
NUREG/CR-63 16
SAIC-95/ 1028
VOl. 2

Guidelines for the
Verification and Validation of
Expert System Software and
Conventional Software
Survey and Assessment of Conventional
Software Verification and Validation Methods

RECEIVED
APR 2 I 1995

Prepared by
L. A. Miller, E. H. Groundwater, J. E. Hayes, S. M. Mirsky

Science Applications International Corporation

Prepared for
U.S. Nuclear Regulatory Commission

and

Electric Power Research Institute

I

AVAILABILITY NOTICE

Availability of Reference Materials Cited in NRC Publications

Most documents cited In NRC publications will b e available from one of the following sources:
1. The NRC Public Document Room, 2120 L Street , NW., Lower Level, Washington, DC 20555-0001

2. TheSuperlntendent of Documents, U.S. Government Printing Office, P. 0. Box 37082, Washington, DC
20402-9328

3. The Natlonal Technical Information Service. Springfield, VA 221 61 -0002

Although t h e llstlng that follows represents the majority of documents cited In NRC publications, it is not ln-
tended to b e exhaustlve.

Referenced documents available for inspection and copying for a fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda: NRC bulletins, circulars, information notices, in-
spectlon and lnvestlgatlon notices; licensee event reports; vendor reports and correspondence; Commission
papers: and appllcant and licensee documents and correspondence.

The following documents In t h e NUREG serles a r e available for purchase from t h e Government Printing Office:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement
reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula-
tlons In t h e Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents avallable from the Natlonal Technical Information Service Include NUREG-series reports and tech-
nlcal reports prepared by other Federal agencles and reports prepared by the Atomic Energy Commission,
forerunner agency to t h e Nuclear Regulatory Commlssion.

Documents available from public and special technical libraries include all open literature Items, such as books,
journal artlcles, and transactions. Federal Register notices, Federal and State legislation. and congressional
reports c a n usually b e obtained from these libraries.

Documents such as theses , dissertations. foreign reports and translations, and non-NRC conference pro-
ceedings a r e available for purchase from the organization sponsoring the publication cited.

Slngle copies of NRC draft reports a r e available f ree . to the extent of supply, upon written request to the Office
of Administration. Dlstributlon and Mail Services Section, U.S. Nuclear Regulatory Commisslon, Washington,
DC 20555-0001.

Coples of Industry codes and standards used In a substantive manner In the NRC regulatory process a r e maln-
tained at t h e NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville. MD 20852-2738, for use by
the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-
tlon or, If they a r e American National Standards. from the American National Standards Institute. 1430 Broad-
way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United S ta tes Government.
Neitherthe UnitedStatesGovernment norany agencythereof, norany oftheiremployees, makes anywarranty,
expressed or implied, or assumes a n y legal liability or responsibility for a n y third party’s use, o r t h e results of
such use, of a n y information, apparatus, product, or process disclosed in this report, or represents that its use
by s u c h third party would not infringe privately owned rights.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

NUREG/CR-63 16
SAIC-95/1028
VOl. 2

Guidelines for the
Verification and Validation of
Expert System Software and
Conventional Software

Survey and Assessment of Conventional
Software Verification and Validation Methods

Manuscript Completed: February 1995
Date Published March 1995

Prepared by
L. A. Miller, E. H. Groundwater, J. E. Hayes, S. M. Mirsky

Science Applications International Corporation
1710 Goodridge Drive
McLean, VA 22102

Prepared for
Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001
NRC Job Code L1530

and

Nuclear Power Division
Electric Power Research Institute
3412 Hillview Avenue
Palo Alto, CA 94303

,

ABSTRACT

By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of
conventional solbvare. The 153 methods so identified were classified according to their appropriateness for various
phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into
two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors,
four concerning ease-of-use of the methods and four concerning the methods' power to detect defects. Based on these
factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit Metric
and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each
method, depending on three classes of needed stringency of V&V (determined by ratings of a system's complexity and
required-integrity). Methods were then rank-ordered for each of the three class terms of their overall cost-benefits
and effectiveness. The applicability was then assessed of each method for tf~r f < ~ s * lentified components of
knowledge-based and expert systems, as well as the system as a whole.

...
111

TABLE OF CONTENTS

ABSTRACT

EXECUTIVE SUMMARY ... xi

1 . INTRODUCTION .. 1
1.1 Background ... 1
1.2 Objective and Scope .. 1
1.3 Report Organization .. 2

2 . PURPOSE AND CONTENT ... 3
2.1 PurposeoftheSurvey ... 4
2.2 Nature of V&V .. 5
2.3 The Standards Environment .. 6
2.4 Scope of Survey .. 7

2.4.1 Management vs . Technical Aspects 9
2.4.2 System Complexity .. 14

2.4.4 System Components .. 18
2.4.5 Nuclear vs . Non-nuclear Applications 20
2.4.6 United States vs . Foreign .. 20
2.4.7 Evaluation Criteria : 20
2.4.8 Phase in the Life-cycle .. 26
2.4.9 Other ... 26

2.5 Approach ... 26

2.4.3 Definition of Systems in Terms of V&V Classes 16

3 . MANAGEMENT ASPECTS OF CONVENTION& V&V 29
3.1 V&V Documents. Procedures. and Reviews 29
3.2 Contrast of V&V with QA & CM .. 31
3.3 The Value of Detecting Defects Early in the Life-cycle 31

4 . SOFIWARE DEVELOPMENT LIFE-CYCLES .. 37
4.1 Alternatives ... 37

4.1.2 Itemtive Life-cycles .. 37
4.2 Reference Life-cycle .. 44

4.2.1 Requirements Verification ... 44
4.2.2 SpecificationVerification .. 45
4.2.3 Design Verification .. 45
4.2.4 Implementation Verification ... 46
4.2.5 SystemValidation ... 47
4.2.6 Field Installation Verification ... 48

4.1.1 Sequential Life-cycles .. 37

V

__..-.. -~- .. __________-..

4.2.7 Operation and Maintenance Phase V&V 49

5 . CLASSIFICATION OF V&V METHODS FOR CONVENTION AI-. SOFTWARE 51
5.1 General Observations and Approach .. 51
5.2 The Three Major Categories and Their Classes 51

5.2.2 Static Testing Methods ... 61
5.2.3 Dynamic Testing Methods ... 68

5.2.1 RequirementdDesign Methods .. 54

5.3 Discussion ... 79

6 . CHARACTEIUZATION OF CONVENTIONAL V&V METHODS 83
6.1 Defect Detection .. 83

6.1.1 A Taxonomy of Defect Types for Conventional Sohare 83
6.1.2 Defection of Defects by Conventional V&V Methods 84

6.2 Definition of the Cost and Benefit Factors Evaluation of Conventional Technique
Effectiveness ... 97
6.3 Evaluating "Cost-Benefit" and "Effectiveness" of Conventional V&V Methods 104

6.3.1 A Simple Cost-Benefit Metric .. 104
6.3.2 The Effectiveness Metrics ... 116
6.3.2.1 Deriving the Basic Metric ... 116
6.3.2.2 Development of Weights for Effectiveness 118
6.3.3 Rank-ordered Methods ... 120

6.4 Which Techniques to Use, and When ... 136

7 . ASSESSMENT OF THE APPLICABILITY OF CONVENTIONAL V&V TECHNIQUES
EXPERT SYSTEMS ... 141
7.1 Components of Expert Systems .. 141
7.2 Key V&V Characteristics of Expert Systems Components 145
7.3 Applicabiliv of Conventional Methods .. 146

7.3.1 Methods Applicable to the Interface Component 146
7.3.2 Methods Applicable to Tools and Utilities ... 146
7.3.3 Methods Applicable to the Inference Engine Component 155
7.3.4 Methods Applicable to the Knowledge Base Component 156
7.3.5 Methods Applicable to Overall System V&V 156

7.4 Limitations of Conventional V&V Methods .. 156
7.4.1 Aspects of Expert Systems Not Adequately Evaluated with

Conventional Methods .. 156
7.4.2 A ?roposal for a Generic Testing Strategy 158

8 . SUMMARY AND CONCLUSIONS ... 161

9 . REFERENCES ... 163

vi

LIST OF FIGURES

Figure 2.4.7-1 Three Major Acquisition concerns with their 1 1 Major
Performance Factors and 21 Subfactors .. 23

Figure 2.5-1

Figure 3.3-1

Figure 4.1-1

Figure 4.1-2

Figure 4.1-3

Figure 4.1.4

Figure 4.1-5

Figure 5.2-1

Survey classification of discovered V&V Methods 27

Increase in Cost-to-Fix or Change Software Throughout
Life-cycle .. 34

Relationship of V&V Activities to Generic Project
Activities. fiom NSAC-39 ... 38

Software Life-cycle from NUREG/CR-4640 (1 987) 39

Spiral Model of the Software Process .. 40

An Expert System Life-cycle
Consistent with Conventional Software Life-cycle 42

Testing for Incremental System Builds ... 43

Classes of Conventional V&V Methods Organized by
Life-cycle Phase ... 52

vii

..___. ~- ~

Table 2.3-1

Table 2.3-2

Table 2.4.2-1

Table 2.4.3-1

Table 2.4.3.2

Table 2.4.4-1

Table 2.4.7-1

Table 2.4.7-2

Table 3.1-1

Table 3.2-1

Table 5.2-1

Table 5.2-2

Table 5.2.1-1

Table 5.2.2-1

Table 5.2.3-1

Table 5.3-1

LIST OF TABLES

Key Standards and Regulations Related to V&V of
Conventional Software Systems ... 8

Key Standards and Regulations Related to V&V of
Conventional Software Systems .. 10

Six Factors of Software System Complexity 15

Three Levels of V&V Stringency Used in the Report for
Expert System Software in the Nuclear Power Industry 17

Illustration of Use ... 19

Components of Larger Conventional Software Systems 21

Criteria to be Tested or Evaluated for Three Major
Classes of Requirements ... 22

Definition of Software Quality Subfactors 24

Correspondence Between SQA Requirements and
Appendix B Criteria from 10 CFR 50 30

Life-cycle Comparison of Activities Associated with V&V.
Quality Assurance (QA). and Configuration Management (CM) 32

Statistics Concerning the Three Major Categories of
Conventional V&V Techniques .. 53

Description of Major Classes of Techniques 55

Description of the Conventional Requirements/Design
V&VMethods ... 58

Description of the Conventional Static Testing V&V
Methods .. 62

Description of the Conventional Dynamic Testing V&V
Methods .. 69

CASE Tools for Full Life-cycle Support 80

...
vlll

Table 6.1.1-1 Types of Software Defects. 85

Table 6.1.2-1

Table 6.1.2-2

Table 6.2-1

Table 6.3-1

Table 6.3.1-1A

Table 6.3.1-1B

Table 6.3.1-1C

Table 6.3.3-1A

Table 6.3.3-1B

Table 6.3.3-1C

Table 6.3.3-2A

Table 6.3.3-2B

Table 6.3.3-2C

Capability of Testing Techniques to Detect Defects . 89

Applicability of Conventional Techniques to
Defects in Conventional Software . 98

Interpretation of the 1-5 Rating Scale Values for Each of
the Eight Cost-Benefits Factors . 102

Conventional V&V Techniques, Their Power and
Ease-of-Use Factor Ratings, and the Cost-Benefit and
Effectiveness Measures . 105

Conventional Requirements and Design V&V Methods
Ranked by Decreasing Cost-Benefit Values . 11 1

Conventional Static Testing V&V Methods Sorted by
Decreasing Cost-Benefit Measure Values . 112

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing Cost-Benefit Measure Values . 114

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class 3 Values . 121

Conventional Static Testing V&V Methods Sorted by
Decreasing V&V Class 3 Values . 122

Conventional Dynamic Testing V&V Methods Sorted by
Decreasing V&V Class 3 Values . 124

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class 2 Values . 127

Conventional Static Testing V&V Methods Sorted
by Decreasing V&V Class 2 Values . 128

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing V&V Class 2 Values . 130

ix

Table 6.3.3-3A

Table 6.3.3-3B

Table 6.3.3-3C

Table 6.4-1

Table 7.1-1

Table 7.3-1

Table 7.4.2-1

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class 1 Values 132

Conventional Static Testing V&V Methods Sorted
by Decreasing V&V Class 1 Values 133

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing V&V Class 1 Values 135

Overall Highest Ranked Conventional V&V Techniques for al l
V&VClasses ... 139

Components and Typical Testing-Related Features of
Knowledge-Based System, with Testing Recommendations 143

Ratings of the Applicability of Conventional Techniques
to Expert Systems and Their Components 147

Characterization of Techniques for Testing Implemented
Systems in Terms of Technique Type and Target Type 159

X

EXECUTIVE SUMMARY

In recent years, a large number of expert systems have been developed for use in the nuclear industry.
To ensure the reliability and high quality performance of expert systems, the United States Nuclear Regulatory
Commission (USNRC) and the Electric Power Research Institute (EPRI) have jointly contracted with Science
Applications International Corporation (SAIC) to develop and document guidelines for the Verification and
Validation (V&V) of expert systems. This report presents the results of the first of ten activities in this project.
The purpose of this first activity is to review software engineering V&V techniques for conventional software
systems and to assess their usefulness for expert systems.

This assessment focuses on three technical aspects of conventional V&V techniques: classification,
characterization, and assessment. First, conventional methods were classified by a sequential Life-cycle model,
i.e., a process of software development and maintenance. Second, the classified techniques were characterized
by different factors of power and ease-of-use. Finally, the techniques were assessed according to their
applicability to expert systems.

This review resulted in the classification of a total of 153 different conventional software V&V
techniques. Based on the sequential life-cycle model, these techniques were divided into two phases:
requirements or design, and implementation. The requirements or design phase includes 28 of the techniques
while the implementation phase, which includes the categories known as static and dynamic testing, includes the
remaining 125 techniques.

Each of the 153 conventional V&V methods was characterized using eight separate factors chosen to
permit an assessment of their effectiveness for systems with varying levels of complexity and integrity. These
factors are: Broad Power, Hard Power, Formalizability, Human-Computer Interface Testability, Ease of
Mastery, Ease of Setup, Ease of RunninglInterpretation, and Usage. To determine the extent to which a V&V
technique could detect different software defects, a taxonomy of 52 different types of conventional software
defects was developed. The techniques were judged as to which of the defects they might detect. Each of the
153 conventional V&V techniques covered anywhere fiom 2 to 52 of these defects. Each defect was covered by
anywhere fiom 21 to 50 V&V techniques. These findings indicate that conventional V&V techniques, taken
together, cover the total space of identified conventional software system defects.

A classification scheme was developed to assign various combinations of complexity and required
integrity levels into classes of recommended software V&V. High complexity soha re systems that may
require high integrity are placed in V&V Class 1. Systems with medium levels are placed in Class 2. Systems
potentially requiring the least stringent V&V levels are placed in Class 3.

The assessment of the applicability of the conventional V&V techniques to expert systems required the
identification of four primary components of expert systems: the inference engine, the knowledge base, external
interfaces, and tools and utilities. Each component has several sub-components. These components and sub-
components were rated on three factors that relate to V&V: (1) whether conventional programming languages
were typically used in their implementation;, (2) whether the components were highly reusable across

xi

applications; and (3) whether the components' potential defects could be identified via formal means. To the
extent that conventional languages are used, conventional V&V techniques apply to such components. If the
components have high reusability, then certification and bench-marking techniques are recommended as being
most appropriate. Formal analysis procedures apply to components whose defects can be hlly characterized in
terms of specific features. Each of the components was evaluated in terms of the degree to which conventional
techniques were applicable for V&V of that component.

With some qualifications, conventional V&V techniques were collectively and individually judged to
be highly applicable to the expert systems as a whole and to the following expert systems components:
inference engine, the external interfaces, and the tools and utilities. However, current conventional V&V
methods were judged to be inadequate in their present form to evaluate the knowledge base component
sufficiently, particularly for the more stringent V&V Classes. Nonetheless, conventional methods are judged to
be extendable to provide suflicient V&V of the knowledge base.

In conclusion, the immense historical and growing body of conventional V&V techniques and
practices are fully usable for expert systems V&V, either directly or by extension. There is no evidence that
expert systems are so unique that neither the conventional development and management software processes nor
the conventional V&V techniques apply to them. Expert systems are best regarded as special types of software
and all conventional practices and software engineering principles fully apply.

xii

1 INTRODUCTION

The United States Nuclear Regulatory Commission (USNRC) and the Electric Power Research
Institute (EPRI) are involved in a broad-based evaluation of possible applications of expert systems in the
nuclear industry. One of the issues with using expert systems is the lack of an accepted V&V methodology to
ensure reliable and high quality performance of this software. The development of appropriate methods for the
V&V of expert systems, which is the overall goal of this project, will promote their acceptability in all segments
of the nuclear power community.

1.1 Backpround

Expert systems can be defined as computer software that exhibits human level intelligence and are part
of the larger field of artificial intelligence. An expert system can be divided into the following four components:
knowledge base, inference engine, interfaces, and tools and utilities. The knowledge base is the component that
contains detailed information about the expert system subject matter. This information can be stored in the
knowledge base in a variety of forms including "IF-THEN" rules and simple facts. The inference engine uses
the knowledge base to make decisions or take actions. Interfaces deal with the connection of the expert system
to databases, communication channels, the user, etc. Tools and utilities refers to general application programs
that may be used in building the knowledge base or assisting in any other features of the expert system. As
compared to expert systems, conventional software typically does not have a knowledge base or inference
engine.

V&V refers to two different processes that are used to make sure that computer software reliably
performs the functions that it was designed to Ilfill. The overall sequence of development and maintenance for
computer software is called its Life-cycle. The Life-cycle consists of a number of steps, which may be
sequential or iterative, that start with the requirements for the software, V&V of the software, field installation
and use, engineering changes, and typically ends years later when the software is retired from use. Verification
occurs during software development and checks each stage of development against the version of the previous
stage. Validation tests and evaluates the software system to make sure that it correctly performs its intended
functions. Verification occurs during the development phases of the sohare's Life-cycle while validation is
performed d e r software development is completed (see page 9).

Expert systems are also widely used outside the United States and have been extensively applied to
non-nuclear industries such as aerospace, geology, telecommunications, and computer manufacturing.
Therefore, this project has included information on expert system V&V from foreign and non-nuclear industry
Sources.

1.2 Obiective and Scone

The objective of this project is to develop and document guidelines for the verification and validation
of expert systems in the nuclear industry. This project consists of ten activities that will result in a technical
report and user manual presenting V&V methods to be used for a wide range of expert systems that may be
developed for the nuclear industry.

1

The first activity, which is the subject of this report, is a detailed survey of currently available V&V
methods for conventional software. Existing V&V methods for conventional software are evaluated to find out
if they can be used for expert systems. Where necessary, new methods will be developed later to make up for
deficiencies in the available software V&V techniques. Applicable current conventional and expert system
V&V methods will be tested on two actual nuclear expert systems that were designed for nuclear power
applications. Finally, the results will be reviewed and used to develop a set of recommended V&V methods that
should be used for different classes of expert systems depending on their importance and complexity. This
report documents the results of this first activity.

13 ReDort Owanization

This report is divided into nine sections: (1) introduction, (2) context, (3) conventional V&V
management, (4) software development Life-cycles, (5) conventional software V&V method classification, (6)
conventional software V&V method characterization, (7) applicability of conventional V&V methods to expert
systems, (8) summary and conclusions, and (9) references.

This first section introduces the project and activity. The second section lays the groundwork for
understanding the subjects of expert systems, V&V, and the overall strategy used for this effort. The third
section discusses the importance and benefit of managing software V&V and differentiates V&V fiom
configuration management and quality assurance. The fourth section provides a detailed presentation on the
software development Life-cycle that is assumed for this project. Section 5 describes the 153 conventional
software V&V methods that were found during this activity and places them into categories that are related to
how these techniques are applied to software. Section 6 examines and categorizes software defects and presents
a means of measuring how effective each V&V method is in finding these defects. Section 7 analyzes the
conventional software V&V methods that were discussed, evaluated and categorized in Sections 5 and 6 and
determines which methods can be used for the V&V of expert systems. Section 8 presents a summary of the
accomplishments and conclusions from this activity. Section 9 lists the reference documents that were used in
this activity.

2

2 PURPOSE AND CONTEXT

This report concerns the first of ten activities, the overall goal of which is to formulate and document
guidelines for verifying and validating (V&V) expert systems' for use in the nuclear industry. This work is
sponsored jointly by the United States Nuclear Regulatory Commission (USNRC) and the Electric Power
Research Institute (EPRI). Both agencies are concerned with the quality and reliability of expert system used in
the nuclear indusby. Since 1983, EPRI has sponsored a broad program for applying expert systems to utility
needs, tool development support, practical applications, studies on V&V, and recently, a training facility (Naser,
1991).

The USNRC and EPRI are not alone in their concern with the V&V of expert systems applications.
The NASA Space Station Freedom project convened a government-industry working group to advise NASA
regarding V&V of expert systems associated with the station. Currently, the NASA Johnson Space Center is
sponsoring a project to investigate its needs for expert systems V&V. In the Deparhnent of Defense (DoD), the
Defense Advanced Research Projects Agency (DARPA) has sponsored, through the Air Force's Rome
Laboratory, the development of an automated tool to assist in expert systems V&V. The Army Test and
Evaluation Command has also sponsored work in this area. The Institute for Electronics and Electrical
Engineers WEE) and American Institute of Aeronautics and Astronautics (AIAA) have established standards
committees for Artiticial Intelligence (AI) whose purview includes expert systems V&V.

In the past five years, there has been an increasing number of professional conference sessions and
tutorials on expert systems V&V. It should be noted that the leading AI society, the American Association for
AI, has sponsored yearly workshops on expert systems V&V since 1987.

These concerns for V&V of expert systems indicate that AI technology is a reliable software-
development approach, capable of being integrated with other kinds of software and systems. Expert systems
V&V lacks the history of conventional software V&V, but it is further along than V&V of other non-
conventional software technologies, including neural network systems, object-oriented systems, and specialized
software for parallel processors. This maturity provides a sound basis for the present effort to develop practical
and effective V&V guidelines for systems where high standards for quality and safety are paramount.

A general comment on V&V is that it is poorly understood and genkrally disliked. Adequate V&V is
also expensive. Traditionally, it is one of the first activities to be cut when a software project experiences
difficulties. The need for V&V, especially for the benefits of reduced system maintenance, is seldom understood
by management. Nevertheless, there is considerable agreement among software analysts that V&V will always
show a positive cost-avoidance benefit over the life of a system. Careful V&V will do so in some cases even
when assessed just for the development stage (see Section 3.3).

Theterms "expert system" and "knowledgebased systems" are considered to be interchangeable, and the former is used throughout this report for
mktmy. Expert systems include rulebased implementations, fixme-based, and various combinations there06 the term also extends to hybrid systems
which involve NIB and fixmes embedded within an object-oriented approach.

. , 3

2.1 Pulpose of the Survey

The overall objective of the survey is to determine how much of the extensive context and
accomplishments of conventional V&V activities can be employed directly for expert systems. More specific
objectives are to determine the best conventional techniques to use for the specific components of expert
systems as well as for the overall system and how these techniques might need to be modified.

The present survey examines current conventional software. These software programs are written in
procedural programming languages such as FORTRAN, C, COBOL, PIA, PASCAL, Ada, and ALGOL. In
these languages, a single sequential algorithm is specified by the programming language source statements. At
any one point in the source program, after execution of the "present" source statement, the next action to be
executed by the hardware is found in the next statement in the program unless the next statement is a special
transfer-of-control statement (such as an ''if', "do", or "case"). In these programs, the data-flow and control-flow
operations are also inter-mixed.

There are several alternatives to conventional software. However, software involved in knowledge-
based systems or expert systems is of special interest to this report. Systems of this type can be written using an
AI-type language, such as LISP (a functional AI language) and PROLOG (a logic-programming language).
More common, and of most direct interest, are those expert systems that have been written utilizing one of the
many types of commercial Expert System shell products, e.g., EXSYS, NEXF'ERT OBJECT, ART, KEE,
CxPERT, VP-Expert, IQ-2000 (also NASA's CLIPS shell). With these products, the application is mainly
written as a set of declarative factddescriptions and IF-THEN rules that constitute the knowledge base of the
system. Unlike conventional (prwedural) software systems, static inspection of the declarative (non-prwedural)
knowledge base will not easily or completely reveal the sequence of execution of rules. The actual "execution"
of knowledge base elements is l l l y determinable as a function of the properties of the executing agent that is
called the inference engine.

Within this context, the purpose of this report is to survey software V&V techniques that have been
used to test conventional software systems, and then to assess which of these techniques could be applied to AI
systems, specifically expert systems. This survey emphasizes the technical aspects of the techniques rather than
the management processes, although both elements are essential. How the survey is influenced by the definition
of V&V, by the guidance given concerning standards, and by a number of important aspects concerning the
scope of coverage are addressed below.

There is a great advantage in utilizing a wholesale reuse of conventional V&V methods and philosophy
for expert systems. Conventional techniques are much more acceptable than novel techniques developed solely
for expert systems. Additionally, the acceptability of expert systems software could well be greatly increased.
Rather than just being acceptable or unacceptable, there are several possible gradations of applicability of a
conventional V&V method to expert systems2:

* nese ratings are applied to techniques in section 7.

4

1) The method can be used directly without any modifications;

2) The method largely applies, but some mdications are necessary;

3) The general concept of the method applies, but extensive specific changes are needed, or

4) The method does not really apply at all.

A final objective of this survey is to identify which aspects of expert systems, if any, are poorly
addressed by conventional V&V techniques. The Volume 3 follow-on survey of V&V methods will determine
whether these needs have been addressed within the expert systems field or whether they must be met by
invention in later tasks.

This survey will not provide details of specific methods. It is not intended to be a "how-to" tutorial for
actual use. However, it will provide summary information on the relative ease-of-use and effectiveness of the
surveyed methods.

2.2 Nature of V&V

A number of slightly different definitions of the terms Verification and Validation occur in the
applicable standards for this study. The following definitions from IEEE Standard 729-1983 are adopted as
being the most widely accepted understanding:

Verification is the process of determining whether or not the products of a given phase of the
software development cycle filfill the requirements established during the previous phase.

Validation is the process of evaluating software at the end of the software development
process to ensure compliance with software requirements.

The concepts of V&V involve a developmental Life-cycle. These concepts are related to a number of
other topics including testing, certification, quality assurance, and confguration management. These topics are
briefly dehed here to show this relationship.

Testing is performed to demonstrate that the integrated system meets the requirements. Testing
involves several activities: test plan development, test execution, and results analysis. The test plan should
discuss test requirements, test philosophy, test environments, test specifications, detailed test descriptions, test
procedure, and test evaluation approach. Test execution and results analysis includes the performance of
validation testing, the recording of test results, and the analysis of results for acceptability (NSAC-39,1981).

Certification implies a particular kind of formalized testing to demonstrate high capability, usually for
particular environments, but it is not a requirement of V&V. Very few software products are actually
"certified".

5

. Quality Assurance (QA) is concerned with ensuring that the software product has undergone all of
the specified procedures that accompany the design and implementation that are in place to ensure quality.
V&V is only one aspect of QA, which includes other elements.

Configuration Management (CM) is an essential procedure for ensuring the quality of a system by
controlling the manner in which its components are modified and improved CM deals with establishing and
controlling updates to a baseline version of a system. A characterization of V&V versus QA and CM is given in
detail in Section 3.

In summary, the underlying technical concepts of V&V and the related procedures are to ensure that all
of the behavioral and performance functions specified in the requirements for the system are fulfilled during
development (veritication) and in the final implementation (validation).

One objective of V&V is to ensure that the implemented system does not contain unintended functions.
An unintended function is described as a function which is not traceable to a specitic requirement. Although this
principle is not always cited in V&V activity, it should always be considered. The implementation of this
additional purpose involves identification and examination of all the residue design or implementation elements
after all requirements have been traced.

It is important to probe more closely into the relationship between testing and V&V. Testing and
debugging refer to the analysis, exercise, and repair of software by the developers. V&V, on the other hand, is a
process which is independent from normal development and testing activities. It is often called Independent
V&V, or IV&V to indicate that it is accomplished by parties who are not part of the immediate development
team. The purpose of V&V is not to directly assist in the development of reliable software but to provide
independent evidence of software reliability and that the system performs according to its requirements. In fact,
the developers and the V&V agents may use the same discovery techniques, but the V&V agent does so as an
independent check on the quality and compliance of the system. Traditionally, V&V agents only discovm
problems; they do not fix them. Correcting the problem is the province of the development team. However, the
V&V agents are more likely to have a deeper understanding of testing methods, test-case construction, and a
much better understanding of how to accomplish the complex task of repairing the detected problems
completely, generally, and with fewer side-effects3.

Up to this point, the discussion has been from a technical point of view. However, V&V is an
important management process. Management commitment is mandatory to ensure the funding, the staffing, and
the cooperation necessary to accomplish the V&V tasks. Detailed management is needed to develop the specific
V&V test plans and methods, and the level of effort to be applied. While some of these issues are briefly

Re "amtpletey: VgtVagentsurrOUgh experience and training, look for multiple errors near a detected problem. Re "generally", the most in-depth
V&V can involve an analysis of the characteristics and probable cause of a problem followed by a search for other instances of that problem-type in other
parts ofthe system Re "side&&", the typical V&V agent is acutely aware that problem-fixes often create new problems, and, therefore, adopts a repair
strategy aimedat minimizingthis effed

6

discussed in Section 3, the management aspects, which'are critical to actual success of V&V efforts, are not the
focus of this survey.'

2.3 The Standards Environment

This survey and the whole project recognize the eight key standards and guideline documents, as listed
in Table 2.3-1. NSAC-39, NUREG-0653, and NUREG/CR-4640 are currently the primary sources of V&V
guidance in the nuclear industry. NSAC-39 provides guidance on how to structure a V&V program for a Safety
Parameter Display System (SPDS). Based on a suggested software lifecycle, it outlines V&V activities and
documents that should occur at each step. Many expert systems being developed for nuclear power applications
are for use by control room operators to here provide an interactive interface for the user@). Consequently,
these systems are very similar in nature to an SPDS, thereby making NSAC-39 especially relevant. Its life-cycle
and recommendations form the basis of the description of the conventional software development Life-cycle
described in Section 4.

NUREG-0653 discusses software quality.assurance requirements for thermal-hydraulic safety analysis
software, and its conclusions are considered generally applicable to many types of safety analysis software in the
nuclear power industry. As expert systems become incorporated into safety analysis and safety critical software,
this standard will eventually become more and more applicable. Therefore, it must be examined for future
planning.

NUREG/CR-4640 provides an important mapping of recommended software quality assurance (SQA)
practices against the 10 CFR 50 criteria for a complete nuclear quality assurance program. Software quality
assurance and V&V go hand-in-hand. System V&V constitute a vital portion of an SQA program.
NUREG/CR-464O1s suggested Life-cycle diagram is also shown in Section 4. Other sections of this document
include descriptions of the documentation required: applicable standards, practices, and conventions; review and
audit procedures; soha re configuration management; V&V, and procurement management. Its
recommendations are included in the Section 3 discussion of management aspects of V&V.

Two other standards documents considered to be key are ANSUEEE A N S 7-4.3.2-1 982 and
ANSUTEEE STD 10 12-1 986. The first provides criteria for safe practices for design and evaluation of safety
performance and reliability. The second defines minimum requirements for the format and content of software
V&V plans and for V&V tasks pursuant to those plans. The ASME Code Standard provides guidance for
nuclear facility quality assurance including a treatment of Life-cycle, V&V, contiguration control,
documentation, procurement, and records. The IEC Standard provides guidance for nuclear power plant safety
system software.

An ahnative management approach to development moves V&V into a leading role. It involves a multi-faceted approach A key element is the
uscofadcvelopnerdal Wwleifecycleimrolvingina level builds with extensive testing after each build (see Section 4.1.2). The three-part theme
ofihis W ~ l e is ''build a little, test a lot, and fix as you go". The keys tothis approach are adherence to requirements, design document updating, and
continual improvement in the processes of software development by analysis of problems found at each build step - i.e.. a Total Quality Management
approach (Miller, 1992).

7

Table 2.3-1 Key standards and regulations related to V&V
of conventional software systems

locument

(ey Documents iPDS

ZA, Design and
inalysis Codes

ZA

l a s s 1 E Real
rime Systems

I&V

Document ID

NSAC/39

NUREG-0653

NUREGER-4640

ASME NQA-2a-1990 Part
2.7

ANSIAEEE
ANS-7-4.3.2-1982

Reg. Guide 1 .I52

ANSIAEEE Std
101 2-1 986

IEC 880
1986

Description

Verification and Validation for
Safety Parameter Display
Systems, December 1981

Report on Nuclear Industry
Quality Assurance Procedures
for Safety Analysis Computer
Code Development and Use,
August 1980

PNL-5784, Handbook of
Software Quality Assurance
Techniques Applicable to the
Nuclear Industry, August 1987

Quality Assurance
Requirements for Nuclear
Facility Computer Software,
1990

Application Criteria for
Programmable Digital
Computer Systems of Nuclear
Power Generating Stations, July
6,1982

(Task IC 127-5) Criteria for
Programmable Digital
Computer System Software in
Safety-Related System of
Nuclear Power Plants,
November 1985

Software Verification and
Validation Plans, 14 November
1986

Software for computers in the
safety systems of nuclear power
stations, 1986

8

The key lessons to be learned from all of these standards are the following:

1) How and why to establish a software development life-cycle,

2) The SQA practices, conventions, and procedures that should be followed at each step,

3) The documentation to be produced/revised at each step,

4) Criteria for testing and validating nuclear power sofhvare applications, and

5) Testing techniques.

Detailed discussions on these topics can be found in Section 3 of this report.

In addition to the referenced documents, there are a host of other standards, guidelines, and
recommended procedures which relate to the V&V of conventional systems and, thus, to this survey. The total
set of related documents are shown in Table 2.3-2. The United States Department of Defense standards DoD-
STD-2167 and its replacement DoD-STD-2167A (in the General section in Table 2.3-1) provide the most
stringent examples of Life-cycle development and associated reviews and documentation. These standards have
been in use for many years. The 1988 modification explicitly acknowledges that iterative prototyping might be
required, and that the other aspects might need to be customized for particular types of projects. This standard
permits military systems to utilize the iterative or cyclical life-cycle of characteristic of expert systems
development.

There are two new draft standards from the United Kingdom, MOD 0055 and 0056 (the QA, CLASS
1E section). These draft standards strongly emphasize the front-end aspects of the system development process,
requirements analysis, and design verification. They go much further than previous documents by proposing
that formal proving methods should be employed for these stages.

2.4 Scose of Survey

The scope of this task is detailed below in the discussion of nine scope factors. In general, the broadest
scope was chosen to increase the chances of exhaustive coverage and increase the probability that potentially
useful V&V techniques would be gathered.

2.4.1 Management vs. Technical Aspects

This is the exception to the broad scope rule which is stated above. Although good management is
essential to achieving the goals of V&V, the technical aspects of V&V are emphasized.

9

Table 2.3.2 Key standards and regulations related to V&V of conventional software systems

10 CRF 50

UK Draft Defense
Standard 0055

UK Draft Defense
Standard 0056

Key
Documents

Reference
Only

Protection System, March 1979

Code of Federal Regulations, 1 January 1984

UK MOD Interim Standard on Requirement
for the Procurement of Safety Critical
Software in Defense Equipment

UK MOD Interim Standard on requirements
for the Analysis of Safetv Critical Hazards

SPDS

QA, Design
& Analysis
Codes

QA

Class 1E
Real Time
Systems

V&V

Design &
Analysis
Codes

QA, Class 1E

NSACL39

NUREG-0653

NUREG/
CR-4640

AMSE NQA-2a-1990
Part 2.7

ANSIAEEE
ANS-7-4.3.2-1982

Verification and Validation for Safety
Parameter Display Systems, December 1981

Report on Nuclear Industry Quality Assurance
Procedures for Safety Analysis Computer
Code Development and Use, August 1980

PNL-5784, Handbook of Software Quality
Assurance Techniques Applicable to the
Nuclear Industry, August 1987

Quality Assurance Requirements for Nuclear
Facility Computer software

Application Criteria for Programmable Digital
ComDuter Svstems of Nuclear Power I Generating Stations, July 6,1982

I
Reg. Guide 1.1 52

ANSIAEEE Std
101 2-1 986

IEC 880 1986

ANSI/ANS-10.4-1987

NUREG-0856

ANSI N45.2.11-1974

NUREG-0493

(Task IC 127-5) Criteria for Programmable
Digital Computer System Software in Safety-
Related System of Nuclear Power Plants,
November 1985

Software Verification and Validation Plans, 14
November 1986

10

Table 2.3.2 (Continued)

Std. 829-1 983

Std. 982.1

Std. 982.2

Std. 983-1 986

Reference
Only (cont.)

Standard for Software Test Documentation,
18 February 1983

Standard for Measures for Reliable Software

Guide for Measures for Reliable Software

Software Quality Assurance Planning, 13

Computer
Society
ANSUIEEE
Stds.

Std. 990

Std. 1008-1 987

Std. 1002-1 987

Std. 1028

Std. 1042-1 987

Std. 1044

Std. 1045

Std. 730-1 984

Computer
Society
ANSU
IEEE Stds.
(cont.)

~~

IEEE Recommended Practice for Ada as
Programming Design Language

Code of Federal Regulations, 1 January 1984

Software Unit Testing, 29 December 1986

Standard for Software Reviews and Audits

Guide to Software Configuration
Management, 12 September 1988

Standard for Classification of Software Errors,
Faults and Failures

Standard for Software Productivity Metrics

Software Quality Assurance Plans, 30 June IEEE Stds.
(Gen'l)

Std. 828-1 983

Std. 830-1 984

Std. 101 6-1 987

Std. 1058.1-1987

Std. 1063-1 987

ANSI MC8.1-1975 General

Software Configuration Management Plans,
24 June 1983

Software Requirements Specifications, 10
February 1984

Recommended Practice for Software Design
Descriptions, 13 July 1987

Software Project Management Plans, 31
August 1988

Software User Documentation, 22 August
1988

Hardware Testing of Digital Process
Computers. October 1971

EWES TC7

Std. 729-1 983

Critical Computer Systems (Safety

Glossary of Software Engineering

I 1984
I

11

Table 2.3.2 (Continued)

Reference
Only (cont.)

-.

.

SPDS

NUREG/CR-2186

NSAC/40

NUREG-0696

NUREG-0700

NUREG-0737

-1 ANSI N413-1974

FlPS PUB
(Gen'l)

I

NUREG/CR-3177

FlPS PUB 105

NSAC/5

INPO TS-407

DOD-STD-2167

DOD-STD-2167A

I DOD-STD-2168

SPDS I NUREG-0800
(cont.)

