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DISCLAIMER 
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1.0 INTRODUCTION 

In addition to this report, two publications discuss work performed under this contract. 
Reprints are included in Appendix A. The work documented in them is not included in 
the main body of this report. We wish to thank Bernadette Lerma for her expertise in 
typesetting this report. 

A significant problem in the design of high-energy free-electron lasers (FELs) centers on 
the technique for outcoupling the output beam. FELs with currently achieveable output 
power usually include a conventional stable resonator with output through a partially 
transmitting mirror. This outcoupling method will not work for arbitrarily high average 
power, so an alternate scheme must be found for high-energy FELs. A high-efficiency 
grating outcoupler is an attractive possibility because it can be included as an element of 
a grating rhomb to suppress the sideband radiation', but it is difficult to manufacture, 
particularly because it must withstand high average optical flux without suffering severe 
thermal distortion nor damage. Other suggestions include unstable resonators with an 
intracavity and unstable resonators with an intracavity focus and beam 
rotation.6 The intensity distribution at the intracavity focus of a negative-branch 
unstable resonator has side-lobes that would be scraped off by the faces of the wiggler 
magnets or by the beam tube through the wiggler, because the space between the faces 
of the wiggler magnets is too small to pass the side lobes and still allow the main lobe to 
have the optimum size for interaction with the electron beam.5 The resulting power loss 
would be significant. Therefore, it is desirable to develop another type of resonator for 
use with FELs. 

- 

The resonator that we have developed under this project is the compact-beam 
stable-unstable ring resonator (CBSUR). It is a stable resonator in one transverse 
dimension and an unstable resonator with an intracavity focus in the orthogonal 
transverse dimension. A scraper mirror outcouples the output beam from one side of the 
mode only. The resonator can be configured so that it has a small beam waist at the 
center of the wiggler in the stable direction and has an intracavity focus in the unstable 
direction. The half-width of the central lobe of the focus is approximately the size of the 

1 



stable beam waist. In the stable direction, the Gaussian amplitude distribution results in 
a small loss on the wiggler magnets, or on a beam tube that will fit within the wiggler, if 
one is used. The beam tube can have an elliptical shape to permit the passage of several 
side lobes in the unstable dimension. We have published the results of the numerical 
calculation of modes of the CBSUR'. A reprint is included in Appendix A. 

The integral equation is separable in Cartesian coordinates for the bare-cavity modes of 
an orthogonal8 resonator if the dominant apertures are rectangular. Therefore, a mode of 
the CBSUR is a product of the mode of a strip stable resonator with a strip 
compact-beam negative-branch unstable resonator, and the properties of these two 
resonators also apply to the CBSUR. 

The negative-branch unstable resonator is not an off-axis resonator in the usual sense 
that is applied to positive branch resonators. The output beam is scraped off only one 
side of the intracavity beam, but the optic axis is well within the geometric beam, and 
diffraction losses are not significant at the side of the beam opposite the scraper mirror. 
This is because the light rays cross to the opposite side of the resonator each round-trip 
pass, so the scraper mirror limits the beam on both sides of the mode even though only 
one side is clipped. This is in contrast to the positive-branch off-axis unstable resonator 
that has been studied p r e v i o ~ s l y . ~ * ~ ~  The use of a negative-branch strip resonator with a 
single-sided scrape was independently suggested by Jones, Cason, and Perkins for use in 
one or both transverse dimensions of an FEL1', subsequent to the submission of our 
proposal for this project in Feb. 1987. It was also independently proposed by A.E. 
Siegman.12 This resonator has been shown in our previous work to have the same modes 
as the unstable resonator with 90" beam rotation, and its properties were discussed and 
modes were calculated for application to that 

The geometry of the stable dimension is constrained by the requirement that the beam 
width at the mirrors must be much larger than at a beam waist. The stable dimension is 
an almost confocal stable ring resonator. This resonator was shown to be much less 
sensitive to mirror tilt than its standing-wave counterpart, the almost concentric stable 
resonator .15 
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Geometric Properties of Experimental CBSUR 

We tested a CBSUR, but with the laser gain provided by a flashlamp-pumped dye cell 
rather than an electron beam. We wanted to determine whether the resonator would 
operate with nearly diffraction limited beam quality and to determine the sensitivity to 
mirror tilt for comparison with values from simple ray-optical equations and from laser 
simulation codes. 

Our initial intent was to perform the experiments using a cylindrical telescope to provide 
beam expansion in the unstable dimension. We were unable to obtain cylindrical mirrors 
or lenses with the appropriate focal lengths, so we decided to introduce astigmatism at 
spherical mirrors to differentiate between the stable and unstable dimensions. A top view 
of the resonator is shown in Fig. 1. This projection shows the unstable dimension of the 
resonator. It is convenient to use a separate coordinate system for each segment of the 
resonator, as is shown in Fig. 1. The z coordinate is always along the direction of 
propagation of the mode, and y is always vertical. The angle of incidence of the 
resonator beam was 10" at both of the spherical mirrors. The focal length for tangential 
rays, which applies to the unstable dimension, is 

ft = rc0~(8)/2 = 344.68 

and the focal length for saggital rays, which applies to the stable dimension, is 

fs = r/(2cos(B)) = 355.40 

The angle was selected to allow stable operation in the y dimension, with a beam size of 
about w = 5 mm in the expanded region, Region 2. The other goal was unstable 
operation in the x dimension, with resonator magnification around M = 1.3 or A4 = 1.4. 
The condition for stable-unstable operation was, j" < L1/2 < fs. 
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Figure 1. Top view of compact-beam stable-unstable resonator (CBSUR). Light rays at 
the geometric edges of the beam are shown. It is apparent that the scraper 
mirror also limits the edge of the beam opposite it because the rays change 
sides each round trip. The mode reflects from each of the two spherical 
mirrors, MI and M4, with a 10" angle of incidence. Their focal lengths are 
both 350.0 cm. The off-axis angle results in an effective focal length of 
ft = 344.7 cm for rays in the tangential plane (the x , z  plane), which are 
shown in this projection. The dimensions for the initial setup were 
L1a = Lzc = 220.79 cm, Llb = 268.42 cm, and La = 146.52 cm. After setting 
up the resonator with these dimensions, the desired stable beam width of 
w = 0.49 cm in Region 2 was obtained by moving Mirrors MI and M2 outward 
by 1.975 cm each giving L1a = 224.50 cm, Llb = 270.4 cm, L1, = 220.79 cm, 
and LZ = 148.50 cm. This design can be modified to locate the 
tangential-plane focus at the saggital-plane beam waist by replacing M3 with a 
cylindrical mirror; see Fig. 22. 
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Beam Geometry in Stable Dimension 

A y, z projection of the resonator, with the spherical mirrors shown as lenses, is sketched 
in Fig. 2. This projection shows the stable dimension. The stable-resonator mode is 
symmetrical about the two planes where the beam waists occur. The equations for the 
propagation of a Gaussian beam can be used to derive the Gaussian-beam widths in the 
vertical dimension at various locations in the resonator. A first-order treatment was 
given in Ref. 15. An exact unobsecured Gaussian-beam treatment results in a significant 
difference for the geometry of our experiment, so we apply it here. We will now derive 
the equations for the sizes of the two beam waists. Once these are known, the 
Gaussian-beam size at any plane in the resonator can be found. Region 1 has a 
symmetrical mode with beam size wm at mirrors MI and M4, and Region 2 has a 
symmetrical mode with beam size wm at mirrors MI and M4. The radius of curvature C1 
of the wavefronts of the optical beam immediately adjacent to mirror MI in Region 1 
must be related to the radius of curvature C2 of the wavefronts immediately adjacent to 
mirror M2 in Region 2 by the equation, 

1 1 1  c+c=f t 3) 

Applying these conditions, we outain the g parameters for t,,e equivalent standing-wave 
resonators, 

where g2 is obtained by interchanging L1 and L2 in Eq. 4, and the g parameters are 
defined to be 

The usual equation for the beam waist in a symmetrical resonator applies, 
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Figure 2. The envelope of the light beam that constitutes the laser mode shown in the 
saggital planes (the y,z planes). The envelope of the beam at the distance of 
the Gaussian beam half-width, w ,  from the central axis is traced by two lines. 
One period of the periodic lens train equivalent to the resonator is shown. The 
effective focal length of each of the two concave mirrors for light rays in the 
saggital planes is 355.4 cm. The unperturbed resonator has a small beam 
waist at the center of Region 1 and has a large waist at the center of Region 2. 
The beam is effectively collimated in Region 2 because its Rayleigh range is 
orders of magnitude larger than Lz. 
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as does the usual equation for the beam size where the end mirrors would be in the 
equivalent standing-wave resonators, at MI and M4, 

Plots of the sizes of the beam waists as a function of the segment lengths, L1 and L2, 
provide an indication of the sensitivity of the mode geometry to variations in these 
parameters. The beam waist in the shorter segment is always larger. Figure 3 shows the 
size of the small waist as a function of L1 for three values of L2. The middle value of L2 
was the value initially selected for the experiment. The small waist size approaches zero 
as L1 approaches 2fd, while it is not particularly sensitive to changes in L2, provided that 
L2 is enough smaller than L1. Curves of the large waist size as a function of L1 are 
shown in Fig. 4. The large waist size approaches infinity as L1 approaches 2 fa. 

