NUREG/CR-6316
SATIC-95/1028
Vol. 2

Guidelines for the
Verification and Validation of
Expert System Software and
Conventional Software

Survey and Assessment of Conventional RECE IVED
Software Verification and Validation Methods APR 2 1 1'995
ﬂ

Prepared by
L. A. Miller, E. H. Groundwater, J. E. Hayes, S. M. Mirsky

Science Applications International Corporation

Prepared for
U.S. Nuclear Regulatory Commission

and

Electric Power Research Institute

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

AVAILABILITY NOTICE
Availability of Reference Materials Cited in NRC Publications

~ Most documents cited in NRC publications will be avallable from one of the following sources:
1. The NRC Public Document Room, 2120 L Street, NW., Lower Level, Washington, DC 20555-0001

2. The Superintendent of Documents, U.S. Government Printing Office, P. O. Box 37082, Washington, DC
20402-9328 -

3. The Natlonal Technical Information Service, Springfield, VA 22161-0002

Although the listing that follows represents the majority of documents cited in NRC publications, it is not in-
tended to be exhaustive.

Referenced documents avalilable for inspection and copying for a fee from the NRC Public Document Room
include NRC correspondence and internal NRC memoranda; NRC bulletins, circulars, information notices, in-
spection and investigation notices; licensee event reports; vendor reports and correspondence; Commission
papers; and applicant and licensee documents and correspondence.

The following documents In the NUREG serles are avallable for purchase from the Government Printing Office:
formal NRC staff and contractor reports, NRC-sponsored conference proceedings, international agreement
reports, grantee reports, and NRC booklets and brochures. Also available are regulatory guides, NRC regula-
tlons in the Code of Federal Regulations, and Nuclear Regulatory Commission Issuances.

Documents avallable from the Natlonal Technlical Information Service include NUREG-series reports and tech-
nlcal reports prepared by other Federal agencies and reports prepared by the Atomic Energy Commission,
forerunner agency to the Nuclear Regulatory Commission.

Documents available from public and special technical libraries include all open literature items, such as books,
Journal articles, and transactions. Federal Register notices, Federal and State legislation, and congressional
reports can usually be obtained from these libraries.

Documents such as theses, dissertations, foreign reports and translations, and non-NRC conference pro-
ceedings are avallable for purchase from the organization sponsoring the publication cited.

Single coples of NRC draft reports are available free. to the extent of supply., upon written request to the Office
of Administration, Distribution and Mall Services Section, U.S. Nuclear Regulatory Commission, Washington,
DC 20555-0001.

Coples of Industry codes and standards used in a substantive manner in the NRC regulatory process are main-
talned at the NRC Library, Two White Flint North, 11545 Rockville Pike, Rockville, MD 20852-2738, for use by
the public. Codes and standards are usually copyrighted and may be purchased from the originating organiza-
tlon or, If they are American National Standards. from the American National Standards Institute, 1430 Broad-
way, New York, NY 10018-3308.

DISCLAIMER NOTICE

This report was prepared as an account of work sponsored by an agency of the United States Government.
Neitherthe United States Government nor any agency thereof, nor any of their employees, makes any warranty,
expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of
such use, of any information, apparatus, product, or process disclosed in this report, or represents that its use
by such third party would not infringe privately owned rights.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

NUREG/CR-6316
SAIC-95/1028
Vol. 2

Guidelines for the
Verification and Validation of
Expert System Software and
Conventional Software

Survey and Assessment of Conventional
Software Verification and Validation Methods

Manuscript Completed: February 1995
Date Published: March 1995

Prepared by
L. A. Miller, E. H. Groundwater, J. E. Hayes, S. M. Mirsky

Science Applications International Corporation
1710 Goodridge Drive
McLean, VA 22102

Prepared for

Division of Systems Technology

Office of Nuclear Regulatory Research
U.S. Nuclear Regulatory Commission
Washington, DC 20555-0001

NRC Job Code L1530

and
Nuclear Power Division

Electric Power Research Institute
3412 Hillview Avenue

Palo Alto, CA 94303 DISTRIBUTION OF THIS D

MASTER

D
OCUMENT 1S UNLIMITE
‘ W

ABSTRACT

By means of a literature survey, a comprehensive set of methods was identified for the verification and validation of
conventional software. The 153 methods so identified were classified according to their appropriateness for various
phases of a developmental life-cycle -- requirements, design, and implementation; the last category was subdivided into
two, static testing and dynamic testing methods. The methods were then characterized in terms of eight rating factors,
four concerning ease-of-use of the methods and four concerning the methods' power to detect defects. Based on these
factors, two measurements were developed to permit quantitative comparisons among methods, a Cost-Benefit Metric
and an Effectiveness Metric. The Effectiveness Metric was further refined to provide three different estimates for each
method, depending on three classes of needed stringency of V&V (determined by ratings of a system's complexity and
required-integrity). Methods were then rank-ordered for each of the three classe terms of their overall cost-benefits
and effectiveness. The applicability was then assessed of each method for th= #» lentified components of
knowledge-based and expert systems, as well as the system as a whole.

iii

TABLE OF CONTENTS

F Y & S O N iii
EXECUTIVE SUMM AR Y ...ttt ittt etettitetattatieeasesnanannssannaans xi
L INTRODUGCTION . . oottt ettt ettt ieasseasanaatssaessseesaasnnnnns 1
1.1 Backgroundcciiuuioniiiitii it aiittieenttesoatasesccanscaanacanaas 1

1.2 Objective and SCOPE ... ovvntie ittt eeeeteaaaaaaceaeanaoaaacaanoassans 1

1.3 Report Organizationc..uiiiuitm i iiiiiietiieiieeeeranannaannnens 2

2, PURPOSE AND CONTENTcutiierunettanaaeeeunnareoenneseoaenasaenensannocans 3
2.1 Purpose of the SUIVEY ... iiiun ittt ittt ittt ittt ieeeansenneenanenns 4

2.2 Natre of V&V ittt ittt itete ittt itieaneeeaiaerocaensocsoaocnnnns 5

2.3 The Standards EnVITONIMENtottt it e et et e eteannntanaaannenns 6

2.4 SCOPEOf SUIVEY ..ttt ittt ittt tititteeenneeeanssoeasnoeecnnaannnannns 7

2.4.1 Management vs. Technical ASPEctscooiiuiiiiiiiniiiniinennieans 9

242 System COMPIEXILYovuniieniinnirierunseneeenernosenasnnsenanns 14

2.4.3 Definition of Systems in Terms of V&V Classesccoiiiiiennnen 16

2.4.4 System COMPONENLS vvveveerereneeeanansasaneanansasensenensnns 18

2.4.5 Nuclear vs. Non-nuclear Applicationsceiiiiiiiinnnnnnnnnn. 20

2.4.6 United States vs. Foreignoiviuiniiiiiniiiiiiiiiiiiaaannnnn. 20

247 EvaluationCriteriaoivviiiiiiiiiinennnnn. et 20

248 Phaseinthe Life-cycleciiiiiniitiii it iiitieiiecnnnnens 26

0113 AP 26

P JES TN o] (o) o 26

3. MANAGEMENT ASPECTS OF CONVENTIONAL V&V, 29
3.1 V&V Documents, Procedures, and Reviewscoiiiiiiiiiiiiiiinineannnan. 29

32 Contrast of VEV With QA & CM ittt it titeasasennsoacaonaaanans 31

3.3 The Value of Detecting Defects Early in the Life-cycle...o iiinn... 31

4. SOFTWARE DEVELOPMENT LIFE-CYCLESccciiuiiinitiiiiiaaneeanannnnnnnnnns 37
O N (7 1 37

4.1.1 Sequential Life-Cyclescooiiiiiiiiiiiiiiiieiieennnannnnns 37

4.1.2 Iterative Life-CyClescuuitni ittt iiiitieniieeaeennnnns 37

42 Reference Life-Cycle ...ttt ittt ittt 44

4.2.1 Requirements Verificationccooiiiiiiiiiiiiiiiiiiiiiiiiia.. 44

4.2.2 Specification Verification............ ... i il 45

423 Design Verificationc.iiiiiiiiiiiiiiiiniiiiiiiniinnncnnns 45

4.2.4 Implementation Verificationccooiiiiiiiiiiiiiiiiiiiiin., 46

425 System Validationc.ooiiueiiiiiniiiiiiiiii ittt 47

4.2.6 Field Installation Verificationot iiiiiiiininn.. 48

v

4.2.7 Operation and Maintenance Phase V&VoiillL 49
5. CLASSIFICATION OF V&V METHODS FOR CONVENTIONAL SOFTWARE 51
5.1 General Observationsand Approach it 51
5.2 The Three Major Categories and TheirClasses, 51
5.2.1 Requirements/DesignMethodsl 54
5.2.2 Static Testing Methods % 06000000000000000000660000000000000a0G0E 61
5.2.3 Dynamic TestingMethodsoiiiiiiiiiii i ianan.. 68
5.3 DESCUSSION . vt vte e eee et e et et et e ettt e et e 79
6. CHARACTERIZATION OF CONVENTIONAL V&EVMETHODSciiiiiinnn.. &3
6.1 Defect DeteCtionuutieiitteernan e eeainee et e, 83
6.1.1 A Taxonomy of Defect Types for Conventional Software 83
6.1.2 Detection of Defects by Conventional V&V Methods 84

6.2 Definition of the Cost and Benefit Factors Evaluation of Conventional Technique
B 1T 1 2= 97
6.3 Evaluating "Cost-Benefit" and "Effectiveness” of Conventional V&V Methods 104
6.3.1 A Simple Cost-BenefitMetric...... ..., 104
6.3.2 TheEffectiveness Metrics i 116
6.3.2.1 DerivingtheBasicMetric, 116
6.3.2.2 Development of Weights for Effectiveness 118
6.3.3 Rank-orderedMethodsottt 120
6.4 Which TechniquestoUse,andWhen i, 136

7. ASSESSMENT OF THE APPLICABILITY OF CONVENTIONAL V&V TECHNIQUES

EXPERT SY ST EMS ...ttt ettt 141

7.1 Components Of EXpert SYStemsoinunitieniiii i e 141

7.2 Key V&V Characteristics of Expert Systems Components 145

7.3 Applicability of Conventional Methods i i 146

7.3.1 Methods Applicable to the Interface Component 146

7.3.2 Methods Applicable to Toolsand Utilities i, 146

7.3.3 Methods Applicable to the Inference Engine Component 155

7.3.4 Methods Applicable to the Knowledge Base Component 156

7.3.5 Methods Applicableto Overall System V&Vc i, 156

7.4 Limitations of Conventional V&V Methodseurirrnrenerieneenienieanenens 156
7.4.1 Aspects of Expert Systems Not Adequately Evaluated with

Conventional Methodsccviiiriiiiniiiiiii i, 156

7.4.2 A Proposal for a Generic Testing Strategyo. ..., ~... 158

8. SUMMARY AND CONCLUSIONS PO 161

0. REFERENCES ...\ttt ittt tett ettt e et et e e et e aae e e e ans 163

Figure 2.4.7-1

Figure 2.5-1

Figure 3.3-1

Figure 4.1-1

Figure 4.1-2
Figure 4.1-3

Figure 4.1.4

Figure 4.1-5

Figure 5.2-1

LIST OF FIGURES

Three Major Acquisition concerns with their 11 Major

Performance Factors and 21 Subfactorscoiiiiiiiiiiiiiiiiiiinninn, 23
Survey classification of discovered V&V Methods. 27
Increase in Cost-to-Fix or Change Software Throughout

LHfe-Cycle . vt e 34

Relationship of V&V Activities to Generic Project

Activities, From NS AC-30 . ..ottt e 38
Software Life-cycle from NUREG/CR-4640 (1987)ccvvniiiiniieiiiannn, 39
Spiral Model of the Software Processcooiueiiii it 40