NUREG-1 342

EOPs NUREG-0899

Guidelines for the Documentation of Digital
Computer Programs, 20 June 197

Computer Systems Interface Guidelines for
Nuclear Plants September 1980

Good Practice Computer Sofhvare
Administrative Controls (Draft) 1983

Defense System Software Development, 4
June 1985

Defense System Software Development, 29
February 1988

Software Quality Evaluation (Draft) 26 April
1985

ANL-81-84, Quantitative Software Reliability
Analysis of Computer Codes Relevant to
Nuclear Safety, December 1981

Accident Sequences for Design, Validation
and Training-SPDS-April 1982

Functional Criteria for Emergency Response
Facilities, Final Report, February 1981

Guidelines for Control Room Design Reviews,
September 1981

Supplement 1, Clarification of TMI Action
Plan Requirements, January 1983

Standard Review Plan, Rev. 1, (formerly
NUREG-73087)

A Status Report Regarding Industry
Implementation of Safety Parameter Display
Systems, April 1989

Guidelines for the Preparation of Emergency
Operating Procedures, Resolution of
Comments on NUREG-0799. August 1982

EGG-2243, Vol. 1, Methods for Review and
Evaluation of Emergency Procedure
Guidelines, Volume 1 : Methodologies, March

Guidelines for Software Documentation
Management. 6 June 1984

12

Table 2.3.2 (Continued)

FlPS PUB
(vav)

V&V

NBS (Gen’l)

