk)*dsg11
if(ipss.eq.1) then
dsg22=0.40
dsg33=0.d0
else
endif
if(ipss.eq.2) dsg33 = 0.0d0

sgll{elem,kk) = sgz1l + dsgl1
sg22(elein,kk) = sgz22 + dsg22
sg33(elem,kk) = sgz33 + dsg33
sg12 elem,kk) = sgz12 + dsgl12
p (sgl](elem kk) + sg22(elem, kk) + sg33(elem,kk))/3.
tracea = sgll(elem, kk)*sgl 1(elem, kk)
! sg22(elem,kk)*sg22(elem, kk
! sg33 elem,kk *sg33 elem,kk
if(ip.eq.1) go to 300
c jp is a switch that if jp = 1 we are in a hydrostatic stress path
¢ which in this case damage does not occur and no need to
¢ go through the damage subroutine.
c
¢ form P+(sg) (Positive cone of stress tensor)
sgpll = sgll(elem,kk
sgp22 = sg22(elem,kk
sgp33 = sg33(elem,kk
if sgpll.lt.0.§ sgpll = 0.

if(sgp22.1t.0.) sgp22 = 0.
if(sgp33.1t.0.) sgp33 = 0.

¢ get (sgij+ : sgij+)
tracel == sgp11¥*2.d0 + sgp22¥*2.d0 + sgp33**2.d0

¢ form P-(sg) (Negative cone of stress tensor)

sgnll = sgll(elem,kk
sgn22 = sg22(elem,kk
sgn33 = sg33(elem,kk

if(sgn11.gt.0.) sgnll = Q.
if(sgn22.gt.0.} sgn22 = Q.

SO 00

C

- 70 -

if(sgn33.gt.0.) sgn33 = 0.

determine the min. eigenvalue of the sgn tensor.----=-=e=eeeeece-
minsg = dabs(sgn11)
if(dabs(sgn22).1t.dabs(sgn11)) then
minsg = dabs(sgn22)
if(dabs(sgn33).lt.dabs(sgn22))minsg = dabs(sgn33)
continue
else
if(dabs(sgn33).1t.dabs(sgn11)) minsg= dabs(sgn33)
endif

determine sge where
sge is+a shifted stress tensor.

sgell = sgnll - minsg
sge2? = sgn22 - minsg
sge33 = sgn33 - minsg

trace2 = sgell**2.d0 + sge22**2.d0 ++ sge33**2.d0

form the fourth order damage tensor R(sigma minus)
all = sgell*sgell
a22 = sge22*sge22
a33 = sge33*sge33
al2 = sgell*sge22
al3 = sgell*sge33
223 = sge22*sge33

trace3 = (sgnl11*all*sgn11)+(sgn22*a22*sgn22)+(sgn33*a33*sgn33)+
* 2*(sgn11*al12*sgn22 + sgnll*al3*sgn33 + sgn22*a23*sgn33)

iter + 1
ci{elem,kk)

iter
ciz

evaluate the damage surface.
if(trace2 .1t. .0000001) then

second = 0.d0
third = 0.d0
fifth = 0.d0

else

second = w*(trace3)/trace2
third = w*(alpha)*9.d0*(p*p)
fifth = w*mu*alpha*trace5
endif

ci(elem,kk) = (tracel + second + fifth - third -
! tz**2.d0)

ci(elem,kk) = 0.5d0 * ci(elem,kk)

ci(elem,kk) = -2.0d0

¢ For linear elastic problems make ¢i a negative number as
¢ suggested above.

C
C

check if the damage surface is reached.

-71-

if{ci(elem kk).gt.opsl) go to 170
if{iter .eq. 1) go to 250
if(ci(elem,kk) .gt. -epsl) go to 250
170 continue

iswich = 1

c

¢ compute dk using secant approximation.
dkz = dk
if(iter .eq. 1) dk = delk
if(iter .eq. 1) go to 175

dk = dkz * ci(elem,kk)/(ciz - ci{clem,kk))
175 continue
c
c compate the critical stress t.
k(elem kk) = k(elem,kk) + dk
t(elem,kk) = ft *
! (dexp(1.d0))*dlog(1.d0+ym*k(elem,kk))/(1.d0+ym*k(elem kk))

¢ compute the added flexibility tensors in modes I and II. --------

if(tracel .le. .0001) go to 176

ccl(1,l,elem,kk dk*(sgp! l*sgpll [tracel
ccl(1,2,elem,kk dk*(sgp11*sgp22)/iracel
ccel(1,3,elem,kk dk*(sgpl1*sgp33)/iracel
ccl(2,2,elem,kk) = dk*(sgp22*sgp22)/tracel
ccl(2,3,elem,kk) = dk*(sgp22*sgp33)/tracel
ccl(3,3,elem,kk dk*(sgp33*sgp33)/tracel
ccl(2,1,elem,kk

