
TITLE:

1 Qa

LA-UR

10s National Labomtory IS operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36

L a Alamos National Laboratory Los Allamos Mexico 87545
~~~~~~~ OF TMS DQCUMW 1s ~~1~~ 

i 

AUTHOR( S): 

SUBMITTED TO: 

OVERTURE: AN ADVANCED OB JECT-ORIENTED SOFTWARE 
SYSTEM FOR MOVING OVERLAPPING GRID COMPUTATIONS 

David L. Brown and William D. Henshaw 

Proceedings of Computational Aerosciences Workshop 
NASA Ames Research Center 
August 13-15,1996 

DISCLAIMER 

This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assuma any legal liability or respnsi- 
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Refer- 
ence herein to any specific commercial product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- 
mendation, or favoring by the United States Government or any agency thereof. The views 
and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof. 

-_ 
By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexctm- license to publish or reproduce 

the published form of this contribution or to allow others to do so, for U.S. Government purposes. 

The Los Alamos National Laboratory requests that the publisher identi this article as wotk performed under the auspices of the U.S. Department of Energy. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 

. 



OVERTURE: AN ADVANCED OBJECT-ORIENTED SOFTWARE SYSTEM FOR 
MOVING OVERLAPPING GRID COMPUTATIONS 

David L. Brown and William D. Henshaw 
Scientific Computing Group CIC-19, MS B256 

Los Alamos National Laboratory 
Los Alamos, NM 87545 

dlb @lanl.gov, henshaw @lanl.gov Web site: http://www.c3.lanl.gov/cic 19/teams/napc/ 
(505) 667-0120 

1. Introduction. While the development of high-level, easy-to-use software libraries for 
numerical computations has been successful in some areas (e.g. linear system solvers, ODE 
solvers, grid generation), this has been an elusive goal for developers of partial differential 
equation (PDE) solvers. The advent of new high level languages such as C++ has begun to make 
this an achievable goal. This report discusses an object-oriented environment that we are 
developing for solving problems on overlapping (Chimera) grids. The goal of this effort is to 
support flexible PDE solvers on adaptive, moving, overlapping grids. An overlapping grid, as we 
define it, consists of a set of logically rectangular grids that cover a domain and overlap where 
they meet. Solutions values at the overlap are determined by interpolation. The overlapping grid 
approach is particularly efficient for rapidly generating high-quality grids for moving geometries 
since as the component grids move, only the list of interpolation points changes, and the 
component grids do not have to be regenerated. We use structured component grids so that 
efficient, fast finite-difference algorithms can be used. Oliger-Berger-Colella type mesh refinement 
is used to efficiently resolve fine features of the flow.’ 

Our PDE solvers are written in an object-oriented fashion in C++. We are currently developing 
solvers for compressible, incompressible and “all-speed” flows in two and three space dimensions. 
The solvers are written using the Overture library, which consists of C++ classes that represent 
domain mappings, grids, grid functions and difference operators. The operator classes, for 
example, define discrete approximations to differential operators and their matrix representations as 
well as a library of elementary boundary conditions . Both vertex-centered (finite difference) and 
cell-centered (finite volume) approaches are supported. For problems with moving component 
grids, a C++ version of the CMPGRD2 automatic overlap algorithm is used. By using a moving 
grid class, the interface between flow solver and grid generator has been made extremely clean. It 
is significantly easier to program PDE solvers in C++ using these classes than in Fortran (as we 
have done in the past), since the details of the overlapping grid data structures are effectively 
hidden from the programmer. The class libraries and solvers extensively use the A++ array class 
library3. A++ is a seriaVparalle1 array language with a Fortran-90-like syntax. Codes written in 
A++ will, with little or no changes, run in parallel using the P++ class library. 

The remaining sections of this report present some examples demonstrating the Overture library 
functions. These examples clearly demonstrate the power of using a high-level language like C++. 

K. Brislawn, D. L. Brown, G. Chesshire and J. Saltzman, Adaptively-refined overlapping grids for the numerical 
solution of hyperbolic systems of conservation laws, report LA-UR-95-257, Los Alamos National Laboratory, 1995 

G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the numerical solution of partial diferential 
equations, J. Comp. Phys., 90, (1990), pp. 1-64. 

