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Abstract 

The HFB method with the Gogny force is used to study the effects of reflection 
asymmetry at I = Oh on the barriers separating superdeformed and hyperdeformed 
minima from fission in the 176 W and Yb nuclei. The fission barrier for the HD 
minimum is reduced by 5 MeV in 176 W when reflection asymmetry is taken into 
account. 

Since the discovery in 1986 of the first superdeformed band in 152 Dy [l], more than a 
hundred and fifty superdeformed bands have been observed [2]. The reason for the existence 
of superdeformed bands are the strong shell effects showing up for prolate shapes with axis 
ratios near 2:l. One can understand this very easily by looking at the behavior of the energy 
levels of a deformed harmonic oscillator as a function of deformation (see for instance [3]): 
they bunch together when the ratio of the harmonic oscillator frecuencies, wl:w,  is a rational 
number giving rise to new energy gaps that favor deformation. For instance, the ratio 2:l 
favors superdeformed (SD) prolate shapes. A 3:l ratio also yields a bunching of levels that 
favbrs very extended shapes, the so-called hyperdeformed (HD) shapes. Therefore, one would 
expect that if many SD bands have been observed there would be also experimental evidence 
for HD bands but unfortunately such is not the case up to now. One may argue that the 
preceding argument is based on a pure harmonic oscillator and the spin-orbit coupling might 
wash out the shell effects giving rise to hyperdeformation. However, there are calculations 
with the WoodsSaxon potential [4] indicating that the strong shell effects giving rise to  
the HD states still remain. Realistic Woods-Saxon plus Strutinsky calculations predict HD 
minima in several rare earth nuclei that usually become yrast at  I N 70 - 9Ofi. The question 
now is whether such minima could be populated in heavy-ion induced reactions, since the 
fission barriers are estimated [5] to vanish at spins around 75 - 85fi for rare earth nuclei. In 
the work of ref. [4] HD minima are obtained for several Yb, Er and Hf isotopes. Among 
them, the best candidates are 168 Yb, Er and 170 Hf. In these nuclei the HD minimum 
(p2  N 0.9) becomes yrast at spin 80fi, a value which is compatible with the presence of a 
fission barrier thus favoring the population of such states. More recently, using a different 
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parameterization of the shape of the nucleus that includes a necking degree of freedom, 
extensive studies have been carried out in the A N 180 region with the Strutinsky method 
[6] looking for very extended shapes beyond SD. In this calculation several HD minima with 
axis ratios ( ( x ~ ) / ( z ~ ) ) ' / ~  of the order of 2.2 and higher are found at high spins. For some 
isotopes they become yrast already at  I = 62A as is the case for 182 Os. The reliability 
of the shape parametrization used in [SI has been assessed by more fundamental Cranked 
HFB calculations with the Gogny force for the test case of 182 Os [7]. In these studies the 
octupole degree of freedom, i.e. reflection asymmetric shapes, were not t h e n  into account. 
However, there are studies in the A N 180[8] at I=O, indicating that octupole deformation 
plays an important role in stabilizing hyperdeformed minima found in this region. When we 
extended our high spin studies [6] to include the octupole degree of freedom, we found [9] a 
substantial lowering of the energy of the nuclear surface in the vicinity of the fission barrier. 
The most significant one is that of 176W at I = 70A where a lowering of N 7 MeV is found 
for shapes with axis ratios of 3.71. The significance of this results becomes clear if one takes 
into account that in the absence of reflection asymmetry 176 W had a HD minimum (axis 
ratio 2.2:l) which became yrast at I = 70A and had an outer barrier (i.e. the barrier to  
fission) 6.3 MeV high, making it a possible candidate for an experimental search [6]. The 
lowering in energy due to the octupole degree of freedom means that -the outer barrier may be 
'substantially lowered in all these nuclei making it less likely that HD states will be observed. 
Our [9] study did not indicate that this was a serious problem in 182 Os. 

The most important shortcoming of the Strutinsky method is that the shape of the 
nucleus has to be characterized in terms of a few parameters. This is not a serious drawback 
for moderately deformed nuclei, but in the region of very extended shapes in the vicinity 
of fission, it can be a problem. Therefore, it is particularly desirable here to compare the 
Strutinsky calculations with HFB studies, in which such shape parameterization restrictions 
are not present. With this in mind we decided to carry out HFB calculations for 176 W 
using the Gogny force. Our objectives are to determine if this large lowering in energy is 
an artifact of the Strutinsky method and also to consider the impact of the onset of fission 
on the possibility of populating very extended shapes. It is important to consider fission, as 
the shapes in which this effect is manifest have surface areas that are close to those of two 
separated spherical fragments. 