FIPS Pub 30

FlPS PUB 38

FlPS PUB 106

FIPS PUB 132

FlPS PUB 101

EPRl
NP-5236

EPRl
NP-5978

NBS 500-56

NBS 500-75

NBS 500-93

NBS 500-98

NBSIR 82-2482

~~~ 

NBS 500-73 

NBS 500-87 

NBS 500-1 06 

Software Summary for Describ’ing Computer 
Programs and Automated Data Systems, 30 
June 1974 

Guidelines for Documentation of Computer 
Programs and Automated Data Systems, 15 
February 1976 

Guidelines for Software Maintenance, 15 
June 1984 

Guideline for Software Verification and 
Validation Plans, 19 November 1987 

Guideline for Lifecycle Validation, Verification 
and Testing of Computer Software, 6 June 
1983 

Approaches to the Verification and Validation 
of Expert Systems for Nuclear Power Plants 

Verification and Validation of Expert Systems 
for Nuclear Power Plant Applications 

Validation, Verification, and Testing for the 
Individual Programmer, February 1980 

Validation, Verification, Testing of Computer 
Software, February 1981 

Software Validation, Verification, and Testing 
Technique and Tool Reference Guide, 
September 1982 

Planning for Software Validation, Verification 
and Testing, November 1982 

A Survey of Software Validation, Verification, 
and Testing Standards and Practices at 
Selected Sites, April 1982 

Computer Model Documentation Guide, 
January 1981 

Management Guide for Software 
Documentation 

Guidance on Software Maintenance, 
December 1983 (General) 

13 



2.4.2 System Complexity 

Ofparticular concern from the point of view of V&V are the characteristics of software systems that 
define its complerity. These factors make the system harder to develop and analyze. Generally, the higher the 
complexity, the greater the opportunity for errors and the greater the need for V&V. Six complexity factors for 
software systems, with three levels each, are identified in Table 2.4.2-1. These are more general than Boehm's 
focused description of detailed factors of module kp lex i ty  (Boehm, 1981, p. 391, Table 6). They are also 
more descriptive of all software systems than Hayes-Roth's description of levels of architectural complexity in 
expert systems (Hayes-Roth, 1983, p. 22). The h t  complexity factor, phyakal control capability, concerns 
whether the system can control aspects of its environment directly; those that can are more difficult to validate. 
The lowest level of this complexity factor has no relation at all to control actions. The medium level has no 
direct control function but provides advisory or decision data for control decisions. The high level directly 
involves control of system elements. 

The second factor, processing, has six sub-features associated with it, concerning: real-time aspects, 
number of processors, whether they are sequential or parallel, synchronous or a synchronous, centralized or 
distributed, and batch or interactive. The low level is the simplest on all of these features. The medium and 
high levels are much more complicated, with the high level having the extreme values. 

Interactivity with other systems is the third complexity factor and has four sub-features: stand-alone 
vs. attached or embedded, number and type ofinterfaces, data- vs. user-driven, and whether there is interrupt- 
handling. 

The fourth factor concerns Knowledge and Data structures, with three sub-features: whether or not 
the information is homogeneous in structure and type, whether the information is in one central place or 
distributed, and whether the information is easily derived from well-structured codified sources, has to be 
extracted fiom experts, or has to be invented. 

The type of decision procedure, factor five, deals with four sub-features: type of chaining, type of 
search (although this is not a discriminant among levels), whether reasoning is monotonic or non-monotonic, 
and then a variety of types of specialized types of reasoning. The last factor details the extent to which the 
system has uncertainty handling features. These two factors, decision procedure and uncertainty handling, are 
admittedly more characteristic of expert systems than conventional ones. However, these factors do 
signiticantly influence complexity and they both could be implemented in conventional programming languages. 

The average complexity level across the range of all existing conventional systems would probably be 
low to low-medium. However, new software is tending much more to the higher-medium and even high 
complexity levels. This is particularly true when the software is in the form of expert systems. A recent survey 
of almost 300 expert systems in the nuclear industry revealed quite a number that would definitely be of medium 
complexity. To the extent that program managers can be assured of the quality and reliability of the programs, 
such as through reliance on the guidelines to be developed in this project, one can expect that more and more 
expert systems will have higher and higher complexity characteristics. One example of a primary candidate for 
implementation with major reliance on expert systems is the SPDS (Safety Parameter Display System). This 

14 



Table 2.4.2-1 Six factors of software system complexity 

LOW 

None 
Advisory function only 

Not real time 
Sequential 
Single Processor 
Synchronous 
Centralized 
Batchnnteractive 

Stand-alone 
Single user-interface 
No data-Interfaces 
Userdriven 
No interrupt handling 

Homogeneous 
Centralized 
Derived from codified 
sources  

Backward (topdown) or 
Forward (bottom-up) 

Breadth first or Depth 

Monotonic Reasoning 

Chaining 

first 

None 

MEDIUM 

No direct, but can provide 
decision data into control 
modules 

Near or full Real-Time 
Muttipleprocessors 
CentraVDistributed 
Interactive 

ErnbeddedlAttached 
Continuoudlntermittent Data- 

Usually Datadriven 
Possible Interrupt-handling 

Input 

HomogeneoudHeterogenous 
CentralizedlDistributed 
Derived from codified sources 
and experts 

Backward, Forward, and mixed 

Breadth first or Depth first 
Monotonic or Non-Monotonic 

Heuristic Reasoning 
Constraint-based reasoning 
Belief-revision, truth 

chaining 

reasoning 

maintenance 

Fuay  Reasoning, 
Reasoning under uncertainty 

. , . . . . . , . . . 

HIGH 

Can directly manipulate 
and control system 
elements 

Real-Time 
Concurrentlmultiple, 
heterogeneous 

Highly distributed 
Cooperating 
Asynchronous 
Interactive 

P!==?B 

Embedded 
Continuous Data-Input, 
Multiple channels 
Usually Data Driven 
Possible Interrupt- 
handling 

Heterogeneous 
CentralizedlDistributed 
Derived from codified 
sources, experts, or 
invented 

All types of chaining 
Breadth first or Depth 
first 
Monotonic or Non- 
monotonic reasoning 
Model-based 
inferencing, plus all other 
types 

Complex Fuay  and 
uncertainty reasoning, 
Multiple-Hypothesis 
evaluation (e.g., 
Bayesian) 

15 



high-medium to high complexity system must detect events occurring in real-time data channels as well as 
respond to process intmpts, run concurrently and asynchronously with other processes, and perform complex 
decision procedures under sometimes uncertain conditions. 

2.4.3 Defmition of Systems in Terms of V&V Classes 

The complexity of systems, as described in Section 2.4.2, is an important factor in determining the 
amount of V&V needed for a system to ensure its reliability and compliance with requirements. However, there 
is another factor which needs to be considered in determining the extent of estimated V&V required: system 
integrity. This factor refers to the joint capability of a system to operate for long periods without failures, to fail 
gracemy with reasonable warnings, to be able to m v e r  rapidly without much difiiculty, and to avoid causing 
expensive damage to property or harm to people or the environment. High integrity systems rarely fail. They do 
so very safely and economically. Additionally, they are easy to fix and easy to restart. However, low integrity 
systems are deficient in one or more of these aspects. How much integrity is required of a system will be a 
function of several factors. These factors tend to be independent of the factors that make up complexity. Thus, a 
highly complex system with a low degree of required system integrity should probably not need as much V&V 
as a highly complex system with a very high degree of required system integrity. These two factors of 
complexity and required system integrity are best thought of as continuous underlying dimensions along which 
various points can be identified. 

Table 2.4.3-1 shows three points on the complexity dimension coordinated with three points of the 
degree of required system integrity. The factors supporting each of the three complexity points are written in the 
first column. These factors represent conditions that defme complexity as very high, moderately high, and low. 
Factors underlying the points on the required integrity dimension are not identified, as this is a very complex 
judgment which will differ greatly from one site and situation to another. The required integrity points are 
simply entitled as low, medium, and high, however this might be determined (e.g.. from the point of view of 
system operability, safety, mission capability). 

The intersection of the three points on the two dimensions creates nine cell combinations. Again, these 
are selected combinations out of a much larger potential set of combinations of values fiom the two dimensions. 
Nevertheless, the combinations do represent practical and significant situations, and names existing expert 
system application examples which are entered in each of the nine numbered cells of this 3 x 3 table. 

A representation like that in Table 2.4.3-1 makes it feasible to envision the two independent variables 
of complexity and required integrity combining to reasonably determine the level of V&V that should be applied 
to a particular system. The cell at the highest values of complexity and required integrity, cell number 3, should 
receive the most stringent application of V&V methods. The most extensive and thorough methods would be 
used for this situation. Similarly, the lowest complexity and required integrity cell, cell number 7, should 
receive only the minimum degree of V&V. How the cells are to be assigned is suggested below, but the 
responsibility ultimately rests with the individual agency utilizing the chart. 

Inspection of Table 2.4.3-1 will reveal that the cells are grouped into three classes: the upper right cell, 
number 3, is the lone member of V&V Class 1, the most stringent class; the bottom left-most two cells, cells 7 

16 



Table 243-1 Three levels of V&V stringency used in this report 
for expert system software in the nuclear power industry 1 

System 

C 
0 
M 
P 
L 

Complexity 11 Low I N T f  

Quire High 
wedded, 
Zeal-time, 
con tin^^^^ Data- 
Input channels, 

Yueu conno1 
FUllUiOnS, 

E==== 
I1 SY- 

I1  managmmt 

Steam Generator 
I I  Blowdown Control 

Radioactive waste 

Fuel-Rod 
Reshuffimg 
P h l K  

0 

0 

o Waterchemisby 
o Advisor 

, o  

~ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~  

rummatic control-rod 
manipulation 

4ss 2 

Plant-Layout 

Candidate system for V&V are to be matched to the closest cell examples to determine suggested V&V class 1 

17 



and 8, constitute V&V Class 3; and the remaining six cells are in V&V Class 2 (cells 1,2,4,5,6, and 9). The 
meaning of the classes is as follows: Class 1 receives the most stringent level of V&V, Class 2 receives a 
substantial degree of V&V, and both it and Class 1 receive considerably more stringent V&V than the Class 3 
cells, which receive the minimum. The concept of increasing strinpcy implies several things: (1) a greater 
thoroughness in testing system aspects represented by more test cases per function tested; (2) a greater 
completeness in testing coverage of the system represented by more functions and/or program structures being 
tested, and (3) a greater effort to discover truly hard or subtle faults. The actual methods to be applied in the 
three classes are not yet specified here. That will be accomplished near the end of this project. However, the 
use of the complexity and required integrity dimensions, the selection of the three points on each, the 
specification of examples, and, most importantly, the assignment of cells to Table 2.4.3-1 is presented. 

In practice, anyone planning to develop an expert system, or to V&V an existing expert system, should 
first consider the requirements of the system and decide by appropriate means the required integrity of the 
system. Required integrity need not be exactly "low", "medium", or "high". It may have intermediate values. 
The location of this judgment should be marked with a point on the line labeled "required integrity dimension". 
Additionally, the person should evaluate the complexity of the software system in terms of the complexity factors 
represented in the table and then locate the judged complexity with a point on the line labeled "complexity 
dimension". 

Two examples of using Table 2.4.3-1 to determine the V&V Class of an expert system as was done in 
this investigation are shown in Table 2.4.3-2. In the first example, the integrity and complexity values of the 
system are shown by points A and B, respectively. The intersection of these values is marked by point X, in cell 
4. This point is in the low-integritylmoderate-complexity cell, but close to the medium-integrity border, so one 
needs to look at the adjacent cell, cell 5. But cell 5 is also in V&V Class 2, so even ifpoint A were actually to 
move towards increased integrity a bit, it would not change the recommended V&V class. The second 
example, with points C and D, locates the second system near a corner of cell 6. Here three adjacent cells (5,8, 
and 9) may be considered. Cell 5 and cell 9 are in the same V&V Class as cell 6, which contains Y. So, the only 
consideration is whether Y actually should be located closer to, or in, cell 8, which is in the Class 3 region. If 
one re-evaluates the required integrity and complexity of the candidate expert system and determines that indeed 
the candidate system is somewhere between cell 6 (or 5 or 9) and cell 8, then the degree of closeness should be 
assessed (in terms of closeness of 8 to 51619 on a IO-point scale), and the appropriate supplemental V&V 
techniques to move between Class 3 and Class 2 may be used as prescribed. 

2.4.4 System Components 

The scope of concern encompasses the overall software system and its components (Table 2.4.4-1). 
Highly structured conventional software systems (particularly military ones) are often composed of major 
subsystems with separate contiguration management baselines. These baselines contain computer software 
configuration items (CSCIs) as defined in United States Department of Defense systems developed under 
DoD-STD 2167 or 2167A. Each separate subsystem may have a number of components defined as computer 
software components (CSCs) and each component may have a number of small sub-components, or modules. 

18 



Table 2.43-2 Illustration of Use of the table for two candidate expert systems with estimated 
integrity/complexity values given by points (A$) and (CP) respectively. 

P 
L 

X 
1 . -  

Dinctcontrol 
FlmUionS, 

processing 
May have Intermpt E 

System Medium High 
Complexity 

I N T E G R I T Y  D I M E N S I O N  

I I  
II I 
II 

f 
I 

I 
I 

LOW 
Stand-AlOne, 
USaDIiven, 
N~nReal-time, 
AdvisoIy 
Functions, 

No cotltinnous 
-Inpat 0 

0 
0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 ~  

19 

I 
I 11 I V&VCLASSl 

I1 I 



Some V&V techniques, particularly dynamic testing ones, are appropriate for modules but not for 
overall system or subsystems. All of the techniques for all of the components are of interest and value. 

Anticipating the discussion in Section 7 of components of expert systems, the distinctions made in 
Table 2.4.4-1 among software "components", module, subsystem, and system, are really only the differences 
among small to very large programs. There is nothing in this characterization which reflects anything about the 
function of the component. If the topic of discussion were well-defined types of program applications which 
accomplished specific functions (such as compilers, database management systems (DBMS), spread-sheets), 
then it would be possible to identify specific functional components. 

For example, a DBMS will have specialized components such as "input-query processor", "database 
access mechanism", and "transaction roll-back module". It is this second sense of functional components that 
will be used later to characterize expert systems. 

2.4.5 Nuclear vs. Non-nuclear Applications 

The whole range of V&V techniques fiom all application areas have been considered, this report 
includes nuclear and non-nuclear applications. For example, a number of methods were developed for military 
or space applications, because of need for high integrity and reliability in software. These could easily be 
applied to nuclear and other types of applications. 

2.4.6 United States vs. Foreign 

Although the eventual guidelines will be intended primarily for the United States nuclear industry, it 
was important to extend consideration of V&V techniques to methods developed elsewhere. The European 
Community was of particular interest due to its great concern for high-integrity systems. Examples of foreign 
activities which are considered very important in the review are the draft standards of the UK concerning use of 
formal methods for systems (UK, 1989), the National Science Foundation-sponsored conference and report on 
Nuclear Instnunentation and Controls and their associated software tools (e.g., Beltracchi, 1991), and the testing 
and tooldevelopment activity of the Halden project in Norway (e.g., Dahll, 1990). 

2.4.7 Evaluation Criteria 

Systems can be evaluated with respect to a wide variety of criteria. Table 2.4.7-1 shows a perspective 
of 68 criteria grouped into three classes: criteria related to the specific functionality of the system, criteria 
related to performance, and general non-performance attributes. 

An alternative view is given in Figure 2.4.7-1 which groups some of these evaluation criteria into three 
classes of acquisition concern: performance, design, and adaptability. These three classes are composed of a 
total of 1 1 major criteria classes and 21 subfactors; the definitions of the subfactors are given in Table 2.4.7-2. 
Figure 2.4.7-1 and Table 2.4.7-2 are transformations of Sizemore's 1990 representation, pp. 1-6. 

20 



Table 2.4.4-1 Components of larger conventional software systems 

Aspects 

Development 
Environment 

Expected Range of 
Developers 

Complexity of Integration 

Testing 
Precedence 

Size 

Level 

Module Subsystem 

Programmer Multiple 
Programming 
Teams 

System 

Multiple 
Contractors1 
Vendors 

40-500 

Very Complex 

Last 

2 or More 
Subsystems 

Minimal/ 
Other Modules 

Somewhat 
Complex 

I 
Early I PostModule 

- 100 tines Of 
Code 

Many Modules 

21 



Table 2.4.7-1 Criteria to be tested or evaluated for 
three major classes of requirements 

Criteria 

accuracy 
consistency 
completeness 
coverage 
correctness 
explanation 
feasibility 
help 
meta-knowledge 
operational concept 
tutoring 

database access time 
execution efficiency 
"guaranteed adequate 
answer" 

110 handling 
memory requirements 
number of solutions 
power (re: human- 
time to solution, 
quality, success, 
experience level) 

storage efficiency 
time to solution 

access auditability 
access control 
accountability 
auditability 
augmentability 
availability 
communicativeness 
communications 
commonality 
communication 
standardization 
conciseness 
cost 
data commonali 

Class 

General 
Attributes 
(cont.) 

Criteria 

data standardhation 
device independence 
documentation adequacy 
error handling 
error recovery 
error-tolerance 
expandability 
extendibility 
fault tolerance 
flexibility 
human engineering 
instrumentation 
integrity 
interoperability 
learning 
machine independence 
maintaina bility 
modifiability 
modularity 
operability 
portability 
readability 
recoverability 
reliability 
reusability 
robustness 
safety 
security 
self-containedness 
selfdescriptiveness 
simplicity 
structuredness 
testability 
traceability 
understandability 
usability 

22 



PERMlRMANcE 

-Execution Efficiency -Access Control - Consistency -Communicativeness 
-Storage Efficiency -Access Auditability -Error Tolerance -Operability 

- Accuracy 
-Structural Simplicity 
-TatAdequacy . 

-Modularity. - Modularity -Modularity 
-self-&ptiveness - Self-Descriptiveness - Self-Descriptiveness 
--Documentation -Machine Independence -Machine Independence 

-Expandability 
Adequacy 

-Modularity -Modularity - Modularity -Modularity 
-Self-Descriptiveness -Data Commonality - Self-Descriptiveness - Self-Descriptiveness 
--Documentation -Communications - Machine Independence -Machine Independence 

-Expandability 
Adequacy Commonality 

Figure 2.4.7-1 Three Major Acquisition concerns (Performance, Design, andAdaptability) with 
their 11 Major Performance Factors and 21 Subfactors (based on Sizemore, 1990) 

23 



Table 2.4.7-2 Definition of software quality subfactors 
(adapted from Sizemore, 1990) 

Error Tolerance 

Access Auditability 

Expandability 

Accuracy 

Communica-tiveness 

Machine 
Independence 

Test Adequacy 

The extent to which a system continues to operate correctly despite input 
errors or software faults. 

The extent to which a system provides mechanisms to audit the accessing of 
software and data. 

The extent to which a system can be easily modified to provide additional 
functions or data storage capacity. 

The extent to which a system is free from error in calculations and output. 

The extent to which a system provides useful output and an interface with the 
user. 

The extent to which a system can be made to execute in more than one 
hardware or software environment. 

The extent to h i c h  test planning and execution ensure thorough testing of the 

Operability 

Data Commonality 

Structural Simplicity 

24 

The extent to which a system can be loaded, initiated, executed and 
terminated. 

The extent to which a system uses standard or common data formats, types, 
representations and structuring. 

The extent to which a system is free from complicated data, logical and 
control structures. 



Table 2.4.7-2 (Continued). 

Modularity 

Communications 
Commonality 

The extent to which a system is composed of discrete components such that 
a change to one component has a minimal impact on other components and 
such that the test performed by single component are functionally related. 

The extent to which a system uses standard or common communication 
protocols and interface routines. 

25 



All of these factors are of interest. Their relative importance should be specified in the system's 
Requirements Document. For nuclear industry applications the most critical evaluation criterion should usually 
be safety. The next most important criteria might be the human factors criterion of operational concept. This 
involves the hummamputer interface, particularly the style of information display and the allocation of 
analyses and decisions to user and computer. 

2.4.8 Phase in the Lifwycle 

The scope of concern encompasses the overall Life-cycle, as well as Life-cycle phases. Some V&V 
techniques are appropriate for early Life-cycle phases (such as requirements analysis and traceability), whereas 
other techniques are appropriate only after system implementation (such as dynamic testing). 

2.4.9 Other 

There are at least four other factors to consider with respect to scope: automated tools and methods, 
alternative development or testing environments, programming languages, and type of software defects and 
problems. All aspects of these factors are of interest as they apply to V&V of all software. 

2.5 Amroach 

This survey was conducted in three major stages (corresponding to the three major Sections, 5-7, of 
this report): 

1) 
2) 
3) 

Classification of conventional V&V methods (Section 5) 
Characterization of the methods (Section 6), and 
Assessment of their applicability to expert systems (Section 7). 

The initial activity of classification involved three steps. First, a number of publications which dealt 
with V&V and software quality assurance topics were reviewed. These included textbooks, journals, 
proceedings, and 
communications containing V&V articles. A literature search was also performed on V&V topics and copies of 
the most relevant reports were obtained. Over 300 V&V related documents were consulted. 

The next step in classification involved sorting the techniques according to the phases of system 
development they addressed. The phases considered were: Requirements, Design, Implementation, and 
Maintenance. However, there were no V&V techniques especially designed for this last categoIy although 
maintenance needs are quite different than those of development (Miller, 1978). Methods used for the 
Requirements phase were often used for the Design phase, therefore, the iinal mapping of V&V techniques to 
Life-cycle involved only two phases: a combined RequiremenWesign phase and an Implementation phase. 

The third classification step involved grouping the methods within each Life-cycle phase into natural 
categories, based on similarities among the methods. This classification stage is illustrated in Figure 2.5-1. 

26 



Sources: 

Set of all 
dlscovered 
methods: 

Proceedings 
Professional Literature 
Communications Books 

t 
V&V Methods E l  
/ 

Sorting of 
methods by RequiremenWDesign 
life cycle 
ohase: 

Static Testing Dynamic Testing 
Sub-categorization Methods Methods of lmplementatlon 
Methods: 

Subclasses Subclasses 

Figure 2.5-1 Survey classification of discovered V&V Methods first by llfe-cycle phase 
(RequirementsDesign and Implementation) and then by natural categories. 

27 



The second major stage of the survey was to characterize the individual V&V methods in terms of the 
defects they could detect, their effectiveness in doing so, and the various aspects of using these methods. To do 
this, a taxonomy of software defects was first developed, and then an assessment was made concerning which 
defects could be detected by which methods. A number of additional characterization features were developed 
and each method was ranked on all features. Schemes were developed for computing a cost-benefit measure as 
well as an "effectiveness metric'' which provided three scores for each technique, one for each of the three V&V 
classes identified in Section 2.4.4. 

The third and last survey stage was to assess the applicability of these conventional V&V methods for 
expert systems. To do so, the four major components of expert systems were identified. These components 
were then characterized in terms of potential defects and similarity to conventional software. Finally, 
conventional methods were assessed as to their applicability to overall expert systems and their components. 
The most effective methods were identilied. 

28 



3 MANAGEMENT ASPECTS OF CONVENTIONALV&V 

Expert systems are primarily sohare  systems; sohare  is sohare, and sohare  be managed. 
Management of soha re  systems is the focus of this section, which details the importance of the sohare  

development Life-cycle. According to Boehm's 1976 model, the sohare  development Life-cycle consists of 
system requirements, soha re  requirements, preliminary design, detailed design, code & debug, test and 

preparations, and operations and maintenance. Management of the sohare  development Life-cycle is a key 
process. The Life-cycle drives all components: reviews, quality assurance (QA), testing, documentation, etc. 

While ideal Life-cycles for conventional systems and expert systems will be different, the appropriate 
management techniques will not Mer greatly. No system can be developed to the exacting standards of the nuclear 
industry (or any other industry with safety and reliability concerns) without adequate and thorough management. 

Although this effort focuses on the technical aspects of V&V, this section expands on the three major 
aspects of V&V management. This expansion focuses on the reviews and documentation required by the V&V 
process throughout the We-cycle, V&Vs association with code-control and quality assurance, and the cost-savings 
recouped by finding defects early in the life-cycle. 

3.1 V&V Documents. Procedures. and Reviews 

The minimum set of required documents for a V&V program of any size or type is a Sohare  
Requirements Specification and a Sohare  V&V Plan. The Sohare  Requirements Specification is the basis for 
assessing the correct bctioning of the sohare. The Sohare V&V Plan details the methodology of how the V&V 
process will be managed. The project documentation will be used to inform the reader of the project's progress and 
to trace requirements to specifications, design elements, code modules and tests. Documentation must be clear, 
concise, and of high quality. It also must be maintained and updated in conjunction with the progress of 
development on the sohare  system itself. 

The most important V&V review is the Sohare Verification Review which evaluates the Soha re  V&V 
Plan. This review ensures that V&V is considered and planned at the beginning of the project. It will cover the 
sohare development Lifkycle and identiij how V&V activities are incorporated. Special constraints or concerns 
are readily identified during the review process. The plan should be developed inkrementally and include revisions 
and expansions at each step of the Life-cycle. It is possible that multiple reviews may be necessary. Instituting 
Corrective procedures as a result of the reviews should bedone careMly. Milestone reviews such as the Preliminary 
Design Review (PDR) and the Critical Design Review (CDR) are discussed in Section 4. 

NUREG/CR-4640 provides a table mapping Sohare Quality Assurance requirements to 10 CFR 50 
Appendix B cxiteria This represents a complete nuclear quality assurance program and is reproduced here as Table 
3.1-1. The table shows which Appendix B criteria apply to which chapters of NUREGER-4640. Nuclear power 
applications software can be used in the design, analysis or operation of safety-related' structures, systems, or 
components, and it must be included under the regulations of 10 CFR 50. 

29 



Table 3.1-1 Correspondence between software quality a 
assurance requirements (SQA) and appendix B criteria from 10 CFR 50 

Report Chapter 

3.0 Software Life Cycle 

4.0 Management 

5.0 Documentation 

6.0 Standards, Practices, and Conventions 

7.0 Review, Audits, and Controls 1- 
8.0 Tools and Techniques ir ~ 

10.0 Verification and Training r--- 
11 .O Control of Software Procurement i 

Appendix B Criteria 

II. Quality Assurance Program 
111. Design Control 
X. Inspection 

1. Organization 
II. Quality Assurance Program 

II.  Quality Assurance Program 
111. Design Control 
N. Procurement Document Control 
V. Instructions, Procedures, and Drawings 
VI. Document Control 
XVII. Quality Assurance Records 

II. Quality Assumnce Program 
111. Design Control 

1. Organization 
II. Qualii Assurance Program 
111. Design Control 
V. Instructions, Procedures, and Drawings 
VI. Document Control 
VIII. 
X. Inspection 
XVIII. Audits 

111. Design Control 
IX. Control of Special Processes 

Identification and Control of Materials, Parts, and Components 

1. 
It. 
V. 
VI. 
VII. 
VIII. 
VIII. 
XIV. 
XV. 
XVI. 
XVII. 

II. 
111. 
x 

- 

Organization 
Quality Assurance Program 
Instructions, Procedures, and Drawings 
Document Control 
Control of Purchased Material, Equipment, and Services 
Identification and Control of Materials, Parts, and components 
Handling, Storage and Shipping 
Inspection, Test, and Operating Status 
Nonconforming Materials, Parts, and Components 

Quality Assurance Records 

Quality Assurance Program 
Design Control 
Inscation 

CotT&Ne Action 

1. OrganLation 
II. Quality Assurance Program . 
111. Design Control 
N. Procurement Document Control 
VIII. Control of Purchase Material, Equipment, and Services 

30 



3.2 Contrast of V&V with OA & CM 

The success of V&V activities is greatly dependent on the availability and quality of the software 
documentation. Therefore, a well defined and effective software quality assurance program is necessary to obtain the 
maximum benefit from a V&V program. The Software Quality Assurance Plan addresses the following: (1) software 
Life-cycle definition, (2) software documentation requirements, (3) software development standards, practices, and 
conventions, (4) V&V requirements, (5) cofiguration management requirements, (6) quality assurance (QA) reviews 
and audits, and (7) testing requirements. 

A key requirement of both successll QA and V&V is that these activities be accomplished by independent 
agents. Independent agents are defined as individuals who are not part of the system's development team. They may be 
fiom a separate department with the same development organization or fiom an outside development organization 
altogether. This is to separate the QA and V&V agents from the day-to-day, mundane details of the development effort. 
This separation gives them the ability to see the overall picture clearly and not be influenced by the undocumented 
assumptions of the development personnel, providing an unbiased assessment of the development team's activities. 
This is not to suggest that QA and V&V as processes should be independent of the development activity. On the 
contrary, the more closely they are integrated into every aspect of development, the better. 

In addition to QA, software configuration management (CM) is required for the successll application of 
V&V techniques. CM formally documents all changes to development documentation and code. Changes are 
controlled through a change request 'and approval process to ensure that only appropriate and approved changes are 
made. This process allows the verification of documentation and software changes with some assurance that other 
unauthorized changes were not made. Without the implementation of change control, the total product would require 
re-verification to detect inappropriate modifications or the introduction of new errors. 
CM activities consist of configuration identification, configuration change control, configuration status accounting and 
reporting, and configuration audits and reviews. ANSVIEEE Standard 1042-1 987 provides a guide to software 
cofiguration management. Table 3.2-1 outlines the activities and responsibilities of the V&V team at each phase of 
the Life-cycle as compared to the QA and CM activities. Note that the items in each column are independent of each 
other. However, they are coordinated by Life-cycle phase. 

3.3 The Value of Detectinp Defects Earlv in the Life-Cvcle 

V&V is an activity that should take place throughout the Life-cycle, not just at the end of it. Detecting system 
defects during the requirements or design phase makes recovery relatively inexpensive. However, when the system has 
been fully implemented, fixes usually involve complete code rewrites which are labor intensive and expensive. The 
Boehm 1981 study shows that the relative cost of fixing an error increases as a function of the Life-cycle phase in 
which it was detected, the later the defect is discovered, the more expensive the corrective action. This is evident in 
Figure 3.3-1. 

Ea requirements error is discovered in the requirements phase, only the requirements document needs 
revision. However, if the defect is discovered after code implementation, the requirements document, all subsequent 

31 



Table 3.2-1 Liiecycle comparison of activities associated with V&V, Quality Assurance (QA), and 
Configuration Management (CM) 

V&V 
p EQ U I REM ENTS 

o Evaluates, reviews and comments on 
Requirement Specification 

o Traces requirements to their sources 

o Initiates requirement tracing method to 
trace and verify requirements and links 
them to detailed design 

o Ensures accurate translation between 
Customer's Specification and vendor's 
Functional Specification 

o Inspects hardware configuration for 
compliance to specifications and 
contract 

o Attendsreviews 

o Writes Discrepancy Reports (DRs) 

o Develops V&V Plan 

DESIGN 

o Traces each requirement into design 
and adds references to requirement 
tracing method to show linkages 

o Analyzes detailed design 

o Analyzes design document for 
correctness, feasibility, consistency, 
testability, operational integrity, etc. 

o Perfmdanalyzes timing and sizing to 
ensure adequate hardware resources 

o Analyzes operating sequences, data 
flow, task interaction, and mode 
switching 

QA 
REQUIREMENTS 

Reviews specifications for obvious 
errors and signs off 

Inspects all items received from vendors 

Performs on-site factory acceptance of 
major vendor items 

Participates in reviews 

Checks for adherence to standards 

Monitors vendor performance and 
quality of documentation 

Reviews design specifications for 
obvious errors and signs off 

DESIGN 

o Attends design reviews 

o Performs analysis of design changes 
vs. test procedures 

o Checks for adherence to standards 

o Monitors CM actions for completeness 
and adherence to procedure 

CM 

REQUIREMENTS 

3 Maintains originals of all 
documents 

3 Maintains all source code 
master files 

o Receives and logs all 
documentation received from 
outside sources 

o Maintains all software and 
docurnentation libraries 

o Maintains archives 

o Maintains total hardware 
configuration tracking and 
accounting 

o Maintains control of originals 
on all docurnentation 

DESIGN 

o Manages transfers in design 
aspects between final CM 
master files and user 
directories 

o Builds system as required 

o Backs up system as required 

o Runs difference program upon 
request from QA or V&V to 
veri@ changes to design 

o Maintains informal change 
control 

32 



Table 3.2-1 (Continued) 

V&V 
DESIGN (Cant.) 

o Looks for unnecessary redundancy, 
unidentified design element, etc. 

o Emphasizes analysis of hi-risk, hi- 
priority Items 

o Analyzes failover and device switching 

o Audits documentation for completeness 
' against the delivered CM library listings - 

ensures 100% match between 
requirements document and design 

o Writes Discrepancy Reports 

IMPLEMENTATION, TESTING AND 
]NTEGRATION 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Reviews test procedures for adequacy 

Add test references to requirement 
tracing method 

Monitors developer's test program 

Analyzes test results independently 

Writes DRs on any deficiencies not 
written up by QA 

Performs independent testing if needed 

Verifies operatorluser manual during 
testing 

Performs audit of code included in final 
build 

Looks for unnecessary, unidentified 
code, etc. 

Audits design documentation for 

QA 

DESIGN (Contd 

IMPLEMENTATION, TESTING AND 
INTEGRATION 

o Writes majority of DRs on test failures 

o Follows test procedure to the letter 

o Actually performs File Allocation Table 

o Participates in dry run and runs for 
record 

completeneks against delivered code 
listings, ensuring 100% match 

33 

- ~~ 

CM 
DESIGN (Cont.) 

3 Maintains master file on all 
Trouble and Discrepancy 
Reports 

IMPLEMENTATION, TESTING 
AND INTEGRATION 

Maintains test result records 
and test data 

Inspects and inventories 
systems prior to shipping 

Monitors all cleaning, packing 
and loading of system for 
shipment 

Participates in Site Acceptance 
Tests 

Maintains all source code 
master files 

Certifies final CM build 

Maintains all as-built 
documentation 

Initializes and manages all 
changes to documents and/or 
code 

Runs difference programs on 
request from QA and V&V to 
verify changes to code 



500 

200 

100 

10 

5 

2 

1 

Larger software projects 

IBM-SSD 

GTE 

M SAFEGUARD 
0 - 

Smaller software projects 

- [B~ehm, 19801 0 
Requirements Design Code Development Acceptance Operation 

Test Test 
Phase in which error was detected and corrected 

FIGURE 3.3-1. INCREASE IN COST-TO-FIX OR CHANGE 
SOFTWARE THROUGHOUT LIFE-CYCLE (Figure adapted from 

Boehm, 1981, his Figure 4-2, p.40) 

34 



documentation, and the code itself must be changed. On a large project, an error can be .lo0 times more costly to fix in 
the maintenance phase than in the requirements phase. The effect is less extreme in smaller projects, due to less 
formal procedures for configuration control, but the impact is still a factor. A Rolls-Royce study has even shown that 
the cost of using labor-intensive formal methods to represent and simulate the requirement specification (see Section 
5.2.1) was recovered within the development phase. It was not amortized over the maintenance life of the system. 

The total developmental costs were within the budgeted project amounts even though the project remained 
longer in the requirementddesign phases than traditional projects. Nevertheless, the system was completed on 
schedule and within budget. In contrast, a comparable project with less stringent requirements following the 
conventional Life-cycle patterns ended up being delivered six months late and at twice the budgeted cost (Hill, 1990). 

These results stress the importance of d e h g  and documenting requirements, specifications, and designs 
prior to implementation. It is important to perform V&V on those documents as well. Good V&V, performed early in 
the life-cycle can provide tremendous cost savings to the project. The cost savings more than justifies the expenditure 
for the V&V itself. 

35 





4 SOFI'WARE DEVELOPMENT LIFECYCLE 

4.1 Alternatives 

The term life-cycle refers to the "start-to-kish" phases of system development. The software development life- 
cycle encompasses the following: requirements specification, design, implementation, integration, field installation, and 
maintenance. A software Life-cycle provides a systematic approach to the development and maintenance of a software 
system. A well-defined and well-implemented life-cycle is imperative for the succasfid application of V&V techniques. 
There are two types of life-cycle models: the sequential model and the iterative model. The sequential model is a once- 
through sequence of steps without providing formal feedback from later phases to prior phases. The iterative model, on 
the other hand, involves repeated cycling through life-cycle phases. 

4.1.1 Sequential Lie-cycles 

The sequential life-cycle is appropriate when the requirements are well known, when they can be precisely stated, 
and when the course of implementation is clear. Conventional software systems have traditionally been developed 
according to the sequential life-cycle model. It has been often called the "waterfall" model; Boehm (1988) and the 
Department of Defends MIL-STD-2167 (DoD, 1988) provide examples of the sequential life-cycle model. For the 
nuclear power industry, the life-cycles described in NSAC-39 and NUREGICR-4640 are the most referenced. Figure 4.1-1 
shows the NSAC-39 life-cycle and Figure 4.1-2 shows the very similar but more detailed NUREiG/CR-4640 life-cycle. 
The NSAC-39 model is the more well-known model, and shows the integration of software activities with hardware 
development activities. The NuREGICR-4840 model, which is very similar to that proposed in DoD-STD-2167 and DoD- 
STD-2167L is more detailed and shows the documentation products and the formal reviews associated with each phase. 

4.1.2 Iterative Life-Cycles 

The iterative H q c l e  is appropriate when the requirements are not well-known, or are undergoing change, andor 
there are significant technical issuedquestions about how the software can be implemented to me$ those requirements. 
An iterative model provides successive refinement of requirements and improvement of implementations via a series of 
prototypes. Uncertain requirements exist in both high technology, state-of-the-art conventional software systems, and in 
the vast majority of expert system development projects. 

The iterative life-cycle exemplified by the spiral model, shown in Figure 4.1-3 (Boehm, 1988), is one of the most 
well-known of this type. This model defines a succession of four prototypes. It includes a risk analysis to identify the major 
issues and risks and to select the appropriate alternative solutions to be implemented and tested in each prototype. A 
precursor to this model was the eternal development cycle model of Deming (Deming, 1985). 

The Department of Defense @OD) has recognized that not all software cannot be developed successllly using 
the waterfall lifqcle. Therefore, DoD has incorporated revisions in its software development life-cycle standard, MIL- 
STD-2167A (1988), to allow the flexibility of stmcturing an iterative 

37 



System Requirements 
(Hardware and Software) 

1 
I 1 I 

I Hardware 
Specification 

Preliminary 
Design 

I 

Software 
Specification 

I 
Preliminary 

Design 

Final Design 

I 

Design Construction 

I 

Integration 
and Tests 

I 

Validation Test w 
I TestResults I 

I Field Installation 
and Test 

Field 

[Validation Report 1 
Denotes V&V 

Figure 4.1-1 Relationship of V&V Activities to 
Generic Project Activities, From NSAC-39 (1981) 

38 



- 
' 0  

L 

0 

39 



Reviow 

Plan nrxt phmn 

Figure 4.1-3. Spiral Model of the Software Process (from Boehm, 1988) 

40 



life-cycle development. An iterative model for expert systems is consistent with MIL-STD-2167A, as shown in Figure 
4.1-4 (Miller, July 1990). This life-cycle recognizes the need to liberate initial prototypes h m  configuration 
management constraints during exploratory development. Once the requirements are well defined, baseline prototypes 
are developed using configuration management and V&V constraints until a final system is ready for integration with 
its delivery environment. 

The Incremental Systems Builds (L. Miller, 1990) life-cycle is suggested for conventional software systems, 
as well as expert systems where high reliability of complex systek is important5 This approach calls for breaking the 
development process down into a series of small construction efforts, each followed by a test and repair activity. The 
first incremental "build" leads to some significant function that takes the user from the beginning of the application 
process through to some limited but UseM result or output. Then, this miniature of the overall system is thoroughly 
tested before beginning the next build. Each successive build adds more function and capability until, eventually, the 
overall system is complete. This Life-cycle has the major advantage that one can always test at the overall svstem level 
to determine the quality and performance of the various component interfaces and also the overall operational concept. 
With each build being a small increment, problems in design or errors in implementation can quickly be detected and 
corrected. The approach differs from iterative prototyping in that successive prototypes are often are completely 
different from each other, the incremental build process always layers the new addition onto the base of all previous 
builds. Although some adjustment to changes in requirements and design can easily be made with this approach, it 
should not be used ifone expects the requirements and design to change radically during development as a result of 
some kind of discovery process. A major benefit of this Life-cycle is that it is amenable to continuous process 
improvements. Analysis of the causes of problems found in the testing of each build can lead to improvements in the 
developmental processes of the next build. 

The incremental build approach cycles through three main phases for each build: revision, build, and 
test/analwlfix The revision phase is a combined requirements analysis and design phase. It occurs after the first 
build (original requirements and design documents) is modified and updated. The build phase occurs when slight to 
moderate functionality is added to the initial baseline. The build is based on the revised requirementddesign obtained 
from the revision phase. The test/analyze/fix phase consists of those named actions. The build is tested to assure 
proper function, analyzed for errors, and fixed or corrected ifnecessary. This Life-cycle accommodates situations 
where the system development has begun even though requirements are not completely defined. It is especially 
appropriate for systems requiring very high levels of safety and integrity assurance. The high levels of assurance are 
achieved by the incremental process of the Life-cycle and the extensive testing during the test/analyze/fix phase. 

Figure 4.1-5 shows that there are three types of testing distinguished by temporal direction: past, present, and 
future. The p& direction type tests with regression tests to assure no change in previous function or performance since 
the last build. The present direction type tests with a number of test types. The future direction type tests with analyses 
intended to determine how the development urocess could be improved for future builds and to understand how the 
present build could enable future integrity-critical failures. 

' This approach embodies features of previous similar models, particularly the iterative enhancement (Basil & Turner, 1975) and the evolutionary 
Lifecycle models (Gilb, 1973). 

41 

<.,--- -1 . .. . 



..... 

: ME 
: A t  
: I  
- N  
: T  
: E  
: N  
: A  
: N  
: C  
: E  

: s  
: T  
: A  
: G  
: E  

...... .. 

P-KRS 

P-KDD 

1 

ii 

iii 

iv 

............................................. 

KVVR 

D 
E 
V 
E 
L 
0 
P 
M 
E 
N 
T 

..................................................................... 
N m  - 

lDOXXlU&&&ViUkU givtnin- 

1 R n i c n ~ m n i n i r i r l l p u t h m p g h ~ S y r r m D s * s l q m c n t m d m ~ ~ ~ ~ r f ~ ~  

3 DcwbprmtarLirnlo~by'  l ~ d @ j % l m , l b d d L ~  

4 E v a h i a ~ i r s l l r d a ~ f m x i c a ~ ~ r s g ~ ~ & ~ ~  f t i l u m m o & m r l y d . d l m ~ m d m b u m x s ~ ~  

5 DclirelySyrrrmsanadcllrrp~.yrptbcupuv 

A Tk-uyu-&atpdmuae~ k &d 

Figure 4.1-4: An Expert System Life Cycle 
Consistent with Conventional Software Life Cycle 

pan of 
:ontiigurntlon 
lanqement 

42 



VERSION i- 1 VERSION i VERSION i + 1 -0 0 ......... ..,. :.:.: :.,.: .... ......,. 
:~.:.:+:.:.:.:. 
. . . .,.. , , ,’.’ :w::w . ......... ......... . . . . . .... , , . . . . . . . .,., - - -  

Temporal 
Test 
Direction 

Past - 

Regression Tests 

Present 

New Function Tes& 

New Procedural Code Testing 
Knowledge-Base Testing 
Scenario Tests 
Random Tests 
Timing Tests 

Robustness Tes& 

Stress Tests 
Design Limit Tests 
Maximum Capacity Tests 

Future 

FMECA -baed Tests 
Critical Failure Enablement Tests 

* Failure-mode, effects, causality analyses 

Figure 4.1-5. Testing for Incremental System Builds 

43 



In the iterative life-cycle, the general phases of requirements, design, implementation, and maintenance still 
occur in order, though the first three are dynamic. While the h a 1  guidelines will necessarily involve specification of 
recommended Life-cycles, further consideration of these is not appropriate for the present discussion. 

4.2 Reference Liie-cvcle 

A Software Requirements Specification document is prepared in this step of the life-cycle and examined 
during the Software Requirements Review. Requirements Specifications should include hctional requirements, 
software performance requirements, user performance requirements, and acceptance criteria. Evaluations are 
performed fbm both the computer hardware system and software application perspectives. Software interface 
requirements with hardware, operators, users, and other software are evaluated. IEEE Standard 830-1 984 provides a 
complete description of desired contents and approach to specifying requirements for conventional software. 

For the purpose of this survey a traditional waterfall life-cycle based on NSAC-39 (Figure 4.1-1) has been 
assumed. It consists of the following activities: 

1) Requirements definition, 
2) Functional specification, 
3) Design, 
4) Coding and implementation, 
5 )  Integration and testing, 
6)  
7) Operation and maintenance. 

Field installation and testing, and 

The sections below describe each of these seven steps of the life-cycle model with respect to V&V in more 
detail. The NSAC-39 life-cycle was chosen as the reference model because it is the simplest and most well-known 
within the nuclear industry. However, this lie-cycle is the most appropriate for expert systems development. An 
iterative model is favored for that purpose. However, the following situation does not presume a particular life-cycle, 
and NSAC-39 provides the most useful model for practical purposes. 

4.2.1 Requirements Verification 

The purpose of requirements verification is to determine if the requirements specified will correctly and 
completely describe a system which satisfies its intended purpose. A quality requirements specification is critical to the 
overall success of the development effort. During requirements verification, each software requirement is uniquely 
identified and evaluated for software quality attributes including correctness, cons 

Requirements tracing is an important V&V technique which begins during the requirements specification 
stage of the development lie-cycle and continues throughout the development process. Traceability of software 
requirements is a critical attribute for the success of V&V. A software requirement is traceable if its origin is clear, 
testable (quantifiable), and facilitates referencing to future development steps. Backward traceability is established by 
correlating software requirements to applicable regulatory requirements, guidelines, and operational concept or any 

44 



other preliminary system concept documentation. Forward traceability to design elements and code modules is 
established by identrfying each requirement with a unique name or number. 

Requirements verification is accomplished by providing the customer with a requirements document which 
specifies the environment of concam, source documents used to develop requirements, needs, goals, assumptions, and 
constraints of the developmental system. It details the individual requirements assigning one requirement per sentence 
and numbering unique requirements. The requirements are verified when the customer accepts the requirements 
document It should be noted that the customer plays an important role in detailing the requirements document prior to 
requirements verification. 

During the requirements step, critical software functions and their impact to system integrity are also 
evaluated. The identification of critical software functions in a system with high integrity requirements involves the 
determination of those specific software modules that would lead to various types of loss of system integrity ifthey 
"failed". Such identification provides essential input to the test plan development. This permits special emphasis to be 
placed on testing these critical components. 

A Software V&V Plan is written as part of the project management effort prior to or during the requirements 
step. This document describes the V&V activities to be performed throughout the development effort. In addition, it 
defines how the V&V effort will be managed and coordinated with other aspects of the project. It specifies V&V tasks, 
reports, schedules, and procedures. See IEEE 1012-1986 for M e r  details. 

4.2.2 Specification Verification 

The second step of the waterfall life-cycle producing a Functional Specification document and conducting a 
Preliminary Design Review (PDR). The purpose of the PDR is to determine if all the requirements have been mapped 
to detailed specitications and these, in turn, have all been allocated to the soha re  functional components of the 
sohare  system architecture. The Functional Specification (sometimes called a Functional Architecture) contains a 
high level diagram specification of the lodcal software system architecture. It includes interfaces to other systems. 
The system is divided into logical functional components which are M e r  described in the Software Design 
Description in the next step. The Functional Specifrcation describes how the requirements will be met. This is done by 
mapping each requirement to a functionalcomponent within the architecture. 

It is at this stage that sophisticated specification verification techniques can be applied to determine the 
sufficiency of the specification. The creation of an executable model of the specification permits simulation or 
"animation" of real-time activities. Such animation is highly recommended for Class 1 V&V systems as described in 
Section 2.4.3, as well as the high-complexity control systems of Class 2 (cells 1 and 2 in Table 2.4.3-1). 

4.2.3 Design Verification 

In the Design step, a Software Design Description is produced. It is then examined in a Critical Design 
Review (CDR). The Software Design Description provides a description of the overall system architecture and 
contains a definition of the control structures, algorithms, equations, and data inputs and outputs for each software 
module. The complexity of each module is estimated and an effort is made to reduce complexity by breaking up large, 

45 



complex modules into smaller ones. EEE Standard 1016-1987 provides a recommended practice for detailed software 
design descriptions. 

The purpose of the CDR is to evaluate the software design to determine if it correctly represents the 
requirements and to identify extraneous functions. The Software Design Document is evaluated for software quality 
attributes such as correctness, completeness, consistency, accuracy, and testability. Also, it verifies compliance with 
any applicable standards. All interfaces between the software being developed and other software, hardware, and the 
user environment are evaluated. 

Requirements tracing continues during design verification by mapping documented design items to system 
requirements. This ensures that the design meets all  specified requirements. Additionally, non-traceable design 
elements are identified and evaluated for interference with required design functions. Design analysis is performed to 
trace requirement correctness, completeness, consistency, and accuracy. 

One important aspect of design analysis is an evaluation of data flow, data structures, and the appropriateness 
of the data attributes. This analysis verifies the correct and efficient handling of data items specified in the 
requirements and necessary to implement the requirements. Data flow diagrams produced by the developers are 
analyzed by the V&V evaluator. When data flow information is not included in the developers design documentation, it 
is often necessary for the V&V group to produce this documentation to facilitate its review. Also, data base structures 
and attributes are evaluated for correct and complete representations of the data requirements. 

During the design phase of development, planning and designing begins for software component testing, 
integration testing, and system testing. The Software V&V Plan is used as a model for the Software Validation Test 
Plan. This Test Plan is completed in the Implementation Verification step. 

4.2.4 Implementation Verification 

During the coding and implementation phase of development, the software detailed design is translated into 
source code. This activity also creates the supporting data files and data bases. The source code is compiled, assembly 
errors removed, and individual modules are executed to detect obvious errors. 

The purpose of implementation verification is to provide assurance that the source code correctly represents 
the design. Source code is analyzed to obtain equations, algorithms, and logic for comparison with the design. This 
process will detect errors made in the translation of the detailed design to code. Information gained during analysis of 
the code, such as fiequently occurring errors and risky coding structures and techniques, is used in finalizing test cases 
and test data (e.g., Beizer, 1990). 

Data flow analysis is a useful technique during implementation verification. Data can be traced through code 
modules to assure that input values are used but not modified. All output values are assigned as required by the data 
flow analysis performed during design verification. In some cases, data flow analysis can be automated or performed 
manually (Beizer, 1990). 

46 



Code instrumentation can be used to provide a means of measuring program characteristics. This process 
inserts checks or print-out statements into the code to audit the behavior of the code while it is executing commands. 
Instrumentation can be used to check data structure boundaries, data values within allowable ranges, loop control 
checking, and tracing of program execution. 

Unit or module testing is conducted to assure each software module is operating correctly before it is 
integrated with the rest of the system. ANSI/IEEE Standard 1008-1 987 provides a description of soha re  unit testing 
activities. 

During V&V evaluations in this phase of the life-cycle, the source code is traced to design items and 
evaluated for completeness, consistency, correctness, and accuracy. Interfaces between source code modules are 
analyzed for compatible data elements and types. Source code documentation and programmer and user's manuals are 
all reviewed for completeness, correctness, consistency, and accuracy. A Verification Readiness Review is held to 
determine if the system is ready for integrated system testing. 

The Software Validation Test Plan (or alternately, Customer Acceptance Test Plan) is completed in 
preparation for the next step. It identifies the testing approach, schedule, and activities. Detailed test cases and test 
procedures are generated and documented using the knowledge gained about the program through its structure and 
detected deficiencies. 

4.2.5 System Validation 

During the System Validation step, the system as a whole is evaluated against the original Requirements 
Specification. Validation consists of planned testing and evaluation to ensure that the final system complies with the 
system requirements. The Software Validation Test Plan (or Customer Acceptance Test Plan) is utilized during this 
step, and validation may be performed by an independent third party. 

Validation is more than just testing; it involves analysis. A test is a tool used by the validation team to 
uncover previously undiscovered specification, design, or d i g  errors throughout the development process. 
Validation uses testing plus analysis to reach the objectives stated above. The analysis is the design of test strategies, 
procedures, and evaluation criteria, based on knowledge of the system requirements and design, which proves system 
acceptability in an efficient fashion. 

The purpose of system validation is to demonstrate that the final system meets the intent of the requirements. 
Validation may consist of independent tests performed by a third-party V&V group, a combination of independent tests 
and developers' tests, or an independent review of the developers tests by the V&V group. The amount of 
independence of the V&V testing activity is determined by the criticality of the software being tested. For example, 
USNRC requires that the V&V group be independent from the developers for Class 1E systems. 

A Software Validation Test Plan is a critical component in the success of the validation effort. Tests must be 
defied to demonstrate that all testable requirements have been met. The test plan includes a description of the 
purpose, scope, and level of detail for each testing activity. The test organization and responsibilities are l l l y  
described. Documentation of testing activities and results should be specified to ensure consistent documentation for 

47 



all tests. ANSI/IEEE Standard 829-1983 provides a complete description of basic test documentation. It specifies that 
test methods be described and justification for selected methods be provided. The standard requires the identitication 
of support software and hardware to be included in the testing environment. The ANSI standard suggests that test 
standards and criteria for test results and product acceptance are specified so an informed acceptance judgment can be 
made. In addition, it requires procedures developed for actions taken when tests fail and a determination if testing can 
Proceed. 

Test cases and test procedures are evaluated for completeness, correctness, clarity, and repeatability. 
Requirements tracing continues during validation by tracing test cases to requirements. This ensures that all testable 
requirements are covered. Expected results specified in the test cases are verified for correctness against the 
requirements and design documentation. 

Tests are performed in accordance with the previously developed test plans and procedures. Test results are 
evaluated against the criteria specified in the test procedures. Test results are verified to ensure that the correct test 
inputs are used, outputs are correctly reported, and all test cases were correctly executed in the appropriate 
environment. 

In rapid-prototyping development efforts utilizing an iterative life-cycle, maintaining a regression test case set 
is especially important. Each test case in the set must be indexed to the requirement(s), design elemen@), and code 
module@) it tests. Therefore, ifthe requirements, design elements, or code module@) change in a given iteration, the 
test case can be marked for update, deletion, or replacement. Additionally, new test cases must be designed for new 
requirements, design elements, and code modules which were added during the latest prototype development. Thus, 
the regression test set is changed at the end of each prototype implementation to reflect the changes in the system 
requirements, design and implementation. 

4.2.6 Field Installation Verification 

The purpose of field installation verification is to assure that the software installed in its target environment 
has not degraded since validation testing. This is typically accomplished by executing a subset of the functional tests 
performed during validation testing with the software in its final configuration. During this time, all field inputs are 
carefully checked to ensure that they are properly connected to the system in its operational environment. 

During the field installation phase of the development, developers make final modifications to the software 
documentation. This final documentation represents the primary source of information about the software during 
operation and maintenance. This final documentation should be verified to assure that it accurately and completely 
represents the software being placed in operation. 

The iinal V&V step in the development life-cycle is the preparation of a report which summarizes the V&V 
activities performed, describes results, and presents any recommendations and final conclusions resulting fiom the 
V&V effort. This final report provides the status of all discrepancies reported during the V&V effort. 

48 



4.2.7 Operation and Maintenance Phase V&V 

During the operation and maintenance phase of the life-cycle, modifications may be made to the software and 
its operational environment. To maintain the verified and validated status of the operational software, an ongoing V&V 
program is established. The V&V plan used during the development effort is revised to reflect the operational 
environment constraints and procedures. 

A critical factor in the success of V&V during operation and maintenance is the existence of a configuration 
management program to control modifications to the code, documentation, and the operational environment. There is 
no way to maintain the verified and validated status of the software system without adequate control of changes. One of 
the h t  V&V tasks during operation and maintenance should be to evaluate the configuration management program for 
adequate change control. 

A configuration management program provides a formalized change request and approval process. Change 
requests should be submitted for any proposed change to the software, documentation, or operating environment. All 
change requests should be reviewed by the V&V group to determine the impact on the total operational system and 
documentation. Appropriate V&V tasks are determined by evaluating which development phase products are af€ected. 
For example, if a soha re  modification impacts the requirements specification, then appropriate V&V activities should 
be selected fiom requirements verification and each subsequent V&V phase. 

Changes to the sohare  operating environment include modifications of operating system software or 
hardware. An impact evaluation on software performance is done when these types of changes are made to the 
operating environment. This evaluation consists of appropriate field verification activities. The software is verified in 
its new environment by performing a subset of field verification tests, including previously used regression test-suites, 
and demonstrating no significant difference in the test results (Beizer, 1990). 

49 

- -----:- . ----m. . .. . . . - 





5 CLASSIFICATION OF V&V METHODS FOR CONVENTIONAL SOFTWARE 

The survey approach consists of three major stages: classification of conventional V&V methods, 
characterization of these methods, and assessment of their applicability to expert systems. The classification of 
conventional V&V methods is the subject of Section 5. The other stages (characterization and assessment) will be 
described in detail in Sections 6 and 7, respectively. 

5.1 General Observations and Amroach 

The classification stage of the survey approach consists of three distinct activities, as illustrated in Figure 
2.5.1-1. First, a wide variety of technical sources were reviewed for descriptions and references to conventional V&V 
methods. Second, these methods were sorted by their relevance to the main life-cycle phase. Third, the life-cycle 
groups were partitioned into natural sets. 

A comprehensive survey was conducted. The authors gathered and reviewed over 300 technical sources. 
Source material included journal articles, institutional reports, proceedings of soilware testing conferences, professional 
communications, and standards or guidelines. The most informative sources were the more recent texts and 
publications on soha re  testing and methodology. Many of these sources were obtained internally, through local 
libraries, or through a DIALOG search. 

This search yielded the desired results; however, a few dsculties are noted. First, no single source, even the 
best texts on testing, covered the whole body of assembled techniques. Second, Merent authors used Merent 
phrases to refer to the same technique. Occasionally, the same author used synonyms for the same technique, without 
explanation. Lastly, authors often did not give detailed definitions or descriptions of their methods, making it difticult 
to determine how these methods were related or stood up to apparently similar methods. 

The criterion for reporting similar methods as separate items or grouping them under a single name w& 
determined by the authors' contrasting (not detailing) methods within their article. Therefore, when similar methods 
were grouped together, the most accepted name or description for that method was used. A large number of methods 
are identified here, and it is important to emphasize that the V&V of any single soilware system would involve only a 
small subset of these techniques. 

5.2 The Three Maior Catepories and Their Classes 

A total of 153 different techniques were discovered. Although these techniques fall into two distinct life-cycle 
phases, they are clustered into three major categories, as shown in Figure 5.2-1. One category is for the 
RequiremenWesign phase of a Life-cycle, and two are for the implementation phase of a Life-cycle, corresponding to 
the major distinction of static vs. dynamic testing. Static testing involves analysis and inspection of the system's source 
code without actually executing the code. Dynamic testing involves the actual execution of the system's code. All the 
appropriate environments, drivers, and interfaces are installed and operated on a platform, and the system's outputs are 
obtained for a set of inputs. Each of the entries in Figure 5.2-1 represents a major class of techniques for that category. 
Each of these classes may be divided into subclasses, but the total number of individually identified techniques in that 
class is given in parentheses &er each entry. The number of major classes, the total number of individual techniques, 
and the relative percentages of the total by category are shown in Table 5.2-1. 

51 



Formal Methods (8) / 

-General Testing (10) 

-Special Input Testing (10) 

-Functional Testing (5) 

-Realistic Testing (8) 
-Stress Testing (5) 

- ( 4 )  Performance Testing 
-Execution Testing (5) 

-Competency Testing (3) 
-Acute Interface Testing (6) 
-Structural Testing (8) 
-Error-Introduction Testing (3) 

Semi-formal Methods (1 1) 

Reviews & Analyses (7) 

Traceability Assessments (2) 

I 

Algorithm Analysis (13) 

Control & Performance 

Analyses (8) 
Data Analysis (12) 

Fad flailme 

Analysis (1 1) I Inspections (14) 

* Number in parentheses indicate the number of individual number of V&V Methods of that type. 
Figure 5.2-1. Classes of Conventional V&V Methods Organized by Life-Cycle Phase 

52 



Table 5.2-1 Statistics concerning the three 
major categories of conventional V&V techniques 

RequiremenWesign 

Static Testing 

Dynamic Testing 

Major Category 

TOTALS 

w 
Major Classes Techniques 

Percentage of Total 
Techniques 

4 

5 

11 

20 

28 

58 

67 

153 

18% 

38% 

44% 

100% 

53 



The number of RequiremenWDesign methods reflects the relatively small number of system products for 
examination at those early phases. The greater number of Dynamic over Static methods reflects the greater 
complexities of testing an operational system in a specific operating environment. The greater number of Dynamic 
techniques, 44% of the total, may also reflect programmers' preferences for the most direct approach of executing a 
program to see how well it runs. Full descriptions of the three technique categories are provided in Table 5.2-2. 

5.2.1 Requirements/Design Methods 

The RequiremenWDesign techniques consist of four major classes and their various subclasses. These major 
classes of techniques are: formal methods, semi-formal methods, reviews and analyses, and traceability assessments. 
The methods for the fbt two Life-cycle phases are grouped together because three of the four classes are very much the 
same whether applied to a requirement specification or a design description. However, the fourth class, Traceability 
Assessments, involves comparisons between the products of the two phases. The descriptions of the 28 individual 
conventional RequiremenWDesign VSZV techniques are provided in Table 5.2.1-1; however, brief comparisons are 
given below. 

The Formal Methods involve mathematical and logical calculations for expressing relationships among data 
and other objects and the processes which interact with them. Using these methods, one can prove various important 
properties about the system represented, such as the absence of contradiction. The Semi-Formal Methods often involve 
rigorous constraints on notations, sequencing, and selection of operatordobjects to achieve their goal of guiding the 
analysis or specification within well-defined limits. They 'are less dficult to apply than the Formal methods. Both the 
Formal and Semi-Formal methods provide for language representations of systems of varying complexity; the former in 
more mathematical notation and the latter in more graphical network styles. Both have had variants for the last 15 