Beam Geometry in Unstable Dimension 

An x - z projection of the resonator mode is shown in Fig. 5. The unstable mode has an 
intracavity focus at point c1, and the center of curvature of the mode in Region 2 is 
located at c2. The geometry of the mode is derived from the conditions that the image of 
c1 seen in Mirror M4 

1 1 1  

is at c2, and the image of c2 seen in Mirror MI is at c1. Thus, 

(8) 

and 

1 - -  - 1 1 + 
L2 - d2 L1-d l  f l  

The solution is 

(9) 
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Figure 3. Curves showing the size of the small waist as a function of L1. The values of 
Lz from bottom to top are 2.0 cm, 146.5 cm, and 291.0 cm. The middle curve 
corresponds to the initial configuration for the resonator. The waist size 
approaches zero as L1 approaches twice the effective focal length of the mirrors. 
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Figure 4. Curves showing the size of the large waist as a function of L.1 .  The values of 
Lf, from bottom to top are 291.0 cm, 146.5 cm, and 2.0 cm. The middle curve 
corresponds to the initial configuration for the resonator. 
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Figure 5. One period of the periodic lens train equivalent to the tangential plane of the 
resonator. The geometric optical size of the feedback beam is b, and the size of 
the beam incident on the outcoupling plane is Mb in this dimension. The 
center of curvature of the light beam in Region 2 is at c2, and the intracavity 
focus is at c1. 
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where 

The magnification of the resonator is defined to be the beam width immediately before 
the scraper mirror divided by the beam width immediately after the scraper mirror, as 
shown in Fig. 5.  It is given by 

Curves of the magnification as a function of Lz are shown in Fig. 6. The curves 
correspond to three different values of L1, and the middle curve corresponds to the initial 
design for the resonator. 

An important geometrical parameter of the unstable resonator mode is the equivalent 
Fresnel number. The equivalent Fresnel number is indicative of the influence of 
diffractive effects on the resonator mode. A higher equivalent fresnel number indicates 
that the intensity of the optical beam falls off more sharply at its geometric edges. The 
feedback ratio as a function of the equivalent Fresnel number, with the magnification 
kept constant, is quasiperiodic with local maxima near half-integer values. The difference 
between the barecavity feedback ratios of the lowest loss and second lowest loss modes is 
also a maximum for values of the equivalent Fresnel number near half-integers. 

To illustrate the dimensions that determine the equivalent Fresnel number, Fig. 7 shows 
the projection of the laser beam on the z ,z  plane with dimensions labeled that are not 
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Figure 6. Magnitude of resonator magnification, M ,  as a function of L1 for three values 
of Lz. The values of L2 from bottom to top are 291.0 cm, 146.5 em, and 
2.0 cm. The magnification is negative. 
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Figure 7. One period of the periodic lens train equivalent to the tangential plane of the 
resonator. The transverse geometric optical beam sizes at various planes are 
shown. These are used in calculating the equivalent Fresnel number. 
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shown on Fig. 5. A Fresnel number can be defined for each beam segment with a 
constant center of curvature. From left to right starting with the scraper mirror, they are 

and 

The overall Fresnel number for the resonator is 

and the equivalent Fresnel number can be defined in terms of the overall Fresnel number 

Equations 16 and 17 clearly apply to conventional symmetrical resonators.16 The 
fundamental derivation of the equivalent Fresnel number for negative-branch resonators 
with a compact output beam is given in Ref. 14. Equation 17 gives the same result as 
this derivation. The derivation in Ref. 14 is based on Anane'ev's explanation" of the 
quasi-periodicity of the resonator eigenvalue based on the phase of the ray of the edge 
wave from the feedback aperture that goes into the converging wave of the resonator. 
The equivalent Fresnel number of the design for our experimental stable-unstable 
resonator is Neq = -1.3. 

A resonator with a negative equivalent Fresnel number has the same intensity 
distribution and eigenvalue spectrum as a resonator with a positive value with the same 
magnitude.s Curves showing the magnitude of the equivalent Fresnel number as a 

14 



20.0 

15.0 

10.0 

5.0 

0.0 I I 
700.0 710.0 720.0 730.0 

Figure 8. Magnitude of equivalent Fresnel number divided by u2 as a function of L1 for 
three values of L2. The scraper mirror was assumed to be located 2/3 of the 
way from Mirror M .  to Mirror MI. The precise values of Lza and L2b used in 
the experiment were not measured. The values of Lz from bottom to top are 
2.0 cm, 146.5 cm, and 291.0 cm. The equivalent Fresnel number is negative. 
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function of L2 are given in Fig. 8. The three curves correspond to three values of L1; the 
middle curve corresponds to the design value for the resonator. 

Experimental Configuration 

For misalignment experiments, the apertures at the two ends of the wiggler were 
simulated by two slits with diameter 0.056 cm placed 14 cm on either side of the small 
beam waist. The size of the small beam waist for the experimental configuration was 
wo = 0.0135 cm, and the beam size at the apertures was wo = 0.024 cm. 

The resonator was stable in the vertical dimension and unstable with a magnification of 
A4 = 1.37 in the horizontal dimension. Figure 1 shows the resonator viewed in the 
horizontal plane. Figure 2 shows the unfolded resonator viewed in vertical planes that 
contain the optic axis. 

The output beam was taken from one side of the beam only by an output scraper mirror. 
To minimize the effect of the scraper edge on the beam quality, a mirror segment 
fabricated for use in a segmented adaptive mirror was used. The segment was a 1.65 cm 
square dielectric coated flat with better than A/40 rms surface figure, averaged over the 
entire aperture (as opposed to the usual specification over the central 80% of the clear 
aperture). The substrate blank was machined to f 0.0005”, with no bevel, chip, or edge 
irregularities of more than 0,001”. The outcoupled beam was rectangular, measuring 
approximately 1.0 cm in the vertical and 0.2 cm in the horizontal. These dimensions are 
determined by the size of the stable mode at the scraper and by the unstable-resonator 
magnification and the distance from the optic axis to the edge of the scraper mirror, 
respectively. The beam is nearly collimated in the region between MI and M4, in which 
the scraper is positioned. 

The gain medium was a coaxial flashlamp-pumped Candela SLL-500 pulsed dye laser, 
operating on a 2.0 x molar concentration of R-590 perchlorate in a 50/50 mix of 
reagent grade methanol and water. The SLL-500 comes with a standard Fabry-Perot 
resonator consisting of two flat mirrors, one of them with 20% reflectivity. In this 
standard configuration, the laser characteristics are listed in Table 1. 
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TABLE 1 

Wavelength 

Output energy* 

Maximum repitition rate 

Pulse duration 

Divergence 

Length of gain region 

590 nm 

1.25 J/pulse 

0.5 Hz 

500 ns 

2.5 mr 

43.2 cm 

* Operation at derated flashlamp input for increased lamp life. 