'Because we wish to study shapes that are extremely elongated, shapes extended to the 
point that fission occurs, we must use a very large oscillator basis in our HFB calculation 
(with shells in the x-direction of the order of 30). In principle, one would like to study 
hyperdeformation at high spins allowing for the possibility of asymmetric shapes. The large 
basis space needed in this case as well as the number of operators involved in the relevant 
constraints make such calculations extremely time-consuming, even with present day corn- 
puters [lo]. Therefore we restrict ourselves to uxially symmetric, i.e. I = Oh, calculations. 
In order to perform calculations in a large basis space a new code has been written. The 
need for the new code arose from instabilities in the standard calculation of the matrix el+ 
ments of the force for large values of the harmonic oscillator quantum numbers of the basis 
- see [13] for details. This code fully implements the HFB method with the Gogny force for 
axially symmetric systems; including shapes that are reflection asymmetric. The flexibility 
of the gradient method used in the solution of the HFB equations allows us to handle many 
constraints such as any multipole operator 0~0 or the asymmetric necking [ll] operator 



Q n k  = exp(-(2 - Z ~ ) ~ / U ~ )  . In the calculations the DS1 parameter set of the Gogny force 
has been used. This set of parameters was fitted to yield a lower surface coefficient a, in 
seminfinite nuclear matter; giving theoretical fission barriers for 240 Pu and other actinides 
in very good agreement with the experimental data [12]. Therefore we believe that this set 
is well suited for the study of very extended shapes. 
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Figure 1: The HFB energy in MeV versus the mass quadrupole moment Q2 given in barns. 
The open squares curve (A) stands for the unconstrained calculation. The open circles 
cur've (B) correspond to the reflection symmetric (Q3 = 0) calculation. The two-fragment 
solutions are represented by full squares (A' and A") and full circles (B') corresponding to  
reflection asymmetric and reflection symmetric solutions respectively. In the bottom part of 
the figure the shape of the nucleus for the unconstrained calculation (defined as the isosurface 
at po = 0.08fm-3) is depicted for several values of Q2 (from left to right Q2 = Ob, 30b, 60b, 
95b and 120b). 

We have performed HFB calculations in the 176 W and 168 Yb nuclei using the ma& 
quadrupole moment Q2 = z2 - 2.(z + g2) as the main constraint. In Fig. 1 we present the 
major results for the nuclide 176 W. Five different curves are displayed that correspond to 
different physical situations: The open squares curve labeled A is obtained by constraining 
the quadrupole moment of the nucleus. The open circles curve (labeled B) is obtained 
making the additional constraint of having reflection symmetric (i.e. Q3 = 0) shapes. The 
curves labeled A' and A" (full squares) correspond to reflection asymmetric two-fragment 
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solutions while the one labeled B’ is for the reflection symmetric one. Curve A present three 
minima at 9 2  N -7.5b, Q2 - 10b and Q2 N 2% corresponding to an oblate solution, the 
ground state (/32 = 0.31 ) and a superdeformed state ( p 2  = 0.73), respectively. The three 
minima are reflection symmetric. In addition to these minima there are also two shoulders 
in the energy curve for Q 2  values of 40b and 60b. The one at  Q2 = 40b (labeled as HD1 
in Fig. 1) has an axis ratio of 2.2 that roughly correspond to the one of the HD solution 
becoming yrast at I = 70h in the Strutinsky calculation of ref. [6]. The shoulder at Q2 = 60b 
(labeled as HD2) has an axis ratio of 2.8 that could be associated to the sec‘ond HD minimum 
seeing in the calculation of ref. 161, the one that becomes past at I = 76h. For Q 2  values 
higher than 70b the energy levels off and is lower than the one of curve B indicating that 
for this range of Q2 the system becomes reflection asymmetric (with p 3  values in the range 
of 0 to 0.3). Comparing curves A and B we observe that the maximum energy gain due 
to reflection asymmetry is 4.66 MeV and correspond to Q2 = 95b. This result is in good 
agreement with the lowering of 6.2 MeV obtained for this nucleus at I = Oh [9]. To better 
compare our results with the ones of [9] one first has to define the concepts of elongation 772 
and necking in q,,k shape parameters for the HFB results where the density is not a sharp 
one. To this end, we define the HFB shape as the isosurface corresponding to  roughly half 
density, Le. p = 0.08f77~-~. The region with-Q2 larger than 70b (where reflection asymmetry 
‘is important) has q2 values in the range 1.0 to 1.3 and q,,k ones in the range -0.14 to -0.3 
in good agreement with the Strutinsky results [9J. The agreement of our results with those 
obtained with the Strutinsky method [9] for 176 W indicate that the strong octupole effects 
seen in the A - 176 region for very extended shapes are genuine effects and not artifacts 
of the Strutinsky method. The implication is then that the outer barriers observed in that 
region are going to be strongly suppressed, making it less likely that very extended shapes 
in those nuclides can be populated. 