years, but they have been employed by very few sohare engineers. With the advent of powerful desk-top computers, 
graphic interfaces, and local database management systems, these methods are increasingly promoted and are on the 
rise in usage as they are implemented in computer-based tools. 

A major advantage of the semi-formal methods is that their philosophy of supporting system-engineering 
descriptions in a graphical mode greatly facilitates simulating or animating requirements specifications and designs. 
Such capability is believed by many to be an essential aspect of developing and assuring the quality of highly complex 
systems requiring high integrity. 

Both the Reviews and Analyses and the Traceability Assessments are absolutely essential to effective quality 
assurance of  an^ system. Reviews and Analyses are well-worked out procedures for various parties having an interest 
in the final system to hear presentations on the work in progress and express their concerns. The Traceability 
Assessments establish the relations between (in the present case) the requirements specification and the design, 
matching elements of one to the other. After matching, all that remains is either a set of unmapped requirements 
elements, mhlfilled requirements, or a set of unmotivated additional design elements, unintended design functions. 
The kst  clearly signals design inadequacies, and the second raises strong concerns that the non-specified additional 
functions might lead to unexpected errors and performance andor safety problems. 

54 



Table 5.2-2 Description of major classes of techniques 

V&V CLASSESEUBCLASSES 
1.0 REQUIREMENTS AND DESIGN 

EVALUATION 

1 .I Formal Methods 

I .2 Semi-Formal Methods 

55 

DESCRIPTION 
EVALUATION OF THE ADEQUACY OF THE 
REQUIREMENTS AND DESIGN 

Use of mathematical and logic formalisms for 
rigorous and unambiguous representation of 
initial system documents, including the 
requirements document, the requirements 
specification, and the design document. 
These representations may then be subjected 
to formal (sometimes automated) deductive 
reasoning to detect anomalies or defects such 
as "correctness", "contradiction", 
"completeness", "deadlock", and 
"consistency". 

Techniques whose normal, forced, or 
prescribed method of use effectively constrain 
users in their specification of requirements or 
designs, such that various problems of 
expression and elaboration can be avoided or 
reduced. Such problems include aspects of 
ambiguity, incompleteness, inconsistency, 
contradiction, and "ill-formedness." These 
techniques, while often based on 
mathematical and logic formalisms, do not 
explicitly require the user to specify or use such 
formalisms. The techniques are typically 
embedded in function-rich, computer-based 
environments which provide sophisticated 
graphical representations of user input and 
often permit the user specifications to be 
simulated or animated to permit assessment of 
time and performance characteristics. 



Table 5.2-2 (Continued) 

V&V CLASSESEUBCLASSES 

1 .O REQUIREMENTS AND DESIGN EVALUATION 

1.3 Formalized Reviews and Analyses 

1.4 Traceability Assessments 

2.0 STATIC TESTING 

2.5 Inspections 

2.1 Algorithm Analysis 

2.2 Control Analysis 

2.3 Data Analysis 

2.4 FaulWailure Analysis 

DESCRIPTION 

EVALUATION OF THE ADEQUACY OF THE 
REQUIREMENTS AND DESIGN 

Reviews and specialized analyses by various 
specified personnel of requirements or design 
products. The reviews follow a detailed 
checklist or set of procedures. 

Determination of correspondence between 
individual requirements and design elements, 
between individual requirements and 
implemented system features, or between 
design elements and implemented system 
features. The two types of problems identified 
by these analyses are (1) unfulfilled 
requirements or design elements, and (2) 
unintended (unmotivated) design or 
implementation elements. 

EXAMINATION OF THE PROGRAM SOURCE 
CODE OR SOME TRANSFORMATION OR 
MAPPING TO SUPPORT VARIOUS KINDS 
OF ANALYSES (e.g., UNUSED CODE, 
INCONSISTENCIES, ANOMALIES). 

Analysis of the overall algorithm(s) for 
achieving required function. 

Analysis of the control characteristics of the 
program. 

Analysis of the data specifications and flow of 
the program. 

Analysis for particular or any kind of fault or 
failure, and/or an analysis to determine how 
particular faults and failures could occur. 

Examination of various aspects of the program 
by various personnel. 

56 



Table 5.2-2 (Continued) 

V&V CLASSESlSUBCLASSES 

3.0 DYNAMIC TESTING 

3.1 General Testing 

3.2 Special Input Testing 

3.2.1 Random Testing 

3.2.2 Domain Testing 

3.3 Functional Testing 

3.4 Realistic Testing 

3.5 Stress Testing 

3.6 Performance Testing 

3.7 Execution Testing 

3.8 Competency Testing 

3.9 Active Interface Testing 

3.1 0 Structural Testing 

3.1 1 Error-Introducing Testing 

DESCRIPTION 

ACTUAL EXECUTION OF THE PROGRAM, 
GENERATING OUTPUT FOR SETS OF 
INPUT CONDITIONS. 

Generic and statistical methods for exercising 
program. 

Special methods for generating test-cases to 
explore the domain of possible system inputs. 

Selecting test-cases according to some 
random statistical procedure. 

Analysis of the boundaries and partitions of the 
input space and selection of interior, boundary, 
extreme, and external test-cases as a function 
of the orthganality, closedness, symetry, 
linearity, and convexity of the boundaries. 

Selecting test-cases to assess required 
functionality of program. 

Choosing inputs/environments comparable to 
intended installation situation. 

Choosing inputs/environments which stress the 
design/implementation of the code. 

Measuring various performance aspects for a 
list input. 

Actively following (and possibly interrupting) 
sequence of program execution steps. 

Comparing the output "effectiveness" against 
some pre-existing standard. 

Testing variousinterfaces to the program. 

Testing selected aspects of the program 
structure. 

Systematically introducing errors into the 
program to assess various effects. 

57 



Table 5.2.1 -1 Description of the conventional requirementsldesign V&V methods 

V&V ClasseslSubclasses 

1 .I Formal Methods 

1 .I .I General Requirements Language 
Analysis/ Processing (Davis, 1990) 

1 .I .2 Mathematical Verification of 
Requirements (Jones, 1986) 

1 .I .3 EHDM (Rushby, 1991) 

1 .I .4 2 (Chisholm, 1990) 

1.1.5 Vienna Definition Method (Jones, 1986) 

1.1.6 Refine Specification Language (Ng, 
1990) 

1 .I .7 Higher Order Logic (HOL) (Gordon, 
1985) 

1.1.8 Concurrent System Calculus 

1.2 Semi-Formal Methods 

1.2.1 Ward-Mellor Method (Ward, 
1986) 

Description 

Expression of requirements 
specifications in a special requirements language 
and analysis of execution of that expression to 
assess the adequacy of the requirements. 

Translation of requirements into 
mathematical form for proving various properties 
(security, ultra-hi reliability). 

A specification (and verification) 
language based on a strongly typed higher-order 
logic, incorporating elements of the Hoare relational 
calculus, with complete formal semantic 
characterization. 

A typed set-theoretic language 
employing mathematical expressions, schema, to 
describe aspects of a system; the schema consist of 
declarations grouped with property predicates about 
the declarations. 

A discrete-mathematical formalism 
for rigorously defining the semantics specification 
processes. 

A knowledge-based commercial 
specification language and environment based on 
transformational programming concepts. 

An implemented logic notation that 
allows specifications to be written in terms of 
hierarchically structured collection of logical theories 
which contain axiomatic properties of the operations 
that are introduced. 

Provides a calculus for the 
description and specification of concurrent systems. 
Similar to Milner's (1 986) calculus, and basis for 
LOTOS (ISO, 1987) Language for Temporal 
Ordering Specification. 

An extension of Structured 
Analysis system specification techniques (e.g., Ross, 
1977; DeMarco, 1978) developed at Yourdon, Inc. 
for real-time systems, emphasizing data flow 
r i - e  

58 



Table 5.2.1-1 (Continued). 

V&V Classeshbclasses ll 
1.2.2 

1.2.4 

1.2.5 

1.2.6 

1.2.7 

1.2.8 

1.2.9 

Hatley-Pirbhai Method 
(Hatley & Pirbhai, 1987) 

Extended Systems Modeling 
Language (ESML; Bruyn et. 
al., 1988) 

Systems Engineering 
Methodology (SEM; 
Wallace, 1987) 

System Requirements 
Engineering Methodology 
(SREM; Alford, 1977) 

FAM (Chisholm, 1990) 

Critical Timingff low 
Analysis (Wallace, 1989) 

Simulation-Language 
Analysis (Hartway, 1990) 

1.2.1 0 Petri-Net Safety Analysis 
(Leveson & Stolzy, 1987) 

I .2.11 PASLPSA (Teichroew, 
1977) 

59 

~ 

Description 

techniques were developed at the Boeing and Lear 
companies; emphasizes control flow diagrams; 
considered to have superior architectural modeling 

Like Ward-Mellor, except that the 

Like Ward-Mellor, but using unique 
Statechart notations to accomplish similar modeling 
as the above, but generally considered richer and 
more elegant. Implemented in a set of tools called 
STATEMATE (cf. Hare1 et at., 1990). 

A modeling language with elements 
of the Ward-Mellor and Hatley-Pirbhai methods, 
currently under development. 

analysis techniques and software cost reduction 
methods (Heninger, 1980), similar to ESML. 

A method combining structured 

A hardware/software specification 
language for describing both data-and control-flow of 
systems, used extensively in US DoD weapons 
systems development (also known as the DCDS 
method; later implemented in a commercial system 
called TAGS). Now fully implemented, with 
complete system support, as the RDD-100 tool 
(supports design animation; Ascent, 1990). 

of graphical annotated flow-nets, based on 
extensions to Petri-net theory, permitting symbolic 
execution with an automated theorem prover. 

Representation of systems in terms 

Modeling and (usually) simulation 
of process and control timing aspects of the design 
to determine if such requirements are satisfied (e.g., 
with Petri Nets). 

Representation of a system design 
in a general purpose simulation language (e.g., 
SLAM ll), and analysis of the execution results. 

timed) Petri nets to assure design adequacy for 
catastrophic-failure and other safety problems. 

representation of requirements and specifications 
with automated support. 

Systems modeling with untimed (and 

Constrained natural language-like 



Table 5.2.1-1 (Continued). 

V&V ClasseslSubclasses 
1.3 REMEWS AND ANALYSES 

1.3.1 Formal Requirements Review 
(NBS500-93,1982) 

1.3.2 Formal Design Review (NBS500-93, 
1982) 

1.3.3 System Engineering Analysis (DSMC, 
1990) 

1.3.4 Requirements Analysis 

1.3.5 Prototyping (Schulmeyer, 1992) 

1.3.6 Database Design Analysis (Nijssen, 
1989) 

1.3.7 Operational Concept Design Review 
(Rasmussen, 1987) 

1 A TRACEABILITY ASSESSMENTS 
1.4.1 Requirements Tracing Analysis 

(NBS500-93,1982) 

1.4.2 Design Compliance Analysis (Wallace, 
1989) 

Description 

Review by special personnel of the adequacy of the 
requirements specification according to detailed pre- 
established set of criteria and procedures. 

Review by special personnel of the adequacy of the 
design according to detailed pre-established set of 
criteria and procedures. 

A variety of activities associated 
with developing a complete operational system 
which satisfies certain requirements; these activities 
include creation of a functional architecture, 
allocating function to hardware and software, 
accomplishing trade-off and makebuy studies, and 
development of a work-breakdown structure. 

Analysis of requirements to ensure 
completeness, consistency, clarity, explicitness, etc. 

Building a model of a design to 
evaluate one's approach or to better define the 
requirements; prototypes may range from mock-ups 
to initial versions which are retained and built on. 

Checking the design of the 
structure, normal form, declarations, and values of a 
database. 

Review of the design of the 
concept of operations for the system, especially the 
interaction with human operators. 

Identification of individual requirement aspects and 
tracing of these to design aspects, and from the 
design to aspects of the implemented program. 

is compliant with-realizes-all aspects of 
requirements. 

Verification process that design 

60 



The following four trends could accelerate the development and use of this frontad class of V&V techniques: 

1. 

2. 

3. 

4. 

CASE (Computer Aided Sohare  Engineering) tools are becoming widely available. They provide 
disciplined and feature-rich environments for developing specifications and designs, providing all  
manner of data-dictionary and consistency-checking support. 

The development of languages for specifications outside the software community is emerging. 
These activities are coming fiom the advanced manufacturing areas and are driven significantly by 
the need for communication among CAD/CAM tools among various suppliers at various stages of 
manufacturing. These range from the oIder entity-relation IDEF family of languages to the more 
recent process-property relations and semantics, such as NIAM, EXPRESS, and the emkging 
PDES/STEP, (Chen, 1990). 

Standards and guideline activities, particularly in Europe, are emphasizing the utility and the 
necessity of formal proving methods. This is evidenced by the British dr& standards MOD 0055 
and 0056, (UK, 1989). 

The capability of automatic code-generators is increasing rapidly. This trend has been stimulated 
by the success of automatic generation of application code for fourth-generation language query and 
other systems, and by the burgeoning interest in reverse-engineering. 

5.2.2 Static Testing Methods6 
\ 

This category comprises five major classes of techniques, as described in Table 5.2.2-1. All of these involve 
examinations based on the system source code without actual execution of that code. These major classes are: 
algorithm analysis, control analysis, data analysis, fault/failure analysis, and inspection. Some involve only the source 
code, while others involve transforinations or simulations ofthat code into special analysis languages or formats. 

The Algorithm Analysis methods, the fmt static-testing category, involve analysis of the algorithm(s) embodied in the 
program and, in most techniques, the translation of the algorithm(s) into some kind of language or structured format (all 
but Technique 2.1.9). Algorithm analysis provides the means for microscopic examination of the software system's 
process-logic and its adequacy, in the area of the requirements and design. This examination pennits the detection of 
unimplemented or unintended functions. 

Some control analysis techniques detect and characterize program control-flow with the sequential and hierarchical 
aspects (2.2.1-2.2.3,2.2.5). Two techniques detect the timing aspects (2.2.6-2.2.8). However, one method focuses on 
the concept of operations, particularly as it involves the user (2.2.4). 

6 ~ o e ' k  a comprehensive report it includes the few nonconventionat vgtv static testing methods that were discovered, in a metent e to 
beregularlyappliedto AIsystems. Themethodsare2.1.12,2.1.13, and2.4.8-2.4.11. 

61 



Table 5.2.2-1 Description of the Conventional Static Testing V&V Methods 

Static Testing V&V Methods 

2.1 Algorithm Analysis 

2.1.1 Analytic Modeling (Jones, 1986) 

2.1.2 Cause-effect Analysis (Davis, 1990) 

2.1.3 Symbolic Execution (King, 1976) 

2.1 A Decision Tables (Omar, 1991) 

2.1.5 Trace-assertion Method (Parnas, 1988) 

2.1.6 Functional Abstraction (Mills, 1987) 

2.1.7 L-D Relation Methods (Parnas, 1988) 

2.1.8 Program Proving (Mills, 1987) 

2.1.9 Metric Analyses (Jensen, 1985) 

2.1.1 0 Algebraic Specification (Uhrig, 1985) 

Descriotion 

Representing the program logic and processing 
in some kind of model and analyzing it for 
sufficiencv. 

Identifying the triggers of processes, their effect 
during activation in states of variables, and the 
final terminating conditions. 

Representing the data computations as algebraic 
equations and solving these algebraically through 
the whole program. 

Tables which represent different 
logical combinations of events or conditions that 
might occur and the actions to take when they do 
occur. Used as a static method to identify 
functionality and to provide the basis for selection 
of dynamic testing test-class. 

An algorithm specification (or 
representation) method involving description of 
the sequence of invocations of system modules, 
including I/O values, in terms of v. axiomatic 
assertions about the traces, in a "black-box" 
fashion. Used in conjunction with "A-7 Table 
Format" representation (similar to decision 
tables). 

Representing design or program as a series of 
mathematical functions based on a small set of 
primitive programming functions (e.g., iteration, 
sequence, select, etc.) then, recursively, dividing 
parent functional specifications into sub- 
specifications and mathematically verify 
equivalence. 

An alternative to functional specifications for non- 
deterministic programs using relations and the 
competence set of states in which termination is 
auaranteed. 

~ 

For each code segment, developing formal 
specifications of functional intent and specific I/O 
characteristics; for actual or symbolic input then 
proving via some proof procedure that the 
segment performed as intended. 

Computation of various complexity metrics for the 
program. 

Specification of program procedures 
in terms of algebraic expressions. 

62 



Table 5.2.2-1 (Continued). 

Static Testina V&V Methods 

2.1 .I 1 Induction-Assertion Method (Hoare, 1985) 

2.1 . I2  Confidence Weights Sensitivity Analysis 
(OLeary, 1990) 

2.1 .I 3 Model Evaluation (Hamscher, 1992) 

2.2 Control and Performance Analyses 

2.2.1 Control Flow Analysis (Ward, 1985) 

2.2.2 State Transition Diagram Analysis 
(NBS500-93,1982) 

2.2.3 Program Control Analysis (NUREGKR- 
4640,1987) 

2.2.4 Operational Concept Analysis 
(Rasmussen, 1987) 

2.2.5 Calling Structure Analysis (NBS 500-93, 
1982) 

2.2.6 Process Trigger/Timing Analysis (Hatley, 
1987) 

2.2.7 Worst-case Timing Analysis (Wallace, 
1989) 

2.2.8 Concurrent Process Analysis (Rattray, 
1990) 

63 

Descriotion 

Use of abstract data types to represent a 
specification so that proofs of correctness can be 
implemented using these. 

Using statistical analyses to measure the 
sensitivity, accuracy or bias in the confidence 
factorsheights placed on rules' conclusions. 

Evaluation of models in the system by modeling 
experts and by subject matter experts. 

Analyzing the program into a series of decision 
and process actions and representing all of the 
possible alternative process sequences in the . 
program. Often used to assess whether program 
is well-structured and has no unreachable code. 

Determining the condition (variable states, etc.) 
that trigger the onset and cessation of program 
processes. 

Related to 2.2.1 and 2.2.2 but concerned more 
with the sequential aspects leading to a particular 
execution path in a program. 

Analysis of the manner in which the software 
system interacts with and is dependent upon 
states of the environment and external decisions, 
especially of human operators. 

Module by module analysis of hierarchically 
structured programs involving procedure calls to 
determine what sequence of higher level module 
calls led to the invocation of a particular module, 
and what modules in turn are called by it. 

Analysis of the conditions which activate a 
process (similar to 2.2.2) with special concern for 
the timing of activation relative to other processes. 

Analysis to determine the longest execution-time 
path through a program often comparing this to a 
reference safety limit. 

Analysis of the overlap or concurrency of different 
processes in multi-tasking, parallel processing, or 
concurrent processing programs. 



Table 5.2.2-1 (Continued). 

Static Testina V&V Methods 

2.3 Data Analysis 

2.3.1 Data Flow Analysis (Deutsch, 1982) 

2.3.2 Signed Directed Graphs(Suddath, 1991) 

2.3.3 Dependency Analysis (Dunn, 1984) 

2.3.4 Qualitative Causal Models (Oyeleye, 1990) 

2.3.5 

2.3.6 

2.3.7 

2.3.8 

2.3.9 

2.3.1 0 

2.3.1 1 

2.3.12 

Look-up Table Generator (NBS 500-93, 
1982) 

Data Dictionary Generator (Ng, 1990) 

Cross-reference List Generator (NBS 500- 
93,1982) 

Aliasing Analysis (NBS 500-93,1982) 

Concurrency Analysis (Rattray, 1990) 

Database Analysis (Nijssen, 1989) 

Database Interface Analyzer (NBS 500-93, 
1982) 

Data-Model Evaluation (Davis, 1990) 

Description 

4nalysis of the data inputs, outputs, and controls 
:o all program processes. 

Sraphical qualitative representation of the 
jirectional effects of system states on other 
states of certain other system components (also 
:ailed Influence Diagrams). 

Determinina what variables depend on what other 
tariables, sknilar to "influence diagrams". 

Development of models of the process and event 
causes of qualitative states and changes of a 
system. 

Generating the location within various modules of 
data and control variables. 

Generating a definedhsed table of locations of all 
program variables. 

Generating the location of all data variables, in 
form of cross-reference table of modules. 

Analysis of the aliases of variables used in the 
main procedure and passed as 
parameterdarguments to its called procedures 
(and theirs). 

Analyzing programs for existing or potential 
concurrent data-paths and processing. 

Checking the implementation of structure, normal 
form, declarations, and values of a database. 

Checking the interface@) of a program with 
primary data input for errordetection and 
handling, consistency-checking, etc. 

Evaluating the adequacy and features of the data 
schema or meta-schema used to organize the 
DB and data structures. 

64 



Table 5.2.2-1 (Continued). 

Static Testing V&V Methods 

2.4 FaultlFailure Analysis 

2.4.1 Failure Mode, Effects, Causality Analysis 
(FMECA) (MIL-STD-I629A, 1984) 

2.4.2 Criticality Analysis (Wallace, 1989) 

2.4.3 HazardsBafety Analysis (Rushby, 
1988) 

2.4.4 Anomaly Testing, (Ng, 1990) 

2.4.5 Fau I t-tre e An a lysis (Even t-tree An a lysis) 
(Leveson, 1983) 

2.4.6 Failure Modeling (Davis, 1990) 

2.4.7 Common-Cause FailureAnalysis (UK, 
1989) 

2.4.8 KB Syntax Checking (Preece, 1991) 

2.4.9 KB Semantic Checking (also "Knowledge- 
Checking"; Stachowitz, 1987) 

65 

DescriDtion 

Identification of the failure modes of each system 
component and analyzing the consequences of 
each failure type. information gathered includes 
failure description, cause(s), defect@), detection 
means, resultant safety consequences or other 
hazards, and recovery methods and conditions. 

Identification of the critical points of failure in a 
program and the development of test cases to 
verifv their accuracv and robustness. 

Analysis of failure data to develop metrics and 
casual hypotheses about system components' 
failure rates, fault-sources, and future behavior. 
(BS189) 

Checking the program for irregularities of style, 
syntax, or practice, or for signs of potential 
defects. 

Beginning with a system hazard or failure, the 
analysis identifies or hypothesizes immediate and 
proximal causes, and describes the combination 
of environment and events that preceded, usually 
in the form of a directed graph or "and-or tree". 
Often accompanied by an "event tree analysis" 
showing relevant event-propagation information. 

Analysis of the system (and requirements) to 
identify potential hazards or safety events, or to 
consider such events determined by dynamic 
testing. Full analysis involves 2.4.2 in addition. 

Identifying failures that affect apparently 
indepedent modules. 

Examination of a knowledge base for syntactic 
errors or anomalies in the composition of rules, 
frames, and other knowledge elements; no 
additional external information is required (see 
below). 

Use of external meta-rules, 
constraints, or engineering knowledge to check 
the internal semantic consistency of a knowledge 
base. 



Table 5.2.2-1 (Continued). 

2.5.1 Informed Panel Inspection (Culbert, 1987) 

Static Testing V&V Methods I Description 

Convocating a qualified group to review the 
quality of a program. 

2.4.1 0 Knowledge AcquisitionRefinement Aid 
(Desimone, 1990) 

2.5.3 Formal Customer Review (NUREGER- 
4640.1987) 

2.4.1 1 Knowledge Engineering Analysis (Hart, 

2.5 Inspections 

A formal evaluation by the customer 
rewesentatives of the adequacy of a program. 

Use of an automated tool during knowledge 
acquisition or refinement (maintenance) to 
prevent some types of errors from being created 
in the first place or to assure complete coverage 
of possible input values, possibly through 
machine learning techniques. 

Similar to Knowledge AcquisitionRefinement Aid, 

2.5.2 Structured Walkthroughs (Fagan, 1986) An analysis of a program module, usually by 
programmer, with audience of programming 
team members. 

66 



Table 5.2.2-1 (Continued). 

Static Testina V&V Methods 

2.5.4 Clean-room Techniques (Mills, 1987) 

2.5.5 Peer Code-checking (Mills, 1987) 

2.5.6 Desk Checking (Dunn, 1984) 

2.5.7 Data Interface Inspection (Ng, 1990) 

2.5.8 User Interface Inspection (NUREGER- 
4227,1985) 

2.5.9 Standards Audit (Dunn, 1984) 

2.5.1 0 Requirements Tracing (NBS 500-93, 
1982) 

2.5.1 I Software Practices Review (Humphrey, 
1990) 

2.5.12 Process Oriented Audits (Humphrey, 
1990) 

2.5.13 Standards Compliance (Bryan, 1988) 

2.5.14 System Engineering Review 
(DMSC 1990) 

67 

Description 

A number of analytic (and procedural) practices 
for extremely high reliability code production. 

Fellow programmers checking each other's code. 

Inspecting program source code without benefit 
of automated tools. 

Inspection of all data interfaces of a program for 
adherence to specification, error-handling, 
consistency-checking, and other features. 

Inspection of all aspects of the interface to the 
user and operator for adequacy and other criteria. 

Evaluation of the program to determine its 
compliance with the set of governing standards 
and guidelines. 

Tracing forward from each unique requirement 
element to specific code modules which are 
intended to implement that requirement. 
Requirements which cannot be so mapped are 
flagged as "unfulfilled requirements." Program 
elements which are not traceable back to any 
requirement are flagged as "unintended 
functions." 

A review of a software organization 
to advise its management and professionals on 
how they can improve their operation. 

An examination of products of the 
software development effort (such as unit 
development folders) with the emphasis on 
improving the software development process. 

Comparison of system to imposed 
standards (e.g., documentation content, coding 
style, communication protocols, etc.). 

A variety of checks and analyses to determine 
that good sysem engineering principles have 
been followed in the implementation (see 1.3.3). 



Several of the Data Analysis methods are concerned with the relationships of named variables in one module to those 
in other modules (2.3.5-2.3.8). Several methods are concerned with the database or data-model (2.3.10-2.3.12). The 
remaining methods focus on the flow of data from input to output or one process to another, two of these methods 

Some control analysis techniques detect and characterize program control-flow with the sequential and 
hierarchical aspects (2.2.1-2.2.3,2.2.5). Two techniques detect the timing aspects (2.2.6-2.2.8). However, one 
method focuses on the concept of operations, particularly as it involves the user (2.2.4). 

Several of the Data Analysis methods are concerned with the relationships of named variables in one module 
to those in other modules (2.3.5-2.3.8). Several methods are concerned with the database pr data-model (2.3.10- 
2.3.12). The remaining methods focus on the flow of data from input to output or one process to another, tow o these 
methods deal with sequential and concurrent processes (2.3.1 and 2.3.9, respectively), while three methods deal with 
qualitative relationships among system states as determined by data-flow (2.3.2-2.3.4). 

The FaultlFailure Analysis methods examine programs for defects, using a general failure-analysis strategy 
carried over from hardware testing. This approach uses high-level functional and operational descriptions to identify 
how the system mi& logically fail. The program code is examined to determine if any of those failure-mode 
possibilities could logically occur and in what context and under what conditions. Such program examinations often 
lead to identification of software defects. In any case, they can provide the basis for the development of special failure 
test cases to be executed with subsequent dynamic testing techniques. Examples of these failure-detecting methods are 
FMECA (Failure mode, effects, causality analysis; 2.4. I), Criticality Analysis (2.4.2), and HazarMSafety Analysis 
(2.4.3). If the notion of failures is relaxed to include any type of apparent defect or anomaly, then the Anomaly Testing 
method (2.4.4) is also included in this subset. Alternatively, these methods begin with actual (or suspected) program 
failure data and work backwards seeking specific causes for these failures. Examples of these methods are Fault-tree 
Analysis (2.4.5), Failure Modeling (2.4.6), and Common-Cause Failure (2.4.7). 

Inspections are general examinations of programs. They are less focused on specific program problems than 
the previous four classes. The fist four (2.5.1-2.5.4) involve groups which serve as a critical review audience for a 
discussion of program code. Clean-room techniques involves a variety of specific defect-exposure techniques, only a 
few of which involve group review. Peer Code-checking (2.5.5) involves programmers trading code elements among 
themselves for review, while Desk Checking (2.5.6) typically involves the programmer checking his or her own code. 
The interface inspection techniques examine the data and the user interfaces (2.5.7 and 2.5.8) respectively. The 
Standards Audit (2.5.9) examines the code for compliance with govemhg guidelines and standards. Requirements 
Tracing (2.5.10) concerns the mapping of requirements to program elements. Software Practices Review and Process 
Oriented Audits (2.5.1 1 and 2.5.12) examine the products and process of a software organization. System Engineering 
Review (2.5.14) involves experts with a system engineering background examining the requirements and design. 

5.2.3 Dynamic T d g  Methods 

The dynamic testing methods were the most discussed techniques for assessing the quality of implemented 
software systems. In terms of the number of citations and publication pages, dynamic testing methods account for 44% 
of the 153 methods identified in this report. Table 5.2.3-1 lists and describes these methd .  

68 



Table 5.2.3-1 Description of the conventional dynamic testing V&V methods 

Dynamic Testing Methods 

3.1 GENERAL TESTING 

3.1 .I Unit/Module Testing (Ng, 1990) 

3.1.2 System Testing (Dunn, 1984) 

3.1.3 Compilation Testing (Davis, 1990) 

3.1.4 Reliability Testing (Boehm, 1981) 

3.1.5 Statistical Record-Keeping (Boehm, 
1981) 

3.1.6 Sofhvare Reliability Estimation (BSI, 
1989) 

3.1.7 Regression Testing (NBS500-93, 
1982) 

3.1.8 Metric-Based Testing (Jones, 1986) 

3.1.9 Ad Hoc Testing (Dunn, 1984) 

3.1 .I 0 Beta Testing (Dunn, 1984) 

3.2 SPECIAL INPUT TESTING 

3.2.1 Random Testing' (Barnes, 1987) 

DescriDtion 

General testing of single program modules. 

Testing of the overall completed software system with 
test-cases representative of general program 
characteristics including its logic and computation, and its 
timing. 

Using compiler diagnostics and problem-reports to test 
system. 

Selecting test-cases to exercise particular aspects of the 
system believed to be unreliable; also extensive testing to 
assess component failure rates. 

Collecting data on errors discovered for particular system 
modules to suggest which modules should be tested 
more thoroughly or even redesigned; especially important 
in the maintenance phase of the lifecycle. 

Similar to 2.1.8 but applying sophisticated statistical 
estimation techniques to fault and error data, to guide 
continued data collections and to predict system and sub- 
system failures. 

Repetition of a test suite after program modification to 
assess effects of changes. 

Selection of some aspect of the program for testing on the 
basis of the value of some metrics computed for it (usually 
"complexity"). 

Test-cases defined at whim by programmer without 
careful planning. 

Early release of the system to one 
or more "beta" user sites for a final testing under realistic 
field conditions. 

Selecting test-cases according to some random statistical 
procedure. 

69 



Table 5.2.3-1 (Continued). 

Dynamic Testing Methods 

3.2.1 .I Uniform whole program testing 

3.2.1.2 Uniform boundary testing 

3.2.1.3 Gaussian whole program testing 

~ 

I 

3.2.1.4 Gaussian boundary testing 

3.2.2 Domain Testinq' (Beizer, 1990) 

3.2.2.1 Equivalence Partitioning (Myers, 
1979) 

32.2.2 Boundary-value Testing (Myers, 
1979) 

3.2.2.3 Category-Partition Method (Ostrand, 
1988) 

3.2.2.4 Revealing Subdomains Method 
(Weyuker, 1980) 

Description 

Selecting test-cases such that each input variable is 
assigned any value inside its range with equal probability, 
over the whole program domain. (Best of the 4 
techniques). 

Selecting test-cases, with equal probability, around the 
boundaries of the ranges of input variables (within the 
range, at range limit, and outside range). 

Selecting test-cases for input variables according to 
Gaussian distribution (usually with a mean in the middle of 
the variable range, and with a standard variation of 1/12 its 
range). 

Selecting test-cases for input variables drawn from a 
Gaussian distribution across the boundaries of their valid 
ranges. 

Analysis of the boundaries and partitions of the input 
space and selection of interior, boundary, extreme, and 
external test-cases as a function of the orthganality, 
closedness, symetry, linearity, and convexity of the 
boundaries. 

A type of domain testing which partitions the input domain 
into equivalence classes such that a test of a 
representative value from a class is assumed to be a test 
of all the class values. 

A type of domain testing which selects test values at and 
around (just inside, just outside) input boundaries. 

Similar to equivalence partitioning, but the equivalence 
classes are more rigorously derived from a functional 
decomposition, and there is much more attention in 
selecting representative value to co-occurrence 
constraints among classes. 

A type of domain testing which takes into account both the 
partitioning of the overall input space by functional 
decomposition and also the internal program path 
structure. 

Both of the subcategories of 3.2 (3.2.1 and 3.2.2) are included as distinct methods as well a s  their (non-exhaustiie) sub- 
subcategories. 

70 



Table 5.2.3-1 (Continued). 

Dynamic Testing Methods 

3.3 FUNCTIONAL TESTING 

3.3.1 Specific Functional Requirement 
Testing (Howden, 1980) 

3.3.2 Simulation Testing (Pritsker, 1986) 

3.3.3 Model-Based Testing (Davis, 1990) 

3.3.4 Assertion Checking (NUREG/ 
CR4640,1987) 

3.3.5 Heuristic Testing (Miller, L., 1990) 

Description 

Selecting test-cases to assess the implementation of 
specific required functions. 

Generating special code to emulate various aspects of 
code to-be-implemented system. 

Use of an analytic or process model of desired function to 
assess the implemented function. 

Bracketing code segments with assertions which can be 
compiled into executable code to verify assertions during 
code operation. Similar to the static technique of program 
proving but involves actual execution of code and 
assertions. 

Emphasizes the importance of prior fault prioritization and 
analysis to determine fault-enabling conditions and 
appropriate test cases. 

71 



Table 5.2.3-1 (Continued). 1 D namic Testin Methods 

ll 3.4.1 Field Testing (Rushby, 1988) 

3.4.2 Scenario Testing (Ng, 1990) 

3.4.3 Qualification/Certification Testing 
(Jensen, 1979) 

3.4.4 Simulator-Based Testing (Ng, 1990) 

3.4.5 Benchmarking (Mayrhauser, 1990) 

3.4.6 Human Factors Experimentaticrn (CHI, 
1988) 

3.4.7 Validation Scenario Testing (ASME, 
1990) 

3.4.8 Knowledge Base Scenario Generation 

3.5 STRESS TESTING 

II 3.5.1 Stress/Accelerated Life Testing 
(NBS500-75,1981) 

3.5.2 Stability Analysis (Dunn, 1984) 

3.5.3 Robustness Testing (Miller, L., 1990) 

3.5.4 LimitlRange Testing (Ng, 1990) 

3.5.5 Parameter Violation (NBS 500-93, 
1982) 

Description 

Testing of the program under actual installed conditions. 

Lab or Field testing with highly ralistic cases or situations. 

Extensive testing to meet some set of high standards of 
quality or performance. 

Use of a simulator to generate ealistic input data streams 
to the system to be tested. 

Use of standard widely supported tests to exercise a 
number of aspects of system performance. 

Evaluation of the human-user performance with the real 
or simulated system to determine adequacy of the 
human-computer interface. 

A realistic dynamic system test which samples important 
subsets of functional capability. Is usually the last type of 
testing done,and is intended to provide assurance to the 
end-user/customer (or regulator). More restrictive in 
extent and focus than 3.4.2. 

A proposed automated method for automatically 
generating validation scenarios from knowledge bases. 

Exercising the program as rapidly, with as much data 
input, CPU tasking, and memory load, as possible. 

Choosing test-cases to exercise and stress the stability of 
the system. 

Testing the program with bizarre inputs under variously 
degraded conditions. 

Selecting test-cases to test (and exceed) the extreme 
ranges of allowable limits on variables/ parameters. (Also 
called Boundary Testing; strategy for automating test-case 
generation for rule basis given in Miller, 1990). 

Determining the various design parameters which led to 
the present implementation and systematically generating 
test-cases which violate these parameters. 

72 



Table 5.2.3-1 (Continued). 

Dynamic Testing Methods 

3.6 PERFORMANCE TESTING 

3.6.1 Sizinghlemory Testing (Wallace, 

3.6.2 Timing/Flow Testing (Dunn, 1984) 

1989) 

3.6.3 Bottleneck Testing (Ng, 1990) 

3.6.4 Queue size, register allocations, 
paging, etc. (Beizer, 1990) 

3.7 EXECUTION TESTING 

3.7.1 Activity Tracing (Dunn, 1984) 

3.7.2 Incremental Execution (Ng, 1990) 

3.7.3 Results Monitoring (NBS 500-93, 
1982) 

3.7.4 Thread Testing (Jensen, 1979) 

3.7.5 Using Generated Explanations (Miller, 
1989) 

3.8 COMPETENCY TESTING 

3.8.1 Gold Standard (Rushby, 1988) 

3.8.2 Effectiveness Procedures (Llinas, 
1987) 

3.8.3 Workplace Averages (Rushby, 1988) 

13 

Description 

Assessing the CPU and memory requirements of the 
program under various conditions. 

Assessing the rate of operation (and concurrency) of 
various program components and the rate of flow of 
information. 

Determining the location of undesired delays and 
processing queries in the program's operation. 

Assessing any other performance aspect of the program. 

Monitoring and evaluating the results of a particular 
program function or activity. 

Halting program execution at multiple points to assess 
performance variable values and data storage 
characteristics. 

Similar to 1.6.1 but more focused on a particular outcome 
regardless of the activity that generated it. 

Following control and data for a single function through 
multiple modules. 

Examining the explanations or rule traces produced by the 
expert system to evaluate if the reasoning process is 
correct. 

Measuring program results against widely accepted 
standards. 

Assessing the sequential effectiveness of the program 
against some external standard. 

Measuring program results against averages established 
in some workplace. 



Table 5.2.3-1 (Continued). 

Dynamic Testing Methods 

3.9 ACTIVE INTERFACE TESTING 

3.9.1 Data Interface Testing (Ng, 1990) 

3.9.2 User Interface Testing 
(NUREG/CR4227,1985) 

3.9.3 Information System Analysis 
(NUREG/CR-4227,1985) 

3.9.4 Operational Concept Testing 

3.9.5 Organizational Impact 

(CONOPS Testing) (Miller, L., 1990) 

AnalysislTesting (Booher, 1990) 

3.9.6 Transaction-flow testing (Beizer, 1990) 

DescriDtion 

Testing the data interfaces to 
insure that all aspects of data I10 are correct, including 
buffering, change detection, checking, etc. 

Evaluation of the user interface from low level ergonomic 
aspects to instrumentation and controls human facfors to 
global consideration of ease-of-use and appropriateness, 
taking into account CONOPS and information analyses 
(below). 

~~ ~~~ ~~~ ~ ~~ ~~~ 

Determining that operator-needed information is well 
organized and is available directly, and quickly, neither too 
much nor too little, neither inaccurate nor contradictory. 

Testing that the concept of operations is adequate, 
appropriate, and sufficiently flexible. 

Testing or analyzing the effect of the system on the user 
organization/corporate structure and/or methods after 
installation. 

Identifying the flow of information between people and 
computers, for userdriven systems, as well as the internal 
computer processing transformation of that information, 
and developing a suite of tests to exercise each of the 
orocessina steos. 

74 



Table 5.2.3-1 (Continued). 

Dynamic Testing Methods 

3.1 0 STRUCTURAL TESTING 

3.10.1 Statement Testing (Beizer, 1983) 

3.10.2 Branch Testing (Miller, E., 1990) 

3.1 0.3 Path Testing (Tung, 1990) 

3.10.4 Call-Pair Testing (Miller, E., 1990) 

3.1 0.5 Linear Code Sequence and Jump 
(LCSAJ) (Miller, E., 1990) 

3.1 0.6 Test-Coverage Analysis Testing 
(Beizer, 1983) 

3.1 0.7 Conditional Testing (Beizer, 1990) 

3.1 0.8 Data-flow Testing (Beizer, 1990) 

3.1 I Error-lntroduction Testing 

3.1 1 .I Error Seeding (Dunn, 1984) 

3.1 1.2 Fault Insertion (Rushby, 1988) 

3.1 1.3 Mutation Testing (Ng, 1990) 

75 

DescriDtion 

Generating test-cases to exercise specific (or all) program 
statements in the source code. 

Generating test-cases to exercise branches from 
conditional or case control structures. 

Augmenting branch testing to test various repetitions of 
program flow through interactive or loop structures of the 
program. 

Developing cases to test the argument and parameter 
interfaces among programs. 

Selecting of test-cases based on control-flow analysis, 
similar to branch testing, but often used in "lower" level 
languages such as assembler. 

Determining what statements, paths, branches, etc. are 
exercised by a set of test-cases. 

Testing of statements involving Boolean or Relational 
(e.g., "A<B") tests. Selecting test-cases corresponding to 
values equal to, less than, and greater than the values in 
the conditions. 

Selection of test-cases to explore data anomalies 
discovered by examination of the program's control flow 
graph. 

Introducing errors of arbitrary kinds in a software system 
to assess the effects of such errors on system 
performance. 

Introducing modifications to a program which will induce a 
failure or fault of a particular kind. 

Introducing errors of various kindsin a program and 
determining whether a given suite of test-cases detect the 
errors. Used to assess power of one's testing techniques 
for discovering problems. 



Dynamic testing requires actual execution of system source code on hardware platform under an operating 
system. When the code is interpreted (as with BASIC), the code execution involves the appropriate interpreter. When 
the code is compiled before execution, a number of other utilities are also involved, including the link-editor, the 
loader, and the compiler. The use of these facilities may involve one or more program editors, the creation or 
invocation of some minimum test-data set, a number of program-execution commands within one or more operating 
environments, and possibly the use of several application software packages. It is a complex operation to test run a 
system appropriately. Testers need to design a number of real world test-cases to exercise the system in various ways 
for various test objectives. For example, testers may Wish to ensure that a minimum number of program paths are 
activated. To cause program control to transfer to a particular path, designated as P, requires working backwards from 
the end of P through all preceding decision-points and external-inputs, recording the exact values of data which would 
cause the program control to ultimately lead to P. When intermediate external inputs are required after the initial 
primary inputs to the program are provided, the testers may be required to force the needed values by Writing special 
data drivers, creating data scripts for the data channel to access, or modifying parts of the tested program to dummy 
these inputs. In addition, the testers may have to enter pre-determined values in response to program requests. 

The testers are also involved in other kinds of program set-up activities. These activities include crafting and 
seeding of specific types of errors, setting up monitoring software, recording performance and processing results, 
calculating actual function coverage or structure, interpreting the results, analyzing, planning, and fixing and recording 
program errors. Tester activities also include maintaining and running special regression test suites to ensure that 
program fixes are free of side-effects. This testing is done in accordance with an overall test plan which specifies the 
nature, purpose, and sequence of each designed test-case. Even with effective support tools, dynamic testing is a very 
complex and labor-intensive activity.' 

Each of the 67 dynamic testing techniques involves the complex execution activities described above. They 
have been divided into 11 major categories. The first category, General Testing (3. l), is a catch-all for techniques 
which did not fit into a focused class., UnitlModule Testing (3.1.1) involves intensive testing of the smallest program 
unit, while System Testing (3.1.2) involves assessing total system functionality and performance over many program 
interfaces (Table 2.4.3-1). Compilation Testing (3.1.3) involves using a specific language compiler (e.g., the IBM 
Extended H Fortran Compiler) to check the program for errors. Some systems also have post-compiler checkers, such 
as SUN Computer Corporation's LINT program (SUN, 1990) which automatically checks for suspected problems 
and examples of poor programming practices. Reliability Testing (3.1.4) is used to gather information on the 
"reliability", or the incidence of flaws, of various modules and also to select particular program sections for testing 
based on prior evidence of unreliability.8 Statistical Record-Keeping (3.1.5) is a related, more specific technique 
which involves tracking errors reported for specific modules to build an empirical basis for prioritizing module testing. 

7 A f i a t h e r c o m p l i c a t i n g ~ i s t h e f 5 c t t h a t ~ ~ ~ m a y l a k e  on a wide variety ofmachine-code compilations dependmgontheparticular 
compiler, the version of the operating system and the platform used on the day of testing, and so on. These different versions do not usually lead to 
noticeable ~ c t i o n a l ~ ~ ~  but there may be signifcant performance effects (e.g., when an optimizing compiler is or is not used). 

* The concept of "reliability" when applied to soflware is fUndamentally different when it is applied to hardware. In the latter case, it is quite 
reasonable to assume various kinds of physical deterioration of the hardware elements over time, as a finction ofthe operating environment. However, 
software source code, the symbolic representation of a to-be-stored and to-be-activated machinelanguage program, is impervious to such changes. Ifa 
amdyconqrileddndexeaaedsoflware module produces an "error", then that module has been incorrectly designed andor implemented in source code. 
Therefore, the term "unreliability" as applied to soflware really implies an inherent design error which happens to manifest itselfat a certain time under 
certain test conditions. 

76 



Software Reliability Estimation (3.l.6) is the third of the reliability-assessing techniques and employs statistical 
estimation techniques applied to failure data such as recorded by Statistical Record-Keeping. Regression Testing 
(3.1.7) involves running a previously-used test-suite on the whole program after modifications have been made to parts 
of it. This procedure checks to see if the additions affected previous work Metric-Based Testing (3.1.8) evaluates 
program units in terms of specially-computed metrics developed to detect modules with high "complexity" indices, 
which are moie likely to fail. Ad Hoc Testing (3.1.9) involves the arbitrary execution of a program without a test plan 
and without careful consideration of functionality or performance requirements. Unfortunately, this method is highly 
popular for module testing. Finally, Beta Testing (3.1.10) involves the early release of the system to "beta" user sites 
for realistic testing. 

The second dynamic testing category is Special Input Testing (3.2), containing two subclasses. Random 
Testing (3.2.1) is a technique covering a wide variety of possible means for randomly selecting input test-cas& The 
four highly-related subcategorized methods under the Random Testing subclass deal with assumptions of four merent 
sampling distributions. This method randomly selects system-input test-cases. In empirically tested detection of 
seeded and real errors for various test-case samplings using these four subclasses at the Halden STEM project, the 
Uniform method (3.2.1. l), which selects cases with equal probability, was found to be the most powerful (Barnes, 
1987). Domain Testing (3.2.2) is the stalwart technique of seasoned testers and involves detailed analyses of the input 
space to design a careful selection of test-cases which specifically sample its features. It is itselfa specific technique 
but also has four specialized sub-category methods, each of which has strong proponents. Both Random Testing and 
Domain Testing are considered separate methods in their own right, since they comprise a variety of means not covered 
by the listed specializations. 

The third category, Functional Testing (3.3) uses five methods to assess whether the system exhibits specific 
functionality as described in the requirements. This category is sometimes called "black box testing" since it focuses on 
the input/output hctionality of the system without taking into account the internal program structure. The most 
common approach, Specific Functional Requirement Testing (3.3. l), generates test cases from two lines of reasoning. 
The first approach focuses on a particular function and selects inputs and environment values to produce pre- 
determined outputs if that function is implemented correctly. It is also known as the customary approach. The second 
approach selects deviant or marginal input values for a particular function so that this function would not be activated, 
or so that an error-condition would be returned. This is a lesser-used strategy. Simulation Testing (3.3.2) is a 
technique often used for systems with particularly complex control or data-input streams. It compares the results of a 
separately-developed simulated model of the system to the actual system outputs. All discrepancies signal problems in 
the implemented code. Model-based Testing (3.3.3) is similar but implies a less-detailed, more analytic, qualitative, or 
mathematical, modeling of a system, usually with much less data-dependency. Assertion Checking (3.3.4) occurs when 
parts of the code are bracketed with executable assertions about what the code is supposed to do, and the asserted 
outputs are compared to the actual code-generated ones to test the adequacy of the function. Lastly, Heuristic Testing 
(3.3.5) involves analysis to identify and prioritize the potential faults of greatest concern and to generate test cases 
which exercise the system to check for the next-remaining highest-priority fault. 

The Realistic Testing methods (3.4) test the system under realistic conditions, often in the field (3.4.1), 
frequently with realistic scenarios (3.4.2), and sometimes with special data-stream simulators (3.4.4). 
QualificatiodCertZcation Testing (3.4.3) provides for thorough testing under realistically stressful conditions for 
special widely-used programs. Benchmarking (3.4.5) tests the program against accepted standard test situations, while 

77 



Human Factors Experimentation (3.4.6) involves conducting actual perf'ormance experiments with human users under 
realistic conditions. Validation Scenario Testing (3.4.7) and Knowledge Scenario Generation (3.4.8) involve 
generation and execution of realistic dynamic system tests which sample sub& of important functionality. 

Stress Testing (3.5) exercises programs under heavy load conditions (3.5. l), using test cases which assess 
stability (3.5.2), involve unusual inputs under degraded conditions (3.5.3), test the boundaries of variables (3.5.4), or 
systematically violate design parameters (3.4.5). 

The Performance Testing techniques (3.6) focus on various aspects of system performance, including CPU 
and memory usage (3.6.1), timing characteristics (3.6.2), delays (3.6.3), and queues and paging (3.6.4). 

The monitoring methods, Execution Testing (3.7), track various aspects of a program's execution (3.7.1 - 
3.7.3). Thread Testing (3.7.4) involves following the path ("thread") of execution of a particular functional capability 
within and across program modules. Using Generated Explanations (3.7.5) evaluates the correctness of an expert 
system's reasoning process. 

The three Competency Testing methods (3.8) all involve constructing test cases to compare software system 
output to an external standard. 

Active Interface Testing (3.9), assesses the data interfaces (3.9.1), the user interfaces (3.9.2), the total 
information organization and display characteristics (3.9.3), the concept of operations of the system (3.9.4), and the 
impact of the system's interfaces on the users' organization and procedures (3.9.5). Transaction Flow Testing (3.9.6) is 
based on the concept of a transaction, a meaningfid unit of information-exchange between users and the system, and 
involves generation of a test suite to exercise these. 

Structural Testing (3.10) is the traditional standard of dynamic testing. This class is sometimes called 
"white box testing". This indicates that the actual program composition and structure is taken into account in 
generating the test-cases. This contrasts "black box testing" which is concerned only with the external input and output. 
Conceptually, the simplest structural testing technique is to select test-cases so that each source code statement is 
executed at least once, as in Statement Testing (3.10.1). Branch Testing (3.10.2) develops test-cases to follow each 
branch from transfer-of-control structures (e.g., in an IF-THEN-ELSE construction, testing the branch that occurs 
after the THEN as well as testing the branch that occurs on the ELSE side). Path Testing (3.10.3) is an extension of 
branch-testing. It involves testing of various numbers of repetitions of program loops. Call-Pair and Linear Code 

flow. Testaverage analysis testing (3.10.6) involves setting a goal for any kind of structural coverage. It measures 
previous test-cases results and selects new test-cases on the basis of what remains to be covered. Conditional testing 
(3.10.7) tests statements containing Boolean ("A AND B") and relational expressions at the boundaries where these 
expressions are True and False. Data-flow testing (3.10.8) can follow from branch (or path) testing. This involves a 
control-flow graph of the program created by reducing all non-branching statements to a single process element. This 
control-graph is examined for various kinds of suspicious data-flow characteristics. 

Sequence and Jump testing (3.10.4,3.10.5) test interfaces among modules and assembly-language control 

The last class of structural testing is Error-Introduction Testing (3.1 1). The first two techniques, error 
seeding and fault insertion involve adding various kinds of enors into the program (3.1 1.1-3.1 1.2). The last of these 

78 



methods, Mutation Testing (3.1 1 .3), also introduces errors into a program, to assess the sensitivity of the test-case 
suite. 
high level detection capability. 

E a  test-suite previously used on an unmodified program gu~ detect the inserted problems this test-suite has 

5.3 Discussion 

' This survey has revealed a large array of testing and V&V techniques available for conventional system 
software. It might be argued that some methods have been too finely sub-categorized or others should have been more 
defined. Undoubtedly some important techniques have been omitted, and others should have been omitted. 
Nonetheless, the availability of numerous methods clearly emerges. Some methods have very precise capabilities and 
some have very general capabilities. However, most methods are oriented towards a particular aspect of the life-cycle 
with a few techniques cutting across phases (e.g., reviews, requirements tracing). 

The last two sections of this report discuss the tasks of more fully characterizing these methods and of gauging 
their utility for use'with expert systems. Note that if an expert system has a requirements or design phase, the 
conventional techniques appropriate for testing requirements or design should be applicable to the expert system 
documents that are created in these phases. This leaves more than a 100 implementation-phase Static and Dynamic 
testing methods which also might apply to expert system implementations. 

Finally, in addition to the methods (and commercial products embodying them) that were identified, there are 
a number of automated tools and environments that are being used with considerable success for all aspects of testing 
and V&V, especially in the nuclear industry. They and their descriptions are listed in Table 5.3-1. There is an 
increasing number of commercial CASE (Computer Aided Software Engineering) tools available to support many 
aspects of V&V. The review of these tools is beyond the scope of this paper. The reader is referred to published 
articles and reviews (e.g., CASE Trends) for further discussion of this topic. 

79 



Table 5.3-1 CASE tools for full life cycle support 

Tools&lethodologies 

SAGA (Oakes, 1991) 

SPACE (Beltracchi, 1991) 

CAL - Disassembler (Dahll, 
1990) 

STAN (Static Analyzer) 
(Dahll, 1987) 

REMAINDER (Ng, 1990) 

LINT (Sun, 1990) 

ATRON Evaluator 
(Beltracchi, 1991) 

MAT (Beltracchi, 1991) 

OASIS (Beltracchi, 1991) 

MOTH (Barnes, 1987) 

Description 

A French tool for 2167A like lifecycle support, formal specification 
language, grid for desired programmer practices, promotion of reuse 
of certified subroutines, used in Design of Display and Control 
Software (N4 French NPPs). 

German tool with specification and coding environments, strong 
semantics, specification language, graphic interface for code 
specification used for digital safety system design. 

Translate machine code in CAL (Common Assembler Language). 
Written in Pascal for analysis. 

Takes in CAL code, translate into directed graph computer minimal C l  
closure (full path coverage). Develop data flows of program variables, 
single entry single exit analysis, dynamic structural testing analyses. 
Translates CAL into Pascal. 

A fast, simple and accurate program to record all different instruction- 
execution paths for a set of test-cases, with much better performance 
and memory requirements than other methods (linked-tree, binary- 
tree). 

Sun microsystems program verifier for C programs with checks for 
post-compiler bugs and violations of good programming practices. 

Runs regression test suite, records results, from Cadre Technologies. 

Maintainability analysis tools, quantifies statement complexity via 
weightings of elements, reports instances of poor wage and other 
understandability problems (including unnecessary elements). 

Workstation based simulator for liquid metal cooled reactor, static, and 
dynamic analysis tools, safety analysis, analysis of decay heat removal 
loops (Super Phoenix 1). 

Generates various types of test case data for Halden testing compares 
results of 3 trip code and logs discrepancies (SIM-MOTH generates 
simulation data) (SOSAT Tool) 

80 



Table 5.3-1 (Continued) 

LRDA (Liverpool, 1985) 

DescriDtion 

Provides statistical information on (45) inserted faults in Halden TRIP 
Code testing - number detectedlundetected faults, MTBF estimators 
(SOSAT tool). 

Runs 6 trip programs, applying test cases, studying common mode 
factors between them, recording number of failures. 

Measures branch and statement coverage of test cases for the trip 
program. 

Convert source code for PASCAL into an intermediate language (FOL) 
for various analyses. 

- dependency analysis - path analysis 
-symbolic execution for given variables 
- conformance to pre-and-post-processing 

conditions 

Static Analysis of Fortran Code, including 

- data type consistency - subroutine parameter consistency checks 
- consistency/usage checks on COMMON data 
- check for inaccessible code - derivation of control flow 

For a given suite of test cases. Computes fractional coverage of 
statements, branches, linear code sequences, and jumps (in terms of 
Test Effectiveness Ratios). 

81 





6 CHARACTERIZATION OF CONVENTIONALV&V METHODS 

. This section builds the framework for characterizing conventional V&V techniques. It begins by developing 
a taxonomy of defects. Each method is rated by the types of defects it can detect. This classification system will 
provide the fundamental basis for evaluating the power of the conventional V&V techniques. 

The overall utility of particular V&V methods will depend on several factors. Initially, a number of features 
and easesf-use aspects of the techniques are identified in Section 6.2: These features that relate to the general 

provide the basis for two novel metrics on V&V methods - "cost-benefit" and effectiveness. These measures are 
developed and discussed in Section 6.3. Finally, Section 6.4 considers practical issues associated with selecting a set of 
techniques to use for any system (expert systems or otherwise). 

Please note that a new methodology for reviewing and evaluating V&V methods is being proposed. Under 
this new methodology, individual software V&V techniques are rated on a number of features, then combined in 
various ways to assess the cost-benefits and the effectiveness of each technique. While this general methodology has 
been used successllly in other fields, it has not been applied to software testing. Therefore, this approach has yet to 
receive acceptance among testing professionals. In addition, there is little empirical data detailing the effectiveness of 
specific techniques. The rating judgments on each V&V technique are subjective. These issues might cause the 
readers to have questions about the ratings of individual techniques, the derivation of the measures, and the 
methodology itself. However, since this methodology is clearly set forth, an individual using this approach can easily 
substitute Merent values or compute measures in a merent way? 

6.1 Defect Detection 

Most texts on testing provide something of a taxonomy of possible defects (e.g., Boehm, 1981; Dunn, 1984; 
Beizer, 1990). However, these texts were variously too broad or much too detailed. This was particularly true of the 
early life-cycle phase descriptions. A classification scheme was therefore developed (Section 6.1.1) to obtain what was 
believed to be the right level of detail and coverage. 

In Section 6.1.2, each V&V technique was rated by the types of defects it could reasonably detect. Broad 
Power describes the range of types of defects detectable by a technique. It is an important fkature in the subsequent 
rating of the cost-benefit value of the techniques (Section 6.3). 

6.1.1 A Taxonomy of Defect Types for Conventional Software 

Although there are various collections of data on actual defect occurrence (e.g., Beizer, 1990), these data are 
relatively sparse. Additionally, these studies typically confound programmer skill, development environment, 
application type, and management. There are also very few predictive theory principles concerning how and where 
defects'occur. The decision of defect importance is dependent upon the system's goals and functions. Finally, there is 
scant data on the effectiveness of defect detecting techniques, coupled with empirical distribution of defect fkequency, 
to provide a sound basis for a software reliability and detectability analysis. All of these factors make construction of a 

.. 
All of the ratinp and measure computations were developed in a model using a commercial spre+heet packagq all of the tables charactenun 8 

the V&V techniques are output from the spreadsheet model. 

83 



taxonomy of defects very difficult. The present taxonomy has face and construct validity, but it lacks empirical validity. 
Nonetheless, it reflects a consensus of views on types of defects and is sufficiently detailed for this task. The reader is 
reminded that the defects developed here are for conventional software. Defects peculiar to expert systems are not 
included." 

The taxonomy, shown in Table 6.1 .I-1, lists 52 types of defects according to the three main Life-cycle phases: 
requirements, design, and coding. The coding types of defects were further divided into three sub-categories of logic 
and control, data operations and computations, and other. The two key criteria for defects were: (1) they did not 
overlap or subsume each other, and (2) they were not specific to a particular language or environment, rather having 
some commonality across programming languages, development environments, and system development approaches. 

UnfortunateIy, there is a great deal of unevenness among the types of defects; some are broad while some are 
very specific. Nevertheless, these are all things that sofiware testers and V&V personnel are concerned about, and the 
presence of any of them could be quite significant. 

6.1.2 Detection of Defects by Conventional V&V Methods 

In order to estimate the detection capability of the testing techniques, the 153 conventional V&V methods 
were evaluated against the set of 52 types of defects. The question was whether individual techniques could be 
expected to detect a specific type of bug. If the answer was "yes", the defect number was entered opposite the 
technique, and the next defect for that technique was considered. Note that the question being asked here was whether 
the technique could conceivably detect a particular defect. Not only was this an informed but still subjective 
assessment, but also it ignored questions of how well or how easily a defect could be found by that method. The results 
of these subjective judgments are shown in the second column of Table 6.1.2- 1. The total number of detectable defect 
types by a particular method is shown in parentheses in the second column. While every effort was made to be 
consistent and thorough in these ratings, the reader should use them only as a general guide; abstract ratings in the 
absence of actually using the method are bound to be variable and differ from one set of raters to another. 

While Table 6.1.2-1 shows the most likely detectable defect types of a particular technique, this does not 
mean that other defects might not be detected by that same technique. On the contrary, any technique, as a side-effect, 
could theoretically expose any type of defect. 

The number of detected defect types range from a low of 3 to a high of 52. The total number of detected 
defect types is considered to be an index of what is called Broad Power. Broad Power is the capability of a technique 
to detect a broad variety of types of defects. Given the defect taxonomy of Table 6.1.2-1, there are a number of 
techniques which cover the majority of defects and three which were judged to cover all (2.5.4 Clean-room, 3.4.3 
QualificatiodCertification testing, and 3.4.4 Simulator-based testing). This is an important aspect in determining the 
benefits of comparing one technique to another. However, using the number of types of defects detected as an indicator 
of the Broad Power of a technique is a problem. It implies that all types of defects are equally weighted in importance. 
This assumption is untrue. In order to improve the measure, a basis for weighing each defect type would have to be 
developed. Unfortunately, there is no body of data to estimate the average economic consequences of each type of 

lo Nor are they. with any confidence, known. 

84 



Table 6.1.1-1 Types of software defects 

.1 Incomplete Decomposition ately decompose a more abstract 

.3 Improper Translation 

does not accommodate the 
ronment, such as data rates, 

.7 Conflicting Requirement Requirements which are pairwise incompatible. 

state 

.I2 Overspecification of 
Requirements 

85 



Table 6.1.1-1 (Continued). 

Description 

Generated in design and appear in design 
documentation 

Failure to address a requirement or specification in 
design . 

Failure to accurately represent a requirement or 
specification in design. 

Failure to accommodate the full range of possible 

Type 

2.0 Design 

occurs 

System, 
Sub, Mod 

System, 
Sub, Mod 

Mod 

.I Omitted requirement 

.4 Unintended Design Element 

.2 Misinterpreted requirement 

Inclusion of design elements that cannot be traced Sub, Mod 
to a requirement or specification. 

.3 Data limitation 

Non-existent or more capable hardware resources 
prescribed beyond those available, e.g. process 
cycles or memory. 

Assumes commercial package, utilities or operating 
system capabilities which are not available or 
function differently than assumed. 

Man-machine interface is clumsy, hard to learnhse, 
hard to seehead, etc. 

Design fails to adequately address factors of 
computation error, such as round-off, truncation, 
numerical approximation. 

Design fails to conform to standards. 

Mod 

Mod 

Sub, Mod 

Mod 

System, 

.10 Lack of adequate error traps 

.11 Failure to handle exceptions 

.12 Weak modularity 

.I 3 Rigid control structure 

.I 4 Missing or incorrect 
processing pn'orities 

.5 Hardware incompatibility 

~~ 

Failure to provide adequately frequent error traps, or 
sufficient in scope, or error traps do not provide a 
recovery mechanism. 

conditions. 

requirements to modules. 

other ways which preclude ease of expansion or 
modification. 

Control structure design does not allow processing 
priorities to be established or modified to satisfy 
requirements or implements them incorrectly. 

Failure to handle unique conditions, or boundary 

Design inadequately groups functions or 

Control structure is designed with in-line logic or in 

.6 Software incompatibility 

.I 5 Breakdown between t o p  
level & detail design 

-7 Poor man-machine interface 

.8 Incorrect analyses of 

design 

computational error 

Design modifications at one level are not reflected Sub, Mod 
at the other. 

.9 Non-compliance 

~ Mod 

Mod 

Mod 

Mod 

System, 
Sub, Mod 

86 



Table 6.1.1-1 (Continued). 

I 

Type 
3.0 Code 

3.1 Logic and Control 

.I Unreachable Code 

.6 Instruction modification 

.2 Improperly used flow control 

.3 Inverted predicates 

.4 Improper process 
sequencing 

constructs 

.5 Halting problem 

.7 Failure to save or restore 
process communication 

.8 Unauthorized or incorrect 
recursion 

.9 Incorrect labels or control 
flags 

~~ ~~~~ _______ 

Description 
Originate in code; exclisive of defects regularly 
detected by an assembler or compiler. 

Code which fails to be accessed due to redundant, 
contradictory branching conditions. 

Improperly formed or used looping or branching 

A predicate (e.g. ',if' statement) which is incomplete, 

Processing sequential errors, e.g., attempt to read a 

constructs undetected by the compiler. 

transposed or incorrect. 

file before it is opened and 
timing/synchronization errors in concurrent 
processing. 

A loop or recursive or nondeterministic machine 
without a meetable exit condition or halting 
condition. 

Dynamic instruction modification. 

Failure to save the contents of registers to be used 
later or restore them upon exit, or to correctly 
handle interprocess communication 
mechanisms, e.g., semaphores, file/record 
locks. 

Code developed to be recursive with a language 
which doesn't support recursion or improper use 
of recursion. 

A referenced but uncoded statement label or 
control flag, or a missing statement label or 
control flag or unreferenced labels, flags which 
remain in the code. 

Occurs 

Mod 

Mod 

Mod 

Sub, Mod 

Mod 

Mod 

Mod 

Mod 

Mod 

87 



Type 

3.2 Data Operations and 
Computations 

.I Missing validity test 

.2 Incorrect data referencing 

.3 Mismatched parameter list 

.4 Definition or initialization fault ll 

.5 Anachronistic data 

.6 Improperly used data 
handling construct 

It 
.7 Variable misuse 

.8 Incompatible data 

.9 Insufficient data transport 

representation 

11 .IO Input-Output faults 

3.3 Other 

.I Calls to non-existent 
subprograms 

.2 Improper program linkages 

.3 Failure to implement design 
element 

.4 Improperly implemented 
design element 

.5 Unintended function 
I' 

Table 6.1.1-1 (Continued). 

Description 

Failure to test data imported by a procedure. 

Conditions which potentially allow a subscript, 
pointer or index to exceed the boundaries of a 
declared array or other data structure. 

Procedure calls where the parameter or argument 
list of the calling program differs in number or 
type from that of the called program unit. 

Failure to initialize or incorrect initialization, or 
variables used before they are defined. 

A mix of data pertinent to the current iteration and 
data erroneously included from previous 
iterations. 

Errors in use of data handling constructs such as 
type mismatches, improper transformations, 
moves or subsetting. 

Any misuse of a variable, either locally or globally. 

Inconsistency in units of data, e.c. pounds, 
kiloarams. 

Poor handling of input and output operations which 
have an effect on throughput, i.e., input-output 
statements, library routines or database, 
indexina. 

Incorrect communication protocols and external 
data mismatches. 

A call to a subprogram that is not yet in the system. 

Involving a variable of one data type in a program 
being declared as another data type in the 
calling program, or a mismatch in control 
information between a called and calling 
program. 

A design element is missing from the code. 

Code that does not conform to the definition of its 

"Extra" code that cannot be mapped to any design 

corresponding design element. 

element. 

Occurs 

Mod 

Mod 

Mod 

Mod 

System, 
Sub, Mod 

Sub, Mod 

Sub, Mod 

Mod 

System, 
Sub, Mod 

System, 
Sub, Mod 

Mod 

System, 
Sub, Mod 

System, 
Sub, Mod 

System, 
Sub, Mod 

System, 
Sub, Mod 

88 



Conventional V&V Testing Technique (from 
Tables 2.2.1-1,2.2.2-I, and 2.2.3-1) 

1 .I .I General Requirements Language 
Anal ysisProcessing 

1.1.2 Mathematical Verification of 
Requirements 

1.1.3 EHDM 

Types of Defects Detected 
(from Table 2.3.1-1) 

1.1.4 Z 

1 .I .5 Vienna Definition Method 

1.1.6 Refine Specification Language 

1 .I .7 Higher Order Logic (HOL) 

I .I .8 Concurrent System Calculus 

1.2.1 Ward-Mellor Method 

1.2.2 Hatley-Pirbhai Method 