The standard flat-flat resonator was removed and the CBSUR was constructed with X/2O 
flats and X / 1 0  concave mirrors, dielectrically coated for a center wavelength of 590 nm. 
M2 and Ms were 2” flats. MI and M4 were concave mirrors that were 2” in diameter 
with the same focal length of 350.0 f 0.5 cm. A Foucault knife-edge measurement was 
made to verify the focal lengths and surface figures of the spherical mirrors. 

The small Gaussian-beam waist in the stable dimension occurred approximately halfway 
between M2 and Ms and was predicted to be wo = 0.0158 cm for the initial resonator. 
The final resonator dimensions were dictated by physical constraints imposed by the 
table area, available optics, and the need to keep the beam waist out of the dye cell. Due 
to the pumping distribution of the flowing dye, some lensing occurred in the gain 
medium, with the effective focal length changing during the pulse. Care was taken to 
prevent damage to the laser head due to this effect. 

To compensate for the effect of the index of refraction of the dye and the lensing effect, 
the length of the resonator was expanded by translating mirrors MI and M2 parallel to 
the axis between M2 and Ms. The resonator was expanded along this axis until the 
stable-unstable condition was observed. The beam diameter expanded dramatically in 
the region between Ml and M4 when the stable-unstable condition obtained. Near the 
stable-unstable condition, adjustment of the mirrors by just a few mm made a large 
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difference in the beam width in this region. When the resonator was running 
stable-stable, prior to adjustment of the ring perimeter, the beam half-width in at mirror 
MI in the stable dimension was tu = 0.1 cm. Upon achieving the proper compensation 
for the refractive index in the circulating dye, a half-width of w = 0.49 cm was obtained. 
A value close to w = 0.5 cm was desired. It was demonstrated that, despite the extreme 
sensitivity of the resonator to the length between the concave mirrors of the region with 
the small beam waist, the resonator could be adjusted to compensate for perturbations 
with magnitudes that were not precisely known. 

Rough alignment was achieved by passing the output from a 1.5 mW Lansing HeNe 
alignment laser through the back of A44 at the location desired for the optic axis. The 
mirrors were adjusted until the HeNe beam was centered on the mirror surfaces and 
through the gain tube. Then a final adjustment was made to cause the beam to 
reproduce its path after a round trip in the resonator. The optic axis was kept planar to 
within a tolerance of 0.5 mm. 

The lowest flashlamplamp voltage for which lasing occurred reliably was 17 kV. The 
experiments were done at a slightly higher voltage to preserve the low-power dielectrec 
coatings on some of the mirrors. 

Output Energy and Near-Field Intensity Distribution 

A slit was placed at the small beam waist of the resonator. It was oriented horizontally 
to reject nonzero order modes in the stable dimension. The position and size of the slit 
were adjusted to maximize the output energy while obtaining an intensity distribution at 
MI corresponding to a Gaussian beam. It was found that a slit width of 0.4 mm worked 
well. We measured the pulse energy and spatial distribution of the laser output, and the 
spatial and temporal distribution of the field at MI. 

We studied the temporal behavior of the resonator using EG&G FND-100Q photodiodes 
on fast 50 52 microstriplines and an internally triggered Tektronix 7844 dual-beam 
storage scope. With the microstripline configuration, the FND-100Q has a rise time of 
< 1 ns and a response of 0.4 A/W at 590 nm with a 70 V bias. With a 50 52 load, its 
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response is 0.02 V per 1 mW of incident laser light. The temporal developement of 
sidelight fluorescence from the dye head is shown in Fig. 9. The power near MI is shown 
in Fig. 10. 

The output pulse energy was measured with a Gentech E200 energy detector and a 
PRJ-A monitor. Lasing occurred in both directions around the ring. Output properties 
were obtained for both directions by changing the position and orientation of the scraper 
mirror. Beam profiles were essentially the same, but the output energy measured in the 
direction indicated in Fig. 1 was approximately 1.5 mJ per pulse higher. All 
measurements were made using this scraper position unless otherwise noted. The pulse 
energy with the scraper in this position was 8.30 mJ f 0.05 mJ, corresponding to 
approximately 16.6 kW power averaged over the pulse length. Measurements were made 
and averaged over 100 pulses. 

The spatial characteristics of the resonator were studied using a Reticon 1024-G linear 
photodiode array and a RD-2 digitizer. The array has 1024 elements with a spacing 
between adjacent elements of 24.8 pm from center to center. Figures 11 and 12 are traces 
of the beam intensity profiles off the scraper in the unstable (horizontal) and stable 
(vertical) dimensions. The output appears to correspond to a Gaussian beam in the 
stable dimension and has diffractive structure in the unstable dimension. Figures 13 and 
14 are traces of the beam intensity profile taken at MI in the stable and unstable 
dimensions. 

Beam Quality Measurements 

Pure astigmatism can be corrected by a cylindrical mirror or lens or by off-axis reflection 
from a spherical mirror. We wanted to determine the beam quality of the CBSUR if it 
were corrected for astigmatism. This was done by locating a slit at one of the two line 
foci corresponding to the stable and unstable directions. The fractional (peak) power 
passing through a vertical slit at the vertical line focus gave the beam quality in the 
unstable (horizontal) dimension. The fractional power passing through a horizontal slit 
at the location of the horizontal line focus gave the beam quality in the stable (vertical) 
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Figure 9. Sidelight fluorescence as a function of time. The trace is the output of a fast 
photodiode placed alongside the flashlamp and dye cell. 

Figure 10. Laser power at Mirror MI as a function of time. A beamsplitter that reflected 
9% of the incident power was placed in the resonator at MI and the output 
was focused onto a fast photodiode. 
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Figure 11. Beam intensity reflected from the scraper mirror as a function of 5, showing 
the intensity profile in the unstable dimension. A horizontally oriented 
1024-element photodiode array was placed 4” from the scraper. 

Figure 12. Beam intensity reflected from the scraper mirror as a function of y, showing 
the intensity profile in the stable dimension. A vertically oriented 
1024-element photodiode array was placed 4” from the scraper. 
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Figure 13. Beam intensity at Mirror MI as a function of z, showing the mode profile in 
the unstable dimension. A beamsplitter with a total reflectivity of 9% was 
placed 2” in front of MI. The trace is the output from a 1024-element 
photodiode array placed 6” from the beamsplitter and oriented horizontally. 

Figure 14. Beam intensity at Mirror MI as a function of y, showing the intensity profile 
in the stable dimension. A beamsplitter was placed 2” in front of MI.  The 
trace is the output from a 1024-element photodiode array placed 6” from the 
beamsplitter and oriented vertically. 
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dimension. The overall beam quality was the product of the values in the vertical and 
horizontal directions. 

If the gain medium were not present, the beam in Region 2 of the resonator would be 
perfectly collimated in the vertical transverse dimension. The horizontal line focus would 
then occur at a distance of 300 cm from the focusing mirror. The focus of the beam in 
the unstable dimension would be closer to the focusing mirror. The gain medium had the 
effect of a positive lens, causing the beam to converge in both the horizontal and vertical 
transverse dimensions in Region 2. Each line focus was located by moving the reticon 
array along the beam until the best focus was found. The slit was placed at this location. 
The diagnostic layout we used for the beam-quality measurements is shown in Fig. 15. 

Beam Quality in Unstable Dimension 

The output from the resonator reflected from a mirror with a 3-meter focal length and 
came to a focus at a distance of 270.5 cm from its surface. The output beam from the 
laser had an irregular shape that made it difficult to directly measure its width, Do for 
use in beam quality measurements. We derived a geometric width of 0.301 cm. This was 
obtained by measuring the width of the resonator mode at mirror MI and correcting for 
the beam convergence in passing from the scraper mirror to MI. The output beam width 
was obtained from the width of the feedback beam by substituting the nominal value of 
the magnification, M = 1.357, into the equation Do = (M - 1) Dfb. The output beam 
converged with a radius of curvature of R, = 3051 cm. This value was obtained from the 
location of the beam focus distance: d = 270.5 cm past the 3 m focusing mirror. The 
width of the output beam at the 3 m focusing mirror was d = 0.272 cm. A slit was placed 
at the focus and a photodiode was placed behind it. The (peak) power through the slit 
divided by the output (peak) power of the laser was measured for several values of the 
slit width. The data are plotted in Fig. 16 with a curve showing the integrated intensity 
that would result if a beam of width 0.272 cm with uniform intensity and parabolic 
wavefronts were brought to a focus at that location. The width of the central lobe for the 
ideal uniform-intensity beam is 0.117 cm. This would contain 0.903 of the power. The 
actual fraction of the power in this width, obtained by interpolating between grid points, 
was 0.846. The beam quality is the ratio of these, nu = 1.07 in the unstable dimension. 