An Expert System Life-cycle
Consistent with Conventional Software Life-cycle, 42

Testing for Incremental System Builds i i, 43

Classes of Conventional V&V Methods Organized by
Life-cycle Phaseoovtiin ettt et i et 52

vii

Table 2.3-1

Table 2.3-2

Table 2.4.2-1

Table 2.4.3-1

Table 2.4.3.2

Table 2.4.4-1

Table 2.4.7-1

Table 2.4.7-2

Table 3.1-1

Table 3.2-1

Table 5.2-1

Table 5.2-2

Table 5.2.1-1

Table 5.2.2-1

Table 5.2.3-1

Table 5.3-1

LIST OF TABLES

Key Standards and Regulations Related to V&V of
Conventional Software Systemsvviiiiiiiiiiii i, 8

Key Standards and Regulations Related to V&V of
Conventional Software Systemso, 10

Six Factors of Software System Complexity 15

Three Levels of V&V Stringency Used in the Report for

Expert System Software in the Nuclear Power Industry 17
Mustration of Useovnntii it eiieeenns 19
Components of Larger Conventional Software Systems 21

Criteria to be Tested or Evaluated for Three Major
Classes of Requirementsciiuuiiiiniiniiiennniennnn.. 22

Definition of Software Quality Subfactors L 24

Correspondence Between SQA Requirements and
Appendix B Criteriafrom 10CFR 50 oo, 30

Life-cycle Comparison of Activities Associated with V&V,
Quality Assurance (QA), and Configuration Management (CM) 32

Statistics Concerning the Three Major Categories of
Conventional V&V Techniquesc.ooiiiniiiii i ... 53

Description of Major Classes of Techniques 55
Description of the Conventional Requirements/Design
VEVMethodsooiiiii i e 58

Methods e 62

Methodso e 69

viii

Table 6.1.1-1

Table 6.1.2-1

Table 6.1.2-2

Table 6.2-1

Table 6.3-1

Table 6.3.1-1A

Table 6.3.1-1B

Table 6.3.1-1C

Table 6.3.3-1A

Table 6.3.3-1B

Table 6.3.3-1C

Table 6.3.3-2A

Table 6.3.3-2B

Table 6.3.3-2C

Typesof Software Defectst iriiiiiiiiiiiiiiienninnnns 85

Capability of Testing Techniques to Detect Defects 89

Applicability of Conventional Techniques to
Defects in Conventional Softwarecoiiiiiiiiiinnannnnn. 98

Interpretation of the 1-5 Rating Scale Values for Each of
the Eight Cost-Benefits Factorsoiiiiiiiniiiiiiiiieennnnn, 102

Conventional V&V Techniques, Their Power and
Ease-of-Use Factor Ratings, and the Cost-Benefit and
Effectiveness MEaSUIESvveeeereineeeeennnnsanannacssncassnnns 105

Conventional Requirements and Design V&V Methods
Ranked by Decreasing Cost-Benefit Valuescoovvvvinanna.. 111

Conventional Static Testing V&V Methods Sorted by
Decreasing Cost-Benefit Measure Valuescooviviiineninnnn.n. 112

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing Cost-Benefit Measure Values ..., 114

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class3Values ..., 121

Conventional Static Testing V&V Methods Sorted by
Decreasing V&V Class3Valuesooiiiiiiiiieniiieniieeannn, 122

Conventional Dynamic Testing V&V Methods Sorted by
Decreasing V&V Class3Values .. cooiiiininiiiiiiiienennnennnn.. 124

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class2 Valuesooooaaes, 127

Conventional Static Testing V&V Methods Sorted
by Decreasing V&V Class 2 Valuesooviviiiieennniinaannnnns 128

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing V&V Class 2 Valuesooiiiiiiiiannannannn, 130

ix

Table 6.3.3-3A

Table 6.3.3-3B

Table 6.3.3-3C

Table 6.4-1

Table 7.1-1

Table 7.3-1

Table 7.4.2-1

Conventional Requirements and Design V&V Methods
Ranked by Decreasing V&V Class 1 Values ..., 132

Conventional Static Testing V&V Methods Sorted
by Decreasing V&V Class1Valuescooiiiiineienae.. 133

Conventional Dynamic Testing V&V Methods Sorted
by Decreasing V&V Class L Values, 135

Overall Highest Ranked Conventional V&V Techniques for all
V&V Clas88S . oo iitieeie ittt iiiaitsiaaesienseaeasancaenns 139

Components and Typical Testing-Related Features of
Knowledge-Based System, with Testing Recommendations 143

Ratings of the Applicability of Conventional Techniques
to Expert Systems and Their Componentsooiveiienennnnn.nn. 147

Characterization of Techniques for Testing Implemented
Systems in Terms of Technique Type and Target Type 159

EXECUTIVE SUMMARY

In recent years, a large number of expert systems have been developed for use in the nuclear industry.
To ensure the reliability and high quality performance of expert systems, the United States Nuclear Regulatory
Commission (USNRC) and the Electric Power Research Institute (EPRI) have jointly contracted with Science
Applications International Corporation (SAIC) to develop and document guidelines for the Verification and
Validation (V&V) of expert systems. This report presents the results of the first of ten activities in this project.
The purpose of this first activity is to review software engineering V&V techniques for conventional software
systems and to assess their usefulness for expert systems.

This assessment focuses on three technical aspects of conventional V&V techniques: classification,
characterization, and assessment. First, conventional methods were classified by a sequential Life-cycle model,
i.e., a process of software development and maintenance. Second, the classified techniques were characterized

by different factors of power and ease-of-use. Finally, the techniques were assessed according to their
applicability to expert systems.

This review resulted in the classification of a total of 153 different conventional software V&V
techniques. Based on the sequential life-cycle model, these techniques were divided into two phases:
requirements or design, and implementation. The requirements or design phase includes 28 of the techniques
while the implementation phase, which includes the categories known as static and dynamic testing, includes the
remaining 125 techniques.

Each of the 153 conventional V&V methods was characterized using eight separate factors chosen to
permit an assessment of their effectiveness for systems with varying levels of complexity and integrity. These
factors are: Broad Power, Hard Power, Formalizability, Human-Computer Interface Testability, Ease of
Mastery, Ease of Setup, Ease of Running/Interpretation, and Usage. To determine the extent to which a V&V
technique could detect different software defects, a taxonomy of 52 different types of conventional software
defects was developed. The techniques were judged as to which of the defects they might detect. Each of the
153 conventional V&V techniques covered anywhere from 2 to 52 of these defects. Each defect was covered by
anywhere from 21 to 50 V&V techniques. These findings indicate that conventional V&V techniques, taken
together, cover the total space of identified conventional software system defects.

A classification scheme was developed to assign various combinations of complexity and required
integrity levels into classes of recommended software V&V. High complexity software systems that may
require high integrity are placed in V&V Class 1. Systems with medium levels are placed in Class 2. Systems
potentially requiring the least stringent V&V levels are placed in Class 3.

The assessment of the applicability of the conventional V&V techniques to expert systems required the
identification of four primary components of expert systems: the inference engine, the knowledge base, external
interfaces, and tools and utilities. Each component has several sub-components. These components and sub-
components were rated on three factors that relate to V&V: (1) whether conventional programming languages
were typically used in their implementation;, (2) whether the components were highly reusable across

applications; and (3) whether the components' potential defects could be identified via formal means. To the
extent that conventional languages are used, conventional V&V techniques apply to such components. If the
components have high reusability, then certification and bench-marking techniques are recommended as being
most appropriate. Formal analysis procedures apply to components whose defects can be fully characterized in
terms of specific features. Each of the components was evaluated in terms of the degree to which conventional
techniques were applicable for V&V of that component.

With some qualifications, conventional V&V techniques were collectively and individually judged to
be highly applicable to the expert systems as a whole and to the following expert systems components:
inference engine, the external interfaces, and the tools and utilities. However, current conventional V&V
methods were judged to be inadequate in their present form to evaluate the knowledge base component
sufficiently, particularly for the more stringent V&V Classes. Nonetheless, conventional methods are judged to
be extendable to provide sufficient V&V of the knowledge base.

In conclusion, the immense historical and growing body of conventional V&V techniques and
practices are fully usable for expert systems V&YV, either directly or by extension. There is no evidence that
expert systems are so unique that neither the conventional development and management software processes nor
the conventional V&V techniques apply to them. Expert systems are best regarded as special types of software
and all conventional practices and software engineering principles fully apply.

Xii

1 INTRODUCTION

The United States Nuclear Regulatory Commission (USNRC) and the Electric Power Research
Institute (EPRI) are involved in a broad-based evaluation of possible applications of expert systems in the
nuclear industry. One of the issues with using expert systems is the lack of an accepted V&V methodology to
ensure reliable and high quality performance of this software. The development of appropriate methods for the
V&V of expert systems, which is the overall goal of this project, will promote their acceptability in all segments
of the nuclear power community.

1.1 Background

Expert systems can be defined as computer software that exhibits human level intelligence and are part
of the larger field of artificial intelligence. An expert system can be divided into the following four components:
knowledge base, inference engine, interfaces, and tools and utilities. The knowledge base is the component that
contains detailed information about the expert system subject matter. This information can be stored in the
knowledge base in a variety of forms including "IF-THEN" rules and simple facts. The inference engine uses
the knowledge base to make decisions or take actions. Interfaces deal with the connection of the expert system
to databases, communication channels, the user, etc. Tools and utilities refers to general application programs
that may be used in building the knowledge base or assisting in any other features of the expert system. As
compared to expert systems, conventional software typically does not have a knowledge base or inference

engine,

V&V refers to two different processes that are used to make sure that computer software reliably
performs the functions that it was designed to fulfill. The overall sequence of development and maintenance for
computer software is called its Life-cycle. The Life-cycle consists of a number of steps, which may be
sequential or iterative, that start with the requirements for the softiware, V&V of the software, field installation
and use, engineering changes, and typically ends years later when the software is retired from use. Verification
occurs during software development and checks each stage of development against the version of the previous
stage. Validation tests and evaluates the software system to make sure that it correctly performs its intended
functions. Verification occurs during the development phases of the software's Life-cycle while validation is
performed after software development is completed (see page 9).

Expert systems are also widely used outside the United States and have been extensively applied to
non-nuclear industries such as aerospace, geology, telecommunications, and computer manufacturing.
Therefore, this project has included information on expert system V&V from foreign and non-nuclear industry
sources.,

1.2 Objective and Scope

The objective of this project is to develop and document guidelines for the verification and validation
of expert systems in the nuclear industry. This project consists of ten activities that will result in a technical
report and user manual presenting V&V methods to be used for a wide range of expert systems that may be
developed for the nuclear industry.

The first activity, which is the subject of this report, is a detailed survey of currently available V&V
methods for conventional software. Existing V&V methods for conventional software are evaluated to find out
if they can be used for expert systems. Where necessary, new methods will be developed later to make up for
deficiencies in the available software V&V techniques. Applicable current conventional and expert system
V&V methods will be tested on two actual nuclear expert systems that were designed for nuclear power
applications. Finally, the results will be reviewed and used to develop a set of recommended V&V methods that
should be used for different classes of expert systems depending on their importance and complexity. This
report documents the results of this first activity.

1.3 Report Organization

This report is divided into nine sections: (1) introduction, (2) context, (3) conventional V&V
management, (4) software development Life-cycles, (5) conventional software V&V method classification, (6)
conventional software V&V method characterization, (7) applicability of conventional V&V methods to expert
systems, (8) summary and conclusions, and (9) references.