~~~ 

1.2.3 Hare1 Method

1.2.4 Extended Systems Modeling Language

Numbers in parenthesis are sums

89

1.1,1.2,1.3,1.5,1.6,1.7,1.8, 1.9,1.10,
1.11, 1.13 (11)'

1.1,1.2,1.3,1.6,1.7,1.8,1.9,1.10,1.11,
1.12,1.13 (11)

1.1,1.2,1.3,1.6,1.7,1.8,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15

1.1,1.2,1.3,1.6,1.7,1.8,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15
(1 9)

1.1,1.2,1.3,1.5,1.6,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15

1.1, 1.2,1.3,1.5,1.6,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15
(1 9)

1.1,1.2,1.3,1.5,1.6,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8,2.9,2.10,2.11,
2.14,2.15 (I 9)

1.1,1.2,1.3,1.5,1.6,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8,2.9,2.10,2.11,
2.14.2.15 (19)

1.1,1.2,1.3,1.5,1.6,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8,2.9,2.10,2.11,
2.1 4,2.15 (1 9)

1.1,1.2,1.3,1.5,1.6,1.7,1.9, 1.10, 1.11,
1.12,1.13,2.2,2.4,2.8,2.9,2.10,2.11,
2.14,2.15 (I 9)

1.1,1.2,1.3, 1.5,1.6,1.7,1.9, l . l O , l . l l ,
1.12,1.13,2.2,2.4,2.8,2.9,2.10,2.11,
2.14,2.15 (19)

1.1,1.2,1.3,1.5,1.6,1.7,1.8,1.9,1.10,
1.11, 1.12, 1.13,2.2,2.4,2.7,2.8,2.9,2.10,
2.11,2.12.2.13,2.14,2.15 (23)

Table 6.1.2-1

Conventional V&V Testing Technique (from
Tables 2.2.1-1,2.2.2-1, and 2.2.3-1)

1.2.5 Systems Engineering Methodology

1.2.6 System Requirements Engineering
Methodology

1.2.7 FAM

1.2.8 Critical TiminglFlow Analysis

1.2.9 Simulation-Language Analysis

1.2.1 0 Petri-Net Safety Analysis

1.2.11 PSUPSA

1.3.1 Formalized Requirements Review

1.3.2 Formal Design Review

1.3.3 System Engineering Analysis

1.3.4 Requirements Analysis

1.3.5 Prototyping

1.3.6 Database Design Analysis

1.3.7 Operational Concept Design Review

1.4.1 Requirements Tracing Analysis

1.4.2 Design Compliance Analysis

Static Methods

90

(Continued).

Types of Defects Detected
(from Table 2.3.1-1)

1.1, 1.2, 1.3,1.5,1.6,1.7,1.8, 1.9,1.10,
1.11,1.12, 1.13,2.2,2.4,2.7,2.8,2.9,2.10,
2.11,2.12,2.13.2.14.2.15 (23)

1.1,1.2,1.3,1.5,1.6,1.7,1.8,1.9,1.10,
1.11,1.12,1.13,2.2,2.4,2.7,2.8,2.9,2.10,
2.11,2.12,2.13,2.14,2.15 (23)

1.1,1.2,1.3,1.5,1.6,1.7,1.8,1.9,1.10,
1.11,1.12,1.13,2.2,2.4,2.7,2.8,2.9,2.10,
2.11,2.12,2.13,2.14,2.15 (23)

1.4, 1.6, 1.8,2.4,2.6,2.7, 3.1.2, 3.1.6,
3.1.9,3.3.1 (1 0)

1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.12,

1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.12,
1.13,2.1,2.2 (12)

1.1, 1.2,1.3, 1.4, 1.5, 1.6,1.7, 1.8, 1.9,
1.10,1.11,1.12,1.13,2.1,2.2,2.3,2.4,2.5,
2.6,2.7,2.8,2.9,2.12,2.15 (24)

All of 1 .O (1 3)

1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,
1.10, 1.11, 1.12, 1.13,2.1,2.2,2.3,2.4,2.5,
2.6,2.7,2.8,2.9,2.12 (23)

2.15 (21)

All of 1 .O (1 3)

1.13,2.10-2.12.2.14 (14)

1.1-1.10,1.12,1.13,2.1, 2.2,2.7,2.9,2.11-

1.4, 1.5, 1.6.1.8-1.13,2.2,2.3,2.5-2.7,
2.1 0-2.1 5 (20)

1.2,2.3 (2)

1.13,2.1,2.2,2.7 (4)

'1.1, 1.10, 1.11,2.1,2.2,2.3,2.4,2.5,2.6,
2.7,2.8,2.9,2.12 (13)

2.4,2.9,2.15 (3)

2.1.1 Analytic Modeling 1.1 thru 1.11,1.13,2.1 thru 2.3,2.5,2.6,
2.8,2.9,2.11,2.14,2.15,3.1.1,3.2.6,3.3.1
thru 3.3.4 (28)

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from
Tables 2.2.1-1,2.2.2-I, and 2.2.3-1)

2.1.2 Cause-Effect Analysis

2.1.3 Symbolic Execution

2.1.4 Decision Tables

2.1.5 Trace-Assertion Method

2.1.6 Functional Abstraction

2.1.7 L-D Relation Methods

112.1.8 Program Proving

I I
2.1.9 Metric Analysis

2.1 .I 0 Algebraic Specification

2.1 .I 1 Induction-Assertion Method

2.1 .I 3 Model Evaluation

2.2.1 Control Flow Analysis

2.2.2 State Transition Diagram Analysis

2.2.3 Program Control Analysis

2.2.4 Operational Concept Analysis

2.2.5 Calling Structure Analysis

2.2.6 Process Triggermming Analysis

11 2.2.7 Worst-case Timing Analysis

91

Types of Defects Detected
(from Table 2.3.1-1)

1.1,l.g. 2.6,2.8,3.1.2 (5)

1.13,2.3,2.9,3.1.1-3.1.5,3.1.9,3.3.1,3.3.2
JI I)

1.2,1.5,1.13,2.1,2.2,2.4,2.7,2.11,2.13,
2.14,3.1.2,3.1.3,3.1.8,3.2.6,3.3.3,3.3.4,
3.3.5 (17)

1.1,1.2,1.5,1.11,1.13,2.1,2.2,2.11,2.14,
2.15,3.1.4,3.1.5,3.2.6,3.3.1,3.3.2,3.3.3
(16)

1.1,1.2,1.5,1.11,1.13,2.14,2.15,3.1.5,
3.1.9,3.2.6,3.3.1 thru 3.3.4 (14)

1.1,1.2,1.5,1.11,1.13,2.15,3.1.3thru
3.1.6,3.2.6,3.3.1 thru 3.3.4 (15)

1.7 thru 1.10,2.1,2.6,2.8,2.9,2.11,2.14,

3.1 .I thru 3.1.6. (6)

1.9,1.11,1.12,1.13,2.1,2.4,2.8,2.15,

all of 3.3 (22)

1.9,1.11,1.12,1.13,2.1,2.4,2.8,2.15,

all of 3.3 (22)

2.1 1,3.2.6 (2)

3.1.1-3.1.6.3.1.8.3.2.6 (18)

3.1.2,3.1.3,3.1.4,3.2.3,3.2.4,3.2.6-3.2.9,

3.1.2,3.1.3,3.1.4,3.2.3,3.2.4,3.2.6-3.2.9,

1.1-1.5,1.7,1.9-1.11,1.13,2.1-2.3,2.7,
2.11,2.14,3.1.4,3.2.6-3.2.8,3.2.10,3.3.4
(22)

1.11,2.4,2.10,2.13, All of 3.1 (13)

1.11,2.4,2.10,2.13,Allof3.1 (13)

All of 3.1,3.3.1,3.3.2 (1 I)

1.1 thru 1.6,2.1,2.2,2.11,2.14 (IO)

1.11,2.4,2.10,2.11,2.12,2.13, All of 3.1
(15)

1.6,1.7,1.8,1.9,1.12,2.4,2.7,2.10,2.11
(9)

1.8,1.10,2.3,2.5,2.6.2.7,2.8,2.14 (8)

2.3.7 Cross-Reference List Generator

2.3.8 Aliasing Analysis

2.3.9 Concurrency Analysis

2.3.1 0 Database Analyzer

2.3.1 1 Database Interface Analyzer

2.3.12 Data-Model Evaluation

2.4.1

2.4.2 Criticality Analysis

Failure Mode, Effects, Causality Analysis

1 1.1,1.2,1.3,2.1,2.2,2.4,2.7,2.11,2.14,

2.9,3.1.7,3.1.9, All of 3.2 (13)

3.2.3,3.2.4,3.2.5,3.2.6,3.2.7 (5)

All of 3.1 (9)

All of 3.2 (1 0)

AI1 of 3.2 (IO)

2.3,2.4,2.7,2.8,2.9,2.10,2.11,2.14 (8)

1.2, 1.7, 1.8,2.1,2.8,2.10,2.11,3.1.2,
3.1.4,3.1.7,3.1.8,3.1.9, all of 3.2 (22)

1.2, 1.9,2.8; 3.1.4,3.1.7,3.1.9, all of 3.2
(1 6)

2.4.4 Anomaly Testing

2.4.5 Fault-Tree Analysis

2.4.6 Failure Modeling

2.4.7 Common-Cause Failure

3.1.4,3.1.9, all of 3.2,3.3 (26)

2.3,2.10,2.11,3.2.1,3.3.3,3.3.4 (6)

1.7,1.9,1.12,2.10,3.1.2,3.1.3,3.1.4,

1.2, 1.3, 1.4, 1.6,1.7,2.1,2.3,2.4,2.7,
2.11,2.14,3.1.4,3.1.9, all of3.2.3.3 (28)

3.1.2,3.1.3,3.1.4,3.1.5,3.1.6, 3.1.7,3.1.8,

3.2.1-3.2.4,3.2.6,3.2.10 (16)

92

2.4.8 Knowledgebase Syntax Checking

2.4.9 Knowledgebase Semantic Checking

1.3,1.10,1.11,1.13,2.3,2.11,2.14,3.1.1,
3.1.2,3.1.3,3.1.5,3.1.9,3.2.1-3.2.4,3.2.6,
3.2.7,3.2.10,3.3.3,3.3.4 (22)

1.3,1.10,1.11,1.13,2.3,2.11,2.14,3.1.1,

3.2.7,3.2.8,3.2.10,3.3.2, 3.3.3,3.3.4 (24)
3.1.2,3.1.3,3.1.5,3.1.9,3.2.1-3.2.4,3.2.6,

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from
Tables 2.2.1-1,2.2.2-1, and 2.2.3-1)

II I
Types of Defects Detected

(from Table 2.3.1-1)

2.5.1 Informed Panel Inspection

2.5.2 Structured Walkthroughs

11 2.4.10 KnowledgeAcquisitionRefinementAid I 1.3,1.7,1.10,1.11,1.13,2.3,2.11,3.2.6,

3.3.4 (20)

All of 1 .O, 2.0 (28)

All of 3.1,3.2.3,3.2.6,3.2.7,3.3.1,3.3.2
(1 4)

2.4.1 1 Knowledge Engineering Analysis (I 1

2.5.5 Peer Code-Checking

1.1-1.3,1.5,1.7,1.10,1.11,1.13,2.1-2.4,
2.7,2.11,2.14,3.2.2,3.2.4,3.2.6,3.2.10,

2.7,2.9,2.11-2.15,3.1.1,3.1.2, 3.1.3,3.1.9,
3.2.3,3.2.6,3.2.7,3.3.1,3.3.2 (16)

2.5.6 Desk Checking

2.5.7 Data Interface Inspection

2.5.8 User Interface Inspection

2.5.9 Standards Audit

I

2.7,2.9,2.11-2.15,3.1.1,3.1.2, 3.1.3,3.1.9,
3.2.3,3.2.6,3.2.7,3.3.1,3.3.2 (16)

1.4,1.7,1.9,1.10,1.11,2.3,2.9,2.11,

1.4,1.8,2.15 (3)

2.5,2.6,2.8,2.12,3.3.4 (5)

3.2.1-3.2.4,3.2.6,3.2.8,3.2.10,3.3.2 (16)

2.5.3 Formal Customer Review I All of 1 .O, all of 2.0 (28)
1

2.5.10 Requirements Tracing

2.5.4 Clean-room Techniques I All of 1 .O, 2.0, all of 3.0 (52)
I

1.1,1.2,1.3,1.7,1.9,1.10,1.11,1.12,1.13,
2.1,2.2,2.4,2.8,2.9,2.15 (15)

2.5.14 System Engineering Review 1.1-1.10,1.12,1.13,2.1,2.2,2.7,2.9,2.11-
2.15,3.1.7,3.2.1,3.2.8,3.2.9,3.2.10,3.3.3,
3.3.4 (27j

2.5.1 1 Software Practices Review

~ 2.5.12 Process Oriented Audits

2.5.1 3 Standards Compliance

2.9,3.3.4 (2)

2.9,3.3.3 (2)

2.9.3.2.1 0 (2)

3.1 .I Unitmnodule Testing

~~

3.1.2 System Testing

93

1.2,1.4, 1.9, 1.10,2.3,2.5,2.6,2.7,2.8,
2.10,2.11,2.12,2.13,2.14,3.1.2-3.1.9, all
of 3.2,3.3 (37)

1.2,1.4, 1.9,1.10,2.3,2.5,2.6,2.7,2.8,
2.10,2.11,2.12,2.13,2.14,3.1.2-3.1.9, all
of 3.2,3.3 (37)

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from
Tables 2.2.1-1,2.2.2-I, and 2.2.3-1)

3.1.3 Compilation Testing

3.1.4 Reliability Testing

3.1.5 Statistical Record-Keeping

3.1.6 Software Reiliability Estimation

3.1.7 Regression Testing

3.1.8 Metric-Based Testing

3.1.9 Ad Hoc Testing

3.1 .I 0 Beta Testing

3.2.1 Random Input Testing

3.2.2 Domain Testing

3.3.1 Specific Functional Requirement Testing

3.3.2 Simulation Testing

3.3.3 Model-Based Testing

3.3.4 Assertion Checking

3.3.5 Heuristic Testing

3.4.1 Field Testing

3.4.2 Scenario Testing

3.4.3 Qualification/Certification Testing

3.4.4 Simulator-Based Testing

3.4.5 Benchmarking

3.4.6 Human Factors Experimentation

3.4.7 Validation Scenario Testing

Types of Defects Detected
(from Table 2.3.1-1)

All Of 3.1,3.2.1-3.2.4,3.2.6,3.2.10,3.3.1,
3.3.2 (20)

3.1.3,3.1.4,3.1.7, all of 3.2,3.3.2 (14)

3.1.1,3.1.2,3.1.5,3.1.6,3.1.7,3.1.9, (6)

3.1.1,3.1.2,3.1.5,3.3.1,3.3.2 (5)

1.2, 1.4,1.9,1.10,2.3,2.5,2.6,2.7,2.8,
2.10,2.11,2.12,2.13,2.14,3.1.2-3.1.9, all
of 3.2,3.3 (37)

3.1.2,3.1.4,3.1.8,3.1.9, 3.2.2,3.2.10,3.3.2
CI)
3.1.2-3.1.4,3.1.9,3.2.1-3.2.4,3.2.6-3.2.9,
3.3.1 (14)

1.2, 1.4, 1.8, 1.13,2.1-2.4,2.7,2.8,2.10,
2.11,2.14,3.1.4,3.1.5,3.2.5-3.2.10 (21)

All of 2.0, all of 3.0 (39)

All of 2.0, all of 3.0 (39)

All of 2.0, all of 3.0 (39)

1.2,1.4,1.6, 1.7,1.9,1.10,1.11, 1.12,2.3,
2.6,2.7,2.10,2.14,3.1.2,3.1.4,3.1.5, all of
3.2,3.3,3.3.3 (33)

3.2.1, 3.2.4,3.2.7,3.2.8, 3.2.10 (19)

3.1.3,3.1.4,3.1.7,3.2.1,3.2.2,3.2.3,3.2.4,
3.2.6,3.2.7,3.2.10, 3.3.2 (11)

All of 2.0, all of 3.0 (39)

All of 2.0,3.0 (39)

All of 2.0,3.0 (39)

All of 1 .O, 2.0,3.0 (52)

All of 1 .O, 2:0,3.0 (52)

2.1-2.8,2.10,2.11,2.14,3.1.2,3.1.4,3.1.7,

All of 3.1,3.2 (1 9)

2.7,2.13,2.14,3.2.10 (4)

1.2, 1.4,1.8, 1.13,2.1-2.4,2.7,2.8,2.10,
2.11.2.14.3.1.4.3.1.5.3.2.5-3.2.10 (21)

94

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from
Tables 2.2.1-1,2.2.2-I, and 2.2.3-1)

3.4.8 Knowledgebase Scenaio Generation

II I
Types of Defects Detected

(from Table 2.3.1-1)

3.1.2,3.1.4,3.1.5,~3.1.7,3.1.9, all of 3.2,
3.3.2-3.3.5 (1 91

3.5.1 Stress/Accelerated Life Testing

3.5.2 Stability Analysis

3.5.3 Robustness Testing

3.5.4 Limit/Range Testing

3.5.5 Parameter Violation

3.6.1 Sizinghlemory Testing

3.6.2 Timing/Flow Testing

3.6.3 Bottleneck Testing

3.6.4

3.7.1 Activity Tracing

3.7.2 Incremental Execution

3.7.3 Results Monitoring

Queue Size, Register Allocations, Paging,
Etc.

l 3.7.4 Thread Testing

3.7.5 Using Generated Explanations

3.8.1 Gold Standard

All of 3.0 (24)

All of 3.0 (24)

All of 3.0 (24)

2.3,2.8,2.10,2.11,3.1.3,3.1.4,3.1.7,
3.2.1,3.2.2,3.2.8 (IO)

2.3,2.8,2.10,2.11,3.1.3,3.1.4,3.1.7,
3.2.1.3.2.2.3.2.3.3.2.6.3.2.8.3.3.2 (13)

1.6,1.8,2.5,2.7 (4)

2.4,2.7,3.1.2,3.1.6,3.1.9,3.3.1 (6)

2.7,2.14,3.2.9 (3)

1.4, 1 .5, 1.7,1.8,2.7,2.14,3.2.9,3.3.4 (8)

3.1.1 thru 3.1.9.3.2.4 (IO)

All of 3.1,3.2,3.3.1,3.3.2 (21)

2.3,2.5,2.6,2.7,2.8,2.9,2.10,2.11,2.14,
3.2,3.3 (24)

~~

All of 2.0,3.1.1-3.1.5,3.2.1-3.2.4,3.2.6-
3.2.10,3.3.1-3.3.5 (34)

3.1.4,3.1.7,3.2.1,3.2.2,3.2.4,3.2.6-3.2.8,
3.2.10,3.3.3-3.3.5 (12)

2.1-2.9,2.11,2.14,3.1.5, all of 3.2,3.3.3-
3.3.5 (25)

3.8.2 Effectiveness Procedures 2.1-2.9,2.11,2.14,3.1.5, all of 3.2,3.3.3-
3.3.5 (25)

95

3.8.3 Workplace Averages

3.9.1 Data Interface Testing

3.9.2 User Interface Testing

3.9.3 Information System Analysis

2.1-2.9,2.11,2.14,3.1.5, all of 3.2,3.3.3-
3.3.5 (25) '

1.4, 1.13,2.1,2.2,2.3,2.9,2.10,2.11,2.14,
3.1.5,3.1.7,3.2.1,3.2.8,3.2.9,3.3.3 (15)

3.1.7,3.2.8 (1 8)
1.1-1.7,2.1-2.4,2.7,2.10,2.11,2.14,3.1.5,

1.1-1.7,2.1-2.4,2.7,2.10,2.11,2.14, 3.1.5,
3.1.7,3.2.8 (1 8)

Table 6.1.2-1 (Continued).

3.1 0.6 Test-Coverage Analyzer

3.1 0.7 Conditional Testing

3.10.8 Data-Flow Testing

3.1 1 .l Error Seeding

3.1 1.2 Fault Insertion

3.1 1.3 Mutation Testing

All of 3.0 (24)

3.1.3,3.1.4,3.2 (12)

All of 2.0.3.0 (39)

3.1.3,3.1.4,3.1.7,3.1.9 (4)

All of 3.1,3.2 (1 9)

All of 3.1.3.2 (1 9)

96

defecfll ifa reasonable "importance" metric were developed, it could easily be incorporated into the derivation of the
Broad Power index.

Using the data iri Table 6.1.2-1 , one could ask how many techniques can detect each type of defect. This
question assesses whether there are d c i e n t alternative means of detecting a,particular type of defect. In turn, this
indicates how critical it is to use a particular technique. That is, iffinding a particular type of defect is considered to be
highly important, but only one or two techniques can detect it, then it is critical that one or both of these techniques be
included in the V&V plan. The results of this inversion of the techniquddefect data are shown in Table 6.1.2-2. The
defect with the most covering methods is the Design defect 2.1 1, Failure To Handle Exceptions, with 35 techniques
judged to be able to detect this flaw. The least covered defect is the Code defect 3.1.6, (Dynamic) Instruction
Modification, with 10 applicable techniques. On average, each defect can be detected by 21 techniques. These
findings suggest that the identified 153 methods, taken together, do fairly well in covering the total set of system
defects.

6.2 Definition of the Cost and Benefit Factors Evaluation of Conventional Techniclue Effectiveness

Seven additional factors in addition to Broad Power are now introduced to characterize the costs and benefits
(and other measures) of V&V techniques. The four factors which define the benefits all measure the power aspects of
each technique.

1) Broad Power was defined in the previous section as a hc t ion of the number of different
defects detectable by the technique.

2)
problems; problems which are not at all obvious on inspection. These problems may also be
intermittent because they depend on non-obvious aspects of the running conteaor hey are enabled
by various obscure means.

Hard Power is a judgment about the capability of the technique to detect hard

3) Formaliability assesses the extent to which a technique lends itselfto formal calculus
or algebraic representations of the specification, design, or implemented system. This would
allow automated theorem-provers (if developed) to detect anomalies, contradictions, inconsistencies,
etc.

4) HCI Testability characterizes whether the Human-Computer Interface is directly testable using
the technique. Since the applications of strongest interest are decision-support type systems to help
users process and interpret information as well as to advise them on alternative actions, the HCI is an
important aspect to be tested. Techniques that test the HCI are seen as having higher power.

l1 By "economic conoequencefi" b meant all the costs associated with an mor being present in a 8yBtem and actually &g. Such costs will
include costs to identi@, locate, and repair the problem as well as any costs due to impact on safety or loss of capability.

97

Table 6.1.2-2 Applicability of conventional tchniques
to defects in conventional software

Software Defects
Type

1 .O REQUIREMENTS

.1 Incomplete decomposition

.2 Omitted requirement

.3 Improper translation

.4 Operational environment incompatibility

.5 Incomplete requirement description

.6 Infeasible requirement

.7 Conflicting requirement

.8 Incorrect assignment of resources

.9 Conflicting inter-system specification

.10 Incorrect or missing external constants

.11 Incorrect or missing description of initial system state

.12 Overspecification of requirements

.13 Incorrect input or output description

Number of Test
Techniques
Applicable

15
23
19
17
13
14
17
13
15
19
18
12
18

98

Ranking of
Defect

Coverage'

39
18
30
35.5
47
43.5
35.5
47
39
30

33.5
49.5
33.5

Table 6.1.2-2 (Continued).

Software Defects
Type

2.0 DESIGN

.I Omitted requirement

.2 Misinterpreted requirement

.3 Data limitation

.4 Unintended design element

.5 Hardware incompatibility

.6 Soflware incompatibility

.7 Poor man-machine interface

.8 Incorrect analyses of computational error

.9 Noncompliance

.I 0 Lack of adequate error traps

.I 1 Failure to handle exceptions

.I2 Weak modularity

.I3 Rigid control structure

.I4 Missing or incorrect processing priorities

.I 5 Breakdown between toplevel & detail desiqn

Number of Test
Techniques
Applicable

23
27
28
21
14
15
29
20
21
23
35
13
14
34
14

Ranking of
Defect

Coverage'

18
10.5
8.5

22
43.5
39
6.5

25.5
22
18
1

47
43.5
2

43.5

99

Table 6.1.2-2 (Continued).

Software Defects
Type

3.0 CODE
3.1

.I

.2

.3

.4

.5

.6

.7

.8

.9

3.2
.I
.2
.3
.4
.5
.6
.7
.8
.9

Logic and Control
Unreachable code
Improperly used flow control constructs
Improper predicates
Improper process sequencing
Halting problem
Instruction modification
Failure to save or restore process communication
data
Unauthorized or incorrect recursion
Labels or control flags

Data Operations and Computations
Missing validity test
Incorrect data referencing
Mismatched parameter list
Definition or initialization fault
Anachronistic data
Improperly used data handling construct
Variable misuse
Incompatible data representation
Insufficient data transport

. I O Input-output faults
3.3 Other
.I Calls to non-existent subprograms
.2 Improper program linkages
.3 Failure to implement design element

.4 Improperly implemented design element

.5 Unintended function
defect is covered by the most number of techniques 52 = defect is covered by the

Number of Test
Techniques
Applicable

12
20
19
25
24
10

20
11
19

28
27
26
26
19
33
29
31
23
32

15
20
21
23
15

ast number of techniques

Ranking of
Defect

Coverage’

49.5
25.5
30
14
15
52

25.5
51
30

8.5
10.5
12.5
12.5
30
3
6.5
5

18
4

39
25.5
22
18
39

100

The four factors which are used here to define the costs all measure the ease-of-use aspects of each technique.

1) Ease of Mastery is the ease with which a technique can be taught, understood, and applied. It
is measured in terms of the educational or professional level required to deal with the technique
concepts and the amount of training time needed to teach the concepts. These issues all impact cost.

2)
technique ready to be applied to the program.

Ease of Setup refers to the labor, time, and resources required to have the V&V

3)
technique and interpreting the findings.

Ease of Runninghterpretation measures the ease (or difficulty) of actually applying the

4) Usage is the extent to which the technique is generally and commonly used. The
inference is that the higher the usage the greater the general ease-of-use of the technique, or the easier it might
be to get approval to use it. This factor also reduces costs.

An inverse relationship is assumed between the ease-of-use factors and cost: the greater the ease-of-use, the
lower the costs associated with the technique.

It is believed that the ease-of-use factors are general and applicable across many application domains, levels
of system complexity, and implementation approaches. These were chokn to reflect the problems inherent in testing
the most complicated and important system; that is, a system having the highest levels of complexity &d required
integrity, as discussed in Section 2.4.3. Hard Power emphasizes the capability to address extremely complicated
systems and to find the most difficult of types of defects within them; such types of defects rarely occur in simple
systems. Formalizability favors formal approaches that permit mathematical reasoning about the presence of defects
and anomalies, and HCI Testability emphasizes techniques and systems that concentrate on user interactions and the
system. These biases will restrict designations of greatest power to those techniques which are inherently formalizable
and are designed to assess complex systems with a high degree of human-computer interaction. Selective though this
may be, it is believed that these are exactly the kinds of techniques and systems which must be emphasized in this
review.

All eight factors are associated with a five-point rating scale (1-5), with 1 representing the least value (power
or ease-of-use), and 5 representing the greatest value. The interpretation of each of the five values for each of the eight
factors is given in Table 6.2-1. For Broad Power, the scale is based on percentage of applicable defects detectable.
For example, Requirements and Design Methods can conceivably detect 28 defects. A Broad Power of 1 indicates that
0d.defects are detectable (0-23%). The assumption is that all eight factors are based on continuous underlying
distributions of values, and that these distributions tire of the same kind (e.g., Normal). It is also assumed that the
definitions of the five points of the eight scales are partitioned into five equal parts. These assumptions make it
reasonable to compare values across different factors. That is, a Hard Power value of 4 is comparable in degree to a

101

Table 6.2-1 Interpretation of the 1-5 rating scale
values for each of the eight costlbeneft factors

Rating Scale Values
Factors

Value Explanation

Power Factors

I 1 0-23% of Applicable defects detectable
24-44% of Applicable defects detectable Broad Power

2

3

4

5

4545% of Applicable defects detectable
66-86% of Applicable defects detectable

87-1 00% of Applicable defects detectable

Hard Power

5 Excellent at finding a wide number and variety of
difficult defects

Formalizability I 1 I Not really possible
I

2 I Partially feasible, but requires extensive effort
I

3

4 Very feasible

5

Feasible to formalize simply in small soWare
systems

Been done at least once or else designed
completely

I I Not really at all
Human-Computer

Interaction Tested 2 1 Somewhat, as a side effect

3 Tests some aspects OK

4

5

Quite thorough in testing HCI

A primary focus of the technique

102

Table 6.2-1 (Continued).