23 



Normalization 
Channel 

Photodiode To 
Oscilloscope 

Horizontal 
Slit To 

\ - g - - 0  s c i 11 os c op e 

3 m  ' Photodiode 
Vertical 

Slit 

0.4 cm Horizontal 
Slit at Beam Waist 

Figure 15. Diagnostic layout for beam-quality measurements. The horizontal slit for the 
measurement of the beam quality in the stable dimension was at 213.4 cm 
from the 3 m mirror. The vertical slit for the measurement of the beam 
quality in the unstable dimension was at 270.5 cm from the 3 m mirror. 
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Figure 16. The plotted points give the fractional power through a vertical slit at the 
vertical line focus as a function of the slit width. The total output power was 
determined for each shot by splitting the output beam and measuring the 
total power in one branch. The curve gives the fractional power that would 
pass through the slit for an output beam with uniform intensity and ideal 
cylindrical wavefronts in the unstable dimension. 

25 



Beam Quality in the Stable Dimension 

The focus in the stable dimension occurred at a distance of 213.4 cm from the 3 m 
mirror. This corresponds to a converging output beam with a radius of curvature of 
R, = 1038.8 cm. The Gaussian-beam width at mirror MI was w1 = 0.49 cm, which 
corresponds to a width of w3 = 0.363 cm at the 3 m mirror. A horizontal slit was placed 
at the location of the focus with a photodiode behind it. The (peak) power through the 
slit was measured as a function of the slit width. The power through the slit was divided 
by the laser output power. The results are shown in Fig. 17. The solid curve shows the 
normalized integrated intensity for an ideal Gaussian beam with a width of 0.363 cm at 
the 3 m mirror. We define a beam quality in this dimension by selecting a slit width that 
would let 0.900 of the power pass for an ideal Gaussian beam. The width is 0.0182 cm. 
Interpolating between data points, we obtain a measured fraction of 0.80 of the incident 
energy through the slit. The beam quality is n, = 1.13. The square of the overall beam 
quality is the product of the stable and unstable values, n2 = 1.21, and the beam quality 
is n = 1-10. 

Sensitivity to Mirror Tilt 

Two slits were located 14 cm on either side of the beam waist in order to simulate the 
apertures at the ends of the wiggler magnets in a free-electron laser. The decrease in 
output (peak) power as a function of the tilt of mirrors MI and M2 about horizontal axes 
was determined. Tilt that misaligns the mode in the stable dimension was studied 
because a free-electron laser would be more sensitive to tilt in this dimension due to 
clipping of the light beam at the end of the wiggler gap. Figure 18 shows the diagnostic 
layout for these measurements. Before the misalignment measurements, a set of data was 
taken to try to obtain an indication of the small-signal gain of the dye head. The 
horizontal edge of a plate was lowered into the beam in the expanded region to determine 
the decrease in output power as a function of the location of the edge of the plate. For all 
three sets of data, the voltage across the flashtubes was set to 18 kV, near the lowest 
value for which the laser would lase reliably in the aligned condition. 
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Figure 17. The plotted points give the fractional power through a horizontal slit at the 
horizontal line focus as a function of slit width. The curve gives the power 
that would pass through the slit for an ideal Gaussian beam. 
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Figure 18. Diagnostic layout for determining the sensitivity to mirror tilt. Two 
horizontal slits were symmetrically located 14 cm from the small beam waist. 
The beam from a HeNe laser was reflected from each mirror that was tilted 
and its position on a reticon array gave the tilt angle. 
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The output power as a function of the distance from the bottom edge of the plate to the 
resonator optic axis is shown in Fig. 19. The optic axis location was obtained using a 
HeNe beam that was injected into the resonator and made to correspond to the optic 
axis during the alignment procedure. The resonator alignment was adjusted until the 
injected beam retraced its path after a round trip through the resonator. The heating of 
the dye during the laser pulse and the dependence of the index of refraction of the 
windows and dye on the wavelength may have resulted in a laser mode with a slightly 
different optic axis than that given by the HeNe beam. The points plotted on Fig. 19 are 
the experimental data. The solid and dashed curves were calculated using a laser 
simulation code. The product of the small-signal gain with the length of the dye tube, 
go L,, is equal to 1.0 for the solid curve, and go L, = 2.0 for the dashed curve. The sharp 
drop in the measured output power at 0.1 cm from the optic axis seems to favor the 
lower value for the gain. The laser simulation code is described in more detail below. 

The measured output power as a function of the tilt angle of mirror MI is shown in 
Fig. 20. The solid and dashed curves were calculated using the laser simulation code with 
go L, = 1.0 and 2.0, respectively. The computer model agrees with the experimental data 
very well, predicting values of the misalignment that are essentially the same as 
measured values corresponding to the same relative output power up to a tilt angle of 
about 17 prad. 

The simulated and measured values of the output power as a function of the tilt of 
mirror M2 are shown in Fig. 21. The angle corresponding to a given loss is much larger 
than for mirror M I .  The simulated curves agree reasonably well with the measured 
values, but give a tolerance that is somewhat larger for a given power loss. 

Computer Simulation of Experimental Laser 

A strip-resonator code was used to simulate the laser with misalignment in the vertical 
direction. The stable transverse dimension was simulated using a diffractive code, and 
the outcoupling was included by normalizing the field to reduce the circulating power to 
a factor of 0.73 of the incident power at the location of the outcoupling mirror. A simple 
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Figure 19. Fractional output power as a function of the location of the horizontal edge of 
a plate that was lowered into the laser beam in Region 2. The points give the 
experimental data and the curves were calculated using a diffractive 
computer code. The solid and dashed curves correspond to SOL, = 1.0, and 
SOL, = 2.0, respectively. 
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Figure 20. Fractional output power as a function of the tilt angle of Mirror M I .  The 
points give the experimental data and the curves were calculated using a 
diffractive computer code. The solid and dashed curves correspond to 
goLo = 1.0, and SOL, = 2.0, respectively. 
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Figure 21. Fractional output power as a function of the tilt angle of Mirror Mz. The 
points give the experimental data and the curves were calculated using a 
diffractive computer code. The solid and dashed curves correspond to 
g& = 1.0, and SOL, = 2.0, respectively. 
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saturable gain algorithm was included to represent the dye laser head, and the gain was 
lumped at a single transverse sheet at its center. 

To check the diffractive propagation code, we calculated the size of the beam at one of 
the spherical mirrors and at the small waist of a ring resonator that was not as close to 
the boundary of stability as the nearly confocal resonator that is the subject of this 
report. Our reason for selecting a different resonator was that the mode of a resonator 
that is near the boundary of stability is changed significantly by the finite apertures that 
must be included in a diffractive calculation (and in a real laser). The correct answer for 
the diffractive code would not necessarily agree with the ideal aperture-free 
Gaussian-beam theory. The results for a ring resonator with L1 = 660 cm, L2=400 cm 
and mirror focal length fi = fr = 400 cm were compared with the values obtained from 
the Gaussian-beam equations discussed above. The waist size calculated using 
Gaussian-beam theory was 0.8127 mm, and the value obtained from the bare-cavity 
diffractive code was 0.8148 mm. The beam size at the mirror was 1.438 mm using 
Gaussian-beam theory and 1.444 mm using the diffractive code, which is very good 
agreement. The number of grid points used in this comparison was 256. 

The propagation algorithm used in the code was the kernel-averaged fast Fourier 
transform algorithm developed by Phelp~.'~1~' In our experience, accurate answers can be 
obtained for problems in which the field is clipped near a focus with fewer grid points 
than are required using the more conventional algorithm of Sziklas and Siegman.20 An 
expanding coordinate system16t2' was used to match the size of the calculational grid to 
the size of the beam at planes where the field was evaluated. The number of grid points 
used in the calculations was 1024. 