This first section introduces the project and activity. The second section lays the groundwork for
understanding the subjects of expert systems, V&YV, and the overall strategy used for this effort. The third
section discusses the importance and benefit of managing software V&V and differentiates V&V from
configuration management and quality assurance. The fourth section provides a detailed presentation on the
software development Life-cycle that is assumed for this project. Section 5 describes the 153 conventional
software V&V methods that were found during this activity and places them into categories that are related to
how these techniques are applied to software. Section 6 examines and categorizes software defects and presents
a means of measuring how effective each V&V method is in finding these defects. Section 7 analyzes the
conventional software V&V methods that were discussed, evaluated and categorized in Sections 5 and 6 and
determines which methods can be used for the V&V of expert systems. Section 8 presents a summary of the
accomplishments and conclusions from this activity. Section 9 lists the reference documents that were used in
this activity.

2 PURPOSE AND CONTEXT

This report concerns the first of ten activities, the overall goal of which is to formulate and document
guidelines for verifying and validating (V& V) expert systems! for use in the nuclear industry. This work is
sponsored jointly by the United States Nuclear Regulatory Commission (USNRC) and the Electric Power
Research Institute (EPRI). Both agencies are concerned with the quality and reliability of expert systems used in
the nuclear industry. Since 1983, EPRI has sponsored a broad program for applying expert systems to utility
needs, tool development support, practical applications, studies on V&V, and recently, a training facility (Naser,
1991).

The USNRC and EPRI are not alone in their concern with the V&V of expert systems applications.
The NASA Space Station Freedom project convened a government-industry working group to advise NASA
regarding V&V of expert systems associated with the station. Currently, the NASA Johnson Space Center is
sponsoring a project to investigate its needs for expert systems V&V. In the Department of Defense (DoD), the
Defense Advanced Research Projects Agency (DARPA) has sponsored, through the Air Force's Rome
Laboratory, the development of an automated tool to assist in expert systems V&V, The Army Test and
Evaluation Command has also sponsored work in this area. The Institute for Electronics and Electrical
Engineers (IEEE) and American Institute of Aeronautics and Astronautics (AIAA) have established standards
committees for Artificial Intelligence (AI) whose purview includes expert systems V&V.

In the past five years, there has been an increasing number of professional conference sessions and
tutorials on expert systems V&V. It should be noted that the leading Al society, the American Association for
Al has sponsored yearly workshops on expert systems V&V since 1987.

These concerns for V&V of expert systems indicate that Al technology is a reliable software-
development approach, capable of being integrated with other kinds of software and systems. Expert systems
V&YV lacks the history of conventional software V&V, but it is further along than V&V of other non-
conventional software technologies, including neural network systems, object-oriented systems, and specialized
software for parallel processors. This maturity provides a sound basis for the present effort to develop practical
and effective V&V guidelines for systems where high standards for quality and safety are paramount.

A general comment on V&V is that it is poorly understood and generally disliked. Adequate V&V is
also expensive. Traditionally, it is one of the first activities to be cut when a software project experiences
difficulties. The need for V&V, especially for the benefits of reduced system maintenance, is seldom understood
by management. Nevertheless, there is considerable agreement among software analysts that V&V will always
show a positive cost-avoidance benefit over the life of a system. Careful V&V will do so in some cases even
when assessed just for the development stage (see Section 3.3).

1 The terms "expert system" and "knowledge-based systems" are considered to be interchangeable, and the former is used throughout this report for
consistency. Expert systems include rule-based implementations, frame-based, and various combinations thereof; the term also extends to hybrid systems
which involve rules and frames embedded within an object-oriented approach.

3

2.1 Purpose of the Survey

The overall objective of the survey is to determine how much of the extensive context and
accomplishments of conventional V&V activities can be employed directly for expert systems. More specific
objectives are to determine the best conventional techniques to use for the specific components of expert
systems as well as for the overall system and how these techniques might need to be modified.

The present survey examines current conventional software. These software programs are written in
procedural programming languages such as FORTRAN, C, COBOL, PL/I, PASCAL, Ada, and ALGOL. In
these languages, a single sequential algorithm is specified by the programming language source statements. At
any one point in the source program, after execution of the "present” source statement, the next action to be
executed by the hardware is found in the next statement in the program unless the next statement is a special
transfer-of-control statement (such as an "if", "do", or "case"). In these programs, the data-flow and control-flow
operations are also inter-mixed.

There are several alternatives to conventional software. However, sofiware involved in knowledge-
based systems or expert systems is of special interest to this report. Systems of this type can be written using an
Al-type language, such as LISP (a functional Al language) and PROLOG (a logic-programming language).
More common, and of most direct interest, are those expert systems that have been written utilizing one of the
many types of commercial Expert System shell products, e.g., EXSYS, NEXPERT OBJECT, ART, KEE,
CxPERT, VP-Expert, 1Q-2000 (also NASA's CLIPS shell). With these products, the application is mainly
written as a set of declarative facts/descriptions and IF-THEN rules that constitute the knowledge base of the
system. Unlike conventional (procedural) software systems, static inspection of the declarative (non-procedural)
knowledge base will not easily or completely reveal the sequence of execution of rules. The actual "execution”
of knowledge base elements is fully determinable as a function of the properties of the executing agent that is
called the inference engine.

Within this context, the purpose of this report is to survey software V&YV techniques that have been
used to test conventional software systems, and then to assess which of these techniques could be applied to Al
systems, specifically expert systems. This survey emphasizes the technical aspects of the techniques rather than
the management processes, although both elements are essential. How the survey is influenced by the definition
of V&V, by the guidance given concerning standards, and by a number of important aspects concerning the
scope of coverage are addressed below.

There is a great advantage in utilizing a wholesale reuse of conventional V&V methods and philosophy
for expert systems. Conventional techniques are much more acceptable than novel techniques developed solely
for expert systems. Additionally, the acceptability of expert systems software could well be greatly increased.
Rather than just being acceptable or unacceptable, there are several possible gradations of applicability of a
conventional V&V method to expert systems®:

2 These ratings are applied to techniques in Section 7.

1) The method can be used directly without any modifications;

2) The method largely applies, but some modifications are necessary;

3) The general concept of the method applies, but extensive specific changes are needed; or
4) The method does not really apply at all.

A final objective of this survey is to identify which aspects of expert systems, if any, are poorly
addressed by conventional V&V techniques. The Volume 3 follow-on survey of V&V methods will determine
whether these needs have been addressed within the expert systems field or whether they must be met by
invention in later tasks.

This survey will not provide details of specific methods. It is not intended to be a "how-to" tutorial for
actual use. However, it will provide summary information on the relative ease-of-use and effectiveness of the
surveyed methods.

2.2 Nature of V&V

A number of slightly different definitions of the terms Verification and Validation occur in the
applicable standards for this study. The following definitions from IEEE Standard 729-1983 are adopted as
being the most widely accepted understanding;

Verification is the process of determining whether or not the products of a given phase of the
software development cycle fulfill the requirements established during the previous phase.

Validation is the process of evaluating software at the end of the software development
process to ensure compliance with software requirements.

The concepts of V&V involve a developmental Life-cycle. These concepts are related to a number of
other topics including testing, certification, quality assurance, and configuration management. These topics are
briefly defined here to show this relationship.

Testing is performed to demonstrate that the integrated system meets the requirements. Testing
involves several activities: test plan development, test execution, and results analysis. The test plan should
discuss test requirements, test philosophy, test environments, test specifications, detailed test descriptions, test
procedure, and test evaluation approach. Test execution and results analysis includes the performance of
validation testing, the recording of test results, and the analysis of results for acceptability INSAC-39, 1981).

Certification implies a particular kind of formalized testing to demonstrate high capability, usually for
particular environments, but it is not a requirement of V&V. Very few software products are actually
"certified".

Quality Assurance (QA) is concerned with ensuring that the software product has undergone all of
the specified procedures that accompany the design and implementation that are in place to ensure quality.
V&V is only one aspect of QA, which includes other elements.

Configuration Management (CM) is an essential procedure for ensuring the quality of a system by
controlling the manner in which its components are modified and improved. CM deals with establishing and
controlling updates to a baseline version of a system. A characterization of V&V versus QA and CM is given in
detail in Section 3.

In summary, the underlying technical concepts of V&V and the related procedures are to ensure that all
of the behavioral and performance functions specified in the requirements for the system are fulfilled during
development (verification) and in the final implementation (validation).

One objective of V&V is to ensure that the implemented system does not contain unintended functions.
An unintended function is described as a function which is not traceable to a specific requirement. Although this
principle is not always cited in V&V activity, it should always be considered. The implementation of this
additional purpose involves identification and examination of all the residue design or implementation elements
after all requirements have been traced.

It is important to probe more closely into the relationship between testing and V&V, Testing and
debugging refer to the analysis, exercise, and repair of software by the developers. V&YV, on the other hand, is a
process which is independent from normal development and testing activities. It is often called Independent
V&V, or IV&YV to indicate that it is accomplished by parties who are not part of the immediate development
team. The purpose of V&V is not to directly assist in the development of reliable software but to provide
independent evidence of software reliability and that the system performs according to its requirements. In fact,
the developers and the V&V agents may use the same discovery techniques, but the V&V agent does so as an
independent check on the quality and compliance of the system. Traditionally, V&V agents only discover
problems; they do not fix them. Correcting the problem is the province of the development team. However, the
V&V agents are more likely to have a deeper understanding of testing methods, test-case construction, and a
much better understanding of how to accomplish the complex task of repairing the detected problems
completely, generally, and with fewer side-effects®.

Up to this point, the discussion has been from a technical point of view. However, V&V is an
important management process. Management commitment is mandatory to ensure the funding, the staffing, and
the cooperation necessary to accomplish the V&V tasks. Detailed management is needed to develop the specific
V&YV test plans and methods, and the level of effort to be applied. While some of these issues are briefly

3 Re "completely”, V&V agents, through experience and training, look for multiple errors near a detected problem. Re "generally”, the most in-depth
V&V can involve an analysis of the characteristics and probable cause of a problem followed by a search for other instances of that problem-type in other
parts of the system. Re "side-effects”, the typical V&V agent is acutely aware that problem-fixes often create new problems, and, therefore, adopts a repair

strategy aimed at minimizing this effect.

discussed in Section 3, the management aspects, which are critical to actual success of V&V efforts, are not the
focus of this survey.*

2.3 The Standards Environment

This survey and the whole project recognize the eight key standards and guideline documents, as listed
in Table 2.3-1. NSAC-39, NUREG-0653, and NUREG/CR-4640 are currently the primary sources of V&V
guidance in the nuclear industry. NSAC-39 provides guidance on how to structure a V&V program for a Safety
Parameter Display System (SPDS). Based on a suggested software life-cycle, it outlines V&V activities and
documents that should occur at each step. Many expert systems being developed for nuclear power applications
are for use by control room operators to here provide an interactive interface for the user(s). Consequently,
these systems are very similar in nature to an SPDS, thereby making NSAC-39 especially relevant. Its life-cycle
and recommendations form the basis of the description of the conventional software development Life-cycle
described in Section 4.

NUREG-0653 discusses software quality.assurance requirements for thermal-hydraulic safety analysis
software, and its conclusions are considered generally applicable to many types of safety analysis software in the
nuclear power industry. As expert systems become incorporated into safety analysis and safety critical software,
this standard will eventually become more and more applicable. Therefore, it must be examined for future
planning,

NUREG/CR-4640 provides an important mapping of recommended software quality assurance (SQA)
practices against the 10 CFR 50 criteria for a complete nuclear quality assurance program. Software quality
assurance and V&V go hand-in-hand. System V&V constitute a vital portion of an SQA program.
NUREG/CR-4640's suggested Life-cycle diagram is also shown in Section 4. Other sections of this document
include descriptions of the documentation required: applicable standards, practices, and conventions; review and
audit procedures; software configuration management, V&V, and procurement management. Its
recommendations are included in the Section 3 discussion of management aspects of V&V,

Two other standards documents considered to be key are ANSI/IEEE ANS 7-4.3.2-1982 and
ANSI/IEEE STD 1012-1986. The first provides criteria for safe practices for design and evaluation of safety
performance and reliability. The second defines minimum requirements for the format and content of software
V&YV plans and for V&V tasks pursuant to those plans. The ASME Code Standard provides guidance for
nuclear facility quality assurance including a treatment of Life-cycle, V&V, configuration control,
documentation, procurement, and records. The IEC Standard provides guidance for nuclear power plant safety
system software.