Ratina Scale Values

Explanation

Very difficult, requires specialized mathematical or programming
skills and then specialized training
Quite difficult, but required skill level and training is somewhat less

Requires concentrated training, but most people can acquire the
method without difficulty

Requires only a little training, almost everyone can acquire the skill
Requires virtually no training, anybody can pick it up while using it
after a few minutes
Have to do a considerable amount of programming or
specification in some language, days to weeks

Takes a significant amount of programming or specification to set
up, a day or so
Takes a moderate amount of time and thought, several hours
Sets up rapidly in an hour or so

Set-up is almost immediate

Very complicated to run, and the findings take quite a while to
interpret, several hours to days

Difficult to run, interpretation requires detailed analysis over a
number of hours

Requires some time and care to run; interpretation requires
several hours
Quite easy to run, interpretation is accomplished within a few
minutes

Completely easy to run, interpretation is almost immediately made

Almost nobody uses it or is even familiar with it
Used by a few, some people have heard of it
Used by quite a few, most people have heard of it
Used by a majority, almost everyone has heard of it
Highly familiar to all and almost always used, no matter what other
techniques are employed

103

Usage value of 4. These assumptions also just@ combining the scores in various arithmetic formulas to derive the
"cost-benefit" and "effectiveness" metrics discussed in the next section.'2

6.3 Evaluatinp "Cost-Benefit" and "Effectiveness" of Conventional V&V Methods

In this section, "metrics" for comparing techniques are developed. Table 6.3-1 lists all 153 methods, with the
identification number and technique name given in columns B and C, respectively. The authors rated each of these
techniques by using the previously described eight factors @road Power, Hard Power, Formalizability, Human-
Computer Interface (HCI) Testability, Ease of Mastery, Ease of Setup, Ease of RunningiInterpretation, and Usage).
These ratings are based on the authors' judgments of the individual technique's capabilities, personal sohare
experiences, and extensive review of sohare literature. The results are shown ,in columns E-H and K-N of Table 6.3-
1. The primary objective of these ratings is to develop reasonable Cost-Benefit and Effectiveness measures for each
technique, given in column S and columns T-V, respectively. This is achieved by combining the eight rating factors
into single scores so that the higher score indicates a higher "cost-benefit" or more "effective" technique.

As will be demonstrated, these metrics were designed to be adaptable to the user's purpose by changing either
the method of computing the metrics themselves (Sections 6.3.1 and 6.3.2.1) or by changing the various weights
associated with them (Section 6.3.2.2). That is, ifa user believes that a power rating or an ease-of-use measure should
be changed, then the user should simply make that change in the table (and recompute the value that depends on the
value changed). Similarly, if a user wishes to modifil the definition of either the cost-benefit or the effectiveness
measure, this can be accomplished by substituting a new computation for combining the values of the eight factors (or
new factors could be added). Finally, the emphases given to the various factors under increasing need for V&V,
Classes 3 through 1, are explicitly expressed as a set of numerical weights. A user can easily modify these also if a
merent set of emphases is preferred.

The complexity and required integrity of the system to be tested by V&V methods are taken into account in
computing the Effectiveness measures for the various tecwques. The three Classes of V&V developed in Section
2.4.3 were used to represent the stringency with which V&V techniques need to be applied and the effectiveness
required of them. For example, the V&V Class 1 systems require the greatest capability for hard power,
formalizability, and human-computer interaction quality. Since these systems are the most complex and require the
highest integrity, the weighing of these three factors is increased relative to the other five factors. However, V&V Class
3 systems are different. The ease of use and broad power are more important; therefore, the weights for these factors
were increased (Section 6.3.2.2).

6.3.1 A Simple Cost-Benefit Metric

It is proposed that the four power measures generally assess the "benefits" of the technique, while the ease-of-
use factors indirectly address "costs". The proposed metric simply subtracts a measure of the total costs fkom a
measure of the total benefit. This measure can be expressed, generally, as follows, where benefits are represented by
the power factors and costs are represented by the "dficulty of use" factors discussed below:

The authors have made these Bssumptiolls to justify the mathematics involved in the &-benefit and, later, effectiveness measures. However,
there is DD empirical data one way or the other. Another implicit assumption is that the factors are independent and uncorrelated. Although this is somewhat
unlikely, the authors feel that the faors are sufficiently independent to ~ssess distinct underlying aspects of the techniques.

104

Table 6.3-1 : Conventional V and V Techniques\ Power and Easeof-Use Factor Ratings\Cost-Benef~ and Effectiveness Measures

N A Y E

R E QS.1 D ES IO N M t h o d I

Table 6.3-1 : Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefii and Effectiveness Measures

c s

c
Table 6.3-1: Conventional V and V Techniques\ Power and Easeof-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

1

3
A

2

Table 6.3-1 : Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

B C E (F (G 1 H I K (L I M I N (0 Q s T I U I V

Tochnlqu PI I P2 I P3 1 P4 TOTAL E l I E2 I E3 I E4 ITOTAL of B E N E F I VaV I V6V I vav
T E C H N I Q U E P O W E R E A S E 0 F U S E DIHlculty C O S T - E F F E C T I V E N E S S :

Number N A M E Hard 1 Broad I Fomul I HCI POWER Loam I &lup I uMn!er(Urage I EASE ure MEASURE Clarr 3 I Clair 2 I Clarr 1
I I I I I I I I I

Relative Cost-Benefit = Benefits - Costs (Eq. 6.3.1-1)

The cost-benefit values resulting from this metric, discussed below, are shown in column S of Table 6.3-1.
The values in column S are the values of the SQ& (DXicultysf-use values) found in column Q subtracted fiom the
values of the benefits (total of Power values) found in column I. Simply stated, column I minus column Q equals
column s.

Difficulty-of-use is defined as the obverse of easesf-use. If the easesf-use of a specific method is ranked at
the maximum of 5, then difficulty-of-use is the lowest possible minimum of 1; if ease-of-use is ranked very low as 2,
then dZicultysf-use would be near the top of 4. Mathematically, this relationship is defined as:

Difficulty-of-use Score = 6 - (Ease-of-use Score) (Eq. 6.3.1-2)

Thus, for example, consider method 1.1.1, General Language Requirements Analysis. Its easesf-use for
learning (Column K) is rated as 2. By the above definition, the difficulty of learning for this method is a 4, using a 5-
point rating scale in which 1 = Least Difficult and 5 = Most DiEcult.

To find the total Ditficultysf-use score for a method, one could subtract each of the scores for the four Easesf-
use factors (columns K-N) from 6 and total these four values. Alternatively, an equivalent procedure is to total the four
Easesf-use factors (as shown in column 0) and subtract this total from 24 to produce the total Dif3cultysf-use for that
method (as shown in column Q). To find the total Power, the estimate of benefit, add the four power values listed in
Table 6.3-1 columns E-H, the total of the Power factors is shown in column I.

A m e r word is needed to explain the Difficultysf-use component as a measure of cost. The less easy a
technique is to use in the four ways discussed, the more difficult it is to implement. Consequently, such a technique
will increase the amount of personnel time involved with the technique. Since most of the techniques require very few
costs other than labor, this approach will estimate most of the actual costs. In the case of those techniques which
require special equipment or expensive sohare, it is M e r assumed that the cost of these will be amortized over
many uses and will, therefore, contribute very little to any one instance of use.

Returning to the details of the metric, if d ,, is the dEiculty for the fh difficultysf-use factor for the Jth V&V
technique, and if p I is the power of the $h power-factor for the same Jth V&V technique, then the cost-benefit
measure for @e Jth V&V technique is defined as:

4 4
ReIativeCost-Benefit = p,, - d,, (Eq. 6.3.1-3)

C i C i

for technique

This measure has a maximum positive value of +16, when all four power factors are at a maximum 5 value (4 x
5 = 20), and all four diEculty-of-use factors are at a minimum 1 value (4 x 1 = 4; Relative Cost-Benefit = 20 - 4 = 16).
This value of positive 16 means that the technique produces maximum-possible benefits at minimum-possible costs.

109

The Relative Cost-Benefit measure has a maximum negative value of negative 16 when power factors are minimum
and difficult-of-use factors are maximum (4 - 20 = -16). This value means that a technique produces the minimum-
possible benefits at the maximum-possible cost. Although the relation between costs and benefits are sometimes
expressed as a ratio of the two, this is a non-linear measure and is not as easily inteipreted as the present linear one.
Note that a value of 0 means that the costs equal the benefits.13 .

To assist in the interpretation of the Relative Cost-Benefits scores, shown in column S of Table 6.3-1, the
following provides verbal descriptions. There is a range of plus or minus 2 points around zero where the benefits are
roughly equivalent to the costs:

RANGE . INTERPRETATION

-2 to +2 Benefits and costs are roughly equivalent

For positive values of the measure, the following intervals and descriptions are suggested:

RANGE INTERPRETATION

+3 to +8
+9 to +12
+13 to +I6

Benefits significantly exceed costs
Benefits greatly exceed costs
Benefits maximally exceed costs

For negative values of this measure, the corresponding negative intervals are suggested:

RANGE INTERPRETATION

-3 to -8
-9 to -12
-13 to -16

Costs significantly exceed benefits
Costs greatly exceed benefits
Costs maximally exceed benefits

The closer a score is to zero, the more uncertain it is. A score of +4 could be produced by having either four
very high power factors (e.g., 5-5-4-5) with a corresponding high level of difliculty-of-use (e.g., 4-4-3-4), or else it
could result fiom low power factors (e.g., 2-2-2-2) and even lower difficulty-of-use (e.g., 1-1-1-1).

This Relative cost-benefit measure identifies those techniques that have high negative values indicating that
costs greatly exceed benefits. The use of such costly methods is warranted only if some aspect of their power is greatly
needed, and cost effective methods are unavailable.

The conventional V&V techniques sorted by decreasing relative cost-benefit measures are shown in Table
6.3.1-1A through 6.3.1-IC. Each table, A through C, represents a different V&V Class: Requirements/Design, Static

l3 Anotha; equivalent, way of computingthe cost-benefit metric is to add the total of all eight factors (e.&, column I + column 0) and subtract 24
fivmthatsun

110

Table 6.3.1-1A Conventional Requirements and Design V and V Methods Ranked by Decreasing Cost-Benefit Values (Range = +I2 to -12)

COST BENEFIT MEASURE I
I I I

c
c
L

1.2.5 Sys. Eng. Methodology -6
1.2.8 Critical TlminglFlow Anal. -6
1.3.6 Database Design Analysis -6
1 .I .3 EHDM -7

-7
-

'1.1.7 Hlgher Order Logic
11.2.10 I Petri-Net Safety Analysls I I -7
11.2.1 1 I PSUPSA -7
1 .I .4 z -0
1 .I .5 Vienna Definltlon Method -8
1.1.8 Concurrent System Calculus -0
1.4.2 Design Compliance Analysis -0

COST BENEFIT MEASURE

2.4.9

2.4.8

I I
Knowledgebase Semantic Checking
Desk Checking
Formal Customer Review
User interface Inspection
Knowledgebase Syntax Checking
informed Panel lnswction 2.5.1

3
3
2
2
1
1

2.5.2 Structured Walk-throughs
2.5.5 Peer Code Checking
2.5.7 Data Interface Inspection
2.2.5 Call Structure Analvs

1
1
1
0

2.3.7
2.5.1 0
2.2.1
2.2.4
2.3.5
2.5.4
12.2.2
2.2.3
2.3.6
2.1.4
2.3.8
2.3.1

-
Cross-reference List Gen'r 0
Requirements Tracing 0
Control Flow Analysis -1
Operational Concept Anal. -1
Look-up Table Generator -1
Clean-room Technicrues -1
State Transition Diagram
Program Control Analysis
Data Dictionary Generator
Decision Tables
Aliasing Analysis
Data Flow Analvsis

-2
-2
-2
-3
-3
-4

Table 6.3.1-1B Conventional Static Testing V and V Methods, Sorted by Decreasing Cost-Benefit Measure Values (range = +I2 to -12)

2.4.1 1 I Knowledge Engineering Analysis I
2.4.1 I Failure-mode Effects Caus. I I -6 i
2.4.3 I HazardslSafetv Anal -6

-6
2.5.9 IStandards Auda -6
2.1.5 ITrace-assertion Meth
2.1.13 (Model Evaluation

-7 1
-7

2.2.8
2.3.1 0
2.3.12

Concurrent Process Analysis -7
Database Analysis -7
Date-Model Evaluation -7

2.4.2 ICritiqality Analysis -7

2.4.7 I Cornmonaause Failure Anal -7

2.1.3 lsymboiic Execution I -8
2.1.7 I L-D Relation Method -8 1
2.1.8 I Program Proving I -8
2.2.7 IWorst-case Timina Analvsis -8
2.5.1 1 lsoftware Practices Review -8

2.1.12 I Confidence Weights Sensitivity Analysis
2.1.1 1 Analytic Modeling

-9
-1 0

2.1.6
2.1 .I 1
2.1.2
2.3.9

Functional Abstraction -1 0
Induction-Assertion Method -1 0
Cause-effect Analysis -1 1
Concurrency Analysis -1 1

Table 6.3.1-1C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Cost-Benefit Measure Values (Range = +12 to -1 2)

Effectiveness Procs

Statement Testin

114

Table 6.3.1-IC Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Cost-Benefit Measure Values (Range = 4-12 to -12)

115

Testing, and Dynamic Testing. Findings indicate that there are more negative cost-benefit techniques than positive
ones and that the range of values is skewed towards the negative end. The mean value of all the techniques is around -
6. The reader is cautioned not to over-intexpret the absolute values on this simplistic measure because it incorporates
many assumptions. One of the most important assumptions is that each of the factors carries equivalent cost or benefit
value. Nonetheless, the relative rankings shown in Tables 6.3.1-1A to C are quite consistent with intuitions, with the
proven high-usage high-benefit methods having the highest values.

For the RequiremenWDesign methods, the Reviews are judged to be the most cost-beneficial of the general
engineeriug methodologies. The least cost-beneficial are the
formal specification languages. The human inspection techniques are the most beneficial of the static testing
techniques, followed by the intensely analytical methods.

None of the above orderings are counter-intuitive, but the ordering of the dynamic methods may be surprising to
some readers. Many of the familiar "tried and true" methods are positioned in the middle and even towards the end of
the grouping, particularly those that accomplish structural "white-box" testing of program paths (e.g., 3.10.1 and
3.10.2). The reason these are rated lower than their widespread use might indicate is because of their generally much
lower power rating. The top three are familiar and used regularly: system, regression, and field testing. The next 15
non-negative methods are less frequently used and may be unfamiliar to many. They are at the higher position because
of their higher power (that is, their "benefit"). Given these results many V&V plans, with their recommended dynamic
testing techniques for the nuclear industry and elsewhere, might consider revising their V&V techniques. This table
suggests that it might be possible to compose a set of testing techniques with very effective cost-benefit values.

6.3.2 The Effectiveness Metrics

This section defines a metric which considers the four power factors (Broad Power, Hard Power, Formalization,
and Human-Computer Interface Testability) and the four ease-of-use factors (Ease of Mastery, Ease of Setup, Ease of
Running/Interpretation, and Usage) as contributing varying amounts of effectiveness to a particular technique.
DXculty-of-use is not a consideration.

63.2.1 Deriving the Basic Metric

The extent to which any one of the eight factors is "beneficial" depends on the benefits one needs. If the only
concern was finding techniques to test the human-computer interface factor, then 100% of the benefit derived from the
eight factors would evolve fi-om the HCI-Tested factor.

If percentage weights are attributed to each factor, then one would distribute 100 percentage points across the
eight factors in accordance with one's judgment of importance. In the example above, the 4th factor, HCI-Tested, was
believed to be the only factor important, Therefore, the percentage weight assignments to the factors would be the
following:

FactorNo. 1 2 3 4 5 6 7 8

%Weight 0 0 0 100 0 0 0 0

116

Iffor all 153 techniques, each factor was multiplied by the weight assigned to it, and then these factor-by-weight
products were summed, a total for each method would be produd. The method(s) with the highest total would be the
one@) that best met the system needs - in this particular case, the ones that best tested the HCI aspects of the system. It
is known that the maximum rating for any factor is 5. The above procedure would produce a value of 500 for any
technique which was rated 5 in its HCI-Tested factor (the-values of the remaining seven factors would be zero, since
the ratings are all multiplied by a weight of 0 in this example).

To give another example, ifthere is no basis for judging one factor to be more important than another give equal
weight to all of them, splitting the 100 weighing percentage points equally across the 8 factors would produce the
following weights:

Factor No.

'%Weight (w)
1

12.5

2 3 . 4

12.5 12.5 12.5

5

12.5

6

12.5

7

125

8

125

If a technique had a rating of 1 for all eight factors, its score would be 100. However, a method with 5 for all factors
would have the maximum score of 500. This latter situation is shown below:

Factor No.

%Weight (w)

Rating (r)

(w) '

TOTAL

1 2 . 3 4

12.5 12.5 12.5 12.5

5 5 5 5

62.5 62.5 62.5 625

8 x 625 = 500

5

12.5

5

625

6

125

5

62.5

7

12.5

5

62.5

a
12.5

5

62.5

This procedure of assigning a weight for the expected benefit of each factor and then summing the product of these
weights multiplied by the rating is summarized below. This is called the Effectiveness Metric (EM). The
Effectiveness Metric for technique j is:

8

I - 1
Effectiveness Metric, = EM, = Wir sc qf (Eq. 6.3.2.1-1)

where j is the jth V&V technique, and where w, , and r,, are the weight and ranking of the ith factor, respectively, both
for the jth technique. As stated above, a requirement of this metric is that the sum of the weights must equal 100:

117

(Eq. 6.3.2.1-2)

This restriction reflects the fact that one cannot emphasize one aspect of a V&V method without de-emphasizing
some other aspect.

The Effectiveness Metric theoretically ranges from a minimum of 100 for a V&V method f (if all eight factors
are rated 1) to a maximum of 500 (if all eight factors are rated 5):

(Eq. 6.3.2.1-3)

Having defined the metric, the next step is to carefdly decide how weights are to be assigned to the eight
individual factors. There are many ways to do this, but, however it is done, a disciplined approach for assigning
weights is necessary to make the metric a valid tool for measuring "effectiveness".

6.3.2.2 Development of Weights for Effectiveness

Whether or not a technique is "effective" in assuring the quality of a software system depends on the
characteristics of that system. For the purpose of this review, three different effectiveness metrics were developed in
terms of the three V&V classes proposed in Section 2.4.3 (see Table 2.4.3-1). These classes were based jointly on two
aspects of systems: their comdexity and their required in t e~ ty . (Complexity in turn was previously characterized in
terms of six factors; see Table 2.4.3-1). Thus, the effectiveness metric for a V&V Class 3 system should take into
account that such a system is a stand-alone system of low complexity and low required integrity. Such a system is
unlikely to need extremely powerfid error-finding techniques; testing methods should probably be broadly capable but
very easy to use. For a V&V Class 1 system, however, ease-of-use of the method is of little concern, but power to find
hard defects is. Thus, each V&V Class will have differing requirements for the eight Power and Ease-of-Use factors.
This section specifies how the weights for each of the V&V Classes were determined for these eight factors.

The following method was used iteratively to arrive at a stable set of weights. First, 100 percentage weight
points were assigned to the overall Power and the Ease-of-use classes. Various considerations yielded the following
effectiveness measurement constraints among V&V Classes:

0 Class 3, Power and Ease-of-Use weights should be within 20-30 points, but neither should be more than
15 points from the mid-point.

0 The number of points allotted to Power should increase significantly fiom Class 3 to Class 1.

0 Since Class 1 and Class 2 are numerically closer in complexity and integrity, the difference in point
values in the change fiom Class 2 to Class 1 should be less than the change from Class 3 to Class 2.

0 The weights in should be assigned units of "5" to simplify this procedure.

118

In addition to the above rules, the eight factors were subject to the following more specific additional constraints
as a second step for any set of weights arrived at with the above rules. .

Broad Power and Usage should receive the highest individual number of points for Class 3.

The importance of Broad Power should decrease fiom Class 3 to Class 2, and should decrease even
more fiom Class 2 to Class 1.

The usage factor should parallel the decrease of Broad Power.

HCI is probably the second most important Power factor for Class 3, and it should increase some to
Class 2 and more to Class 1.

Automatability is not important for Class 3, but is second only to Hard Power for Class 1.

Hard Power should increase steeply fiom a low level in Class 3 to the most important power factor in
Class 1.

Ease of Mastery and Ease of Setup should be relatively comparable in value, with the latter given
slightly more weight (since Mastery is amortized over a number of situations).

Ease of Mastery is important for Class 3 but decreases to a minimum for Class 1.

Ease of Setup is also important for Class 3 and also decreases to a minimum for Class 1.

Usage should be the most important Ease-of-Use factor for Classes 3 and.2, but it should be of little
concern for Class 1.

Each of these two sequential constraint steps' constraints is motivated separately, and together they constitute
a formidable set of constraints on the problem. There were several iterations between the first step of deciding on the
gross percentage points to allot to the collective power vs. the ease-of-use factors for the three classes of V&V and the
second step of breaking down the percentage points among the eight factors. A third step was to take what seemed to
be an acceptable set of weights and use them to compute the effectiveness of 3-8 selected techniques for each of the
three types of V&V techniques (RequirementdDesign, Static Testing, and Dynamic Testing). These techniques were
well-understood and familiar, and there were strong -- and defensible -- pre-existing expectations concerning how the
orderings of these methods should be for the three V&V classes when the Effectiveness Metric was computed If a
particular weighing scheme produced an ordering that was at odds with these expectations, it was rejected, and step one
was begun again.

The results of the accepted first step of assigning percentage-points to the general categories of power and
ease-of-use for each of the three V&V Classes, is shown below:

119

Class 3
CIasS 2
Class 1

YO Weight for
Power

40
60
75

YO Weight for
Ease-of-Use

60
40
25

The second process was to distribute the above combined weights for Power and Ease-of-Use to the four
factors in each of these categories. For example, the 75 percentage points giveh to Power factors for the Class 1 V&V
situation were distributed to the four factors which constituted Power. The distributing of weights among the four
factors in each of the two factor categories are shown in Table 6.3.2.2-1. All of the step one and step two constraints
are met by this assignment. Additionally, the ordering of the selected techniques was consistent with the expectations,
as determined in step three.

The overall measures of effectiveness for each conventional V&V technique was computed using formula
(6.3.2.1-1). A spread-sheet product was used to calculate the results of the weighing formulas (refer to the factor
ratings in columns E-H and K-N of Table 6.3-1). These ratings resulted in three overall scores for each method.
Scores for each of the three V&V classes are shown in columns T-V.

6.3.3 Rank-Ordered Methods

The methods were rank-ordered according to the V&V Class Effectiveness measures, and all of these results
are provided and discussed here.

The methods ordered by the Class 3 V&V Effectiveness measure were first examined, as shown in Tables
6.3.3-1A through 6.3.3-1Ca the methods were grouped by major V&V category -- RequirementdDesign (Table 6.3.3-
IA), Static Testing (Table 6.5.5-1B), and Dynamic Testing (Table 6.3.3-1C). The weights for this Class 3 situation
emphasize broad power strongly over the other power measures (with 24 or 60% of the possible 40 percentage points
allocated to it). Thus, if one only considers the power factors, any technique which has a broad defect-detection
capability will more likely be selected. If the technique is fiequently used (weighted 20 percentage points), it will tend
to top the list It is for these reasons that formal reviews and inspections lead the first two testing categories, and
system, field, and regression testing are the.top methods of the dynamic testing methods.

Upon closer examination for RequirementdDesign techniques, the formal methods are considered least
effective for the Class 3 V&V situations. Semi-fomal methods are found in the middle. A similar finding occurs for
the Static Testing methods, with the highly analytical and formal methods being considered least effective, and more
focused techniques being intermediate. The ranking of dynamic methods has the structural testing methods down in the
list, along with some of the more difficult simulation and analysis techniques. Note that the ranking of methods
according to the Class 3 weights very closely parallels the cost-benefit rankings found in the fourth column even though
the rankings are computed by different metrics. This is quite appropriate, since both metrics tend to emphasize Ease-of-
Use and Broad Power. Still, this finding tends to cross-validate both measures.

120

Table 6.3.3-1A Conventional Requirements and Design V and V Methods
Ranked by Decreasing V and V Class 3 Values (Maximum = 500)

121

Table 6.3.3-1 B Conventional Static Testing V and V Methods,
Sorted by Decreasing V and V Class 3 Values (Maximum = 500)

122

Table 6.3.3-1 B Conventional Static Testing V and V Methods,
Sorted by Decreasing V and V Class 3 Values (Maximum = 500)

.

I [COST BENEFIT MEASURE1 Class 31 'Class 21 Class 1
I I I I I I

123

Table 6.3.3-1C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 3 Values (Maximum = 500)

Model-based Testina

124

Table 6.3.3-1 C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 3 Values (Maximum = 500)

125

, I ...-- , ---r-%P.. . 1 .,. . . ." -

Some general observations can be made across the three V&V Class Effectiveness measures concerning the
extent to which techniques came close to their theoretical maximum value of 500. First of all, the highest scores
occurred for the Class 3 V&V weights, and the lowest scores occurred for the Class 1 weights. This can be interpreted
as meaning that conventional V&V techniques are most appropriate for the V&V Class 3 systems and are less able to
meet the testing needs as the required V&V stringency increases.

A second observation is that for each V&V Class, the RequirementdDesign methods always had the lowest
maximum scores, followed by the Static Testing methods, and the Dynamic methods being the best. The Dynamic
Testing methods had the three highest overall scores, up to 88% effectiveness, for System Testing (443), Field
Testing (429), and Regression Testing (426) in the Class 3 weighmg. This finding might imply an ordering of
difsculty in being able to detect problems with the three types of techniques. Or, it may reflect the fact that the V&V
field has more methods and experience with Dynamic techniques than with Static ones, and least for
RequirementdDesign ones. Thirdly, the next three top methods were Formal Requirements Review
(RequirementdDesign, Class 3; 41 6), Requirements Analysis (RequirementdDesign, Class 3; 407), and Formal
Design Review (Requirements/ Design, Class 3; 392). If there were no other constraints, these six top methods -- the
three top Dynamic methods and the next three top requirernentddesign methods -- would appear to constitute a very
impressive suite of V&V techniques, with the high cost-benefit values and a near 80% Effectiveness capability.

The techniques were then ranked in terms of decreasing Effectiveness values as computed by the Class 2
weights. The results are shown in Tables 6.3.3-2A through 6.3.3-2C. For the RequirementdDesign methods (Table
6.3.3-2A), the Class 2 weights did not cause a major re-ordering. Rather, only a few techniques moved more than a
few spaces.

For the Static Testing methods, the change to Class 2 weights also did not cause significant re-clustering. The
Clean-room Technique moved up significantly (10 places) to second place, and Desk-checking, metric analyses, and
a few others dropped substantially. However, the majority held their general positions. The same general fmding was
also true for the Dynamic methods.

Finally, the techniques were ranked in terms of the Class 1 Effectiveness Metric, as shown in Tables 6.3.3-3A
through 6.3.3-3C. This is the highest level of complexityhntegrity requirements, and this situation calls for whatever it
takes to identifjl problems in the code, particularly the very hard problems. In this situation, 75 of the 100 perdentage
points are assigned to the power factors for V&V Class 1. This is due their capability (34 points, 45%) to detect the
really hard problems. The HCI is also high for this Class because safety systems of the most concern are decision-
support systems with complex human-computer interactions (20 points, 27%).

Examination of the ranking of methods according to the Class 1 measure reveals entirely different orderings
than with Class 3 weighing. For the RequirementdDesign methods (Table 6.3.3-3A), the semi-formal methods are
now very high on the list, with the extremely laborious formal methods now up in the top 40% of methods. The
workhorse review and tracing methods, as well as a number of the powerful inspection methods, are high on the list for
Static Testing. For Dynamic Testing, System Testing is still near the top, (second place) and first place is held by the
Random Testing method. In the Class 1 situation, the cost-benefit measure is uncorrelated with the effectiveness
rankings for the first half of the methods.Insert Table 6.3.2.2-1 hereIt is stressed once more that there is nothing
sacrosanct about the rankings of methods according to the weighing matris developed in Table 6.3.2.2-1. Some

126

Table 6.3.3-2A Conventional Requirements and Design V and V Methods
Ranked by Decreasing V and V Class 2 Values (Maximum = 500)

I COST BENEFIT MEASURE1 Class 31 Class 21 Class 1
1 I I I I

127

263 246
260 257
257 273
255 283
250 276

245 278
235 265
230 226
225 227
225 252
225 252
225 252
221 257

247 260

Table 6.3.3-2B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 2 Values (Maximum = 500)

128

Table 6.3.3-2B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 2 Values (Maximum = 500)

129

Table 6.3.3-2C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 2 Values (Maximum = 500)

-
I I I 1 LUD I dENEFlT MEASURE1 Class 31 Class 21 Class 1 I

:em Testing I 8 I 443 1 3Ql I R? -
-

I --. J 8 3.1.2 Sysl . .-
3.4.1 Field Testing 6 429 I 374 I 31 3

3.7.4 IThread Testing -3 I
3.4.6 [Human Factors Experiment'n
3.1 0.6 lTest Coveraae Analvsis

281 [271 I 253
-2 270 I 270 I 270
-2 - 1 I -

3.5.2 [Stability Analysis Testing -4 273 I 268 I 243
~~ ~

3.1.4 I Reliability Testing -1 288 I 260 1 252
3.7.1 [Activity Tracing -3 276 I 260 I 246

130

Table 6.3.3-26 Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 2 Values (Maximum = 500)

131

Table 6.3.3-3A Conventional Requirements and Design V and V Methods
Ranked by Decreasing V and V Class 1 Values (Maximum = 500)

132

Table 6.3.3-3B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 1 Values (Maximum = 500)

I COST BENEFIT MEASURE[class 31 class 21 class 1
I I I

133

, - , . - . . . - -, ..

Table 6.3.3-3B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 1 Values (Maximum = 500)

ICOST BENEIFIT MEASUREl Class 31 Class 21 Class 1
I I I I I I I

134 .

3.5.2
3.8.2
3.3.4
3.9.3
3.10.6
3.6.3

135

Stability Analysis Testing -4 273 268 243
E f f e c t i v ~ s p r o c s -3 280 255 237
hsertionchecking ’ -9 146 193 236
I n f d o n System Analysis -3 279 253 23 1
Test Coverage Analysis -2 308 269 230
Bottleneck Testing -6 229 228 225

Table 6.3.336 Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 1 Values (Maximum = 500)

I COST BENEFIT MEASURE Class 1 Class 2 Class 1

3.6.1 SidngrmemoryTesting -6 239 213 ' 196
3.11.1 ki-orseediog -6 239 213 196
3.11.2 FaultInsertioa -7 219 201 193
3.10.4 Call-@Testing -7 226 203 191
3.10.7 Conditional Testing -7 226 203 191
3.4.5 Benchmarlan ' g -7 236 213 187
3.11.3 MutaticmTeStine -8 207 191 180
3.1.8 Mehic-based Testing -8 21 1 178 168
3.1.6 software Reliability Estimil -10 180 173 163

136

reasonable assumptions and constraints were made about the relative contributions of the eight factors in these three
situations and the weightings were adjusted accordingly. What is provided in this section is a methodology which
attempts to reduce the problems of subjective bias, habit, or other unreflective technique-selection pxxxxses, by
forcing consideration of each method on a set of eight relatively independent factors and then combining these
judgments according to a reasonable linear additive weighing procedure.

6.4 Which Techniaues to Use. and When

The rankings of the V&V methods were accomplished without reference to any particular system or
application. In reality, every system will have specific requirements that will make certain techniques necessary
regardless of their ranking for any complexity/iitegrity combination.

Any project will only use a very small fraction of the total 153 V&V techniques. All of these methods are
discussed because each has its own special qualifications. However, a single project has a f i t e V&V budget and great
care must be taken to select appropriate methods. The best way to determine which V&V technique to use is to
prioritize the problems that might occur. For example, decide which system problems will cause failure, list those
concerns, and choose the best methods to test for those problems. A reasonable standard procedure is first to decide
the AV&V Class of the system, Table 6.3.3-2 and fmd the appropriate table ranking of the techniques according to the
Effectiveness weighing and metric for that class.

The & of using V&V techniques is also an important consideration. For example, if it is necessary to use
functional testing, random testing, and statement testing, it would be a mistake to generate test-cases to test program
statements first. Statements will be automatically tested by the other two methods. If one keeps kack of the statements
covered by these two methods, then one needs only to generate test-cases for the remaining untested statements after
the others have been exercised.

Finally, a plan of action is needed when errors are detected. This is a very complicated issue. The worst
mistake is to make a quick fix and continue with testing. This will invariably introduce new errors or side effects.
Additionally, this event renders the documentation obsolete more rapidly than normal. The better approach is to
continue with reasonable testing until a collection of problems is detected. In fact, when an error is encountered,
subsequent tests can be designed to effectively explore an analysis of the causes of the error revealed. There may be
very serious design flaws due to certain overlooked processing factors. With a collection of problems, the best action is
to first analyze them for likely related problems (and test for these) and problems in one's processes of software
development; then one can plan a series of modifications to the system design followed by modifications to the code
and documentation.

The cost-benefit and effectiveness ratings for each of the 153 V&V techniques in Section 6.3 provide detailed
information with an overall ranking of these methods. Such a ranking is useful in assessing the most likely candidates
for V&V and analyzing the trends among the most beneficial V&V techniques. Therefore, each technique was ranked
within its category of either requirementddesign, static, or dynamic testing.

137

Within each of these categories, each technique was numerically ranked in accordance with its cost benefit
measure as delineated in Tables 6.3.1-1A-C. Then, each technique was numerically ranked in accordance with its
effectiveness rating for each of the three V&V classes as it is delineated in Tables 6.3.3-l A-C, 6.3.3-2A-C, and 6.3.3-
3A-C. These rankings appear as columns 2-5 in Table 6.4-1. After this rank assignment for each technique, the four
rankings (cost-benefit and effectiveness for V&V Classes 1,2, and 3) were summed and appear in column 6. Finally,
these summed values were ranked, and the results are given in column 7. For example, technique 1.3.2, Formal Design
Review, would be ranked number 1 based on its cost benefit measure in Table 6.3.1-1A, ranked number 1 based on its
effectiveness for V&V Class 3 in Table 6.3.3-14 ranked number 1 for V&V Class 2 effectiveness in Table 6.3.3-24
and ranked number 15 for V&V Class 1 for effectiveness in Table 6.3.3-3A. The sum of 18 was assigned to this
technique. In the same manner, the top ten V&V techniques for requirementddesign, static, and dynamic testing were
calculated and are delineated in Table 6.4-1 in numerical order fiom 1 to 10.

The above method provides a way of determining the top-rated techniques based on all four of the measures
computed for them, the cost-benefit measure, and the three effectiveness measures. Several generalizations concerning
the final top-ten ranked methods in Table 6.4-1 can be made. In requirements and design testing, traditional formal
review methods along with some new automated techniques made this top list. For static testing V&V methods, all the
highly ranked techniques involve personal inspections and reviews; none are automated. Finally, in the area of dynamic
testing, all the techniques on this list were system level, function oriented "black box" meth&, no structural "white
box" methods made the list. Some of the dynamic testing methods also involved automation.

Many of the high ranked methods listed in Table 6.4-1 are widely used and accepted as conventional software
V&V. These methods serve as a starting point in later activities for this project in selecting appropriate V&V methods
for expert systems. For those expert system component which are directly
amenable to conventional software V&V methods (to be discussed in Section 7 of this report), some of the highly
ranked techniques in Table 6.4-1 may be appropriate. In the case where new V&V techniques need to be developed,
the insights gained fiom examining highly ranked conventional V&V methods will provide guidance in selecting new
expert system V&V methods.

138

Table 6.4-1 Overall highest ranked conventional
V&V techniques for all V&V classes

Conventional

=

R
E

S
Q

&

D
' E

S
I
G
N

=

S
T
A
T
I
C

T
E
S
T
I
N
G

-

Metric'
Ranking

V&V
c lass l class2 c h s 3 Ranks 4Metrid

Techniques

Systems Requirements
Engineering

cost
Benefit

4.5 2 4 6 16.5 2

I Effectiveness Metric Ranking I

Formal Design Review

Sum
of

3 15 3 3 24 5

Ranking
Over All

Simulation Language Analysis 7 1 6 12 25 6

~~ ~

Requirement Analysis

Prototyping

Refine Specification Language

4.5 11 8 4 27.5 7

9 4 7 10.5 30.5 8

Formal Requirements Review I 2 I 13 I 2 I 1 I 18 I 3
I I I I I

Hare1 Method

Requirements Tracing

Knowledgebase Semantic

User Interface Inspection

Checking

13 6 11.5 14 44.5 9

7 25 9 5 45 10

14.5 1 1 14.5 18 1

6 4 6 6 19.5 2

Formal Customer Review

Desk Checking

2 11.5 3 2 20 3

1 17 4.5 1 24 4

Clean-room Techniques

Data Interface Inspection

12 3 2 12 31.5 6

7 9 10 7 33 7

Knowledgebase Syntax
Checking

Informed Panel Inspection 3 I 16 I 4.5 3 I 30.5 I 5 I I
I I I I

18 2 9 18 36 8

structured walk-Throughs 4.5 21.5 7.5 4.5 40.5 , 9.5

Peer Code Checking 4.5 21.5 7.5 4.5 40.5 9.5

139

Table 6.4-1 (ConUinued)

Random Testing 4

Field Testing 2.5

Qualification Certification 6.5

Regression Testing 2.5

Ranking

System Testing 1 2 1 1 5 1

D
Y
N
A
M
I
C

T
E
S
T
I
N
G

Scenario Testing 6.5

User Interface Testing 6.5

Operational Concept Testing 6.5

I l2
Heuristic Testing

Functional Requirements 12
Testing

2 / 1 3 4.5 12.5

10 2 2 16.5 3

26.5

9 6 6 27.5 6

12 8 7 33.5 7

11 10 11 38.5 8

8 7 13 40 9

17 9 8 46 10

' Based on the cost benefit measure (Column 5) of Table 2.3.2-2, a l l the methods (for a phase) have been
Note that only a subset are shown here.

* Based on the sums of rankings for the four metrics, ordered from lowest to highest.

ranked.

140

7 ASSESSMENT OF THE APPLIC~ILITY OF CONVENTIONAL V&V
TECHNIQUES TO EXPERT SYSTEMS

The previous two sections discussed the results of classifying and characterizing conventional V&V techniques.
This section examines whether these V&V techniques are applicable to expert systems.

Section 7.1 describes the heterogeneous components of expert systems and Section 7.2 identifies key V&V
features of these and suggests generally appropriate V&V approaches. Section 7.3 provides a detailed examination of
the applicability of the 153 conventional techniques to the components and to the system as a whole. In Section 7.4,
the limitations of using conventional V&V techniques for expert systems are summarized, along with suggestions for
extensions to these methods. This section ends with a suggested strategy for assuring the quality of expert systems.

7.1 Comwnents of Expert Svstems

Expert systems, regardless of their application, generally have several essential functions just as spread-sheet
packages or data-base management systems have different functional components. From the point of view of
develoDinq or managing expert systems, authors have focused on two components: a Knowledge Base and an Inference
Engine. However, the best description of components from a V&V point of view is one which lists a l l the aspects that
have to be tested (or certified) in order to achieve the QA and V&V objectives. The four components, and their
subcomponents, from this V&V perspective are shown in the left-most column of Table 7.1-1. In addition to the
components that were actually developed are all the elements that were used in the expert system development.

The first component is the Inference Engine. It is that part of the expert system which determines what gets done
next. It controls the interpretations and decisions, and manages the results. The inference engine works on declarative
knowledge which is most frequently in the form of IF-THEN rules. To process such rules, the engine possesses two
key subcomponents: the Pattern Matcher, which determines which rules could next be activated, and the Conflict-Set
Handler, which priorities these rules.