Modified configuration with the unstable focus at the location of the stable waist 

The resonator shown in Figs. 1 and 2 is adequate to compare theory and calculations 
with the performance of the compact-beam stable-unstable resonator, but it would 
probably not be desirable to use a scaled version of this exact configuration in a FEL. 
The problem is, the intracavity focus of rays in the tangential plane (unstable dimension) 
does not occur at the same location as the focus of rays in the saggital plane (stable 
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dimension). Many modifications are possible to correct this situation. A negative 
cylindrical mirror oriented so that it causes additional divergence of rays in the tangential 
plane can be substituted for mirror M3 of Fig. 1. The modified resonator is sketched in 
Fig. 22. The focal length of the cylindrical mirror is selected so that the intracavity focus 
occurs at the center of Region 1. For our initial configuration, the focal length required to 
move the focus to the center of section L1b  is f 3  = -758.6 cm. However, the magnification 
is reduced to A4 = -1.156. The magnification can be made larger by increasing the angle 
of incidence of the beam at each of the spherical mirrors. For example, an increase from 
10" to 15" requires the lengthening of region L1 from 710.000 cm to 723.895 cm to keep 
2f,-L1 the same so that the stable mode waist size is essentially the same as for the 
initial resonator. If we select L1, = L1, = 220.0 cm giving La = 97.2 cm, a magnification 
of M = -1.31 results, and the focal length required for the cylindrical mirror replacing 
M3 is f3 = -304.1 cm. Configurations with higher magnification are possible by further 
increasing the angle of incidence at the spherical mirrors. 

The equations for the centers of curvatures of the mode are simpler than than the 
corresponding equations not including the cylindrical mirror, Eqs. 8-10. 

Only linear equations result because the location of the intracavity focus is known 
initially. Let dl be the distance from mirror M4 to the center of curvature of the beam in 
Region IC; a positive value corresponds to an expanding beam. Let d2 be the distance 
from mirror M4 to the center of curvature of the beam in Region 2; a positive value 
corresponds to an expanding beam. Also, define h = 0.5 L1. The equation for d2 is 

1 1  + - = -  
L2 + d2 h ft 

1 

and dl  is obtained from 

and the equation for f3 is 
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Figure 22. Resonator configuration similar to the experimental setup, but with a 
cylindrical mirror substituted for a flat to move the intracavity focus in the 
tangential plane to the location of the Gaussian beam waist in the saggital 
plane. 
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These equ tions were obt ined by imaging the center of curvature of a segment of the 
mode through the intervening optical element to obtain the center of curvature of the 
next segment. The resonator magnification is the product of the individual values for the 
segments, 

M = - ("t") ( L2Ld2) ( dl - Llc ) dl 

Other resonator configurations with the tangential intracavity focus occuring at the 
saggital beam waist are possible. A configuration involving two extra mirrors is sketched 
in Fig. 23. This configuration has the advantage that the output beam would not have to 
be corrected for astigmatism. The angle of incidence is adjusted so that in the saggital 
plane, the spherical mirrors are almost confocal, at a point centered between the two flat 
mirrors. In this dimension they both have effective focal length fa that is slightly too 
large for them to be confocal. In the tangential plane, shown in Fig. 23, the spherical 
mirrors are exactly confocal (using the effective focal length) at the point halfway 
between the two flat mirrors. The cylindrical mirrors form a confocal telescope. Then the 
output beam is collimated and has no astigmatism (assuming that the Gaussian beam 
width in the saggital planes at the spherical mirrors is much larger than the small beam 
waist). 
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Figure 23. Version of the CBSUR with a cylindrical telescope in the expanded segment. 
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ABSTRACT 
free electron laser (FEL) simulation code FELEX is used to examine the operatia of stable-u stable 

FEL resonators. These resonators are stable along one transverse axis and unstable along the orthogonal 
transverse axis. The simulations utilize a ring resonator with an intracavity focus in the unstable plane 
near the center of the wiggler (close to  the same axial position as the waist in the stable plane) thereby 
enhancing the coupling between the optical and electron beams. Asymmetric output scraping is performed 
in the back leg of the ring using a reflective mirror inserted from one side of the unstable axis. Resonators 
with relatively low equivalent Fresnel number (INep/ 5 10) and magnification (lMzl 7 1.2) are examined. 
Optical characteristics including the cavity mode profile at various positions inside the resonator are shown. 

1. INTRODUCTION 

The construction of laser oscillators with very high circulating powers requires the use of totally re0ective 
optical elements. Such elements minimize the absorption of optical power and allow for mirror substrate 
cooling across the entire mirror aperture. Stable resonators employing these optical elements can only be 
out-coupled using either diffractive elements', halo scrapers or hole couplers. Unfortunately, each of these 
techniques suffers from at least one drawback. Diffraction gratings of significant size are difficult to fabricate 
and have significant losses; halo scrapera produce annular output beams that have inferior focus intensities 
and hole couplers produce a loss of on-axis intracavity intensity that reduces laser efficiency. One can avoid 
the use of these techniques by allowing the cavity geometry along one transverse axis to become unstable, 
such that an output coupling scheme previously described 2-5 can be employed. This scheme involves 
asymmetrically scraping one edge of the ciculating optical beam as shown in Figure 1. The position of the 
scraper edge dictates the size of the optical mode along the unstable axis. Since the cavity has a focus in 
the unstable plane, output scraping of only one side of the optical beam is required to limit the mode size 
at both edges. This is a consequence of the field inversion that occurs at the focus. Thus, each edge of the 
mode is scraped on every other pass through the cavity. This output coupling scheme also has the advantage 
that a filled-in output beam is produced which propagates to a central peak in the far field. 

A study has been undertaken to examine the properties of this type of resonator for free electron laser 
applications. The three-dimensional code FELEX6 is being used to  model both the optical propagation 
in the resonator and the interaction of the optical mode with the electron beam inside the wiggler. In 
Section 2 initial simulations are compared to previously published unstable cavity mode profiles for code 
validation purposes. These simulations include linear and ring geometries with and without intracavity foci. 
Simulation of the cavity of a stable-unstable dye laser currently in operation is conducted in Section 3. 
Subsequent simulations of the stable-unstable resonator with a FEL as the active gain medium are given in 
Section 4.- 

2. BARE-CAVITY SIMULATIONS 

Prior to this work, FELEX was primarily used to investigate the operation of FELs employing stable 
resonators. One primary difference between stable and unstable resonator simulations is the high transverse 
spatial frequencies introduced by aperturing (or scrapinK) in the unstable direction. Owing to the discrete 
nature of the simulation, the discontiiiuity in the optical field imposed by these apertures can give rise to  
aliasing of the field at subsequent propagation locations. The following three techniques were used to control 
these high spatial frequency components. 
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0 Aperture Apodization: the transmission (T) of the optical field near the edge of hard apertures was 
changed from a step function to a smoothly varying sinusoidal function of the form 

where zap is the location of the aperture edge and hap is the half-width of the apodization region. The 
half-width is specified by an integer number of grid points and was typically 2 to 4 depending on the 
grid resolution. Although the field values on the grid are a piecewise approximation of the expression in 
Eq.(l), significant reductions in aliasing can be achieved with apodization over just a few grid points. 
Care was taken to keep the half-width of the apodization region small enough so that the physics of the 
problem being studied was not altered. The cavity mode would be significantly changed if the deviation 
in the radius of the aperture introduced by the apodization modified the equivalent Fresnel number of 
the resonator by unity. Therefore, the half-width of the apodization was chosen to keep AN,, < 1. 

Spatial Fkequency Filtering: The algorithm used to propagate the optical field in free-space involves the 
use of fast Fourier transforms (FFT). In transform space the large wavenumber values will appear at the 
edges of the 2-D field array. These large wavenumber field components can be suppressed by applying 
an apodized "wavenumber aperture" to the electric field transform array. In FELEX this filter has the 
form 

where k,,, is the maximum wavenumber allowed by the grid such that k a p / h ,  is the normalized 
input wavenumber specifying where the filtering begins. As with the spatial apodizer, one must take 
care not to change the problem by excessively filtering in Fourier space. A reasonable guideline for the 
truncation of spatial frequencies is given by 

Fresnel zone 
5 Amin I (3) 

where Amin is the shortest transverse wavelength remaining after filtering. When employed, this filtering 
procedure is performed at  each propagation step through the resonator. 