. An altemative management approach to development moves V&V into a leading role. It involves a multi-faceted approach. A key element is the
use of a developmental Life-cycle involving incremental systeme-level builds with extensive testing after each build (see Section 4.1.2). The three-part theme
of this Life-cycle is "build a little, test a lot, and fix as you go". The keys to this approach are adherence to requirements, design document updating, and
continual improvement in the processes of software development by analysis of problems found at each build step -- i.e., a Total Quality Management

approach (Miller, 1992),

7

Table 2.3-1 Key standards and regulations related to V&V
of conventional software systems

Document

Document ID

Description

Key Documents

SPDS

NSAC/39

Verification and Validation for
Safety Parameter Display
Systems, December 1981

QA, Design and
Analysis Codes

NUREG-0653

Report on Nuclear Industry
Quality Assurance Procedures
for Safety Analysis Computer
Code Development and Use,
August 1980

NUREG/CR-4640

PNL-5784, Handbook of
Software Quality Assurance
Techniques Applicable to the
Nuclear Industry, August 1987

ASME NQA-2a-1990 Part
27

Quality Assurance
Requirements for Nuclear
Facility Computer Software,
1990

Class 1E Real
Time Systems

ANSVIEEE
ANS-7-4.3.2-1982

Application Criteria for
Programmable Digital
Computer Systems of Nuclear
Power Generating Stations, July
6, 1982

Reg. Guide 1.152

(Task IC 127-5) Criteria for
Programmable Digital
Computer System Software in

V&V

Safety-Related System of
Nuclear Power Plants,
November 1985
ANSI/IEEE Std Software Verification and
1012-1986 Validation Plans, 14 November
1986
IEC 880 Software for computers in the
1986 safety systems of nuclear power

stations, 1986

The key lessons to be learned from all of these standards are the following:

1) How and why to establish a software development life-cycle,

2) The SQA practices, conventions, and procedures that should be followed at each step,
3) The documentation to be produced/revised at each step,

4) Criteria for testing and validating nuclear power software applications, and

5) Testing techniques,

Detailed discussions on these topics can be found in Section 3 of this report.

In addition to the referenced documents, there are a host of other standards, guidelines, and
recommended procedures which relate to the V&V of conventional systems and, thus, to this survey. The total
set of related documents are shown in Table 2.3-2. The United States Department of Defense standards DoD-
STD-2167 and its replacement DoD-STD-2167A (in the General section in Table 2.3-1) provide the most
stringent examples of Life-cycle development and associated reviews and documentation. These standards have
been in use for many years. The 1988 modification explicitly acknowledges that iterative prototyping might be
required, and that the other aspects might need to be customized for particular types of projects. This standard
permits military systems to utilize the iterative or cyclical life-cycle of characteristic of expert systems
development.

There are two new draft standards from the United Kingdom, MOD 0055 and 0056 (the QA, CLASS
1E section). These draft standards strongly emphasize the front-end aspects of the system development process,
requirements analysis, and design verification. They go much further than previous documents by proposing
that formal proving methods should be employed for these stages.

2.4 Scope of Survey
The scope of this task is detailed below in the discussion of nine scope factors. In general, the broadest

scope was chosen to increase the chances of exhaustive coverage and increase the probability that potentially
useful V&V techniques would be gathered.

2.4.1 Management vs. Technical Aspects

This is the exception to the broad scope rule which is stated above. Although good management is
essential to achieving the goals of V&V, the technical aspects of V&V are emphasized.

Table 2.3.2 Key standards and regulations related to V&V of conventional software systems

Key SPDS NSAC/39 Verification and Validation for Safety
Documents Parameter Display Systems, December 1981
QA, Design NUREG-0653 Report on Nuclear Industry Quality Assurance
& Analysis Procedures for Safety Analysis Computer
Codes Code Development and Use, August 1980
QA NUREG/ PNL-5784, Handbook of Software Quality
CR-4640 Assurance Techniques Applicable to the
Nuclear Industry, August 1987
AMSE NQA-2a-1990 Quality Assurance Requirements for Nuclear
Part 2.7 Facility Computer Software
Class 1E ANSIIEEE Application Criteria for Programmable Digital
Real Time ANS-7-4.3.2-1982 Computer Systems of Nuclear Power
Systems Generating Stations, July 6, 1982
Reg. Guide 1.152 (Task IC 127-5) Criteria for Programmable
Digital Computer System Sofiware in Safety-
Related System of Nuclear Power Plants,
November 1985
V&V ANSI/EEE Std Software Verification and Validation Plans, 14
1012-1986 November 1986
IEC 880 1986 Software for computers in the safety systems
of nuclear power stations.
Reference Design & ANSI/ANS-10.4-1987 | Guidelines for the Verification and Validation
Only Analysis of Scientific and Engineering Computer
Codes Programs for the Nuclear Industry, 13 May
1987
NUREG-0856 Final Technical Position on Documentation of
Computer Codes for High-Level Waste
Management, June 1983
QA, Class 1E | ANSI N45.2.11-1974 Quality Assurance Requirements for the

Design of Nuclear Power Plants

NUREG-0493 A Defense-In-Depth and Diversity
Assessment of the Resar-414 Integrated
Protection System, March 1979

10 CRF 50 Code of Federal Regulations, 1 January 1984

UK Draft Defense UK MOD Interim Standard on Requirement

Standard 0055 for the Procurement of Safety Critical
Software in Defense Equipment

UK Draft Defense UK MOD Interim Standard on requirements

Standard 0056 for the Analysis of Safety Critical Hazards

10

Table 2.3.2 (Continued)

Reference
Only {cont.)

EWICS TC7

Critical Computer Systems (Safety
Assessment)

Computer
Society
ANSUVIEEE
Stds.

Std. 729-1983

Glossary of Software Engineering
Terminology, 18 February 1982

Std. 829-1983

Standard for Software Test Documentation,
18 February 1983

Std. 982.1

Standard for Measures for Reliable Software

Std, 982.2

Guide for Measures for Reliable Software

Std. 983-1986

Software Quality Assurance Planning, 13

January 1986
'_—_——————_—__———__————__—4

Computer Std. 990 IEEE Recommended Practice for Ada as
Society Programming Design Language
ANSl/
IEEE Stds. Std. 1008-1987 Code of Federal Regulations, 1 January 1984
(cont) Std. 1002-1987 Software Unit Testing, 29 December 1986
Std. 1028 Standard for Sofiware Reviews and Audits
Std. 1042-1987 Guide to Sofiware Configuration
Management, 12 September 1988
Std. 1044 Standard for Classification of Software Errors,
Faults and Failures
Std. 1045 Standard for Software Productivity Metrics
IEEE Stds. Std. 730-1984 Software Quality Assurance Plans, 30 June
(Gen'l) 1984
Std. 828-1983 Software Configuration Management Plans,
24 June 1983
Std. 830-1984 Software Requirements Specifications, 10
February 1984
Std. 1016-1987 Recommended Practice for Software Design
Descriptions, 13 July 1987
Std. 1058.1-1987 Software Project Management Plans, 31
August 1988
Std. 1063-1987 Software User Documentation, 22 August
1988
General ANSI MC8.1-1975 Hardware Testing of Digital Process

Computers, October 1971

11

Table 2.3.2 (Continued)

Reference
Only (cont.)

ANSI N413-1874

Guidelines for the Documentation of Digital
Computer Programs, 20 June 197

NSAC/5

Computer Systems Interface Guidelines for
Nuclear Plants September 1980

INPO TS-407

Good Practice Computer Software
Administrative Controls (Draft) 1983

DOD-STD-2167

Defense System Software Development, 4
June 1985

DOD-STD-2167A

Defense System Software Development, 29
February 1988

DOD-STD-2168

Software Quality Evaluation (Draft) 26 April
1985

NUREG/CR-2186

ANL-81-84, Quantitative Software Reliability
Analysis of Computer Codes Relevant to
Nuclear Safety, December 1981

SPDS

SPDS
(cont.)

NSAC/40

Accident Sequences for Design, Validation
and Training-SPDS-April 1982

NUREG-0696

Functional Criteria for Emergency Response
Facilities, Final Report, February 1981

NUREG-0700

Guidelines for Control Room Design Reviews,
September 1981

NUREG-0737

NUREG-0800

Supplement 1, Clarification of TMI Action

Plan Requirements, January 1983

Standard Review Plan, Rev. 1, (formerly
NUREG-75/087)

NUREG-1342

A Status Report Regarding Industry
Implementation of Safety Parameter Display
Systems, April 1989

EOPs

NUREG-0899

Guidelines for the Preparation of Emergency
Operating Procedures, Resolution of
Comments on NUREG-0799, August 1982

NUREG/CR-3177

EGG-2243, Vol. 1, Methods for Review and
Evaluation of Emergency Procedure
Guidelines, Volume 1: Methodologies, March
1983

FIPS PUB
(Gen'l)

FIPS PUB 105

Guidelines for Software Documentation
Management, 6 June 1984

12

Table 2.3.2 {Continued)

FIPS Pub 30 Software Summary for Describing Computer .
Programs and Automated Data Systems, 30
June 1974
FIPS PUB 38 Guidelines for Documentation of Computer
Programs and Automated Data Systems, 15
February 1976
FIPS PUB 106 Guidelines for Software Maintenance, 15
June 1984
FIPS PUB FIPS PUB 132 Guideline for Software Verification and
(vav) Validation Plans, 19 November 1987
FIPS PUB 101 Guideline for Lifecycle Validation, Verification
and Testing of Computer Software, 6 June
1983
V&V EPRI Approaches to the Verification and Validation
NP-52386 of Expert Systems for Nuclear Power Plants
(1987)
EPRI Verification and Validation of Expert Systems
NP-5978 for Nuclear Power Plant Applications
NBS 500-56 Validation, Verification, and Testing for the
Individual Programmer, February 1980
NBS 500-75 Validation, Verification, Testing of Computer
Software, February 1981
NBS 500-93 Sofiware Validation, Verification, and Testing
Technique and Tool Reference Guide,
September 1982
NBS 500-98 Planning for Software Validation, Verification
and Testing, November 1982
NBSIR 82-2482 A Survey of Software Validation, Verification,
and Testing Standards and Practices at
Selected Sites, April 1982
NBS (Gen'l) | NBS 500-73 Computer Model Documentation Guide,
January 1981
NBS 500-87 Management Guide for Software
Documentation
NBS 500-106 Guidance on Software Maintenance,
December 1983 (General)

13

2.4.2 System Complexity

Of particular concern from the point of view of V&V are the characteristics of software systems that
define its complexity. These factors make the system harder to develop and analyze. Generally, the higher the
complexity, the greater the opportunity for errors and the greater the need for V&V. Six complexity factors for
software systems, with three levels each, are identified in Table 2.4.2-1. These are more general than Boehm's
focused description of detailed factors of module complexity (Boehm, 1981, p. 391, Table 6). They are also
more descriptive of all software systems than Hayes-Roth's description of levels of architectural complexity in
expert systems (Hayes-Roth, 1983, p. 22). The first complexity factor, physical centrol capability, concerns
whether the system can control aspects of its environment directly; those that can are more difficult to validate.
The lowest level of this complexity factor has no relation at all to control actions. The medium level has no
direct control function but provides advisory or decision data for control decisions. The high level directly
involves control of system elements.