There are six additional subcomponents of the inference engine. The Proof Procedure subcomponent
determines the nature of the decision-making or reasoning. An example is the working backward (topdown) from
goals to facts to realize those goals, or working forward (bottom-up) from facts (data) to inferences or goals; the
former is a "backwardschaining" procedure, while the latter is a "forward<haining" one. Another important aspect of
the proof procedure is whether the possible rules or data to be examined are considered exhaustively at each level of
chaining ("breadth-first" search) or whether a single rule is followed to its consequence, then a rule linked to that
consequence is explored, and so on until a goal or dead-end is reached ("depth-first" search). The Proof Manager
records the activity of the proof procedure component in a goal-tree or similar structure and manages (and annotates)
that tree following decision-outcomes. The subcomponent called the Knowledge Processor is a specialized unit which
understands the formats and structures of the various knowledge representations and makes available those aspects
which the inference engine needs for processing. The Fuzzy ValueRJncertainty Handier is uncommon but provides for
specialized processing of fuzzy-logic and uncertainty calculations within inferences. The Inheritance Processor deals
with knowledge represented as a frame or object (see below). For a particular element, it determines what
information about that element is inherited from its parent elements. Finally, the Agenda Handler is the overall
scheduling module for the inference engine, determining what specifically is done next, controlling input/output, and
managing access to other tools, databases, and environments.

14 1

The second major component is the Knowledge Base. It is the heart of expert systems. It contains all the
specific domain knowledge for a particular application. Six possible representations of knowledge are identified:
rules, frames, objects, facts, external databases, and in-line Demons. The most common representation is that of
IF-THEN Rules, rules which specify a set of conditions to be satisfied before a set of actions can be taken. A Frame
is composed of a set of related attributes that describe some knowledge concept. Frames are organized in a hierarchy
in which the parent node is a more general concept, while the child nodes are particular and specific types of that
parent concept (e.g., there might be a frame describing valves in general, which might have two specialization frames -
"relief valves" and "input valves"). If the attributes describing a parent frame are true in all respects for the child, then
these need not be actually be specified as attributes in the child-frame; they can be "inherited" by default. Objects
possess frame characteristics as well as a set of "methods" (special procedures for displaying or activating the objects).
Expert systems which involve objects as a major knowledge component are a hybrid between pure expert systems in
which the processing is done primarily by the inference engine and object-oriented systems, in which the processing is
accomplished by "messages" or sets of instructions which are passed among objects. Facts are relatively simple
attribute-values which ascribe properties to things, such as the status of a nuclear plant variable, (e.g.,
"RPV-PRESSUREl(BELOW, RCIC-ISOLATION-PRJ2SSUREl)"). When there are a very large number of facts
which the expert system needs to use, they are often stored, not in some internal form as in the above example, but in
an Extern1 Database. These databases are typically either flat-file or relational in structure and are accessed via the
Knowledge Processor through the Database Interface. Finally, knowledge can be represented by Demons, which are
calls to some conventional software procedure which returns a value. The demons are typically expressed as the
values of attributes in the other types of howledge representations. For example, in a frame describing various
features of an airplane in flight, the attribute describing the amount of gas still in the tanks might be expressed as:

Fuel: Call FUEL-REMINING

The value of the Fuel attribute is the demon "F'UEL.-REMAINING, which is a software procedure which
interrogates senson in the fuel tanks and returns a value of some number of gallons.

The third component of expert systems consists of Interfaces. Other than the primary User-Interface, these are
seldom considered in discussions of expert system components since most expert systems, historically, have been
stand-alone systems, with just a user-interface. Nevertheless, the typical modem expert system more and more has a
variety of data and other interfaces and is embedded in larger conventional software systems. Just as these must be
considered carefully in the V&V of conventional systems, so must they be for expert systems. The various aspects of
interfaces are: user interface, database interface, data input/output channels, communication ports, hyper-media, and
interfaces to other applications and the operating system. Most of these are self-explanatory, and two comments will
suffice. The difference between a data VO channel and a communication port is that the former is usually a special
inputloutput capability designed specifically for certain types of data streams or sensor inputs, while the latter is a
standardized channel for communicating with other platforms or devices. Hyper-media involves information retrieval
from potentially several data storage and representation methods, including text, audio, and video.

142

Table 7.1-1 Components and typical testing-related features of
knowledge-based systems, with testing recommendations.

Components

Inference Engineer
Pattern Matcher
Conflict-Set Handler
Proof Procedure
Proof Manager
Fuzzy ValueKJncertainty Handler
Knowledge Processor
Inheritance Processor
Agenda Handler

Knowledge Base
Rules
Frames
Objects
Facts
External Database
In-line Demons, Procedures,
Functions

Interfaces
User Interface
Database Interface
Data YO Channels
Communication Ports
H yper-media
Interfaces to Other Applications
and the Operating System

Typically Written
in or Involving

Procedural Code

yz
Y
Y
Y
S
S
S
Y
Y

N
N
N
M
N
M
Y

Y
Y
Y
Y
Y
Y

Y

Features’

High Reusability
Across Different

Applications

Y
Y
Y
Y
S
Y
Y
Y
Y

N
N
N
N
N
N
N

S
S
S
S
N
N

S

Potential Defects
Known, Fairly
Delineated, &

Amenable to Formal
Test Methods

S
S
S
S
N
S
S
S
S

S
Y
Y
S
S
S
N

N
N
N
S
N
N

N

Explanation of table entries: Y=Yes, N=No, SSometimes, M=Mixed procedural and non-procedural code
The overd t’averaget’ of the ceU

143

Table 7.1-1 (Continued)

Components

Features I
Typically Written

in or Involving
Procedural Code

High Reusability
Across Different

Applications

Potential Defects
Known, Fairly
Delineated, &

Amenable to Formal
Test Methods

Tools and Utilities
Compilers
Linkers/Loa&rs
DebuggersKode Checkers
Knowledge Engineexkg Tools
Graphics User Interface (CUI)
Capability
Expert System Shell
Custom Code

Y
Y
Y
Y
Y
Y
Y
Y

Y
Y
Y
Y
Y
Y
Y
N

N
S
N
N
N
N
N
N

144

The fourth component of expert systems, Tools and Utilities, is also seldom considered. This component
comprises all of the general applications, tools, and programs that were used to develop the implemented expert
systems. Despite the fact that most of these are not actually delivered with the developed expert system, they can
introduce errors into the system and must be considered in the V&V plan. Compilers, linkerAoaders, and
debuggerlcode checkers are standard programming development tools. Knowledge Engineering Tools refers to
special programs or products used to acquire or represent knowledge. They differ in capability from vendor to vendor.
The Graphics User Interface (CUI) utility provides the functionality for defking the communication capability in the
user interface in terms of graphical entities such as menus, buttons, icon symbols, etc., typically operated with a mouse.
This feature is usually provided by commercial packages and is more and more a feature of expert systems
development. The Expert System Shell is an integrating environment for the above components and is found in many
products. Finally, Custom Code refers to special systems-level or application code that was written to enable
communication among the various expert systems components or to accomplish special functions.

7.2 Kev V&V Characteristics of Expert Svstems Components

The three "features" columns of Table 7.1-1 are discussed below. These features were chosen in particular
because of the general implications they have for how V&V should best be accomplished. They provide the basis for
suggesting general V&V strategies for each component and are used to guide the detailed examination of the
applicability of the 153 conventional techniques presented in the next section. The three features comprise questions
asked of both the main components of expert systems and each of their subcomponents. The outcome is indicated in
the table by Y for Yes, N for No, S for sometimes, and (for the first feature asking about code) M for Mixed procedural
and non-procedural code. The overall rating of a component, based on its subcomponent ratings, is given in the upper
left comer of each feature box.

The first feature asks whether conventional, procedural, programming languages such as C, FORTRAN, or Ada
are typically used to program the components. The second feature asks whether the components can easily be reused
over a wide variety of different applications; ifthe component has to be modified for each new application, it has low
reusability. The third feature focuses on all the problems or defects that could plague a component; the question is
whether these defects are fairly restricted, are pretty well known now, and are amenable to some kind of formal
detection procedure. A ''yes" answer to this question means that enough progress has been made for practitioners to
agree that formal approaches are quite promising and should be Mer pursued.

"Yes" answers to the three feature questions shown in Table 7.1-1 define three very broad but appropriate V&V
strategies. For the first feature, a Yes answer for a component suggests that this comuonent should be tested with
conventional V&V techniques. Thus, The Inference Engine, the Interfaces, and the Tools and Utilities should,
generally, all be tested using conventional approaches.

For the second feature, a Yes answer for a component suggests that this component should be bench-marked and
subiect to certification tests, because it hsis such wide applicability. The Inference Engine and the Tools and Utilities
components qualify for this special treatment. Summarizing the results so far, the Inference Engine, the Interfaces,
and the Tools and Utilities should all be developed and tested with conventional V&V techniques, according to the
results of the first feature question. If these components are to be made available as a commercial product, according to
the second feature the Inference Engine and the Tools and Utilities should then be bench-marked and certiiied.

145

Concerning the third feature, a Yes answer for a component implies that some kind of automated defect-detecting
tool should be developed and used to examine the component for the known defects. Only the sub-types of Rules and
Frames of the Knowledge Base component now qualify for this recommendation..

7.3 ADDlicabilitv of Conventional Methods

Each of the 153 individual conventional V&V techniques was rated as to its applicability to the four components
of expert systems as well as to the system as a whole. A rating of 1 indicates that the technique can be applied to the
component directly without modification, while the lowest rating of 4 indicates that the technique is not applicable to
that component. Techniques with the highest applicability rating for the expert system components are marked by an
asterisk in Table 7.3-1. The reader is cautioned that the present judgments of applicability are necessarily relatively
crude and certainly subjective. Moreover, the judgments do not take into account the capability of the conventional
techniques to detect defects which are unique to expert systems, whatever these defects might be.

7.3.1 Methods Applicable to the Interface Component

Expert systems' interfaces are typically written in conventional procedural code, but their reusability is not high.
Therefore, the best V&V strategy is to select conventional techniques for each sub-component which provide the
appropriate required safety, reliability, etc; Table 6.3-1, which rates each technique on eight power and ease-of-use
factors, can be used to aid this selection. Alternatively, if specific defects are of concern, one can use Tables 6.1.1-1
(which list the defects) and 6.1.2-1 (which lists the defects judged detectable by each technique). Since the interface
component mostly concerns data rather than control aspects of programs, a number of conventional techniques do not
apply as strongly to this component. .

The techniques with the highest general applicability ratings to the interface component in Table 7.3-1 are the
following: Database Analyzer (2.3.10), Database Interface Analyzer (2.3.1 1). Data-Model Evaluation (2.3.12), Data
Interface Inspection (2.5.7), User Interface Inspection (2.5.8), Standards Audit (2.5.9), Requirements Tracing (2.5. lo),
Regression Testing (3. 1.7), Uniform Whole Program Testing (3.2.1 .I), Specific Functional Requirements Testing
(3.3.1), StresdAccelerated Life Testing (3.5.1), Data Interface Testing (3.9.1), and User Interface Testing (3.9.2).14

7.3.2 Methods Applicable to Tools and Utilities

With the exception of custom code, all of the Tools and Utilities are typically written in procedural code and have
high reusability across different applications. Rather than test these subcomponents for each application, it is more
appropriate to certifv them for all applications. This includes both the commercial developer and independent agents.
To accomplish this testing, the qualificatiodcertifcation testing method (3.4.3) can be used.

l4 The suggestions in this Seaion apply equally to the interfaces and the tools and utilities of conventional systems

146

Table 7.3-1 Rating of the applicability of conventional techniques
to expert systems and their

Inference
Engine

II
Knowledge Inter-faces Tools & Total

Base Utilities System
Conventional V&V Testing ll Technique

1.2.3 Hare1 Method

1.2.4 Extended Systems Modeling
. Language

1.2.5 Systems Engineering

1.2.6 System Requirements

1.2.7 FAM

Methodology

Engineering Methodology

, 1.2.8 Critical TimingFlow Analysis

1.2.9 Simulation-Lannuane Analysis

(I 1 .I .I General Requirements

1

1

Language
Anal ysis/Processing

3 1 1 1

3 1 ' 1 1

1 .I .2 Mathematical Verification of

1.1.3 EHDM

1.1.4 Z

1 .I .5 Vienna Definition Method

1 .I .6 Refine Specification Language

1 .I .7 Higher Order Logic (HOL)

1 .I .8 Concurrent System Calculus

1.2.1 Ward-Mellor Method

Requirements

I

11 1.2.2 Hatley-Pirbhai Method

I
1

Expert System Components

2-3 1

1

1

I I 3 l I l l 1

3 1 1 1 1 1

3 1 1 1

I I 1 P I 1

1 I 3 I I I 1 I 1

' Ratings are on a 1-4 scale:
1 =the method can be used directlywithout any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general conceDt of the method applies but edensive changes are needed; 4 = the method does not really apply at all

Ratings are the subjective evaluation of the authors

Technlque with hlghesl applicability rating

147

Table 7.3-1 (Continued)'.

Inference
Engine

Conventional V&V Testing
Technique Knowledge Inter-faces

Base

1.2.1 0 Petri-Net Safety Analysis

1.2.11 PSWSA

1.3.1 Formalized Requirements
Review

1.3.2 Formal Design Review

1.3.3 System Engineering Analysis

1.3.4 Requirements Analysis

1.3.5 Prototyping

1

1.3.6 Database Design Analysis

1.3.7 Operational Concept Design

1.4.1 Requirements Tracing

Review

Analvsis

1 1

1.4.2 Design Compliance Analysis

2.1 .I Analytic Modeling

2.1.2 Cause-Effect Analysis

2.1 -3 Symbolic Execution

2.1.4 Decision Tables

2.1.5 Trace-Assertion Method

2.1.6 Functional Abstraction

2.1.7 L-D Relation Methods

2.1.8 Program Proving

2.1.9 Metric Analvsis

1

1

1

4

3

Expert System Components

3 1

1 1

1 1

2 3 4

1 -2 2

1 1 1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 3 2

1 4 1 2

1 3 2

T o o l s 8 I ?tal Utilities S stem

1

1

III

4 2

4 2

1 1 1

1

1 I 1*

4 2

2 1 2

1

1

4 2

3 2

' Ratings are on a 1-4 scale:
1 = Ihe meIhod can be used directlywithout any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general conceDt of the method applies but extensive changes are needed: 4 = the method does not really apply at all

* Ratings are the subjeciiie evaluation of the authors

Technique with highest applicability raling

148

Table 7.3-1 (Continued)'n2

Inference
Engine

Conventional V&V Testing
Technique Knowledge Inter-faces Tools & Total

Base Utilities System

2.1 .I 1 Introduction-Assertion

I Expert System Components

Analysis

2.3.5 Look-up Table Generator

2.3.6 Data Dictionaw Generator

I
1 4 3 1 1

1 2 3 1 1

3 1 2 1 3 +
2'

1 3 2

q-+
3 2

' Ratlngs are on a 1-4 scale:
1 =the method can be used directly without any modification; 2 =the method largely applies, but some modifications are necessary
3 =the general conced of the method applies but extensive changes are needed; 4 =the method does not really apply at all

Ratlngs are the subjective evaluation of the authors

Technlque wllh hlghest applicability rating

149

Table 7.3-1 (Continued)'S2

Conventional V&V Testing
Technique

2.3.7 Cross-Reference List
Generator

2.3.8 Aliasing Analysis

2.3.9 Concurrency Analysis

2.3.1 0 Database Analysis

2.3.1 1 Database Interface
An a I yze r

2.3.12 Data-Model Evaluation

2.4.1 Failure Mode, Effects,
Causality Analysis

2.4.2 Criticality Analysis

2.4.3 HazarddSafety Analysis

2.4.4 Anomaly Testing

2.4.5 Fault-Tree Analysis

2.4.6 Failure Modeling

2.4.7 Common-Cause Failure

2.4.8 Knowledgebase Syntax

2.4.9 Knowledgebase Semantic

Checking

Checking

2.4.1 0 Knowledge

2.4.1 1 Knowledge Engineering

2.5.1 Informed Panel InsDection

AcquisitionRefinement Aid

An a lysis

Expert System Components

Inference Knowledge Inter-faces Tools & Total
Engine Base Utilities System

I I 2 l 1 I 1

1 4 1 1 ' 1 1 1

1 3 2 1 1
I

1 3 2 1 1

1 3 2 1 1

1 I 2' 1 1 1

1 3 2 1 1

1 3 1 1 1

1 3 2 1 1

1'

1'

4 1 4 4 1

4 1 4 1 4
4 1 4 4

I l l 4 I 4 l 1
1 2 1 1 1

' Ratings are on a 14 scale:
1 = the method can be used directly without any modification; 2 = the method largely applies, but same modifications are necessary
3 = the general C C I + ? ~ D ~ of the method applies but extensive changes are needed; 4 f the method does not really apply at all

Ratings are the subjective evaluation of the authors

Technique with highest applicability rating

150

Table 7.3-1 (Continued)'*

Conventional V&V Testing
Technique

Expert System Components

Inference Knowledge
Base

3

4

4

2.5.2 Structured Walkthroughs

2.5.3 Formal Customer Review

2.5.4 Clean-room Techniques

2.5.5 Peer Code-Checking

2.5.6 Desk Checking

2.5.7 Data Interface Inspection

2.5.8 User interface inspection

2.5.9 Standards Audit

2.5.1 0 Requirements Tracing

2.5.1 1 Soflware Practices Review

2.5.12 Process Oriented Audits

2.5.1 3 Standards Compliance

2.5.14 System Engineering Review

Inter-faces Tools & Total
Utilities System

1 1 1

1 1 1

1 1 1

1

1

1

1

1

1

1

1

1*

2

1

1

1

3

1

2

2

2

1*

2

1

1

2

2

3

4

4

4

4

1 I 1 1 .

1 1 1

1* 1 I *

1' 1 I *

I * 1 1'

1* 1' 1*

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

2 1 1

2 1 1

2 1 1

2 1 1

3.1.8 Metric-Based Testin

1

1

1

1

1

1

1*

2

4

1' I 1* I 1' I 1'

2 1 3 1 1

4 4 4

1

4

' Ratings are on a 1-4 scale:
1 = the method can be used direcily without any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general canceDt of the method applies but extensive changes are needed; 4 = the method does not really apply at all

Ratings are the subjective evaluation &the authors

* Technique with highest applicability rating

151

Table 7.3-1 (Continued)'*

Inference
Engine

1

II
Knowledge Inter-faces Tools & Total

Base Utilities System

1 1 1 1'

Conventional V&V Testing
Technique

3.1 .I 0 Beta Testing

3.2.1 Random Input Testing

3.2.1 .I Uniform Whole Program

3.2.1.2 Uniform Boundary Testing

3.2.1.3 Gaussian Whole Program

3.2.1.4 Gaussian Boundary Testing

3.2.2 Domain Testing

3.22.1 Equivalence Partitioning

3.2.2.2 Boundary-value Testing

3.2.2.3 Category-Partition Method

3.2.2.4 Revealing Subdomains
Method

3.3.1 Specific Functional

3.3.2 Simulation Testing

3.3.3 Model-Based Testing

3.3.4 Assertion Checking

Testing

Testing

Requirement Testing

1

1

1

1

11 3.3.5 Heuristic Testing

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

3.4.3 Qualification/Certification

1'

1

Expert System Components

3 1 1 1

2' 1 1 1

1

1 I 1 I 1 1 1 1 1

4 2 1 1 I 1

1' I 1' I 1' I 1' I 1'

1

1

1

1'

3 1 I 1 1'

1 1 1 1

1 1 1 1

1 1 1' 1

I I 1 P I 1

' Ratings are on a 1-4 scale:
1 = the method can be used direcllywithout any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general conceDt of the method applies but extensive changes are needed: 4 = the method does not really apply at all

Ratings are the subjective evaluation of the authors

' Technique with highest applicability rating

152

Table 7.3-1 (Continued)'.

1

4

4

1

1

1

1

1

1

1

1

1

1

1

1

1

4

1

Conventional V&b Testing
Technique

3.4.4 Simulator-Based Testing

3.4.5 Benchmarking

1

1

4

1

1

1

1

1

1

1

1

1

1

1

1

1

4

1

3.4.6 Human Factors
Experimentation

3.4.7 Validation Scenario Testing

3.4.8 Knowledgebase Scenario

3.5.1 StresdAccelerated Life

3.5.2 Stability Analysis

3.5.3 Robustness Testing

Generation

Testing

4

4

3.5.4 LimitlRange Testing

3.5.5 Parameter Violation

3.6.1 Sizinghlemory Testing

3.6.2 Timing/Flow Testing

3.6.3 Bottleneck Testing

3.6.4 Queue Size, Register

3.7.1 Activity Tracing

3.7.2 Incremental Execution

Allocations, Paging, Etc.

1

1

3.7.3 Results Monitoring

3.7.4 Thread Testing

3.7.5 Using Generated Explanations

3.8.1 Gold Standard

2'

2

2

3

1

1

Inference
Engine

4

1

1

1

1

4

1

I*

1

3

4

1

1

1

1

1

1

1

1

1

1

Expert System Compoi

- 2 1 2

l I 4
3 1 1
I* 1

4 1 2

' Ratings are on a 1-4 scale:
1 = the method can be used directly without any modification: 2 = the method largely applies, but some modifications are n k s s a r y
3 = the general conceD1 of the method applies but edensive changes are needed; 4 = the method does not really apply at all

* Ratings are the subjective evaluation of the authors

Technique with highest applicability rating

153

Table 7.3-1 (Continued)ls2

Conventional V&V Testing

Linear Code Sequence and

’ Ratings a re on a 1-4 scale:
1 =the method can be used directlywithout any modification; 2 = the method largelyapplies, but some modifications a re necessary
3 = the general conceDt of the method applies but exlensive changes a re needed; 4 = the method does not really apply at all

* Ratings a re the subjective evaluation of the authors

Technique with highest applicability rating

154

The certification problems are often considered and addressed for the tools and utilities used in conventional
programming and they should be identified and followed for new produ~ts.'~ Two utilities, knowledge engineering tools
and the expert system shell, have received very little certification activity. A suite of problems or benchmarks which has
proven usell in finding problems in these types of components should be developed for certification.

Applications with high complexity and integrity requirements should also be directly tested by other means. Since
their source code is unlikely to be available, one is restricted to using Dynamic Testing techniques. Of these, the most
efficient techniques are Random Testing (3.2.1) and Robustness Testing (3.5.3). Again, these techniques are listed in
Table 6.3-1. The criteria for selecting techniques would be the same as discussed in Section 7.3.1 if source code was
available in fully custom-developed expert systems. The overall Qighest applicability ratings in Table 7.3-1 for Tools
and Utilities are for the following conventional V&V techniques:-Requirements Tracing Analysis (1 -4. I), Requirements
Tracing (2.5.10), Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1), Specific Functional
Requirement Testing (3.3. l), QualificatiodCertification Testing (3.4.3), and Benchmarking (3.4.5).

7.3.3 Methods Applicable to the Inference Engine Component

The two unique expert system components have been left for last. While the infaence engine is most often thought
of in connection with the knowledge base it is very unlike that component in terms of applicability of conventional V&V
techniques. Virtually all of these techniques apply to the inference engine, but only a few l l l y apply to the knowledge
base. The inference engine subcomponents mostly tend to be written in procedural code, and when these have high
reusability across applications the certification procedures discussed above in 7.3.2 should be followed, preferably by
the vendor of the inference engine. Of course, if the vendor has not certified the inference engine, or if it is custom-built,
then it should be tested with individual techniques which have been selected according to the principles developed in
7.3.1.

In assuring the quality of the overall inference engine, it is necessary to have test cases which exercise all of the
engine subcomponents, particularly with problems which test the various proof procedures and all the knowledge
management and associated goal-reasoning aspects. What is particularly needed is a set of special problems, e.g.,
planning, which are known to have complicated chains of reasoning, involve the need to re-inference, undo prior
reasoning, and are appropriate for various kinds of decision-methods. A number of workers in the field of V&V are
aware of this need, but very little work has yet been performed.

The overall highest technique ratings for testing the Inference Engine are found in Table 7.3-1. They are the
following: Requirements Tracing Analysis (1.44, Data Flow Analysis (2.3.1), Requirements Tracing (2.5.10),
Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1. l), Specific Functional Requirement Testing
(3.3.1), Simulation Testing (3.3.2), QualificatiodCertification Testing (3.4.3), and Benchmarking (3.4.5).

73.4 Methods Applicable to the Knowledge Base Component

The knowledge base component of expert systems is the least addressed by conventional V&V techniques. It is
diEcult to test the hc t ion of how knowledge is employed or how the inference engine uses the knowledge. Only a few
of the conventional static and dynamic techniques can be used. Nevertheless, ifthe most applicable techniques were
used, it is believed that the knowledge base would be borderline tested for Class 3 V&V systems, and partially tested for
Class 2 V&V ones. f i e highest rated V&V testing techniques for the Knowledge Base in Table 7.3-1 are:
Requirements Tracing Analysis (1.4.1), State Transition Diagram Analysis (2.2.2), Anomaly Testing (2.4.5),
Requirements Tracing (2.5. lo), Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1). Specific
Functional Requirement Testing (3.3.1), Model-Based Testing (3.3.3), Human Factors Experimentation (3.4.6),
Limit/Range Testing (3.5.4), Activity Tracing (3.7.1), and Conditional Testing (3.10.7).

73.5 Methods Applicable to Overall System V&V

All conventional V&V techniques apply fully to expert systems when viewed as total system^'^. Since three of the
four components involve conventional procedural languages, many of the techniques apply at the systems-testing level.
Although the conventional techniques are appropriate for the overall system, an expert system cannot be considered
completely assessed until there are better testing methods for the knowledge base component, particularly for Class 1
V&V type applications.

In Table 7.3-1, the highest rated techniques for overall expert system testing are the following: Formal
Requirements Review (1.3.1), Formal Design Review (1.3.2), System Engineering Analysis (1.3.3), Requirements
Analysis (1.3.4), Requirement Tracing Analysis (1.4. l), Operational Concept Analysis (2.2.4), Knowledgebase Syntax
Checking (2.4.8), Knowledgebase Semantic Checking (2.4.9), Heuristic Testing (3.33, Regression Testing (3.1.7),
Beta Testing (3.1. lo), Uniform Whole Program Testing (3.2.1. I), and Specific Functional Requirement Testing (3.3.1).

7.4 Limitations of Conventional V&V Methods

This section concludes with a discussion of the limitations of conventional techniques when testing expert systems
and a proposed strategy for developing new testing techniques.

7.4.1 Aspects of Expert Systems Not Adequately Evaluated with Conventional Methods

Conventional V&V techniques are found to be appropriate for testing three of the four components of expert
systems. They also adequately test the overall system. Therefore, conventional techniques are adequate to test expert
systems for low and possibly moderate levels of system complexity and integrity, V&V Classes 3 and 2. However,
conventional techniques are believed to be inadeauate to l l l y test expert systems for the highest degrees of complexity
and integrity since conventional techniques cannot l l l y test the knowledge base component without modification.

An exwption to this statement is ad-hoc testing (3.1.9). This technique, although widely used, is considered to be so inappropriate, wasteful of 16

eff~~anddifficulttointerpretthatthepoorestevaluationswereassignedforit inTable7.3-1.

156

There are three hadequate aspects of conventional techniques for the knowledge base: (1) it is not sufficiently
tested as a separate component in the requirements, design or the implementation phases; (2) it is not tested in contiolled
dynamic interaction with the inference engine; and (3) it is not l l ly tested in performance in interaction with the
interfaces as an integral part of the overall system. However, some suggestions for extending conventional V&V
techniques to the knowledge base are provided."

Since the knowledge base contains most of the applicationdependent information, it should be analyzed on the
basis of the requirements specification and its subsequent design, which was developed in the early phases of the Life-
cycle. However, neither the V&V classes/subclasses formal methods (1.1) nor the semi-formal methods (1.2; Table
5.2.1-1) are oriented towards specification or design of rule bases, object-oriented knowledge structures, or sets of
knowledge frames". Each of these major knowledge representations has a host of speific AI or expert system
engineering considerations associated with it (Wolfgram et al, 1987, for discussion of design of rules and frames; and
Booch, 1990, for object-oriented design).

,

Some appropriate extensions of the formal and semi-formal methods are possible. However, relying heavily on
formal methods is questionable. It is difficult with these methods to express system concepts formally and move from
representations to a mapping onto the proposed physical components while maintaining traceability. Nevertheless, it
does seem that the formal methods of EHDM (1.1.3) and 2 (1.1.4) would be among the most appropriate to consider for
development of formalism which would extend them to knowledge base specification and design-representation testing.
The authors are more optimistic about proposing extensions and adaptations to the SREM methodology (1.2.6) of the
Semi-Formal methods, particularly as represented in the RDD-100 tool, for analysis of knowledge base specifications
and representation of its design. This methodology, if augmented by proper systems engineering discipline, would
permit smooth movement from requirements specification representation into an allocation of requirements to logical
functions and Snally to a mapping of these onto physical components broken down between software and hardware.
Simulation or "animation" of design is easily accomplished, and there are many automated formal checks for
inconsistency, contraction, and incompleteness.

During implementation, both static and dynamic conventional techniques are deficient for singularly testing the
knowledge base component. Suitable static examination of the knowledge base could reveal a great deal about the
effects of data inputs on transitioning to new states, and thus extensions to the State Transition Diagram Analysis
technique (2.2.2). could be especially usell for applying to rule bases and objects. Perhaps the most powerful and
useful extension would be to Anomaly Testing (2.4.5) to search for various kinds of problems of rules, frames, and
objects. Some of the promising expert system rule-base automated syntax checkers can be considered extensions of this
method (e.g., D-EVA, COVER, and CRSV, see, respectively: Stachowitz et al; 1987; Preece & Shinghal, 1991; and
Culbert et al, 1987).

~hesc suggestions me fiom the constrained point of view of adapting conventional techniques to knowledge base testing ~owevm, these
su@m m y be quite limited, since there may well be novel expert system testing approaches already in existence, or which could be developed, that
might not fit at all under conventional technique categories. This issue will be addressed in subsequent tasks ofthis project.

Many expeatsystem &Us& pvide good support for dccumentbg and handling various types of knowledge representations, but this is intended
primarily forthe system implemenbtion, and possibly the design, not for requirements.

157

For dynamic testing of knowledge bases the Heuristic Testing method itself(3.3.5) or extensions of Conditional
Testing (3.10.7) or its close associate, the LimitRange testing method (3.5.4), would seem especially appropriate for
rules and fr-ames. The IF part of rules involves a relational test (e.g., ASB, G-=D), while frames specify the
equivalence between an attribute and a set of values (e.g., F = <1,2,3>; G = 'Open'). Test-case generation can be
automated for these tests by selecting values in relation to those given: (1) from within the specified values, such that the
test is true (e.g., A>B, F=I, G = 'Open'); (2) just outside the range or value specified (e.g., A<B, C=D, G='Oper'); and
(3) extremely outside the valudrange (e.g., A=B/IOOO, F=9999, G='XXXX'). For a discussion of this approach to rule
testing, and its relation to reliability assurance, see the discussion of "Expert Systems Dynamic Testing" @iiIler, 1990).

These three sets of extensions seem to be the most important for assurance of the quality of the knowledge base
component in isolation from all the used data and other interfaces. The only way to determine how the knowledge base
will interact with the inference engine and the interfaces is by running the inference engine on the knowledge base with
active or simulated interfaces to determine the rule tirings, hime activations, facts utilization, or object-messages. A
modification of one of the methods of Execution Tracing (3.7), such as Activity Tracing (3.7.1). would provide one of
the most appropriate ways of testing this interaction. The Activity Tracing would involve simulation of the other
components in special test-driven written for this assessment, so as not to actually require interfaces, tools, or utilities to
be activated, so that the "pure" interaction of the knowledge base and the inference engine could be tested. Model-based
Testing technique (3.3.3) could also be extended to apply to expert systems. Also, the Functional Requirement Testing
(3.3.1) can be utilized, using test-cases obtained from the prior types of testing.

7.4.2 A Proposal for a Generic Testing Strategy

A different classification of testing techniques is presented in this section. This two dimensional classification
approach provides a strategic direction for the evolution of new methods for software systems.

In the first classification dimension, a distinction is made in the technique classification. Methods involve either a
- static examination of the development artifacts (requirements, specification, design, or implementation) or they involve a
dynamic execution of the implemented system on some physical platform and operating system for real data inputs. The
second classification dimension concerns the targets or objects of detection techniques. It is usell to characterize these
as either anomalies, which are defined as unusual, deviant, improper, or nonsensical situations; or invalidates, which
are defined as known incorrect values, definite errors, mistakes, or false representations of external situations.

Since both static and dynamic testing techniques can be applied to both anomalies and invalidates, both
classifications can be represented as a 2 x 2 table, as shown in Table 7.4.2-1. The chart provides plus signs (+) and
minus signs (-) for each cell combination to indicate positive and negative features of that condition. The following
summary observations are based on this table:

1) Some dynamic testing is essential to test run-time system performance and for 111 customer
acceptance.

2) Dynamic testing costs more to accomplish than static testing because of longer technique-learning times, time
to generate test-cases, setup time, execution time, and time tointerpret results.

158

Testing
Technique

Static

Dynamic

Table 7.4.2-1. Characterization of Techniques for
Testing Implemented Systems in Terms of

Technique Type and Target Type

Testing Target

Anomalies

Can by formalized
Can be automated
Not difficult to understand, run,
or interpret
Don't require experts
Can reduce level of dynamic
testing needed
Greatly reduce overall testing
costs
Not sufficient for complete
testing
Test-case generation is simple
Detection, during testing, can
be greatly automated
Don't require experts
Especially good for
performance problems and
run-time violations (e.g., type
errors)
Moderately expensive to set up
and run
Run-time anomalies not
caught by compilers more
difficult to define and develop
code for detection

159

lnvalidities

More difficult to detect
Some inspection
approaches (e.g., Clean
Room, 2.5.4) very effective
Requires experts to make
the judgement
Judgements often need
run-time context
information to make

Requires experts to
evaluate
Labor-intensive and
expensive to learn how to
do, to generate test cases
to set up, to run, and to
interpret
Some amount is essential
to assess whether system
is giving right answers and
for customer acceptance
of testing results
Run-time output is usually
very complex, making
interpretation difficult and
errors likely

3) Since anomalies can be formally specified and automated, they are much cheaper and easier to look for than
invalidates.

Based on the above observations, the following stratkgy is proposed for shifting future testing resources and
development:

1) Wherever possible, within a technique type, shift the detection target from an invalidity to an anomaly.
Provide the system with independent information about the results so that the system can automatically compare
its results to these values to detect inconsistencies. For example, give expected ranges and ballpark figures to
provide known values of constants that must appear in the output.

2) Wherever possible, within a target type, shift the technique fiom dynamic testing to static testing by using
any variety of inspection, semi-formal, or other static techniques.

3) Give priority to the most important problemdfaults to be detected and always conduct testing so that
the subsequent testing activity focuses on the remaining most important or untested problem.

4) For maximum cost-effectiveness in use of testing resources always start with static testing techniques; look for
anomalies, then investigate invalidates; fix the problems encountered; and use dynamic testing as a last step.

160

8 SUMMARY and CONCLUSIONS

This report presented the results of a detailed survey of V&V methods currently used for conventional software as
the first activity of a project for developing expert system V&V guidelies which is sponsored by the USNRC and EF'RI.
This survey resulted in the identification of 153 different methods.

The 153 conventional software V&V techniques were classified using a sequential Life-cycle model for the
process of software development and maintenance. These techniques were categorized as either in the
requirementddesign phase or the implementation phase of the software. This first level of classification divided the 153
methods into 28 applicable to the requirementddesign phase and 125 applicable to the implementation phase. This
skewed distribution of V&V methods reflects the emphasis on testing software after it has been designed rather than
during: its design phase. In analyzing the 125 implementation phase methods, 58 were determined to involve static
testing while the remaining 67 f d within the category of dynamic testing. Static testing deals with software V&V that
requires inspecting software documentation without actually running the software while dynamic testing does rely on
executing the software.

In order to assess the effectiveness of the 153 identifed conventional software V&V techniques, different types of
software defects were identified. A total of 52 different types of conventional software defects were categorized as either
pertaining to requirements, design, or the computer code itself. These 52 defects are divided into 13 requirements, 15
design, and 24 code types of defects. Then, each of the 153 V&V techniques were evaluated to determine which of
these 52 defects they were capable of detecting. Individual V&V techniques were found to be able to detect anywhere
from 2 to 52 software defects. It was also found that each software defect was detectable by anywhere from 21 to 50
different V&V methods.

A method to rate each V&V method was developed based on eight factors. Four factors (Broad Power, Hard
Power, Formalizability, and Human-Computer Interface Testability) deal with the power of the technique to detect
defects while the other four @ase of Mastery, Ease of Setup, Ease of Runninghterpretation, and Usage) are related to
ease-of-use considerations for each technique. The rating of each V&V technique by these eight factors was then used
to determine a cost-benefit andeffectiveness measure.

Since the end result of this project is to provide V&V guidelines for a wide range of expert systems in the nuclear
industry, a scheme was developed for classifying expert system applications in terms of their needed V&V. This scheme
used two variables: software complexity and the required integrity of the software. Software with both high integrity and
high complexity was placed in V&V Class 1. A medium level of integrity and complexity resulted in V&V Class 2
while a low level of complexity and integrity was used to define V&V Class 3. For each of these three V&V Classes,
the 153 techniques were rated by their effectiveness as well as cost-benefit.

As a result of the aforementioned rating of V&V techniques by cost-benefit and effectiveness for each software
V&V class, the highest ranking methods were determined in requirementddesign, static, and dynamic testing. For
requirementddesign V&V, the most effective and cost beneficial methods for all V&V classes were found to be a
combination of traditional formal reviews and some new automated techniques. In the case of static testing, the highest
ranking techniques for all V&V classes involved personal inspections and reviews without the aid of any automation.

161

Finally, in the area of dynamic testing, the leading V&V techniques for all V&V classes were system-level function-
oriented methods that did not involve testing internal features of the software code, i.e., "black box" testing. .

Atter classifjing and evaluating conventional software V&V techniques, their applicability to expert systems was
assessed Expert systems were first divided into four basic components: knowledge base, irference engine, interfaces,
and tools and utilities. Each of these four components were further divided into subcomponents which were analyzed to
determine their features related to testing. The three testing features are: written in or involving procedural language,
high reusability across Werent applications, and potential defects known and amenable to formal test methods.

Each of the 153 conventional software V&V techniques were evaluated in terms of their applicability to the four
expert system components. Most of the conventional software V&V techniques were found to be directly applicable to
the inference engine, interfaces, and tools-utilities components of expert systems. The conventional software V&V
techniques that were juuged to be most applicable to all four expert system components were: requirements tracing,
regression testing, uniform whole program testing, and specific functional requirements testing.

Conventiona! software V&V techniques were fourd to be directly applicable to expert systems, but not completely
adequate in &ding defects in the knowledge base. These techniques cannot adequately test the knowledge base as a
separate component or in dynamic interaction with the inference engine. However, several extensions of conventional
techniques were suggested for testing the knowledge base component.

An o v e d scheme for software testing was developed and presented that is equally applicable to
conventional and expert system software. Testing is divided into two types: static and dynamic. These two
different types of testing are distinguished by whether they require actually running the software (dynamic) or
just inspection and review of the software documentation (static). Static testing is generally less expensive that
dynamic testing. Software defects ak also divided into two types entitled anomalies and invalidates. Where
invalidates are obvious errors or incorrect values, anomalies are unusual or nonsensical. Anomalies are usually
easier to look for than invalidaties. A 2 x 2 table can be constructed with static and dynamic testing on one
axis and invalidates and anomalies on the other. A test strategy with these parameters would be to
emphasii static testing for anomalies. After looking for anomalies, static testing should be used to search
for invalidates. Dynamic testing should not be used until after static testing has been completed and defects
have been corrected.

.

In conclusion, a large number of V&V techniques for conventional software were identified and evaluated for their
capability in uncovering sohare defects. Conventional software V&V methods were found to be directly applicable to
three of the four components of expert systems. These three components are the inference engine, external interfaces,
and tools or utilities. The fourth expert system component, the knowledge base, is not filly tested with conventional
V&V techniques. Therefore, the main emphasis of the balance of this project will be to identlfil and, ifnecessary,
develop new V&V methods for the knowledge base component of expert systems and present guidelines for specific
V&V techniques that should bc applied to each software V&V class.