Aperturing at  a Focus: Since the optical field profile at a focus is just a scaled version of the Fourier 
transform of the electric field, one can filter out the high frequency spatial components by introducing 
an aperture a t  the focus that scrapes off the wings of the field. The application of this technique differs 
from the above case in that the truncation of the higher spatial frequencies is imposed more abruptly 
and at only specific positions in the resonator. 

Cavities with low equivalent Fresnel numbers were modeled using one or more of the previously described 
filtering techniques to  control aliasing. Low Fresnel number cavities were chosen to minimize the amount 
of transverse resolution required to adequately resolve the problem. A transverse grid of 128x128 was 
commonly used. The propagation algorithm used an expanding grid coordinate system, similar to that 
described by Sziklas and Siegman'. The size of the grid was initially set equal to 2.5 times the geometric 
size of the beam in the resonator. When modeling resonators with symmetric scrapers, an interpolator was 
used to magnify the remaining field, thereby maintaining optimum resolution. 

The mode profile obtained was in close agreement with that given by Rensch and Chesters. 
As an initial test case, a symmetric standing-wave resonator with M = 1.42 and Ne, = .52 was chosen. 

Next, an attempt to  model a confocal ring resonator with M = -1.42,'and Neq = -3.12 was made. 
The ring configuration is shown in Figure 2. Note that the ring incorporates transmissive optics while an 
actual high-power resonator would employ cylindrical or spherical mirrors. Although the ring has a negative 
magnification and equivalent Fresnel number (owing to the intracavity focus), the mode pattern at  the output 
scraper will be identical to the mode pattern on either mirror of a positive branch symmetric resonator if the 
magnitudes of M and Ne* for the two resonators are identical. To calculate the Resne1 number of the ring 
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we use the property' that the reciprocal of the cavity Fresnel number is equal to the sum of the reciprocal 
Fresnel numbers of the individual segments of the cavity. With the help of Figure 2, the collimated Ftennel 
number of the ring can be expressed 

where a is the aperture half-width. Using this relation in conjunction with the expression for Ne, given by 

M z - 1  
2M2 Neq = - Nc (4) 

the various cavity lengths can be chosen to obtain the desired M and Neq. 

Initial simulations produced mode patterns that deviated significantly from those given by Rensch and 
Chester'. However, by placing an aperture at the intracavity focus, an intensity profile closely resembling 
the pattern given in 181 was achieved. Figure 3a and 3b show the mode pattern from [SI and from the 
FELEX simulation with.foca1 aperturing. Since the exact filtering algorithm used in [8] was not specified by 
the authors, a closer comparison could not be performed. An additional comparison was made of the mode 
pattern obtained analytically by Rodgers and Erkkila". They conducted calculations for a standing-wave 
resonator with M = 2.5 and Nep = 3.12. This resonator was modeled again using a negative branch ring 
configuration with the same parameter magnitudes. To control aliasing, apodization over 4 grid points was 
employed and an aperture was placed at the focus. The lowest order mode pattern from their paper is given 
in Figure 4a while the simulation result is given in Figure 4b. The results of these comparisons indicated 
that the FFT propagator in FELEX was adequate for modeling unstable resonator geometries. 

3. EXPERIMENTAL COMPARISON 

A stable-unstable ring laser has been constructed at MRC-Albuquerque. The resonator has near confocal 
geometry with astigmatism introduced to make the ring unstable in one dimension. The magnification of the 
cavity was kept low (IMI = 1.2) to limit the the output coupling. This keeps the saturated single-pass gain 
in the FEL simulation relatively low (10% 30%). As a result, the amount of mode distortion" caused by the 
gain in the narrow electron beam will not significantly alter the mode shape of the bare-cavity resonator. In 
the experiment a laser dye tube provided the active gain media. 

The equivalent resonator depicted in Figure 5 was used to model the experimental resonator. The 
simulation converged after approximately 20 passes to a loss of N, 14% per pass. 'lkansverse profiles in the 
unstable direction of the experimental mode and the mode from the simulation are shown in Figure 6. Clean 
gaussian mode profiles were obtained in the orthogonal transverse plane both experimentally and in the 
simulation. 

A modification of the propagation algorithm had to be made before the FEL interaction could be 
included in the simulation model. FELEX uses a fixed (non-expanding) grid inside the wiggler. A finite 
difference algorithm is used in this region so that the optical source due to the electrons can be added in 
as the optical field is stepped through the wiggler. As a final check, the finite difference propagator was 
tried through the wiggler region with no electron beam present. The results obtained were identical to the 
previous simulations using only the FFT propagator. 

A scaled (with identical M and Neq) version of the experimental stable-unstable ring analyzed in Section 
3 was modeled. The cavity dimensions were increased so that the Rayleigh range was equal to the length 
of typical experimental wigglers (z 1 meter). Approximately 20 passes were required for the optical mode 
to converge in the unstable direction. Then, depending on the amplitude of the initial optical field, the 
circulating power in the cavity increased until saturation WM reached. A 3-D plot of the transverse electric 
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field a t  the end of the wiggler is given in Figure 7. The mode in the unstable direction has several side 
lobes (caused by the high transverse spatial frequencies) while the mode in the stable direction has a narrow 
gaussian dependence. The size of the optical mode w a  chosen so that the central lobe of the optical mode 
was approximately twice the size of the electron beam. This assured that virtually all the electrons interacted 
efficiently. 

The output beam scraped off one side of the unstable direction in the back leg of the resonator is shown 
in Figure 8a. Since the beam is unobscured, it can be focused to  a narrow spot as shorn in Figure 8b. This 
focusing ability is crucial for applications where high intensity is desired. 

5. CONCLUSIONS 

We have shown that FELEX is an effective tool for addressing the usefulness of stable-unstable resonators 
for free electron laser applications. Good agreement has been obtained both with previously published 
unstable mode profiles and with the experimentally measured mode profiles of the stable-unstable laser 
currently operating at Mission Research Corporation in Albuquerque. The simulations show that a clean 
output beam can be obtained using an asymmetric scraper in conjunction with the stable-unstable FEL 
cavity configuration. More simulations will be required to determine the operating characteristics of such 
resonators for high p ~ w r  applications. 
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I 1  
Figure 1. Stable-unstable ring with asymmetric edge scraper. 
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Figure 2. Unstable ring resonator with symmetric halo scraper. 
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Figure 3. (a) Mode profile for M = 1.42, Neq = 3.12 unstable resonator from Rensch and Chester'; and 
(b) Simulation of a negative branch unstable ring resonator with the same magnitude parameters. 
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Figure 4. (a) Analytically obtained mode profile of a M = 2.5, Neq = 3.12 unstable resonator from 
Rodgers and Erkkila'; and (b) Simulation of a negative branch unstable ring resonator with the same 
magnitude parameters. 
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Figure 5. Equivalent stable-unstable model of the experimental resonator with asymmetric scraper. 
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Figure 6. (a) Experimental mode profile in the unstable direction taken at one of the mirrors; and (b) 
mode profile at the same position from the simulation. 
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Figure 7. Three-dimensional transverse electric fieid profile of the stable-unstable FEL oscillator near 
the intracavity focus. 
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Figure 8. (a) Output beam of the stable-unstable FEL oscillator; and (b) far field pattern of the output 
beam in (a). 
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Quantum Electronics Letters 

Sideband Instability in Free-Electron Lasers-A New Technique for 
Suppression 

ALAN H. PAXTON A N D  MARK J. SCHMITT 

Absfracf-We describe an optical element that causes very large a p  
ertUre iosses at the sideband frequency in a free-electron laser. The 
center Frequency is not affected. The scheme requires the frequency 
width at the center frequency to be much less than the offset of the 
sideband radiation. 

the cutoff frequency of the spatial filter while maintaining 
nearly diffraction-limited perfomance at the central fie- 
quency would discriminate against the sideband radiation 
due to its higher losses at the spatial filter. Oscillation at 
the sideband frequency would be driven below threshold 
by an increase in the round-trip loss that would cause it 