Quinlan, Daniel, A++/P+ + Manual (version 0.6.5), report LA-UR-95-3273, Los Alamos National Laboratory, 
1995 

2 

3 

mailto:lanl.gov
mailto:lanl.gov
http://www.c3.lanl.gov/cic


2. Overview of the Overture Classes. The main class categories that make up Overture are 
as follows: 

1. Arrays: multi-dimensional arrays based on A++. 
2. Mappings: define transformations such as curves, surfaces, areas, and volumes. These are used 

3. Grids: define a discrete representation of a mapping or mappings. 
4. Gridfinctions: solution values, such as density, velocity, pressure, defined at each point on a 

5. Operators: (discrete) differential operators and boundary conditions. 
6. Plotting: high-level plotting interface based on OpenGL. 
7. Grid Constructors: classes to construct overlapping grids and handle moving component grids. 

to represent the geometry of the computational domain. 

grid. 

3. Using the A++ array class. A++ is an array class library for performing array operations 
in C++. It will become the array class for HPC++ (High-Performance C++). Here is an 
example code segment that solves Poisson's equation with the Jacobi method: 

/ /  Solve u-xx + u_yy = f by a Jacobi iteration 
int n = 10; 
Range R(O,n) // . . . define a range o f  indices: 0,1,2, . . . , n 
floatArray u ( R , R ) ,  f ( R , R )  // _.. declare  two two-dimensional arrays  
f = 1.; u = 0.; h = l./n; // . _ .  i n i t i a l i z e  arrays  and parameters 
Range I(l,n-l), J(1,n-1) ; // . . . d e f i n e  ranges f o r  the interior 

for (int iteration=O; iteration<100; iteration++) 
u (I, J) = .25* ( U  (I+1, J) +U ( 1-1, J) +U (I, J+1) +U ( I, J-1) -f (I, J) * (h*h) ) ; 

Notice how the Jacobi iteration for the entire array can be written in one statement. When linked 
with the P++ library, this will be a parallel code. 

4. Mappings and Grids. The geometry of the computational domain is defined by a set of 
mappings, one mapping for each grid. Mappings have been designed so that an object can be 
easily moved by composing it with a transformation such as a translation, rotation or scaling. In 
general, a mapping defines a transformation from R" to R". In particular, mappings can define 
lines, curves, surfaces, volumes, rotations, coordinate stretchings , etc. The base class Mapping 
contains the data and functions that apply to all mappings. Specific types of mappings are derived 
from this base class. Mappings contain a variety of information and functions that can be useful for 
grid generators and solvers. For example, mappings contain information about their domain space, 
range space, boundary conditions and singularities. Mappings are easily composed, allowing 
coordinate stretching, rotations, translations, bodies of revolution, etc. The inverse of a mapping 
is always defined, either analytically or by discrete approximation. 

Grids define a discrete representation of a mapping. There are several main grid classes. The 
MappedGrid class defines a grid for a single mapping that contains, among other things, a 
mapping and a mask array for cut-out regions. The GridCollection class defines a 
collection of MappedGrid's. The CompositeGrid class defines a valid overlapping grid, 
which is essentially a GridCo 1 lec t ion plus interpolation information. Grids contain many 
geometry arrays such as grid points, Jacobians , normal vectors, face areas and cell volumes. 

5. Grid Functions. Grid functions represent solution values at each point on a grid or grid- 
collection. There is a grid function class (of float's, int's or double's) corresponding to 
each type of grid. So, for example, a MappedGridFunction lives on a MappedGrid and a 
Composi teGridFunc tion lives on a Composi teGrid. Grid Functions are defined 
with up to three coordinate indices (i.e. up to three space dimensions) and up to five component 



‘P 

indices (i.e. they can be scalars, vectors, matrices, 3-tensors, ...). Since they are derived from A++ 
arrays, all of the array operations are defined. In the following example, we make a grid function 
and assign it values at all points on the grid. 

SphereMapping sphere; 
MappedGrid mg (sphere); 
mg.update0; 

// _ . .  crea te  a mapping 
// . . . the sphere mapping has  been used t o  d e f i n e  a g r id  
// . . . this func t ion  computes a l l  the geometry arrays 

GridFunctionParameters defaultcentering; //. . .o ther  gr id  f u n c t i o n  center ings  can be 

// . . . crea te  a gr id  f n  w i t h  d e f a u l t  cen te r ing  and 2 components de f ined  a t  a l l  g r id  p o i n t s  
floatMappedGridFunction u(mg,defaultCentering,2); 
Index 11,12,13; 
getIndex(mg.dimension,I1,12,13); 

//. . . s p e c i f i e d  through this c l a s s  

// _ . .  g e t  Index’es f o r  a l l  gr id  p o i n t s  

/ /  . . . set x-component to sin(x) *cos ( y )  
const int xcomp = 0, ycomp = 1; 
u(I1,12,13,xComp) = sin(mg.vertex(Il,I2,13,xComp) )*cos(mg.vertex(11,12,13,yComp) ) ;  

Notice that when we declare the f loatMappedGridFunction, 
does not have to be specified since this information is contained in the MappedGrid. 