NI

[

ccl(1,2,elem.kk
ccl(3,1,elem,kk ccl(1,3,elem,kk
ccl(3,2,elem,kk ccl{2,3,elemn,kk
go to 179
176 do 178 i = 1,6
do 177 j = 1,6

I
o

177 cel(i,j,elem kk)
178 continue
179 continue

¢
if(trace2 .le. 0.0001) go to 192
cc2(1,1,elem,kk) = dk*(all/trace2 + mu*alpha - alpha)
cc2(1,2,elemn,kk) = dk*(al2/trace2 - alpha%
cc2(1,3,elem,kk) = dk*(a13/trace2 - alpha
cc2(2,2,elem kk) = dk*(a22/trace2 + mu alpha - alpha)
cc2(2,3,elem,kk) = dk*(a23/trace2 - alpha)
cc2(3,3,elem,kk) = dk*(a33/trace2 + mu*alpha - alpha)
cc2(2,1,elem,kk) = cc2(1,2,elem,kk
cc2(3,1,elem,kk) = cc2 1,3,elem,kk
cc2(3,2,elem,kk} = c¢c2(2,3,elem,kk
go to 195

192 do 194 i = 1.6

do 193 j = 1,6

193 cc2(i,j,elem,kk) = 0.0
194 continue
195 continue
¢ compute the total added and the current flexibility tensors. --

- 72 -

do 185 i=1.3

do 180 j=1,3

ce(i,j,elem,kk) = ccl(i,jelem,kk) + cc2(i,j,elem kk)
180 continue]
185 continue

-

c
¢ cc(i,j,elem kk) corresponds to the added flexibility in the
¢ principal directions. Now with the transformation matrix
¢ vector(3,3) we can rotate the corresponding matrices to the
¢ global axes. The next few lines are to this effect.
c
¢ Initialize metrices:
c
do 405 i=1,3
do 405 j=1.3

TR1(i,j) = 0.0d0
405 TR2(i,j) = 0.0d0
¢
do 408 i=1,3
do 407 j=1,3
do 406 ji=1,3
TR1(i,j} = TRI1(i,j) + vector(i,ji) * cc(ji,j,elem,kk)
406 continue
407 continue
408 continue
¢
do 412 i=1,3
do 411 j=1,3
do 410 ji=1,3
TR2(i,j) = TR2(i,j) + TRI(i,ji) * vectort(ji,i)
410 continue
411 continue
412 continue
¢
do 414 i=1,3
do 413 j=1,3
F(i,j,elem,kk) = F(i,jelem,kk) + TR2(i,j)
413 continue
414 continue
c
do 287 i=1,3
do 286 j=1,3
286 aa(i,j) = F(i,j,elem kk)
287 continue
c
call the subroutine matinv to obtain the current stiffness
c tensor.
call matinv{aa,ainv)
do 187 i=1,3
do 186 j=1,3
d(i,j,elem,kk) = ainv(i,j)
186 continue
187 continue
c

- T3 -

c compute the incremental damage slirain.
supll = cecl(1,1,elemn,kk)*sgpll + ccl(l,2,elem,kk)*sgp22 +
! ccl(1,3,elem,kk)*sgp33

sup22 = cc1(2,1,elem kk)*sgp1l + cc1(2,2,elem,kk)*sgp22 +
! cc1(2,3,elem,kk)*sgp33 i

sup33 = ccl(3,1,elem kk)*sgp1l + cc1(3,2,elem,kk)*sgp22 +
! cc1(3,3,elem,kk)*sgp33

sunll = cc2(1,1,elem,kk)*sgl1(elem,kk) + cc2(1,2,elem kk)*
! sg22(elem,kk) + cc2(1,3,elemn kk)*sg33(elem,kk)

sun22 = cc2(2,1,elem,kky*sgit(elem,kk) + cc2(2,2,elem,kk)*
! sg22(elem,kk) + cc2(2,3,elem,kk)*sg33(elem,kk)

sun33 = cc2(3,1,elem,kk)*sgl1({elemn,kk) + cc2(3,2,elem kk)*
! sg22(elem,kk) + cc2(3,3,elem kk)*sg33(elem, kk)

c
dedpll = dedpll + supll
dedp22 = dedp22 + sup22
dedp33 = dedp33 + sup33
dednll == dednlil + sunll
dedn22 = dedn22 + sun22

* dedn33 = dedn33 + sun33

c

¢ compute the total damage strain increments.
dstdi! = dedpll + dednll
dstd22 = dedp22 + dedn22
dstd33 = dedp33 + dedu33

¢ recompute the elastic strain increments.
dstell = dstell - supll - sunltl
dste22 = dste22 - sup22 - sun22
dste33 = dste33 - sup33 - sun33
dstel2 = dstel2

c adjust for the special conditions. -
if(ipss.eq.4) go to 240

if(ipss.eq.3) go to 245

if}ipss.eq.2 go to 230
dste22 = F(2,1,elem,kk) * dstel1/ F(1,1,elem,kk)
dste33 = dste22
go to 245

230 dste33 = -(d(3.1,elem,kk)*dstel1l + d(3,2,elem kk)*dste22)/
! d(3,3,elem,kk)
go to 245

240 dste22 = d21 * dstell
dste33 = d31 * dstell

245 if(iter .le. iterm) go to 150

250 continue

update strains.