HE sideband instability can broaden the frequency to exceed the round-trip gain. T width Of  free-electron lasers and decrease their ef i -  An optical element that would do this is a flat or sphere 
CiencY due to the detraPPing of electrons [11-[31. Several ical mirror with sections raised relative to the reference 
techniques have already been Proposed for the SUPPreS- surface. The height of the raised areas would be an inte- 
sion of the sideband radiation. The sidebands were SUP- gral number of half wavelengths at the center frequency 
Pressed in an FEL by replacing an end mirror in a stand- divided by the cosine of the angle of incidence. The height 
ing-wave stable cavity by a Littrow grating 141- A would be selected to cause substantial variations in the 
diffraction-grating h m b  is a device that can be used to phase fronts of reflected sideband light. In  contrast to con- 
suppress sideband osci1lations in a i n g  resonator V I ,  [61. ventional gratings, the widths of the steps are on the order 
The grating rhomb is also used as an outcoupling element. of the optical beam width. 
If the grating h m b  is not meded for sid&and SuPPreS- For concreteness, consider the stable resonator shown 
sion, a different outcoupling method may be Preferable in Fig. 1. The resonator is an almost concentric, standing- 
for some applications. For example, the stable-unstable wave. stable resonator. Suppose that the center wave- 
reSOnat0r with a scaper mirror Only On one side Of the length is ),, and that the sideband is at A, = A, + ~ h ,  
beam may be used [71, [81. The fully unstable resonator Now suppose that mirror 1 of Fig. 1 is replaced by the 
has also been Proposed [91-[121, as has the unstable res- phase grating shown in Fig. 2. It has the same curvature. 
onator with 90" field rotation [13]. Here, we shall discuss but (for normal incidence) it has periodic steps of height 
the stable resonator and the stable-unstable resonator as 
examples for the application of our new device. 

Our method for sideband suppression is based on the 
existence Of a lOW-paSS Spatial-fEqUenCy filter in the res- 
onator. Concepts for high-energy free-electron lasers al- 
ready include a spatial filter as part of the resonator. The 

region; its diameter is typically larger by at least a factor 
of ten in some other section of the resonator. Focusing 
the beam and propagating it through the beam tube inside 

the spatial frequency content of the sideband light above 

AI = i n A ,  (1)  

where is an integer for which 

a),, n = -  
optical beam must have a small diameter in the wiggler A), 

is a constant to be chosen* and 
are = fim and A' = O.O1 

the wiggler acts as a spatial filter [ 14]-[ 151. Increasing Using these and choosing = Oa5 gives = 50 
and Az = 25 Pm- Reflection Of a wave Of wave- 
length A, from the phase grating causes no aberration be- 
cause the difference in path length of any of the steps is 
an integral number of half wavelengths. We have as- 
sumed that the step height is much less than the pulse 
length of the FEL SO that effects due to the finite pulse 
length may be ignored. Reflection of a spherical wave of 
wavelength X, from the mirror aberrates it severely, in- 
troducing a phase shift of 2ra for every half period of the 
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BEAM TUBE 
THROUGH WIGGLER MIRROR 2 MIRROR t 

Fig I Stdble resonator \bowing beam tube through wiggler in the vicinity 
of the waist. 

Fig. 2 .  Phase-step mirror. The steps are raised a distance A: above the 
\phcrical reference surface. The step height is selected to shiti the phase 
tronts of light at the center frequency by an integral number of wave- 
lengths. and to cause significant phase shifts at the sideband frequency. 

mirror step pattern. We shall refer to this phase grating 
with multiwavelength steps and a very low period as the 
phase-step mirror. 

We will now derive some properties of the mode at the 
sideband frequency for the resonator in Fig. 1 with a 
phase-step end mirror. We assume that the light beam of 
the mode that is incident on the phase-step mirror is an 
unaberrated spherical wave. We will show that the fol- 
lowing points are true. 

1) The beam of light immediately after reflection from 
the phase-step mirror can be decomposed into a series of 
spherical waves; a zero-order wave propagates along the 
resonator optic axis. and the other waves propagate along 
axes that are tilted with respect to the optic axis. 

2 )  A period can be derived for the phase steps such that 
the foci of all the tilted waves fall well outside the FEL 
beam tube that extends through the wiggler. Thus. only 
the unaberrated zero-order wave arrives to reflect from the 
phase-step mirror after a round-trip through the resonator. 
justifying our initial assumption. 

3 )  The fractional loss of the sideband radiation at the 
wiggler approaches I .O as a approaches 0.5. 

Consider a beam of light reflecting at normal incidence 
from the phase-step mirror shown in Fig. 2 .  The complex 
amplitude before reflection is 

U' = F' exp [ i ( k z  - w f ) ]  

U = F e x p  [ i ( k z  - a t ) ] .  

( 3 )  

(4) 

and the complex amplitude after reflection is 

Before reflection. the phase fronts are unaberrated and 
have radius of curvature r ,  

The complex amplitude after reflection from the phase- 
step mirror is 

[ -i&(x' + y')' 
1 

] exp(-icua) 
f 
i U ( X ,  y )  exp 2R 

where n is any even integer, and a constant phase shift 
has been dropped. It is assumed that the steps continue 
over the entire region where the beam has appreciable in- 
tensity so that (6 )  corresponds to u ( x ,  y )  exp [ - i k ( x 2  + 
y 2 ) / 2 R ]  multiplied by an infinite periodic function of .r. 
Equation (6) can be expanded as a Fourier series. 

1 F = u(x .  y )  exp [ z i k ( : R +  y ' )  

I m - cos 4 + i sin 4 C a,, sin ( rnk ,x )  ( 7 )  

where a,,, = 4 / m a  for m odd, and a, = 0 for m even. 
The fundamental spatial frequency is k ,  = 2 a / p :  the lon- 
gitudinal wavenumber is k = 2a/X,; half the magnitude 
of the phase steps imposed on the reflected beam is 4 = 
AQ; u ( x ,  y )  is the amplitude of the beam. not including 
the spherical curvature. before reflection; R IS the radius 
of curvature of the phase fronts after reflection. The com- 
ponent at spatial frequency mk, is 

i m = i  

( I , , ,  sin d 1 1 
"I 2 f = - u ( x .  y )  exp 

* [ exp ( i m k , x )  - exp ( - imk,x ] . 
The wave corresponding to the first term in  brackets is 

( 8 )  

- jky 2 
y )  exp (7) a,,, sin 6 

where x,, = m k , R / k .  Equation (9) is a tilted spherical 
wave with its focus offset by x,, from the focus of the zero- 
frequency component. The second term in square brack- 
ets of (8) is also a tilted spherical wave. but its focus i5 

offset by -.r(,. Thus. the spatial frequency components 
imposed on the sideband radiation are shifted laterally out 
of the main optical beam in the vicinity of the focus. which 
is located a distance R from the phase:step mirror. 

To determine the appropriate step period. assume that 
~ ( x .  y ) is separable and that the reflected beam is Gauss- 
ian in the x-direction. 

u ( x ,  y )  = P ( X ) , y ( . v )  (10) 
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and 

For an almost concentric resonator, R is much greater than 
the Rayleigh range at the waist. so the beam waist loca- 
tion is essentially at distance R from the phase-step mir- 
ror. The size of the waist is 

RX 
w, = -. 

T W  

The radius of the beam tube is given by a = Ow, where 
a typical value is 0 = 2 . 5 .  The condition for the mth com- 
ponent to be centered a distance w ,  outside the beam tube 
at the waist is 

,b > ( 1  + O) w,. (13)  
Equivalently, 

For m = 1, this condition leads to the loss of almost ail 
of the power in the spatial frequencies with nonzero or- 
der. 