The second factor, processing, has six sub-features associated with it, concerning: real-time aspects,
number of processors, whether they are sequential or parallel, synchronous or a synchronous, centralized or
distributed, and batch or interactive. The low level is the simplest on all of these features. The medium and
high levels are much more complicated, with the high level having the extreme values.

Interactivity with other systems is the third complexity factor and has four sub-features: stand-alone
vs. attached or embedded, number and type of interfaces, data- vs. user-driven, and whether there is interrupt-
handling.

The fourth factor concerns Knowledge and Data structures, with three sub-features: whether or not
the information is homogeneous in structure and type, whether the information is in one central place or
distributed, and whether the information is easily derived from well-structured codified sources, has to be
extracted from experts, or has to be invented.

The type of decision procedure, factor five, deals with four sub-features: type of chaining, type of
search (although this is not a discriminant among levels), whether reasoning is monotonic or non-monotonic,
and then a variety of types of specialized types of reasoning. The last factor details the extent to which the
. system has uncertainty handling features. These two factors, decision procedure and uncertainty handling, are
admittedly more characteristic of expert systems than conventional ones. However, these factors do
significantly influence complexity and they both could be implemented in conventional programming languages.

The average complexity level across the range of all existing conventional systems would probably be
low to low-medium. However, new software is tending much more fo the higher-medium and even high
complexity levels. This is particularly true when the software is in the form of expert systems. A recent survey
of almost 300 expert systems in the nuclear industry revealed quite a number that would definitely be of medium
complexity. To the extent that program managers can be assured of the quality and reliability of the programs,
such as through reliance on the guidelines to be developed in this project, one can expect that more and more
expert systems will have higher and higher complexity characteristics. One example of a primary candidate for
implementation with major reliance on expert systems is the SPDS (Safety Parameter Display System). This

14

Table 2.4.2-1 Six factors of software system complexity

COMPLEXITY FACTOR
LOW MEDIUM HIGH
Physical Control Capability * None ¢ No direct, but can provide * Can directly manipulate
 Advisory function only decision data into control and control system
modules elements
Processing Not real time Near or full Real-Time * Real-Time
« Sequential o Multiple processors ¢ Concurrent/muttiple,
¢ Single Processor ¢ Central/Distributed heterogeneous
¢ Synchronous ¢ Interactive processors
* Centralized Highly distributed
* Batch/Interactive e Cooperating
o Asynchronous
e Interactive
Interactivity with Other ¢ Stand-alone ¢ Embedded/Attached * Embedded
Systems * Single user-interface ¢ Continuous/intermittent Data- ¢ Continuous Data-Input,
¢ No data-interfaces Input Multiple channels
o User-driven e Usually Data-driven » Usually Data Driven
¢ No interrupt handling « Possible Interrupt-handling « Possible Interrupt-
handling
Knowledge/Data Structures * Homogeneous * Homogeneous/Heterogenous * Heterogeneous
and Storage e Centralized ¢ Centralized/Distributed e Centralized/Distributed
 Derived from codified * Derived from codified sources * Derived from codified
sources and experts sources, experts, or
invented
Decision Procedure » Backward (top-down) or » Backward, Forward, and mixed * All types of chaining
¢ Forward (bottom-up) chaining « Breadth first or Depth
Chaining Breadth first or Depth first first
o Breadth first or Depth » Monotonic or Non-Monotonic « Monotonic or Non-
first reasoning monotonic reasoning

¢ Monotonic Reasoning

Heuristic Reasoning

* Constraint-based reasoning

Belief-revision, truth

Model-based
inferencing, plus all other

maintenance
Uncertainty Handling e None ¢ Fuzzy Reasoning, * Complex Fuzzy and
« Reasoning under uncertainty uncertainty reasoning,
» Muitiple-Hypothesis
evaluation {(e.g.,
Bayesian)

15

high-medium to high complexity system must detect events occurring in real-time data channels as well as
respond to process interrupts, run concurrently and asynchronously with other processes, and perform complex
decision procedures under sometimes uncertain conditions.

2.4.3 Definition of Systems in Terms of V&V Classes

The complexity of systems, as described in Section 2.4.2, is an important factor in determining the
amount of V&V needed for a system to ensure its reliability and compliance with requirements. However, there
is another factor which needs to be considered in determining the extent of estimated V&V required: system
integrity. This factor refers to the joint capability of a system to operate for long periods without failures, to fail
gracefully with reasonable warnings, to be able to recover rapidly without much difficulty, and to avoid causing
expensive damage to property or harm to people or the environment. High integrity systems rarely fail. They do
so very safely and economically. Additionally, they are easy to fix and easy to restart. However, low integrity
systems are deficient in one or more of these aspects. How much integrity is required of a system will be a
function of several factors. These factors tend to be independent of the factors that make up complexity. Thus, a
highly complex system with a low degree of required system integrity should probably not need as much V&V
as a highly complex system with a very high degree of required system integrity. These two factors of
complexity and required system integrity are best thought of as continuous underlying dimensions along which
various points can be identified.

Table 2.4.3-1 shows three points on the complexity dimension coordinated with three points of the
degree of required system integrity. The factors supporting each of the three complexity points are written in the
first column. These factors represent conditions that define complexity as very high, moderately high, and low.
Factors underlying the points on the required integrity dimension are not identified, as this is a very complex
judgment which will differ greatly from one site and situation to another. The required integrity points are
simply entitled as low, medium, and high, however this might be determined (e.g., from the point of view of
system operability, safety, mission capability).

The intersection of the three points on the two dimensions creates nine cell combinations. Again, these
are selected combinations out of a much larger potential set of combinations of values from the two dimensions.
Nevertheless, the combinations do represent practical and significant situations, and names existing expert
system application examples which are entered in each of the nine numbered cells of this 3 x 3 table.

A representation like that in Table 2.4.3-1 makes it feasible to envision the two independent variables
of complexity and required integrity combining to reasonably determine the level of V&V that should be applied
to a particular system. The cell at the highest values of complexity and required integrity, cell number 3, should
receive the most stringent application of V&V methods. The most extensive and thorough methods would be
used for this situation. Similarly, the lowest complexity and required integrity cell, cell number 7, should
receive only the minimum degree of V&V. How the cells are to be assigned is suggested below, but the
responsibility ultimately rests with the individual agency utilizing the chart.

Inspection of Table 2.4.3-1 will reveal that the cells are grouped into three classes: the upper right cell,
number 3, is the lone member of V&V Class 1, the most stringent class; the bottom left-most two cells, cells 7

16

rr—— -

Table 2.4.3-1 Three levels of V&V stringency used in this report
for expert system software in the nuclear power industry 1

System Low Medium " High
Complexit,
plexity INTEGRITY DIMENSION
R [P E Pl | [T
Real-time * C ' Steam Generator Automatic control-rod ll l Protection
(] - .
Continuous Data- ;){ | le;:::wn Control manipulation ‘ I System |
D?Q“Cmdm:o“f's’ P ||} Raiosstive waste Miain Fecdvater Conyrol | |
Functions, ||| menegement System IV vevcrassz
May have Interrupt i
Processing ,I(!' || I
1 T == =
Til'l EOPTS |
Moderately High (|0 4 5 (Emergency Operating | © |
Embedded or Attached l Procedure Tracking ECCS (Emergercy 'I
No Direct Control IWA System) Core Cooling System) |
functions, Control- -1
Decision 1 (thermat Pient RSAS R;,,al e e and
D onitoring l
Support it Analyzer) (Reactor Safety Diagnosis [
function, Assessment System)
At least near l;; I | Tl.nbinc .Genem.or “
real-time Diagnositc REALM (Reactor |
Continuous Data l; | | Monitoring Emergency Action Level |
Input Channels il Rlesiter) V&V CLASS 2 il
s =a=a2a=02s5 5 ==
N|]®0000000000000004000000000000 o |l9 "
LOwW ° 7 8 o | In-service "
® o ECCS (Emergency
Stand-Alone, o FuelRod SARA °h | Core Cooling il
User Driven, o Reshuffling (Safety ol System
Non Real-time, o Planer Review Advisor) o |} inspection Il
Mmm, : : l ggxsm(ﬁmergmcy “
No continuous o Water Chemistry Plant-Layout of,] Safety Actuation i
Data Input o Advisor ® |’ System) Testing
@ V&V CLASS 3 o= — —

0000000000000000p0000000000000

1
Candlidate systems for V&YV are to be matched to the closest cell examples to determine suggested V&V class

17

and 8, constitute V&V Class 3; and the remaining six cells are in V&V Class 2 (cells 1, 2, 4, 5, 6, and 9). The
meaning of the classes is as follows: Class 1 receives the most stringent level of V&V Class 2 receives a
substantial degree of V&V, and both it and Class 1 receive considerably more stringent V&V than the Class 3
cells, which receive the minimum. The concept of increasing stringency implies several things: (1) a greater
thoroughness in testing system aspects represented by more test cases per function tested; (2) a greater
completeness in testing coverage of the system represented by more functions and/or program structures being
tested; and (3) a greater effort to discover truly hard or subtle faults. The actual methods to be applied in the
three classes are not yet specified here. That will be accomplished near the end of this project. However, the
use of the complexity and required integrity dimensions, the selection of the three points on each, the
specification of examples, and, most importantly, the assignment of cells to Table 2.4.3-1 is presented.

In practice, anyone planning to develop an expert system, or to V&V an existing expert system, should
first consider the requirements of the system and decide by appropriate means the required integrity of the
system. Required integrity need not be exactly "low", "medium", or "high". It may have intermediate values.
The location of this judgment should be marked with a point on the line labeled "required integrity dimension".
Additionally, the person should evaluate the complexity of the software system in terms of the complexity factors
represented in the table and then locate the judged complexity with a point on the line labeled "complexity
dimension".

Two examples of using Table 2.4.3-1 to determine the V&V Class of an expert system as was done in
this investigation are shown in Table 2.4.3-2. In the first example, the integrity and complexity values of the
system are shown by points A and B, respectively. The intersection of these values is marked by point X, in cell
4. This point is in the low-integrity/moderate-complexity cell, but close to the medium-integrity border, so one
needs to look at the adjacent cell, cell 5. But cell 5 is also in V&V Class 2, so even if point A were actually to
move towards increased integrity a bit, it would not change the recommended V&V class. The second
example, with points C and D, locates the second system near a corner of cell 6. Here three adjacent cells (5, 8,
and 9) may be considered. Cell 5 and cell 9 are in the same V&V Class as cell 6, which contains Y. So, the only
consideration is whether Y actually should be located closer to, or in, cell 8, which is in the Class 3 region. If
one re-evaluates the required integrity and complexity of the candidate expert system and determines that indeed
the candidate system is somewhere between cell 6 (or 5 or 9) and cell 8, then the degree of closeness should be
assessed (in terms of closeness of 8 to 5/6/9 on a 10-point scale), and the appropriate supplemental V&V
techniques to move between Class 3 and Class 2 may be used as prescribed.

2.4.4 System Components

The scope of concern encompasses the overall software system and its components (Table 2.4.4-1).
Highly structured conventional software systems (particularly military ones) are often composed of major
subsystems with separate configuration management baselines. These baselines contain computer software
configuration items (CSClIs) as defined in United States Department of Defense systems developed under
DoD-STD 2167 or 2167A. Each separate subsystem may have a number of components defined as computer
software components (CSCs) and each component may have a number of small sub-components, or modules.

18

Table 2.4.3-2 Illustration of Use of the table for two candidate expert systems with estimated
integrity/complexity values given by points (A,B) and (C,D) respectively.

System
Complexity

Medium

GRITY DIMENSION

Quite High
Embedded,
Real-time,

Continuous Data-
Input channels,
Direct Control
Functions,
May have Interrupt
Processing

— e eats G—— e
e e s

Moderately High

=YY ON

Embedded or Attached
No Direct Control
functions, Control-
Decision
Support
function,
At least near
real-time
Continuous Data
Input Channels

Low

Stand-Alone,
User Driven,
Non Real-time,
Advisory
Functions,
No continuous

Data Input

NI NS N ..