the number of grid points 

6. Operators. Operators define discrete approximations to differential operators and boundary 
conditions for grid functions. Many different types of approximations can be used. For example, 
the class MappedGri dopera t ors defines finite-difference style operators, while the class 
MappedGridFiniteVolumeOperators defines finite-volume style operators . We have also 
implemented an operator class for incompressible flow Godunov methods. The Pro j ec tion 
class computes the divergence-free part of a velocity function and is used in some of our 
incompressible flow codes. Here is an example using one of the operator classes: 

... 
MappedGrid mg (sphere) ; 
MappedGridFiniteVolumeOperators op(mg); 
floatMappedGridFunction u(mg) , v(mg) ; 
u.setOperators (op) ; 

v = u.grad0; 
v = u. laplacian0 ; 
v = op.laplacianCoefficients0; 

u = ... 

/ / d e f i n e  operators  f o r  a MappedGrid 

/ / a s s o c i a t e  operators  w i t h  gr id  f n .  
/ / a s s i g n  u some values  
/ /compute gradien t  o f  u 
/ /compute Laplacian ( u )  
/ /compute m a t r i x  f o r  the d i s c r e t e  Laplacian 

The result of the statement u . grad ( ) is a grid function containing the gradient of u. An 
equivalent statement is op . grad tu ) . The matrix for the discrete Laplacian holds the stencil at 
each grid point for the Laplacian, and so is a grid function itself. This grid function can be passed 
to a sparse solver, for example. 

6.1 Boundary Conditions. The programming model for boundary conditions is to use ghost 
points (instead of one-sided difference approximations). We have defined a library of elementary 
boundary conditions such as Dirichlet, Neumann, extrapolation, etc. Solvers define more 
complicated boundary conditions in terms of these elementary ones. The interface is quite simple, 
as can be seen in the following routine. 

// . . . composite g r i d  boundary t y p e s  
const int wall = 1; 
const int inflow = 3; 
const int outflow = 4; 
const int slip = 5; 



void applyVelocityBoundaryConditions (floatCompositeGridFunction & v) 
{ 
Index allVelocityComponents; 
allVelocityComponents = Range (0,1) ; 
float ZERO = o . ,  INFLOW_vELOCITY = 1 . 0 ;  
int ucomponent = 0, Eomponent = 1; 

// . . . set velocity to zero on walls 
v.applyBoundaryCondition (allVelocityComponents, BCTypes::dirichlet, wall, ZERO); 

// . . . set v=O, du/dn=O on slip walls (assumed horizontal) 
v.app1yBoundaryCondition (ucomponent, BCTypes::neummn, s l i p ,  ZERO); 
v.applyBoundaryCondition (Komponent, BCTypes::dirichlet, slip, ZERO); 

v.applyBoundaryCondition (ucomponent, BCTypes::dirichlet, inflow, INFLOW_vELoCITY); 
v.applyBoundaryCondition (Komponent, BCTypes::dirichlet, inflow, ZERO); 

v.applyBoundaryCondition (allVelocityComponents, BCTypes::extrapolate, outflow); 

v. finishBoundaryConditions ( 1  ; 

// . . . set velocity to inflow velocity on inflow boundaries (assumed vertical) 

// . . . extrapolate velocities at outflow 

// . . . extrapolate corners, enforce periodic conditions, interpolate, etc. 

1 

7. An Overture code to solve the incompressible Navier-Stokes equations. This 
example shows a working code that solves the incompressible Navier-Stokes equations in any 
number of space dimensions on an overlapping grid. It is based on a cell-centered Projection 
method with a two-stage Runge-Kutta time integrator. A routine to initialize the velocity, 
initializevelocity, and to initialize the Projection boundary conditions, 
setProjectionBoundaryConditions, must also be supplied to complete the code. 
Plot stuf f is the graphics package associated with Overture. 