Therefore, if inequality (14) is satisfied. the feedback 
power of the nonzero orders may be neglected and our 
assumption that an unaberrated beam is incident on the 
phase-step mirror is justified. The resonator has the same 
dominant mode that it would have if the phase-step mirror 
were simply a spherical mirror. Reflection from the phase- 
step mirror converts part of the incident field to nonzero 
Fourier components, which are almost entirely filtered 
out. The only component that survives a round-trip is the 
zero-order Fourier term. The fractional round-trip loss of 
the sideband radiation can be made arbitrarily close to one. 
but the dominant mode is unchanged if inequality (14) is 
satisfied. The fraction of the sideband power fed back, 
given by (7),  is 

Pf = 7 cos? 4 ( 1 5 )  

after one round-trip through the resonator, where 7 is the 
fractional feedback power the mode would have if  the 
phase-step mirror were replaced by a simple spherical 
mirror. As 4 approaches 7r/2, the fractional feedback 
power approaches zero. 

The sideband gain has a finite frequency width. The 
step height A: in (1) would be selected to correspond to 
a value of a near 0.5 at a wavelength near the middle of 
the sideband gain A = A ,. The derivative of the feedback 
power with respect to the sideband wavelength can be ob- 
tained from (1).  (2). and (15) as 

where AA i s  the wavelength separation from the center 
frequency to the middle of the sideband gain. For a = 

0.5 at h 3 A,, 

Therefore, if any frequency X under the sideband gain 
curve satisfies / A  - A,/ << AX, then I P , ( X )  - 
P f ( X , >  l / q  << 1, and the resonator losses within the 
sideband frequency range are about the same fraction of 
the losses at the center frequency. 

The mirror steps need not follow straight lines. This 
configuration was selected because simple analysis is pos- 
sible. If the laser has a long enough wavelength that dia- 
mond-turned mirrors may be used, a circular step pattern 
may be used to increase the loss at the sideband fre- 
quency. 

A phase-step mirror will suppress the sidebands in any 
FEL resonator if it can be included in a region where the 
optical beam size is much larger than its size in the wig- 
gler. The stable-unstable ring resonator with a compact 
output beam [7], [8] is of interest because it overcomes 
undesirable properties of other resonators proposed for use 
with the FEL. Standing-wave resonators for high-energy 
FEL's are more sensitive to mirror tilt than ring resona- 
tors [I61 because the optical beam is radially inverted 
twice during each round-trip propagation in a standing- 
wave resonator versus once in a ring. Fully unstable res- 
onators would have undesirably iarge diffractive losses 
because the magnet faces of the wiggler are too close to- 
gether to accommodate the diffractive side lobes at the 
focus. Stable ring resonators use a partially transparent 
mirror or a diffraction grating for outcoupling, which may 
be undesirable in a high-energy laser. The stable-unstable 
resonator allows Reflective outcoupling of a filled-in rect- 
angular beam. Sketches of the stable-unstable ring are 
shown in Figs. 3 and 4. Modes of this resonator are de- 
scribed in [7]. 

Numerical calculations were performed with the FEL 
simulation code FELEX [20] to obtain the power loss ra- 
tio for a stable-unstable ring cavity including a phase-step 
mirror. Only empty-cavity calculations were done. The 
dimensions of the ring are shown in Figs. 3 and 4. The 
steps caused phase variation only along the stable (.r di- 
rection. The optical propagation algorithm made use of a 
fast Fourier transform. Filtering of the high spatial fre- 
quencies was required to prevent significant aliasing. The 
transmission function in transform space was 

Tk = 1 for I k, I k,, ,  

and 

where k,,,,, is the maximum spatial frequency of the grid 
for the discrete Fourier transform. and, for these simula- 
tions, kllP/k,,,, = 0.85. 



I I70 IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL 26. VO 7 .  J C L Y  1990 

1.0 - ,.% ( 
,*’ I 

0 w 
U 

w a 
3 

-1 < 
I z 

t 
U < 
U 

Y 
. .  . .  

rl 

a 

‘lC 

0 .0  c 

Fig. 3. Stable-unstable ring resonator with a phase-step mirror. The trav- 
eling-wave optical beam is rectangular in cross section. The stable di- 
rection is shown. For clarity. the optical elements are shown as offset. 
but the optic axis is really contained in a single plane of constant x .  
Mirrors M,  and M, are curved in this dimension and M, is a flat mirror. 
The phase-step mirror is labeled G .  Dimensions are L,  = L , ,  f L u ,  + 
Li, = 7100 cm and LL = 1500 cm. f n  doing the calculation. it was 
assumed that L,, was negligible in comparison to L , .  The focal lengths 
df the curved mirrors are F, = F3 = 3554 cm in this dimension. The 
Gaussian beam size is w = 1.33 cm in the region with length L,. The 
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Fig. 5 .  Fractional power fed back as a function of the step height induced 
on the phase fronts of the optical beam by reflection from the phase-step 
mirror, 

wavelength used in the simulation was 0.593 pm. 4 
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Fig. 4. Stable-unstable ring resonator with a phase-step mirror. Unstable 
direction is shown. Dimensions not shown in Fig. 3 are L2. = 750 cm. 
kb = 750 cm. and the beam width just after the scraper is h = 1.49 cm. 
The mirror focal lengths in this dimension are F, = F3 = 3446.8 cm. 
Different focal lengths in the two dimensions could be obtained by se- 
lecting the angle of incidence for the beam at spherical mirrors to induce 
the required astigmatism [17]. The resonator magnification is M = 
-1.36, and the equivalent fresnel number [lo]. [lS]. I191 is N,, = 
-0.38. 

The simulations consisted of propagating an initial 
complex electric-field amplitude around the resonator (in- 
cluding the phase-step mirror) until a constant loss per 
pass was achieved. 20 passes were usually sufficient. The 
half-width of the beam tube through the wiggler was a = 
2 . 5 ~ ~  in the stable direction. The period of the phase-step 
mirror wasp = 0 . 3 0 ~ .  A plot of the fractional round-trip 
power loss as a function of the angular shift of the phase 
fronts due to reflection from the phase-step mirror is 
shown in Fig. 5 .  Although the maximum loss will occur 
in the vicinity of s radians, simulations with phase shift 
greater than 1c /2 rad could be performed due to numerical 
difficulties. Results plotted in Fig. 5 may be compared 

x (cm)  

Fig. 6. Optical intensity just past the plane of reflection from the phase- 
step mirror. 

with the simple theory derived above. The point at 4 = 
0 in Fig. 5 gives 9 = 0.875. Values of Pf obtained from 
(15) agree with the second and third points from the left 
on Fig. 5 to within 0.4 percent. The right-hand point on 
Fig. 5 agrees with (15) to within 1%.  Plots of the electric- 
field intensity and phase immediately after reflection from 
the phase-step mirror are given in Figs. 6 and 7. Note the 
phase steps introduced by the phase-step mirror. These 
phase variations caused the field intensity oscillations 
shown in Fig. 8 after propagating approximately two- 
thirds of the distance to the focus. The field just in front 
of the wiggler is given in Fig. 9. The two side lobes were 
caused by the two titled plane waves corresponding to the 
fundamental spatial frequency of the phase-step mirror. 
Since an aperture was imposed at k0.2 cm, the side lobes 
were prevented from propagating through the wiggler. As 
the phase step height moved toward 1c radians, the side 
lobe amplitude increased at the expense of the central 
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lobe. Losses would be extremely high for phase shifts near 
?r radians. 

A phase-step mirror could be used in a slightly different 
way to discriminate against the sideband radiation. A 
phase-step mirror with a period equal to its width might 
not cause sufficient losses at apertures for suppression, 
but destructive interference would decrease the intensity 
at the electron beam location, thereby decreasing the cou- 
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pling between the optical beam and the electron beam. 
The use of a "grating" with a single step for sideband 
suppression has already been suggested [2 11. 

A resonator could be designed with a configuration sim- 
ilar to the Boeing burst mode resonator [22], [23] but 
modified to be unstable in one transverse direction. The 
grating rhomb could be eliminated and a phase-step mir- 
Tor added, together with a flat mirror to keep the number 
of resonator mirrors even. Outcoupling could be achieved 
by adjusting the curvature of the resonator mirrors to make 
the resonator unstable in the transverse dimension with its 
axis parallel to the faces of the wiggler magnets and in- 
serting an output coupling scraper mirror on one side of 
the beam. 

The compact-beam, stable-unstable ring resonator with 
a phase-step mirror may provide a useful alternative to the 
stable ring resonator with a grating rhomb for high-energy 
FEL's. 
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