T=u

ZP =2

000000000000000P(

(]
o7

o
o
(]
(]
o
]
(]
o
o
(]
(]

00000000000000

V&V CLASS 2

000000000000

8

V&V CLASS 3

pOo00000000D0O0O0OO

© 00 000000 00 O

19

Some V&V techniques, particularly dynamic testing ones, are appropriate for modules but not for
overall system or subsystems. All of the techniques for all of the components are of interest and value.

Anticipating the discussion in Section 7 of components of expert systems, the distinctions made in
Table 2.4.4-1 among software "components", module, subsystem, and system, are really only the differences
among small to very large programs. There is nothing in this characterization which reflects anything about the
function of the component. If the topic of discussion were well-defined types of program applications which
accomplished specific functions (such as compilers, database management systems (DBMS), spread-sheets),
then it would be possible to identify specific functional components.

For example, a DBMS will have specialized components such as "input-query processor", "database
access mechanism”, and "transaction roll-back module®. It is this second sense of functional components that
will be used later to characterize expert systems.

2.4.5 Nuclear vs. Non-nuclear Applications

The whole range of V&V techniques from all application areas have been considered; this report
includes nuclear and non-nuclear applications. For example, a number of methods were developed for military
or space applications, because of need for high integrity and reliability in software. These could easily be
applied to nuclear and other types of applications.

2.4.6 United States vs. Foreign

Although the eventual guidelines will be intended primarily for the United States nuclear industry, it
was important to extend consideration of V&V techniques to methods developed elsewhere. The European
Community was of particular interest due to its great concern for high-integrity systems. Examples of foreign
activities which are considered very important in the review are the draft standards of the UK concerning use of
formal methods for systems (UK, 1989), the National Science Foundation-sponsored conference and report on
Nuclear Instrumentation and Controls and their associated software tools (e.g., Beltracchi, 1991), and the testing
and tool-development activity of the Halden project in Norway (e.g., Dahll, 1990).

2.4.7 Evaluation Criteria

Systems can be evaluated with respect to a wide variety of criteria. Table 2.4.7-1 shows a perspective
of 68 criteria grouped into three classes: criteria related to the specific functionality of the system, criteria
related to performance, and general non-performance attributes.

An alternative view is given in Figure 2.4.7-1 which groups some of these evaluation criteria into three
classes of acquisition concern: performance, design, and adaptability. These three classes are composed of a
total of 11 major criteria classes and 21 subfactors; the definitions of the subfactors are given in Table 2.4.7-2.
Figure 2.4.7-1 and Table 2.4.7-2 are transformations of Sizemore's 1990 representation, pp. 1-6.

20

Table 2.4.4-1 Components of larger conventional software systems

Level
Aspects
i Module Subsystem System
Development Programmer Muitiple Multiple
Environment Programming Contractors/
Teams Vendors
Expected Range of 5 5-40 40-500
Developers
Complexity of Integration || Minimal/ Somewhat Very Complex '
Other Modules Complex
Testing Early Post Module Last
Precedence
Size <100 Lines Of Many Modules 2 or More
Code Subsystems

21

Table 2.4.7-1 Criteria to be tested or evaluated for

three major classes of requirements

Class Criteria Class Criteria
Functionality accuracy General data standardization
consistency Attributes device independence
completeness (cont.) documentation adequacy
coverage error handling
correctness error recovery
explanation error-tolerance
feasibility expandability
help extendibility
meta-knowledge fault tolerance
operational concept flexibility
tutoring human engineering
instrumentation
integrity
interoperability
. learning
Performance database access time machine independence
execution efficiency maintainability
"guaranteed adequate modifiability
answer" modularity
l/O handling operability
memory requirements portability
number of solutions readability
power (re: human- recoverability
time to solution, reliability
quality, success, reusability
experience level) robustness
storage efficiency safety
time to solution security
self-containedness
self-descriptiveness
General simplicity
Attributes access auditability structuredness
’ access control testablhfq./
accountability traceabilty
auditability unde!:e.tandabllny
augmentability usability
availability
communicativeness
communications
commonality
communication
standardization
conciseness
cost

data commonality

22

ZEN

Efficiency Integrity Reliability Usability
—Execution Efficiency tAceess Control —~ Consistency Communicativeness
—Storage Efficiency Access Auditability — Error Tolerance Operability

~ Accuracy
— Structural Simplicity
— Test Adequacy

Flexibility Portability Reusability
~Modularity - Modularity ' Modularity
—Self-Deséﬁptiveness Self-Descriptiveness Self-Descriptiveness
—Documentation Machine Independence Machine Independence

Adequacy
—Expandability

Flexibility Interoperability Portability Reusability
—Modularity Modularity Modularity Modularity
—Self-Descriptiveness Data Commonality Self-Descriptiveness Self-Descriptiveness
—Documentation Communications Machine Independence Machine Independence

Adequacy Commonality
—Expandability

Figure 2.4.7-1 Three Major Acquisition concerns (Performance, Design, andAdaptability) with
their 11 Major Performance Factors and 21 Subfactors (based on Sizemore, 1990)

23

Table 2.4.7-2 Definition of software quality subfactors

(adapted from Sizemore, 1990)

Traceability The extent to which the products of each software development phase
implement the products that precede them, have their basis in those products,
and provide mechanisms that aid in establishing those ties.

Execution Efficiency The extent to which a system performs its intended functions with minimum
execution time.

Self Descriptiveness The extent to which program source code is easy to read and understand.

Completeness The extent to which a system contains all required components and each of
those components is fully developed.

Storage Efficiency The extent to which a system performs its intended functions with minimum
consumption of storage resources.

Documentation The extent to which required documentation exists, is in the required formats,

Adequacy and is accurate, clear and complete.

Consistency The extent to which a system's code and documentation are uniform and free
of contradiction.

Access Control The extent to which a system provides mechanisms to contro! access to
software and data.

Instrumentation The extent to which a system contains instructions or assertions to facilitate

execution monitoring, debugging, and testing.

Error Tolerance

The extent to which a system continues to operate correctly despite input
errors or software faults.

Access Auditability

The extent to which a system provides mechanisms to audit the accessing of
software and data.

Expandability The extent to which a system can be easily modified to provide additional
functions or data storage capacity.
Accuracy The extent to which a system is free from error in calculations and output.

Communica-tiveness

The extent to which a system provides useful output and an interface with the
user.

Machine The extent to which a system can be made to execute in more than one

Independence hardware or software environment.

Test Adequacy The extent to wiich test planning and execution ensure thorough testing of the
system.

Operability The extent to which a system can be loaded, initiated, executed and
terminated.

Data Commonality The extent to which a system uses standard or common data formats, types,

representations and structuring.

Structural Simplicity

The extent to which a system is free from complicated data, logical and
control structures.

24

Table 2.4.7-2 (Continued).

Modularity The extent to which a system is composed of discrete components such that
a change to one component has a minimal impact on other components and
such that the test performed by single component are functionally related.

Communications The extent to which a system uses standard or common communication

Commonality protocols and interface routines.

25

All of these factors are of interest. Their relative importance should be specified in the system's
Requirements Document. For nuclear industry applications the most critical evaluation criterion should usually
be safety. The next most important criteria might be the human factors criterion of operational concept. This
involves the human-computer interface, particularly the style of information display and the allocation of
analyses and decisions to user and computer.

2.4.8 Phase in the Lifecycle

The scope of concern encompasses the overall Life-cycle, as well as Life-cycle phases. Some V&V
techniques are appropriate for early Life-cycle phases (such as requirements analysis and traceability), whereas
other techniques are appropriate only after system implementation (such as dynamic testing).

2.4.9 Other

There are at least four other factors to consider with respect to scope: automated tools and methods,
alternative development or testing environments, programming languages, and type of software defects and
problems. All aspects of these factors are of interest as they apply to V&V of all software.

2.5 Approach

This survey was conducted in three major stages (corresponding to the three major Sections, 5-7, of
this report):

1) Classification of conventional V&V methods (Section 5)
2) Characterization of the methods (Section 6), and
3) Assessment of their applicability to expert systems (Section 7).

The initial activity of classification involved three steps. First, a number of publications which dealt
with V&V and software quality assurance topics were reviewed. These included textbooks, journals,
proceedings, and
communications containing V&V articles. A literature search was also performed on V&V topics and copies of
the most relevant reports were obtained. Over 300 V&V related documents were consulted.

The next step in classification involved sorting the techniques according to the phases of system
development they addressed. The phases considered were: Requirements, Design, Implementation, and
Maintenance. However, there were no V&V techniques especially designed for this last category although
maintenance needs are quite different than those of development (Miller, 1978). Methods used for the
Requirements phase were often used for the Design phase, therefore, the final mapping of V&V techniques to
Life-cycle involved only two phases: a combined Requirements/Design phase and an Implementation phase.

The third classification step involved grouping the methods within each Life-cycle phase into natural
categories, based on similarities among the methods. This classification stage is illustrated in Figure 2.5-1.

26

Proceedings

. Professional Literature
Sources: Communications BOOks

Articles Search

[

Set of all
digcovered V&V Methods
Sorting of
::;:tg;’;g by Requirements/Design implementation

Phase Methods Phase Methods
phase; ’

/Methods / \

Sub-categorization Static Testing Dynamic Testing
of Implementation Methods Methods

[\

Sub-classes Sub-classes

Figure 2.5-1 Survey classification of discovered V&V Methods first by life-cycle phase
(Requirements/Design and implementation) and then by natural categories.

27

Ty NERE) T T TS M A T T

The second major stage of the survey was to characterize the individual V&V methods in terms of the
defects they could detect, their effectiveness in doing so, and the various aspects of using these methods. To do
this, a taxonomy of software defects was first developed, and then an assessment was made concerning which
defects could be detected by which methods. A number of additional characterization features were developed
and each method was ranked on all features. Schemes were developed for computing a cost-benefit measure as
well as an "effectiveness metric" which provided three scores for each technique, one for each of the three V&V
classes identified in Section 2.4.4.

The third and last survey stage was to assess the applicability of these conventional V&V methods for
expert systems. To do so, the four major components of expert systems were identified. These components
were then characterized in terms of potential defects and similarity to conventional software. Finally,
conventional methods were assessed as to their applicability to overall expert systems and their components.
The most effective methods were identified.

28

3 MANAGEMENT ASPECTS OF CONVENTIONAL V&V

Expert systems are primarily software systems; software is software, and software must be managed.
Management of software systems is the focus of this section, which details the importance of the software
development Life-cycle. According to Boehm's 1976 model, the software development Life-cycle consists of
system requirements, software requirements, preliminary design, detailed design, code & debug, test and
preparations, and operations and maintenance. Management of the software development Life-cycle is a key
process. The Life-cycle drives all components: reviews, quality assurance (QA), testing, documentation, etc.

While ideal Life-cycles for conventional systems and expert systems will be different, the appropriate
management techniques will not differ greatly. No system can be developed to the exacting standards of the nuclear
industry (or any other industry with safety and reliability concerns) without adequate and thorough management.

Although this effort focuses on the technical aspects of V&V, this section expands on the three major
aspects of V&V management. This expansion focuses on the reviews and documentation required by the V&V
process throughout the Life-cycle, V&V's association with code-control and quality assurance, and the cost-savings
recouped by finding defects early in the life-cycle. '

3.1 V&V Documents, Procedures, and Reviews

The minimum set of required documents for a V&V program of any size or type is a Software
Requirements Specification and a Software V&V Plan. The Software Requirements Specification is the basis for
assessing the correct functioning of the software. The Software V&V Plan details the methodology of how the V&V
process will be managed. The project documentation will be used to inform the reader of the project's progress and
to trace requirements to specifications, design elements, code modules and tests. Documentation must be clear,
concise, and of high quality. It also must be maintained and updated in conjunction with the progress of
development on the software system itself.