The end points of curves A and B correspond to configurations which are no longer 
stable against fission: increasing the quadrupole moment slightly results in solutions with 
two fragments lying on curves A’ and B’ respectively. The curve B’ corresponds to symmetric 
fission (two 88 Rb nuclei) while the curve A’ is for a mass asymmetric split (66 Ni and 
‘lo Pd). These two end points are saddle points of the corresponding fission paths. The 
energy differences between the HD minimum HD1 and these saddle points are 19 MeV and 
21 MeV, respectively. 

The octupole moments of the constrained solutions of curve A’ are very similar to the 
ones of curve A for the same values of the quadrupole moment but these solutions differ 
in their hexadecapole moments. The ones of curve A’ are typically about 20b2 lower than 
the ones of curve A. Therefore it is possible to reach the two-fragment curve A’ from the 
one-fragment one (A) by constraining the hexadecapole moment. The corresponding energy 
curve shows a maximum that corresponds to another saddle point before fission. This saddle 
point is 20 MeV above the HD1 minimum. On the other hand, curve A” correspond to  a very 
asymmetric mass split of 50 Ti and 126 Te. The octupole deformation of the two fragments 
as a whole is rather high with p3 values of the order of 0.7. Therefore, we can reach curve 
A” from curve A by constraining the octupole moment. The energy difference between the 
maximum of this octupole constrained curve (that corresponds to the scission point) and 

’ 

‘The definition is p2 = m Q 2 / ( 5 ( r 2 ) )  



the HD1 minimum (i.e. the fission barrier of HD1 along the very mass asymmetric fission 
chanel) is only 15 MeV, that is, around 5 MeV lower than the other fission barriers.mentioned 
before. The effect of reflection asymmetry is, therefore, to reduce the fission barrier as was 
previously suggested. A more detailed analysis of these solutions and their properties can 
be found in [13]. 
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Figure 2: The HFB energy in MeV versus the mass quadrupole moment Q2 given in barns 
for 16* Yb. The open squares curve correspond to the one-fragment solutions while the filled 
squares curve is for the reflection symmetric two-fragment solution. The shape of the nucleus 
as defined in Fig. 1 is also depicted for some values of the quadrupole moment. 

In Fig.2 we have plotted the energy as a function of the mass quadrupole moment for 
16* Yb. The most important result of this calculation is that in the whole range of Q2 

considered the nucleus remains reflection symmetric. In addition to the prolate ground state 
minimum located at Q2 = 10b there is another, very shallow, minimum at Q2 = 45b with 
,& = 1.01, p4 = 0.61 and an axis ratio of 2.5. The shape parameters of this minimum 
agree quite nicely with the ones of the HD minimum found by Dudek et al. [4] at high 
spins. In the same plot we also represent the reflection symmetric two-fragment solution 
(full squares). This solution has Q4 values much lowers than the one fragment solution in 
contrast to 17' W. For instance, in the crossing point at Q2 = 80b the values for Q4 are 62b2 
and 34b2 for the one-fragment and two-fragment solutions, respectively. This means that 
we can force symmetric fission by constraining in Q4. The maximum of this energy curve 



corresponds to the scission point and is located - 25MeV higher in energy than the HD 
minimum found in our calculation. This barrier energy is 10 MeV larger than iq the 176 W 
case. If the HD minima were to become yrast at the same spins, we would estimate that it 
is more likely to  populate the HD minimum of 168 Yb than that of 176 W . 
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