Note that for the particular problem of the shear wall

and due to the space limitations of the computer directory,
total strains were not stored. Becuase of this the next

few lines are commented out. If one desires 1o store total

O a6 o n o006

- 74 -

¢ strain also for reference, 2-dimensional arrays should he
¢ set up similar to the stress tensor, e.g. stdi1(elem kk),
¢ sttll{elemkk). :

@ : .

c stdll = std11 + dstdil
c std22 = std22 + dstd22
c std33 = std33 + dstd33
c std12 = std12 + dstd12
c stdvol= std11 + std22 + std33
¢
300 continue

¢
c stell = stell + dstell
¢ ste22 ‘== ste22 + dste22
¢ ste33 = ste33 + dstel3
c slel2 = stel?2 + dstel2
c
c dsttl) = dstell + dstd1l
¢ dstt22 = dste22 + dstd22
¢ dstt33 = dste33 + dstd33
C dstt12 = dstel2 + dstd12
C
¢ stt11 = stt1l + dstt1l
d si122 = stt22 + dstt22
C stt33 = stt33 + dstt33
C stt12 == stt12 + dstt12
¢ sttvol= sti]ll + sti22 + stt33
c

return

end
¢
c
¢
¢

subroutine matinv(aa,ainv)
c

¢ This subroutine inverts a given matrix and stores it in ainv.
c
c

double precision aa(3,3),ainv(3,3)

double precision b{5,10)

double precision temnp

integer n,i,j,j1,j2.k,kp1,L,km1,j2

n=3

do1li=Iln
do 1l j=1,n

1 b(i,j) = aali,})

c load right half of matrix b with unit matrix, -----==meemu-

jl =n +1
ji2=2%n
do 2 i=1.n
do 2 j=j1,j2

2 bfi,j) = 0.d0

C
C
C

do 3 i=1,n
j=1i+4+n
3 b(i,j) = 1.d0

start the pivotal condensation.

- 75 -

k names the pivotal row.
do 610k = 1,n

kpl =k + 1

if(k .eq. n) go to 500
=k

do 400 i = kpl,n

400 if(abs(b(i,k)) .gt. abs(b(1k))) I=

if(l.eq.k) go to 500
do 416 j=k,j2

temp = b(k,j
b(k)-—b(l
410 b(l,j) = temp
50()d0501=k ,Jj2
501 bik,) = bk,)) blick)
eq. 1) go to 600
kml-—-kl
do5101:1k1
do 510 j = kpl,j2

510 bl) = b D) 2b(i) * b(k)
k .eq.n) go to 700
600 do 610 i = kpl,n
do 610 j = kpl,j2
610 b(i,j) = b(i,j) - b(ik) * b(k,j)
700 do 701 1 = 1,n
do 701 j = 1,n
k=j+n
701 ainv(i,j) = b(i,k)

c
return
end
C
c
c
c234567
s .broutine principal(gstrain,nn,ij,elem,kk,eigen,vector)
c

¢ This subroutine links up to an eigenvalue solver program
¢ called dsyev available at the University of New Mexico.
¢ Eigenvectors are obtained for the transformation matrix.

C

double precision gstrain(40,4,3),A(3,3),work(50)
double precision vector(3,3), elcren(3)

integer nn,ij,elem,kk
A(1,1) = gstrain(elem,kk,1
A(lL,2) = gstrainéelem,kk,.?;
A(2,1) = A(1,2)
A(2,2) = gstrain(elem,kk,2)
A(1,3) = 0.0d0

- 76 -

A(2.2) = 0.040

A(3,1) = A(l1,3

A(3,2) = A(2,3

A(3,3) = -1.0 .
c

call dsyev(A,3,3,eigen,vector,work.1,info)

if(info.ne.0) write(6,*)’dsyev did not converge’
c

return

end
¢
c
c
234567

subroutine principall(A,eigenl,numeq,mass,numelm)
c

¢ This subroutine links up with dsyev for the determination
¢ of the minimum eigenvalue problem.

¢
double precision §5(200,200),A(200,200)
double precision vector1(200,200),eigen1{200)
double precision work(200),mass
integer 1,j,numeq,numelm
integer LIinfo
c
do 11 i=1,numeq
Il =i-1
do 10 j=i,numeq
1 = j-l
SSEi,j; = A(i.l)
SS5(J,1) = S5(i,j)

if(i.eq.j) then
SS(i,j) = SS(i,j) * mass/numelm
else
continue
endif
10 continue
11 continue
c
call dsyev(SS,numeq,numeq,eigenl,vectorl,work,0,info)
c

return
end