The most important V&V review is the Software Verification Review which evaluates the Software V&V
Plan. This review ensures that V&V is considered and planned at the beginning of the project. It will cover the
software development Life-cycle and identify how V&V activities are incorporated. Special constraints or concerns
are readily identified during the review process. The plan should be developed incrementally and include revisions
and expansions at each step of the Life-cycle. It is possible that multiple reviews may be necessary. Instituting
corrective procedures as a result of the reviews should be done carefully. Milestone reviews such as the Preliminary
Design Review (PDR) and the Critical Design Review (CDR) are discussed in Section 4.

NUREG/CR-4640 provides a table mapping Software Quality Assurance requirements to 10 CFR 50
Appendix B criteria. This represents a complete nuclear quality assurance program and is reproduced here as Table
3.1-1. The table shows which Appendix B criteria apply to which chapters of NUREG/CR-4640. Nuclear power
applications sofiware can be used in the design, analysis or operation of safety-related structures, systems, or
components, and it must be included under the regulations of 10 CFR 50.

29

Table 3.1-1 Correspondence between software quality a
assurance requirements (SQA) and appendix B criteria from 10 CFR 50

Report Chapter Appendix B Criteria
3.0 Sofiware Life Cycle . Quality Assurance Program
. Design Control
X. Inspection
4.0 Management R Organization
. Quality Assurance Program
5.0 Documentation i Quality Assurance Program
1. Design Control
V. Procurement Document Control
V. Instructions, Procedures, and Drawings
Vi. Document Control
XVII. Quality Assurance Records
6.0 Standards, Practices, and Conventions Il Quality Assurance Program
1. Design Control
7.0 Review, Audits, and Controls l. Organization
. Quality Assurance Program
HE Design Control
V. Instructions, Procedures, and Drawings
VI. Document Control
Vill. ldentification and Controt of Materials, Parts, and Components
X. Inspection
XVIII. Audits
8.0 Tools and Techniques L Design Control
iX. Control of Special Processes
9.0 Software Configuration Management and Code I Organization
Control . Quality Assurance Program
V. Instructions, Procedures, and Drawings
Vi. Document Control
Vil. Control of Purchased Material, Equipment, and Services
VIil, Identification and Control of Materials, Parts, and components
VIIl. Handling, Storage and Shipping
XIV. Inspection, Test, and Operating Status
XV. Nonconforming Materials, Parts, and Components
XVI. Corrective Action
XVil. Quality Assurance Records
10.0 Verification and Training . Quality Assurance Program
L. Design Control
X Inspection
Xi. Test Contro}
11.0 Control of Software Procurement I Organization
. Quality Assurance Program
L. Design Control
V. Procurement Document Control
VIl Control of Purchase Material, Equipment, and Services

30

3.2 Contrast of V&V with QA & CM

The success of V&V activities is greatly dependent on the availability and quality of the software
documentation. Therefore, a well defined and effective software quality assurance program is necessary to obtain the
maximum benefit from a V&V program. The Software Quality Assurance Plan addresses the following: (1) software
Life-cycle definition, (2) software documentation requirements, (3) software development standards, practices, and
conventions, (4) V&V requirements, (5) configuration management requirements, (6) quality assurance (QA) reviews
and audits, and (7) testing requirements.

A key requirement of both successful QA and V&YV is that these activities be accomplished by independent
agents. Independent agents are defined as individuals who are not part of the system's development team. They may be
from a separate department with the same development organization or from an outside development organization
altogether, This is to separate the QA and V&YV agents from the day-to-day, mundane details of the development effort.
This separation gives them the ability to see the overall picture clearly and not be influenced by the undocumented
assumptions of the development personnel, providing an unbiased assessment of the development team's activities.
This is not to suggest that QA and V&V as processes should be independent of the development activity. On the
contrary, the more closely they are integrated into every aspect of development, the better.

In addition to QA, sofiware configuration management (CM) is required for the successful application of
V&V techniques. CM formally documents all changes to development documentation and code. Changes are
controlled through a change request and approval process to ensure that only appropriate and approved changes are
made. This process allows the verification of documentation and software changes with some assurance that other
unauthorized changes were not made. Without the implementation of change control, the total product would require
re-verification to detect inappropriate modifications or the introduction of new errors.
CM activities consist of configuration identification, configuration change control, configuration status accounting and
reporting, and configuration audits and reviews. ANSIIEEE Standard 1042-1987 provides a guide to software
configuration management. Table 3.2-1 outlines the activities and responsibilities of the V&V team at each phase of
the Life-cycle as compared to the QA and CM activities. Note that the items in each column are independent of each
other. However, they are coordinated by Life-cycle phase.

3.3 The Value of Detecting Defects Early in the Life-Cycle

V&V is an activity that should take place throughout the Life-cycle, not just at the end of it. Detecting system
defects during the requirements or design phase makes recovery relatively inexpensive. However, when the system has
been fully implemented, fixes usually involve complete code rewrites which are labor intensive and expensive. The
Boehm 1981 study shows that the relative cost of fixing an error increases as a function of the Life-cycle phase in
which it was detected; the later the defect is discovered, the more expensive the corrective action. This is evident in
Figure 3.3-1.

If a requirements error is discovered in the requirements phase, only the requirements document needs
revision. However, if the defect is discovered after code implementation, the requirements document, all subsequent

31

Table 3.2-1 Lifecycle comparison of activities associated with V&V, Quality Assurance (QA), and
Configuration Management (CM)

V&V QA CM
REQUIREMENTS REQUIREMENTS REQUIREMENTS
o Evaluates, reviews and comments on o Reviews specifications for obvious o Maintains originals of all
Requirement Specification errors and signs off documents

o Traces requirements to their sources

o Initiates requirement tracing method to
trace and verify requirements and links
them to detailed design

o Ensures accurate translation between
Customer’s Specification and vendor's
Functional Specification

o Inspects hardware configuration for
compliance to specifications and
contract

0 Aftends reviews

o Wirites Discrepancy Reports (DRs)

o Develops V&V Plan

DESIGN

o Traces each requirement into design
and adds references to requirement
tracing method to show linkages

o Analyzes detailed design

o Analyzes design document for
correctness, feasibility, consistency,
testability, operational integrity, etc.

o Performs/analyzes timing and sizing to
ensure adequate hardware resources

o Analyzes operating sequences, data
flow, task interaction, and mode
switching

o Inspects all items received from vendors

o Performs on-site factory acceptance of
major vendor items

o Patticipates in reviews

o Checks for adherence to standards

o Monitors vendor performance and
quality of documentation

o Reviews design specifications for
obvious errors and signs off

DESIGN

0 Attends design reviews

o Performs analysis of design changes
vs. test procedures

o Checks for adherence to standards

o Monitors CM actions for completeness
and adherence to procedure

o Maintains all source code
master files

o Receives and logs all
documentation received from
outside sources

o Maintains all software and
documentation libraries

o Maintains archives

o Maintains total hardware
configuration tracking and
accounting

o Maintains control of originals
on all documentation

DESIGN

o Manages transfers in design
aspects between final CM
master files and user

directories

o Builds system as required

o Backs up system as required

o Runs difference program upon
request from QA or V&V to
verify changes to design

o Maintains informal change
control

32

Table 3.2-1 (Continued)

v&v

QA

CM

]

L]

(o]

DESIGN (Cont.)

Looks for unnecessary redundancy,
unidentified design element, etc.

Emphasizes analysis of hi-risk, hi-
priority ltems
Analyzes fallover and device switching

Audits documentation for completeness

" agalnst the delivered CM library listings -

ensures 100% match between
requirements document and design

Wiites Discrepancy Reports

IMPLEMENTATION, TESTING AND
TEGRATION

Reviews test procedures for adequacy
Add test references to requirement
tracing method

Monitors developer’s test program

Analyzes test results independently
Writes DRs on any deficiencies not
written up by QA

Performs independent testing if needed

Verifies operator/user manual during
testing

Performs audit of code included in final
build

Looks for unnecessary, unidentified
code, etc.

Audits design documentation for
completeness against delivered code

listings, ensuring 100% match

DESIGN (Cont.)

IMPLEMENTATION, TESTING AND

INTEGRATION

o]

Writes majority of DRs on test failures

Follows test procedure to the letter

Actually performs File Allocation Table

Participates in dry run and runs for
record

DESIGN (Cont.)

o Maintains master file on all
Trouble and Discrepancy
Reports

IMPLEMENTATION, TESTING
AND INTEGRATION

o Maintains test result records
and test data

o Inspects and inventories
systems prior to shipping

o Monitors all cleaning, packing
and loading of system for
shipment

o Participates in Site Acceptance
Tests

o Maintains all source code
master files

o Certifies final CM build

o Maintains all as-built
documentation

o Initializes and manages all
changes to documents and/or
code

o Runs difference programs on
request from QA and V&V to
verify changes to code

33

Relative cost to fix error

1000
I I I I i
Larger software projects
0= IBM-SSD T 7
A ”
00— O i /—
= GTE (
100 |— =l —
0
T 80%
1 Median (TRW survey)
50— _1.20% h
o0——o0 SAFEGUARD -
o -
20 p— —
10— —
U _
-
-
S5t — Smaller software projects -—
— U - [Boehm, 1980]
L
2 —/ —_
1 | | I l
Requirements Design Code Development ~ Acceptance Operation

Test Test

Phase in which error was detected and corrected

FIGURE 3.3-1. INCREASE IN COST-TO-FIX OR CHANGE
SOFTWARE THROUGHOUT LIFE-CYCLE (Figure adapted from
Boehm, 1981, his Figure 4-2, p.40)

34

documentation, and the code itself must be changed. On a large project, an error can be 100 times more costly to fix in
the maintenance phase than in the requirements phase. The effect is less extreme in smaller projects, due to less
formal procedures for configuration control, but the impact is still a factor. A Rolls-Royce study has even shown that
the cost of using labor-intensive formal methods to represent and simulate the requirement specification (see Section
5.2.1) was recovered within the development phase. It was not amortized over the maintenance life of the system.

The total developmental costs were within the budgeted project amounts even though the project remained
longer in the requirements/design phases than traditional projects. Nevertheless, the system was completed on
schedule and within budget. In contrast, a comparable project with less stringent requirements following the
conventional Life-cycle patterns ended up being delivered six months late and at twice the budgeted cost (Hill, 1990).

These results stress the importance of defining and documenting requirements, specifications, and designs

prior to implementation. It is important to perform V&V on those documents as well. Good V&V, performed early in

the life-cycle can provide tremendous cost savings to the project. The cost savings more than justifies the expenditure
for the V&V itself.

35

N TR LT

4 SOFTWARE DEVELOPMENT LIFE-CYCLE

4.1 Alternatives

The term life-cycle refers to the "start-to-finish" phases of system development. The software development life-
cycle encompasses the following: requirements specification, design, implementation, integration, field installation, and
maintenance, A software Life-cycle provides a systematic approach to the development and maintenance of a software
system. A well-defined and well-implemented life-cycle is imperative for the successful application of V&V techniques.
There are two types of life-cycle models: the sequential model and the iterative model. The sequential model is a once-
through sequence of steps without providing formal feedback from later phases to prior phases. The iterative model, on
the other hand, involves repeated cycling through life-cycle phases.