162

9 REFERENCES

Ackerman, F.A., L.S. Buchwald, and F.H. Lewski, Sofiare Inspections: An Efiective Sofiare Verification Process,
IEEE Sohare, Vol. 6, No. 3, May 1989.

Alford, M., SREMAt The Age ofEight: The Distributed Computing Design System, Computer, 18 (4), pp. 36-46,
1985.

Alford, M. A Requirements Engineering Methodology for Real-Time Processing Requirements, IEEE Transactions on
Sohare Engineering, SE-3(l), pp. 60-69,1977. '

ANSVANS-10.4- 1987, Guidelines for the Verijication and Validation of Scientific and Engineering Computer
Programs for the Nuclear Industry, American Nuclear Societya 555 North Kensington Ave., La Grange Park, Illinois,
60525, May 13,1987.

ANSVIEEE ANS-7-4.3.2-1982, Application Criteria for Programmable Digital Computer Systems of Nuclear Power
Generating Stations, Amencan Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525,July 6,
1982.

ANSJAEEE 1008-1 987, IEEE Standard for Sofiare Unit Testing, IEEE Standards Board, New York, New York,
American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525,1986.

ANSVMS-3.5-1985, American National Standard Nuclear Power Plant Simulators for Use in Operator Training,
American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525, October 25,1985.

ANSVIEEE 1012-1986, Sofiare Verification and Validation Plans, American Nuclear Society, 555 North
Kensington Ave., La Grange Park, Illinois, 60525, November 14,1986.

ANSI/IEEE 729-1 983, Glossary of Sofiare Engineering Temiinology, 'American Nuclear Society, 555 North
Kensington Ave., La Grange Park, Illinois, 60525, February 18,1982.

ANSIAEEE 830-1984, IEEE Guide to Sofiare Requirements Specifications, IEEE Standards Board, New York, New
York, American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525,1984.

ANSVIEEE 1016-1987, Recommended Practice for Sofiare Design Description, IEEE Standards Board, New York,
New York, American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525,1987.

ANSIAEEE 828-1 983, Sofiare Conjguration Management Plans, American Nuclear Society, 555 North Kensington
Ave., La Grange Park, Illinois, 60525, June 24,1983.

ANSVIEEE 1042-1987, Guide to Sofiare Configuration Management, American Nuclear Society, 555 Noah
Kensington Ave., La Grange Park, Iliinois, 60525, September 12,1988.

163

ANSI/IEEE 829-1983, sofruare Documentation, American Nuclear Society, 555 North Kensington Ave., La Grange
Park, Illinois, 60525, February 18,1983.

Ascent Logic Corporation, Requirements Driven Design, RDD-100, Ascent Logic Technology, 180 Rose Orchard Way,
San Jose, California, 95 134,1991.

ASME/NQA-2a-1990 Part 2.7., Quality Assurance Requirements of Computer Sofhvare for Nuclear Facility
Application, The National Institute of Standards and Technology Computer Systems LaboratoIy, Gaithersburg,
Maryland 20899,1990.

Barnes, M, P. Bishop, B. Bjarland, G. Dahll, D. Esp., J. Lahti, H. Valisuo, and P. Humphreys, Software Testing and
Evaluation Methods (The STEM Project), Technical Report, OECD Halden Reactor Project, HWR-210, The Institutt
for Energiteknikk, Halden, Norway, May 1987.

Barnes, M, P. Bishop, B. Bjarland, G. Dahll, D. Huflon, and H. Valisuo, Software Testing and Evaluation Methods
Final Report on the SI34 Project, Technical Report: OECD Halden Reactor Project, HPR-334, The Institutt for
Energiteknikk, Halden, Norway, May 1988.

Barnes, M., P. Bishop, M. Brewer, P. Bradley, G. Dahll, F. Ross, and T. Sivertsen, Safety Assessment of Programs (The
SAP Project), Technical Report: OECD Halden Reactor Project, HWR-269, Institutt for Energiteknikk, Halden,
Norway, January 1990.

Beizer, B., Software Testing Techniques, Van Nostrand Reinhold, New York, New York, 1990.

Beltracchi, L., Overview of Computer Standards and Tools in the European Nuclear Indusq, Presentation at the
JTEC Workshop on Assessment of European Nuclear Controls and Instrumentation, National Science Foundation,
Washington, D.C., January 31,1991.

Berns, G.M, Assessing Sofhvare Maintainability, Communications of the ACM, Vol. 27, No. 1, pp. 14-23, January
1984.

Bishop, P., et al., PODS- A Project on Diverse Sofhvare, IEEE Transactions on Sohare Engineering, Vol. SE-12 (9),
ISBN 0098-5589,1986.

Bishop, P., et al., STEM- A Project on Sofhvare Test and Evaluation Methods, Paper presented at SARS '87 and
published in Achieving Safety and Reliability with Computer Systems, B. Daniels (Ed.), ISBN 1-85 166-167 0, Elsevier
Applied Science,New York, New York, 1987.

Boehm, B.W., A SpiralModel of Sofhvare Development and Enhancement, IEEE Computer, pp. 61 -72, May 1988.

Boehm, B.W., Sofhvare Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

164

Booher, H. (Ed.), MIATPRINT: An Approach to Systems Integration Van Nostrand Reinhold, New York, New York,
1990.

Booth, G., Object Oriented Design, With Applications, Benj WCummjngs Publishing Co., Redwood City, California,
1991.

Borgida, A, S. Greenspan, and J. Mylopolous, Knowledge Representation as the Basis for Requirements
Specificafions, Computer, 18(4), pp. 82-91 , 1985.

Bryan, W.L., and S.G. Siegal, Software Product Assurance: Techniques for Reducing Software Risk, Elsevier, New
York, New York, 1988.

BSI, Standards Guide to Assessments of Reliability of Systems Containing Software: Draji for Development,
Document 89/97714, BSI Standards, 2 Park Street, London WIA 2BS, September 12,1989.

Carre, B., et al., SPADE - the Southanipton Program Analysis and Development Environment, Published in Software
Engineering Environment, I. Sommerville (Ed.), IEEE Computing, Series 7,1986.

Chapanis, A, Man-Machine Engineering BrookdCole Publishing Company, Monterey, California, 1965.

Chen, R., The Integration of the Air Force Content Data Monel andMIL-STD-I833-2B, David Taylor Research
Center Report No. DTRCC-90/034, Carderock Division, Naval Surface Warfare Center, Code 3323, Bethesda,
Maryland 20084-5000,1990.

Chisholm, G.H., B.T. Smith, and A.S. Wojcik, FormalSystem Specifications - A Case Study of Three Diverse
Representations, ANL.-90/43, The Mathematics and Computer Science Division and The Reactor Analysis Division,
Argonne National Laboratory, Argonne, Illinois, 60439, December 1990.

Culbert, C., G. Riley, and R.T. Savely, Approaches to the VeriJication of Rule-Based &pert Systems, SOAR ‘87 First
Annual Workshop on Space Operations Automation and Robotics, SCAMC, Inc., August 1987. . _i. -.. ’

Dahll, G., and J.E. Sjoberg, Software Safety Tools - The SOSAT 2 Project, Technical Report: OECD Halden Reactor
Project, HFiX-268, Jnstitutt for Energiteknikk, Halden, Norway, January 1990.

Davis, R, B. Buchanan, and E.H. ShortlBe, Production rules as a representation for a Knowledge-Base Consultation
Program, Artificial Intelligence, pp. 15-45, August 8,1977.

Davis, AM., Software Requirements: Analysis and Specification, Prentice-Hall, Inc., New York, New York, 1990.

Department of Defense, Software Master Plan, Volume I: Plan ofAction, Preliminary Draji, Department of Defense,
Washington, D.C. 20362, February 9,1990.

165

Department of Defense, Military Standard 2167, Defense System Software Development, Department of Defense,
Washington, D.C. 20362, June 4,1985.

Desimone, R, and J. Rininger, Expert System Validation and VeriJication, SRI International, Contract DAAB07-86-D-
A035, SRI Project 3002, Final Report, SRI International, Menlo Park, California 94025, August 1990.

Deutsch, M., Software Verijkation and Validation: Realistic Project Approaches, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1982.

Downs, T., An Approach to the Modeling of Software Testing With Some Applications, IEEE Transaction on Soilware
Engineering, SE-l1(4), April 1985.

Doyle, J., Methodological Simplicity in Expert System Construction: The Case of Judgements and Reasoned
Assumptions, The Artificial Intelligence Magazine, 4(2), pp. 39-43,1983.

Dum, R, Software Defect Removal, McGraw- Hill, New York, New York, 1984.

Eason, KD., Dialogue Design Implications of TaskAllocation Between Man and Computer, Ergonomics, 3(9), pp.
881-891,1990.

Ehrig, H, and B. Mahr, Fundamentals ofAlgebraic Specification, Springer Verlag, New York, New York, 1985.

Electric Power Research Institute, Verification and Validation of Expert Systems for Nuclear Power Plant
Applications, Final Report, Np-5978, The Electric Power Research Institute, Palo Alto, California 94303, August 1988.

Fagan, M.E., Advances in Software Inspection, IEEE Transactions on Softwme Engineering, SE-12(7), pp. 744-751,
July 1986.

Ghezzi, C., D. Mandrioli, S. Morasea, and M. Pezze, A General Way to Put Time in Petri Nets (as in Kramer), ACM
Order Department, P.O. Box 64145, Baltimore, Maryland 21264, pp. 60-67.

Gilmore, W.E., Human Engineering Guidelinesfor the Evaluation and Assessment of Video Display Units,
NUREGKR-4227, United States Nuclear Regulatory Commission, July 1985.

Gilmore, W.E., D.I. Gertman, and H.S. Blackman, The User-Compufer Interface in Process Control, Academic Press,
Boston, Massachusetts, 1989.

Goodenough, J., and S. Gerhart, Toward a Theory of Test Data Selection, IEEE Transactions on Software Engineering,
Vol. SE-1, NO. 2, 1975.

166

Gordon, M., HOL: A Machine Oriented Formulation of Higher Order Logic, Technical Report No. 68, University of
Cambridge, United Kingdom, 1985.

Gould, J.D., and C. Lewis, Designing for Usability: Key Principles and What Designers Think, Communications of the
. ACM, Volume 28, pp. 300-3 1 1,1985.

Halstead, M., Elements of Software Science, Elsevier North-Holland, New York, New York, 1977.

Harel, D., H. Lachover, A, Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-Trauring, STATEMENT.. A
Working Environment for the Development of Complex Reactive Systems, Proceedings of the 10th Intemational
Conference on Sohare Engineering, Singapore, IEEE Computer Society Press, 1730 Massachusetts Ave., N.W.,
Washington, D.C. 20036-1903, pp. 396-406, April 1988.

Harel, D. and S. Rolph, Modeling andAnalyzing Complex Reactive Systems: The Statement Approach, Logix, Inc.,
Burlington, Massachusetts, 1989.

Harel, D., Statecharts: A Visual Formalism For Complex Systems, Science of Computer Programming 8, North-
Holland Elservier, New York, New York, pp. 23 1-274,1987.

Hartway, B., J. Young, and D. Thomas, Simulation Characterization, Proceedings of Third International Conference on
Sohare for Strategic Systems, 27-28 February 1990, Huntsville, Alabama, pp. 64-85.

Hasling, D.W., Abstract Explanations of Strategy in a Diagnostic Consultation System, Proceedings of the National
Conference on Artificial Intelligence, AAAI-83, The MIT Press, Cambridge, Massachusetts 02142,1983.

Hatley, D. and I. Pirbhai, Strategies forReal-Time System Specification, Dorset House, New York, New York, 1987.

Hayakawa, H, K. Monta, T. Sato, and M. Tani, Concepts of Integrated Information and Control Systems for Future
Nuclear Plants, MEA International Conference on Man-Machine Interface in the Nuclear Industry, Tokyo, The
International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400, Vienna, Austria, February 1988.

Hayes-Roth, F., D.A. Waterman, and D.B. h a t , Building Expert Systems, Addison-Wesley Publishing Co., Inc.,
Reading, Massachusetts, Chapter 8, pp. 241-280,1983.

Heninger, K., et al., Speci3ing Software Requirements for Complex Systems: New Techniques and Their Application,
IEEE Transactions on Sofhvare Engineering, 1980.

Hill, J.V., Software DevelopmentMethods in Practice, Elsevier Applied Science, New York, New York, 1991.

Hoare, C., Communicating Sequential Processes, Prentice-Hall International, New York, New York, 1986.

Hoare, C. and J. Shephardson (Eds.), Mathematical Logic and Programming Languages, Prentice-Hall, New York,
New York, 1985.

167

Howden, W.E., Functional Program Testing, IEEE Transactions on Software Engineering. SE-6(2), pp. 162-169,
March 1980.

Humphrey, W.S., Managing the Sofhvare Process, Addison-Wesley Publishing Company, Reading, Massachusetts,
1990.

IEC 880, &$ware for Computers in the Safe& Systems of Nuclear Power Stations, Bureau Central de la Commission
Electrotechnique Intemationale, 3 rue de Varemoe, Geneve, Suisse, 1986.

Ince, D.C., The Automatic Generation of Test Data, Computer Journal, 30(1), pp. 63-69, February 1987.

IS0 Draft International Standard, Infomation Processing Systems - Open Systems Inter-Connection - Lotos -A
Formal Description Technique Based on the Temporal Ordering of Observational Behavior, ISOfK 97lSC 2 1, IS0
DIS 8807, The National Institute of Standards and Technology Computer Systems Laboratory, Gaithersburg, Maryland
20899, July 20,1987.

Jackson, P., and P. Laitere, On the Application ofRule-Based Techniques to the Design OfAdvice-Giving Systems,
International Journal of Man-Machine Studies, 20(1), pp. 63-68,1984.

Jagodzinski, A.P., A Theoretical Basis for the Representation of On-Line Computer Systems to Naive Users,
International Journal of Man-Machine Studies, Volume 18, pp. 2 15-252,1983,

Jensen, R, and C. Tonies, Sofhvare Engineering, Prentice-Hall, Englewood Cliffs, New Jersey, 1979.

Jensen, R, and K. Vairavan, An Experimental Study of Sofiware Metrics for Real-Time Sofhvare, IEEE Transactions
on SoftwareEngineering, Vol. SE-11(2), pp. 231-234, 1985.

Jones, C., Systematic Sofhvare Development Using VDM, Prentice-Hall International, New York, New York, 1986.

Jones, T.C., Programming Productiviy, McGraw- Hill, New York, New York, 1986.

Kidd, AL., and M.B. Cooper,Man-Machine Interface Issues in the Construction and Use of an Expert System,
International Journal of Man-Machine Studies, Volume 22, pp. 91-102,1985.

King, J.C., Symbolic Execution and Program Testing, Communications of the ACM, 19(7), pp. 385-394, July 1976.

Knowledge CASE Tool, 1650 Tyson Blvd., Suite 800, McLean, Virginia 22 102 (703) 506-0800.

Koch, C.G., User InterJace Design for Maintenanceflroubleshooting Expert System, Proceedings of the Human
Factors Society, 29th Annual Meeting, pp. 367-371, ACM Order Department, P.O. Box 64145, Baltimore, Maryland
21264,1985.

168

Kramer, J., J. Magee, and M. Sloman, Confguration Support for System Description, Construction and Evolution,
Proceedings of the Fifth International Workshop on Sohare Specification and Design, 19-20 May 1989, Pittsburgh,
Pennsylvania, ACM SIGSOFT Engineering Notes, Vol. 14 No.3 pp. 28-33, IEEE Computer Society, Order
Department, 10662 Los Vaqueros Ckcle, Los Alamitos, California 90720-2578,1983.

Lapassat, A.M., Real Time Systems Sftware Validation and Verifcation, Commissariat a L'Energie Atomique, France,
Cen/Saclay - Irdi/L-leti/Dein/sir, 91 191 Gifsur Yvette Cedex, France.

Lehner, P.E., and D.A. Zirk, Cognitive Factors in Userhertaystem Interaction, Human Factors, 29(1), pp. 97-109,
1987.

Leveson, N.G., and J.L. Stolzy, Safety Analysis Using Petri Nets, IEEE Transactions on Software Engineering, SE-
13(3), 1987.

Leveson, N.G., and P.R Harvey, Analyzing Sofware Safety, IEEE Transactions on Sohare Engineering, SE-9(5), pp.
569-579, September 1983.

Liverpool Data Research Associates Ltd., LDRA Software Tested, FORTRAN, User Documentation, Liverpool, United
Kingdom, 1985.

Llinas, J., S. Rizzi, and M. McCown, The Test and Evaluation Process for Knowledge-Based Systems, Technical
Report of Science Applications International Corporation, San Diego, California, June 1987.

McCabe, T., A Complexity Measure, IEEE Transactions on Software Engineering, Vol. SE-2(4), pp. 308-320,1976.

Miller, E., Better Software Testing, Proceedings of Third International Conference on Sohare for Strategic Systems,
February 27-28,1996.,pp. 1-7, Huntsville, Alabama, 1990.

Miller, L.A., Behavioral Studies of the Programming Process, IBM Research Report, Rc7367, International Business
Machines @M), Yorktown Heights, New York, 1978.

Miller, L.A., Testing and Evaluation of Expert Systems, Paper distributed at the Fourth IEEE Conference on AI
Applications, San Diego, California, The Computer Society of the lEEE, P.O. Box 80452, Worldway Postal Center, Los
Angeles, California 90080, March 18,1988.

Miller, L.A., Qynamic Testing of Knowledge Bases Using the Heuristic Testing Approach. Ejcpert Systems with
Applications: An International Journal, Special Issue: Verification and Validation of Knowledge-Based Systems, Vol.
1 , NO. 3, pp. 249-269,1990.

Miller, L.A., Tutorial on Validation and Verification of Knowledge-Based Systems, Proceedings of the Conference on
Expert Systems Applications for the Electric Power Industry, Science Applications International Corporation, 17 10
Goodridge Drive, McLean, Virginia 22102, June 1989.

169

Miller, L.A, Venpcation and Validation of Expert Systems, Invited paper presented at the United States Army Test and
Evaluation Command Conference on AI, Sierra Vista, Arizona, Science Applications International Corporation, 1710
Goodridge Drive, McLean, Virginia 22102, January 15,1992.

Miller, L.A, A Realistic Industrial-Strength Life-cycle Model for Knowledge-Based *stem Development and Testing,
Knowledge Based Systems Verification and Validation Workshop Proceedings, AAAI-90, The MIT Press, Cambridge,
Massachusetts 02142, July 1990.

Mills, H., V. Basili, J. Gannon, and R. Hamlet, Principles of Computer Programming: A Mathematical Approach,
William C. Brown, New York, New York, 1987.

Milner, R, A Calculus of Communicating Systems, Laboratory for the Foundations of Computer Science, Edinburgh
University Report No. ECCS-LFCS-86-7, University of Edinburgh, Scotland, 1986.

Montalban, M., Decision Tables, Science Research Associates, Inc., Chicago, Ilinois, 1974.

Myers, G.J., The Art of Sofiare Testing, Wiley, New Yor, New York, -1979.

Naser, J.A. (Ed.), Expert System Applications for the Electric Power Indusw, Hemisphere Publishing Corporation,
New York, New York, 1991.

National Aeronautical and Space Administration, Space Station Freedom Program Human-Computer Interface
Guidelines, NASA USE 1000, Version 2.1, NASA, Reston, Virginia, 1989.

NBS 500-93, Sofiare Validation, Verrjcation, and Testing Technique and Tool Reference Guide, The National
Institute of Standards and Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, September 1982.

NBS 500-75, Validation, Venpcation, and Testing of Computer Sofiare, The National Institute of Standards and
Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, February 198 1.

NBS-500-98, Planning for Sofiaare Validation, Veriijication and Testing, The National Institute of Standards and
Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, November 1982.

Nelson, W.R, and KS. Blackman, Response Tree Evaluation: Experimental Assessment of an Expert System for
Nuclear Reactor Operators, NUREGlCCR-4272, United States Nuclear Regulatory Commission, September 1985.

Ng, P., and R Yeh (E&.), Modern Sofhvare Engineering: Foundations and Curvent Perspectives, Van Nostrand
Reinhold, New York, New York, 1990.

Nicoud, J., and P. Fah, Common AssembIy Language forMicro-Processors, CAM3, Draft 3.3, EFPL, Lausanne,
Swimland, 1983.

170

Norman, D.A., and S.W. Draper (Eds.), User-Centered System Design: New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1986.

NSAC-39, Verifcation and Validation for Safety Parameter Displq Systems, Nuclear Safety Analysk Center, Atlanta,
Georgia, December 1981.

NUREGlCR-4640, PNL-5784, Handbook of Sofhvam Quality Assurance Techniques Applicable to the Nuclear
Industry, August 1987.

NUREGlCR-4227, Human Engineering Guidelines for the Evaluation and Assessment of Video Display Units, W.
Gilmore, July 1985.

NUREG-0653, Report on Nuclear Industry Quality Assurance Procedures for Safety Analysis Computer Code
Development and Use, August 1980.

OZeary, D.E., VenifiCation of Frame-based Knowledge Base, Knowledge Based Systems Verification, Validation and
Testing Workshop Proceedings, AAAI-90, The h4IT Press, Cambridge, Massachusetts 02142, July 1990.

Oakes, L., Transition from Analog to Digital Technologies, Presentation at the JTEC Workshop on Assessment of
European Nuclear Controls and Instrumentation, NSF, Washington, DC, The National Science Foundation, Washington,
D.C. 20031, January31,1991.

Omar, A, and F. Mohammed, A Survey of Sofmare Functional Testing Methods, ACM SIGSOFT Software
Engineering Notes, Vol. 16, No. 2, pp. 75-82, 1991.

Ostrand, T.J., and M.J. Balcea, The Category-Partition Method for SpeciJLing and Generating Functional Tests,
Communications of the ACM, Vo13 1 , No. 6, pp. 676-686, June 1988.

Oyeleye, O., Qualitative Modeling of Continuous Chemical Processes and Applications to Fault Diagnosis, Ph.D
Dissertation, Massachusetts Institute of Technology, February 1990.

Parnas, D.L., D.G. Smith, and T. Pearce, Making Formal Sofhvare Documentation More Practical: A Progress
Report, Technical Report #88-236, ISSN 0836-0227, November 1988, Department of Computing and Information
Science, Queen's University, Kingston, Ontario, Canada K7L 3N7.

Parnas, D., and W. Bartussek, Using Traces to Write Abstract Specifcations For Sofhvare Modules, Lecture notes in
Computer Science (65), Wormation System Methodology Proceedings IOS, Springer Verlag, New York, New York,
1978.

Parnas, D.L., and P.C. Clements, A Rational Design Process: How and why to Fake It, EEE Transactions on
Sohare Engineering, Vol. SE-12, No. 2, pp. 251-257, February 1986.

. 171

Peters, L., Timing Extensions to StnrchrredAna&sis forReal-Time System, pp. 83-90, IEEE Computer Society, Order
Department, 10662 Los Vaqueros Circle, LQS Alamitos, California 90720-2578.

Preece, A.D., and R Shinghal, Practical Approach to Knowledge Base Verification, Ed. M. Trivedi, FVoctdm - gsof
Applications of Artificial Intelligence IX, pp. 608-619, Conwrdia University, Montreal, Canada H3G 1M8, April 1991.

Pritsker, A.A.B., Introduction to Simulation and SLAMZZ, John Wiley and Sons, New York, New York, 1986.

Rapps, S., and E.J. Weydcer, Selecting Software Test Data Using Data Flow Information, IEEE Transactions on
Software Engineering, SE-11(4), pp. 367-375, April 1,1985.

Rasmussen, J., and K. J. Vicente, Cognitive Control of Human Activities and Errors: Implications for Ecological
Interface Design, Presented at The Fourth International Conference on Event Perception and Action, Trieste, Italy,
August 24-28,1987, Rim National Laboratory, Roskilde, Denmark, 1987.

Rattray, C. (Ed.), Specifcation and Verification of Concurrent Systems, Springer-Verlag, New York, New York, 1990.

Regulation Guide 1.52 (Task IC 127-5) Criteria for Programmable Digital Computer System S'ofware in Safety-
Related System of Nuclear Power Plants, United States Nuclear Regulatory Commission, November 1985.

Roe, R, and J. Rowland, Some Theory Concerning Certification of Mathematical Subroutines by Black Box Testing,
IEEE Transactions Sofhvare Engineering, Vol. SE-13, No. 6,1987.

Ross, D., StructuredAnaEysis m): A Language for Communicating Ideas, IEEE Transactions on Sohare
Engineering, SE-3(1), pp. 16-33 (SADT), 1977.

Rushby, J., F. von Henke, and S. Owre, An Introduction to Formal Specification and Verification Using EHDM, SRI
International, SRI-CSL-9 1-02, CSL Technical Report, SRI International, Menlo Park, California 94025, February 1991.

Rushby, J., Quality Measures andAssurance for AZSofiare, NASA Contractor Report 41 87, SRI International,
Menlo Park, California 94025, October 1988.

Schnell, D.A, Usability Testing of Screen Design: Beyond Standards, Principles, and Guidelines, Proceedings of the
Human Factors Society, 30th Annual Meeting, pp. 12 12-1 2 15, The Human Factors Society, Box 1369, Santa Monica,
California 90406,1986.

Schulmeyer, G.G. and J.I. McManus, Handbook of Software Quality Assurance, Van Nostrand Reinhold, New York,
New Yo& 1992.

Schulmeyer, G., Zero Defect Sofware, McGraw-Hill, Inc., New York, New York, 1990.

172

Seamster, T.L., S.A. Fleger, and D.R. Eike, The Protorype Process and User Integace Design, Science Applications
International Corporation, 1710 Goodridge Drive, McL.ean, Virginia 22102,1987.

Sivertsen, T., and H. Valisuo, Algebraic Specification and Theorem Proving Used in Formal Ven3cation of Discrete-
Event Control Systems, Technical Report: OECD Halden Reactor Project, HWR-260, Institutt for Energiteknikk,
Halden, Norway, D k b e r 1989.

Sizemore, N.L., Test Techniques for Knowledge-Based Systems, ITEA Journal, Vol. 1 1 , No. 2,1990.

Smith, S.L., and J.N. Mosier, Guidelines for Designing User Integace Software, ESD-TR-86-278, Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base, Massachusetts, United States Air Force, 1986.

Sohare M E , SNXP: Strategic Networked Applications Platform, Technical Briei Reston, Virginia, 1992.

Spivey, J., The Z Notation -A Reference Manual, Prentice-Hall International, New York, New York 1986.

Stachowitz, R.A., and J.B. Combs, validation of Expert Systems, Proceedings of the Hawaii International Conference
on Systems Sciences, Kona, Hawaii, Lockheed Corporation, Palo Alto, California 94304, January 1987.

Stachowitz, R.A., C.L. Chang, T.S. Stock, and J.B. Combs, Building Validation Tools for Knowledge-Based Systems,
First Annual Workshop on Space Operations Automation and Robotics (SOAR ‘87), NASA Johnson Space Center,
Houston, Texas, August 1987.

Straker, E.A., and N.C. Thomas, Verification and Validation as an Integral Part of the Development of Digital
Systems for NuclearApplications, Nuclear Safety, Vol. 24, No. 3, pp. 338-351, MaylJune 1983.

Sudduth, A, Diagnostic Reasoning Using Qualitative Causal Models, Paper presented at the Electric Power Research
Institute Conference and Expert System Applications for the Electric Power Indusby, Boston, Electric Power Research
Institute, Palo Alto, California, September 9-1 1,1991)

Sun Microsystems Reference Manual, pp. 169-180, Revision A of March 27,1990, pp. 169-180, Sun Microsystems,
Inc., 2650 Park Tower Drive, Merrifield, Virginia 221 16.

Swartout, W.R., XPLAIM A System for Creating and Explaining Expert Consulting programs, Artificial Intelligence,
21(3), pp. 285-325,1983.

Szygenda, S., D. Yatim, and J. Girardeau, Fault Modeling for Digital Systems: A State of the Art Review, Proceedings
of Third International Conference on Sohare for Strategic Systems held February 27-28,1990, Huntsville, Alabama,
pp. 144-153, Addison-Wesley Publishing Company, Order Department, Jacob Way, Reading, Massachusetts 01867.

173

Teichroew, D. and E. Hershey, ID, PSUPSA: A Computer-Aided Technique for Structure Documentation and
Analysis of Information-Processing Systems, IEEE Transactions on Software Engineering, SE(3)-1, pp. 41 -48
((PSUPSA)), 1987.

Thomas, N.C., and E.A. Straker, Application of Verification and Validation to Safety Parameter Display Systems,
Technical Report, Science Applications International Corporation, Lynchburg, Virginia, 1985.

Thomas, N.C., and C.L. Evans. Lve-cycle Verification, Validation and Testing, Insights '86 Engineering 62 Operating
Computer Forum, Edison Electric Institute, Washington, D.C., September 1986.

Tung, C., On Control Flow Error Detection and Path Testing, Proceedings of Third International Conference on
Software for Strategic Systems, Huntsville, Alabama, February 27-28,1990, pp. 144-153, Addison-Wesley Publishing
Company, Order Department, Jacob Way, Reading, Massachusetts 01867.

United Kingdom Ministry of Defense Draft Interim Defence Standard 00-55, Requirements for the Procurement of
Safety Critical Sofiare in Defense Equipment, National Institute of Standards and Technology Computer Systems
Laboratory, Gaithersburg, Maryland 20899, May 9,1989.

Von Mayrhauser, A, Sofiare Engineering: Methods andManagement, Academic Press, Inc., Boston, Massachusetts,
1990.

Wallace, D.R, and R.U. Fujii, Sofiare Verification and Validation: An Overview, From IEEE Software, Vol. 6, No.
3, May 1989.

Wallace, R, J. Stockenberg, and R. Charette, A UnifedMethodology for Developing Systems, McGraw-Hill, New
York, New York, 1987.

Ward, P., The Transfonnation Schema: An Extension of the Data Flow Diagram to Represent Control and Timing,
IEEE Transactions on Software Engineering, 12(2), pp. 128-210,1986.

Wasserman, AI., Extending State Transition Diagrams for the Specifcation of Human-Computer Interaction, IEEE
Transactions on Sofhvare Engineering, Vol SE-11 (8), pp. 699-71 3,1985.

Weyuker, E., and T. Ostrand, Theories of Program Testing and the Application of Revealing Subdomains, IEEE
Transactions on Sofhvare Engineering, Vol SE-6 (3), 1980.

Williges, RC., B.H. Williges, and J. Elkerton, Sofiare Interface Design, In G. Salvendy (Ed.) Handbook of Human
Factors, John Wiley & Sons, New York, pp. 1416-1449,1987.

Winchester, J., and G. Estin, Requirements Definition and its Interface to the SARQ Design Methodology for
Computer-based Systems, MIPS Conference Proceedings, 5 1, pp. 369-379, ((RDL)), Addison-Wesley Publishing
Company, Order Department, Jacob Way, Reading, Massachusetts 01 867,1982.

174

Wolfgram, D.D., T. J. Dear, and C.S. Galbraith, &pert Systems for the Technical Professional, John Wiley 62 Sons,
New York, New York, 1987.

Wood, D.P., and W.G. Wood, Comparative Evaluations of Four Specijcation Methods for Real-time Systems,
Carnegie-Mellon University/Software Engineering Institute Technical Report CMU/SEI 89-TR-36, Carnegie-Mellon
University Library, Carnegie-Mellon University, EDSH 109, Pittsburgh, Pennsylvania 1521 3-3890,1989.

Wood, W., R Pethia, L'Gold, and R Firth, A Guide to the Assessment of Software DevelopmentMethods, Carnegie
Mellon University/Software Engineering Institute Technical Report CMU/SEI 88-TR-8, Carnegie-Mellon University
Library, Carnegie-Mellon University, EDSH 109, Pittsburgh, Pennsylvania 15213-3890, April 1988.

Woods, D.D., Cognitive Technologies: The Design of Joint Human-Machine Cognitive Systems, The AI Magazine,
6(4), pp. 86-92, 1986.

175

U.S. NUCLEAR REGULATORY COMMISSION 1. REPORT NUMBER
IAsaIgned bv NRC. Add Vol Su p., Rw.,
and Addendum Numbers, 1f;ny.f

NUREG/CR-6316
SAIC-95/1028
VOl. 2

NRC FORM 335
12891
NRCM 1102.
3201,3202 BIBLIOGRAPHIC DATA SHEET

(See instructions on the reverse)
'

2. TITLE AND SUBTITLE

I
'8. PERFORMING ORGANlZATlIJN - NAME AND ADDRESS (If NRC.pmvide Dfvfdon, OfficeorRegfon, U.S. Nuclear Regulatory Commission, endmailingaddrest:ifcontractor,pmvide

name and mailing addmat

Science Applications International Corporation
1710 Goodridge Drive
McLean, VA 221001

9. SPONSORING ORGANIZATION - NAME AND ADDRESS (If NRC, type "&measabove",-ffcontracmr,provide NRC Divfsfon, Office or Region, US Nudear Regulatory Commfrrion,
and maliing addred

Division of Systems Technology
Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission 3412 Hillview Avenue
Washington, DC 20555-0001 Palo Alto, CA 94303

Nuclear Power Division
Electric Power Research Institute

10. SUPPLEMENTARY NOTES

11. ABSTRACT 1200 words or lex)

Guidelines for Verification and Validation of Expert
Systems Software and Conventional Software I 3. DATE REPORT PUBLISHED

MONTH YEAR I
March 1995

4. FIN OR GRANT NUMBER Survey and Assessment of Conventional Software
Verification and Validation Methods

L.A. Miller, E. H. Groundwater, J. E. Hayes, S. M. Mirsky

L1530
5. AUTHOR(S1 6. TYPE OF REPORT

7. PERIOD COVERED ilnciusive Dates1 7

12. KEY WORDS/DESCRIPTORS ~LIsrwordsorphraresthatwillaolstresearrhersln 1ocatlngrhereporr.l~ 13. AVAILABILITY STATEMENT

validation, verification, V&V expert systems, knowledge base,
guidelines, scenarios, software quality assurance I

I
I

14. SECURITY CLASSIFICATION

(This Page)

(This Repod

U n c l a s s l f l e d . .
15. NUMBER OF PAGES

16. PRICE I
1 I

NAC FORM 335 (2991

	EXECUTIVE SUMMARY
	1 INTRODUCTION
	1.1 Background
	1.2 Objective and Scope
	1.3 Report Organization

	2 PURPOSE AND CONTENT
	2.1 PurposeoftheSurvey
	2.2 Nature of V&V
	2.3 The Standards Environment
	2.4 Scope of Survey
	2.4.1 Management vs Technical Aspects
	2.4.2 System Complexity
	2.4.3 Definition of Systems in Terms of V&V Classes
	2.4.4 System Components
	2.4.5 Nuclear vs Non-nuclear Applications
	2.4.6 United States vs Foreign
	2.4.7 Evaluation Criteria :
	2.4.8 Phase in the Life-cycle
	2.4.9 Other

	2.5 Approach

	3 MANAGEMENT ASPECTS OF CONVENTION& V&V
	3.1 V&V Documents Procedures and Reviews
	3.2 Contrast of V&V with QA & CM
	3.3 The Value of Detecting Defects Early in the Life-cycle

	4 SOFIWARE DEVELOPMENT LIFE-CYCLES
	4.1 Alternatives
	4.1.1 Sequential Life-cycles
	4.1.2 Itemtive Life-cycles

	4.2 Reference Life-cycle
	4.2.1 Requirements Verification
	4.2.2 SpecificationVerification
	4.2.3 Design Verification
	4.2.4 Implementation Verification
	4.2.5 SystemValidation
	4.2.6 Field Installation Verification
	4.2.7 Operation and Maintenance Phase V&V

	5 CLASSIFICATION OF V&V METHODS FOR CONVENTION AI SOFTWARE
	5.1 General Observations and Approach
	5.2 The Three Major Categories and Their Classes
	5.2.1 RequirementdDesign Methods
	5.2.2 Static Testing Methods
	5.2.3 Dynamic Testing Methods

	5.3 Discussion

	6 CHARACTEIUZATION OF CONVENTIONAL V&V METHODS
	6.1 Defect Detection
	6.1.1 A Taxonomy of Defect Types for Conventional Sohare
	6.1.2 Defection of Defects by Conventional V&V Methods

	Effectiveness
	6.3 Evaluating "Cost-Benefit" and "Effectiveness" of Conventional V&V Methods
	6.3.1 A Simple Cost-Benefit Metric
	6.3.2 The Effectiveness Metrics
	6.3.2.1 Deriving the Basic Metric
	6.3.2.2 Development of Weights for Effectiveness
	6.3.3 Rank-ordered Methods

	6.4 Which Techniques to Use and When

	EXPERT SYSTEMS
	7.1 Components of Expert Systems
	7.2 Key V&V Characteristics of Expert Systems Components
	7.3 Applicabiliv of Conventional Methods
	7.3.1 Methods Applicable to the Interface Component
	7.3.2 Methods Applicable to Tools and Utilities
	7.3.3 Methods Applicable to the Inference Engine Component
	7.3.4 Methods Applicable to the Knowledge Base Component
	7.3.5 Methods Applicable to Overall System V&V

	7.4 Limitations of Conventional V&V Methods
	Conventional Methods
	7.4.2 A ?roposal for a Generic Testing Strategy

	8 SUMMARY AND CONCLUSIONS
	9 REFERENCES
	Performance Factors and 21 Subfactors

	Survey classification of discovered V&V Methods
	Life-cycle
	Activities fiomNSAC-39
	Software Life-cycle from NUREG/CR-4640
	Spiral Model of the Software Process
	Consistent with Conventional Software Life-cycle
	Testing for Incremental System Builds
	Life-cycle Phase
	Conventional Software Systems
	Conventional Software Systems
	Six Factors of Software System Complexity
	Expert System Software in the Nuclear Power Industry

	Illustration of Use
	Components of Larger Conventional Software Systems
	Classes of Requirements

	Definition of Software Quality Subfactors
	Appendix B Criteria from 10 CFR
	Quality Assurance QA). and Configuration Management (CM)
	Conventional V&V Techniques

	Description of Major Classes of Techniques
	V&VMethods
	Methods
	Methods

	CASE Tools for Full Life-cycle Support

	Capability of Testing Techniques to Detect Defects
	Defects in Conventional Software
	the Eight Cost-Benefits Factors
	Effectiveness Measures
	Ranked by Decreasing Cost-Benefit Values
	Decreasing Cost-Benefit Measure Values
	Decreasing Cost-Benefit Measure Values
	Ranked by Decreasing V&V Class 3 Values
	Decreasing V&V Class 3 Values
	Decreasing V&V Class 3 Values
	Ranked by Decreasing V&V Class 2 Values
	Decreasing V&V Class 2 Values
	Decreasing V&V Class 2 Values
	Ranked by Decreasing V&V Class 1 Values
	Decreasing V&V Class 1 Values
	Decreasing V&V Class 1 Values
	V&VClasses
	Knowledge-Based System with Testing Recommendations
	Expert Systems and Their Components
	Systems in Terms of Technique Type and Target Type

	RequiremenWesign
	Static Testing
	Dynamic Testing
	TOTALS
	I Omitted requirement
	2 Misinterpreted requirement
	3 Data limitation
	4 Unintended design element
	5 Hardware incompatibility
	6 Soflware incompatibility
	7 Poor man-machine interface
	Incorrect analyses of computational error
	9 Noncompliance
	I 0 Lack of adequate error traps
	I 1 Failure to handle exceptions
	I2 Weak modularity
	I3 Rigid control structure
	I4 Missing or incorrect processing priorities
	I 5 Breakdown between toplevel & detail desiqn

	LUD I dENEFlT MEASURE1 Class 31 Class 21 Class
	3.4.1 Field Testing
	3.1.4 I Reliability Testing
	3.7.1 [Activity Tracing
	hsertionchecking ™