main 0 
{ 
CompositeGrid cg; 
getFromADataBase (cg , 'I grid. hdf I' ) ; //...read in from database (HDF) file 
cg.update ( )  ; 
Interpolant interp (cg) ; // . . . initialize interpolant 

//. . .create composite grid 

Plotstuff ps (TRUE) ; 
ps.plot (cg) ; 

// . . . initialize plotting 
// ... plot the grid 

int numberOfVelocityComponents = 2; // . . . velocities stored in q,qMid 
GridFunctionParameters::cellCentered = GridFunctionParameters::cellCentered; 
floatCompositeGridction q (cg, cellcentered, numberOfVelocityConponents); 
floatCompositeGridction mid (cg, cellcentered, numberOfVelocityComponents); 
initializevelocity (vortexInBox, q, cg); 

composit&ridFinitevolum-erators op (cg); 
q.setOperators (op) ; 
qMid.setOperators (op); 

Projection projection (cg) ; // ~. . initialize Projection operator 
setProjectionBoundaryConditions (projection) ; 

// . . . soive Incompressible Navier-Stokes equations 

float t=O., dt=.0005, viscosity=.O5; int numberOfSteps=lOO; 
int frequencwfoutput = 10; 

for (int step=O; step < numberofsteps; step++) 



t 
// . . . p r e d i c t  v e l o c i t y  a t  midpoint us ing  forward htzler 

qMid = q + 0.5*dt*( -l.O*q.convectiveDerivative() + viscosity*q.laplacian()); 
applyVelocityBoundaryConditions (qMid); 

qMid = projection.project (qMid); 

q = q + dt*( -l.O*qMid.convectiveDerivative() + viscosity*qMid.laplacianO ) ;  
applyVelocityBoundaqConditions (9); 

// . . . correc t  again w i t h  p ro jec t ion  
q = projection.project (9) ; 

// . . . p l o t  every so many t imesteps 
if (step % frequencwfbtput == 0) ps.strean&ines (q); 

// . . . correc t  by enforc ing  incompress ib i l i t y  cons t ra in t  

// . . . p r e d i c t  v e l o c i t y  a t  new time us ing  midpoint r u l e  

1 
1 

8. An Overture code that uses moving grids. When a component grid changes during a 
moving grid computation, the overlapping grid generator must be called at each time step to update 
the interpolation points. The component grids themselves do not have to be recomputed unless 
they deform in shape. The grid generator is told which component grids have moved. By default it 
assumes that the grids have not very far, and can therefore use a much more efficient algorithm to 
update the interpolation information than is used in the initial grid generation step. In the event that 
the more efficient algorithm fails, the generator reverts to the standard algorithm. The details of the 
grid movement and recalculation have been encapsulated in the MovingGrids class. The code 
example below demonstrates some of the functionality of this class. 

. . . ( i n i t i a l i z a t i o n s )  . . . 
/ /  ... initialize moving grids 

int whichComponentGridToMove = 1; 
real gridRotationRate = 180.; 
MovingGrids movingGrids(ps, cg, whichComponentGridToMove, gridRotationRate); 

floatCompositeGridction gridvelocity (cg, cellcentered, numberOfVelocityComponents); 

dt = .001;  // ... set the t imes tep  
€or (int step=O; step < numberofsteps; step++) 

movingGrids.moveTheGrids (dt); // . . . move the g r i d s  

// ... g e t  the “o ld“  and “mid” level grids 
CompositeGrid & cgold = movingGrids.getCompositeGrid(0); 
ConpositeGrid & cgMid = movingGrids.getCompositeGrid(1); 
//. . . the gr id  v e l o c i t y  will be needed by the advect ion algori thm: 
gridvelocity = movingGrids.getTransformedGridVelocity ( 0 ) ;  

. . (do s t u f f  w i t h  the g r i d s  and g r i d v e l o c i t y )  . . . 

9. Efficiency. In the current implementation of the A++ array class, array operations typically 
run at 50% the speed of Fortran. This is because array operations in A++ are performed as a 
sequence of binary operations. Since the Overture classes use A++ for all may  operations, our 
solvers show similar performance; typically we find that they run at about 40% the speed of similar 
Fortran code. To address this problem, we are in the process of redesigning A++ using C++ 
“expression templates”. We have demonstrated with simple array classes that we can obtain closer 



to 90% the efficiency of Fortran using the new approach. and are optimistic that we will achieve 
this performance enhancement in the new version of A++ as well. 

. . .  : 

-!* 
i ! , < >  

!5c 
i 

Figure: Overlapping grids for a two-stroke engine; the bottom section of the cylinder moves up and 
down. 

10. Moving grid examples. In the figure we show a moving grid for a two-stroke engine. As 
the bottom section of the cylinder moves up and down, it closes off the inlet and outlet ports. 
Further moving grid examples, including flow solutions are available via the Web page listed 
above. 