4.1.1 Sequential Life-cycles

The sequential life-cycle is appropriate when the requirements are well known, when they can be precisely stated,
and when the course of implementation is clear. Conventional software systems have traditionally been developed
according to the sequential life-cycle model. It has been often called the "waterfall” model; Boehm (1988) and the
Department of Defense's MIL-STD-2167 (DoD, 1988) provide examples of the sequential life-cycle model. For the
nuclear power industry, the life-cycles described in NSAC-39 and NUREG/CR-4640 are the most referenced. Figure 4.1-1
shows the NSAC-39 life-cycle and Figure 4.1-2 shows the very similar but more detailed NUREG/CR-4640 life-cycle.
The NSAC-39 model is the more well-known model, and shows the integration of softiware activities with hardware
development activities, The NUREG/CR-4640 model, which is very similar to that proposed in DoD-STD-2167 and DoD-
STD-2167A, is more detailed and shows the documentation products and the formal reviews associated with each phase.

4.1.2 Tterative Life-Cycles

The iterative life-cycle is appropriate when the requirements are not well-known, or are undergoing change, and/or
there are significant technical issues/questions about how the software can be implemented to meet those requirements.
An iterative model provides successive refinement of requirements and improvement of implementations via a series of
prototypes. Uncertain requirements exist in both high technology, state-of-the-art conventional software systems, and in
the vast majority of expert system development projects.

The iterative life-cycle exemplified by the spiral model, shown in Figure 4.1-3 (Boehm, 1988), is one of the most
well-known of this type. This model defines a succession of four prototypes. It includes a risk analysis to identify the major
issues and risks and to select the appropriate alternative solutions to be implemented and tested in each prototype. A
precursor to this model was the eternal development cycle model of Deming (Deming, 1985).

The Department of Defense (DoD) has recognized that not all software cannot be developed successfully using

the waterfall life-cycle. Therefore, DoD has incorporated revisions in its software development life-cycle standard, MIL-
STD-2167A (1988), to allow the flexibility of structuring an iterative

37

System Requirements
(Hardware and Software)

l |

Hardware Software
Specification Specification
i) |
Preliminary Preliminary
Design Design
Final Design Final Design

‘ Y

Manufacture I Test Bed Manufacture I

]) Requirements |

Test Design Construction Test

Integration I
and Tests I

Validation Test

Test Results I
!

Field Installation
and Test

Field
Verification Test
Activity

Figure 4.1-1 Relationship of V&V Activities to
Generic Project Activities, From NSAC-39 (1981)

38

(An11q183] 105 ‘9uopaa) (£L861) 0b9Y-UD/OTUNN WoJ QPLd 3j1T daesmyjog T-1'p 3magy

=il
~

anmMyos P
AAATY PORTOL
FRPOD

O

Y

g

erid somvnery Lpmd) saamipos dvDS§
AN ONEAJLIOA QMO YAS
ypny wonundgmo) fropdag vod
PRy BopundigeoD) peonaang Yo
AotAa] 1I0UDTRY CORYATIOA YYUA
mapoy Tl (rRuE) YD
vopdioe] uipoq] avaaps 4as
aspan] a¥poq Averad yad
Aotamy] roamambey] ammYyos YYS
vopvaads ulieq emyos §as
sopeayrseds noxsupbey avmpes SHS

SNOLLVIATEaav

—

O
wrmo []

[eidctqyl

1 INSIWEDVNYH 103r0%d

39

Cumulative
cost

o~ -1

Progress

thraygh
steps

Determine

objectives,
alternatives,
constraints

Evatuate ailernatives,
identify, resoive risks

analysis

Prototype \ Operational
3\ prototype

Commitment

Review -
partition

Requirements plan
lite-cycie plan

Dsvaicp- Requirements
mentpian] validation

Integration | 1ygqir vaiidation

and gm and vorilication

Plan next phases | |

operation Software

Acceptance
lmplnmmmbn} tent |

| and test

Devsiop, verily
next-lsvel product

Figure 4.1-3. Spiral Model of the Software Process (from Boehm, 1988)

40

life-cycle development. An iterative model for expert systems is consistent with MIL-STD-2167A, as shown in Figure
4.1-4 (Miller, July 1990). This life-cycle recognizes the need to liberate initial prototypes from configuration
management constraints during exploratory development. Once the requirements are well defined, baseline prototypes
are developed using configuration management and V&V constraints until a final system is ready for integration with
its delivery environment.

The Incremental Systems Builds (L. Miller, 1990) life-cycle is suggested for conventional software systems,
as well as expert systems where high reliability of complex systems is important.* This approach calls for breaking the
development process down into a series of small construction efforts, each followed by a test and repair activity. The
first incremental "build” leads to some significant function that takes the user from the beginning of the application
process through to some limited but useful result or output. Then, this miniature of the overall system is thoroughly
tested before beginning the next build. Each successive build adds more function and capability until, eventually, the
overall system is complete. This Life-cycle has the major advantage that one can always test at the overall system level
to determine the quality and performance of the various component interfaces and also the overall operational concept.
With each build being a small increment, problems in design or errors in implementation can quickly be detected and
corrected. The approach differs from iterative prototyping in that successive prototypes are often are completely
different from each other; the incremental build process always layers the new addition onto the base of all previous
builds. Although some adjustment to changes in requirements and design can easily be made with this approach, it
should not be used if one expects the requirements and design to change radically during development as a result of
some kind of discovery process. A major benefit of this Life-cycle is that it is amenable to continuous process
improvements. Analysis of the causes of problems found in the testing of each build can lead to improvements in the
developmental processes of the next build.

The incremental build approach cycles through three main phases for each build: revision, build, and
test/analyze/fix. The revision phase is a combined requirements analysis and design phase. It occurs after the first
build (original requirements and design documents) is modified and updated. The build phase occurs when slight to
moderate functionality is added to the initial baseline. The build is based on the revised requirements/design obtained
from the revision phase. The test/analyze/fix phase consists of those named actions. The build is tested to assure
proper function, analyzed for errors, and fixed or corrected if necessary. This Life-cycle accommodates situations
where the system development has begun even though requirements are not completely defined. It is especially
appropriate for systems requiring very high levels of safety and integrity assurance. The high levels of assurance are
achieved by the incremental process of the Life-cycle and the extensive testing during the test/analyze/fix phase.

Figure 4.1-5 shows that there are three types of testing distinguished by temiporal direction: past, present, and
future. The past direction type tests with regression tests to assure no change in previous function or performance since
the last build. The present direction type tests with a number of test types. The future direction type tests with analyses
intended to determine how the development process could be improved for future builds and to understand how the
present build could enable future integrity-critical failures.

3 This approach embodies features of previous similar models, particularly the iterative enhancement (Basil & Tumer, 1975) and the evolutionary
Life~cycle models (Gilb, 1973),

41

P e e e e e

P

EHQP=-»n

INITIAL PROTOTYPR
Relevant * End Phass 2
Documers Review . Fhue.
- J
P-KRS Specifications 1 A
1 D
o
P-XDD Design E
e v
‘ ‘ E
Eady Prototype Development aal 0
P
\ M
E
Eudy Prototype Evaluation - N
T
BASELINE \ / SYSTEM :
Requirements
givvp Specification Baseline Requirements Specification K-_
Ml CHANGES - Y r| S
A b |ew Requs xcp —-l Deuiled Knowledge Acquisition }—- E| T
v
I Emor Repors Buctisa —o| - ! - I_. 1 A
N KDD DedgnR:v"i;fm BmlmeSyimDup(ﬁnk) ? G
T UE
E KD —.| Bascline System Developement (Rev ¥) l—— N
' S
N
by 3 '3 L)
A KVVR g:f!’:; Sysem _>| Bascline System Byalustion (Rev k) _l——— ?:‘:;:?1 g‘fm o
N REveH Management
C
E
LEGEND I
e T A e X
KDTVVP - KBS Development, Testing and V&V Plan E
KCD - KBS Change t S
KDD - KBS Design G
KID - Document T
KVVR - KBS V& VRepot R A
KR ms”u Inkgration nd Testing l A G
Evalustion Review T E
T T T T T T T T T T, T T eI I
s Laxst Sysiem Vezsion (Rev K) '.§ 0
NSRSt — |\ B X

1 Documen abbreviations givenin Legend
2 Revicws conducted on initial pess through Baseline System Development and oo major and/oc fina) revisions

build strategy

3 D) tooccur by £ 1 knowledge/sy

4 Bvaluasion includ functicn testing, o0 testing, fal
A “Fix-as-you-go"” repair strargy is esscntial

S Delivery Sysu ion sieps may notbe Y

de analysis and teating, and robustncssiesting.

Figure 4.1-4: An Expert System Life Cycle
Consistent with Conventional Software Life Cycle

VERSION i- 1 VERSION i VERSION i +1

e O

Temporal
Test
Direction

Past M

Regression Tests

Present

New Function Tests

New Procedural Code Testing
Knowledge-Base Testing
Scenario Tests

Random Tests

Timing Tests

Robusmess Tests

Stress Tests
Design Limit Tests
Maximum Capacity Tests

Safety Tests

Future M

FMECA - based Tests
Critical Failure Enablement Tests

* Failure-mode, effects, causality analyses

Figure 4.1-5. Testing for Incremental System Builds

43

In the iterative life-cycle, the general phases of requirements, design, implementation, and maintenance still
occur in order, though the first three are dynamic. While the final guidelines will necessarily involve specification of
recommended Life-cycles, further consideration of these is not appropriate for the present discussion.

4.2 Reference Life-cycle

A Software Requirements Specification document is prepared in this step of the life-cycle and examined
during the Software Requirements Review. Requirements Specifications should include functional requirements,
software performance requirements, user performance requirements, and acceptance criteria. Evaluations are
performed from both the computer hardware system and software application perspectives. Software interface
requirements with hardware, operators, users, and other software are evaluated. IEEE Standard 830-1984 provides a
complete description of desired contents and approach to specifying requirements for conventional software.

For the purpose of this survey a traditional waterfall life-cycle based on NSAC-39 (Figure 4.1-1) has been
assumed. It consists of the following activities:

1) Requirements definition,

2) Functional specification,

3) Design,

4) Coding and implementation,

5) Integration and testing,

6) Field installation and testing, and
7) Operation and maintenance.

The sections below describe each of these seven steps of the life-cycle model with respect to V&V in more
detail. The NSAC-39 life-cycle was chosen as the reference model because it is the simplest and most well-known
within the nuclear industry. However, this life-cycle is not the most appropriate for expert systems development. An
iterative model is favored for that purpose. However, the following situation does not presume a particular life-cycle,
and NSAC-39 provides the most useful model for practical purposes.

4.2.1 Requirements Verification

The purpose of requirements verification is to determine if the requirements specified will correctly and
completely describe a system which satisfies its intended purpose. A quality requirements specification is critical to the
overall success of the development effort. During requirements verification, each software requirement is uniquely
identified and evaluated for software quality attributes including correctness, cons

Requirements tracing is an important V&V technique which begins during the requirements specification
stage of the development life-cycle and continues throughout the development process. Traceability of software
requirements is a critical attribute for the success of V&V. A software requirement is traceable if its origin is clear,
testable (quantifiable), and facilitates referencing to future development steps. Backward traceability is established by
correlating software requirements to applicable regulatory requirements, guidelines, and operational concept or any

44

other preliminary system concept documentation. Forward traceability to design elements and code modules is
established by identifying each requirement with a unique name or number.

Requirements verification is accomplished by providing the customer with a requirements document which
specifies the environment of concemns, source documents used to develop requirements, needs, goals, assumptions, and
constraints of the developmental system. It details the individual requirements assigning one requirement per sentence
and numbering unique requirements. The requirements are verified when the customer accepts the requirements
document. It should be noted that the customer plays an important role in detailing the requirements document prior to
requirements verification.

During the requirements step, critical software functions and their impact to system integrity are also
evaluated. The identification of critical software functions in a system with high integrity requirements involves the
determination of those specific software modules that would lead to various types of loss of system integrity if they
"failed". Such identification provides essential input to the test plan development. This permits special emphasis to be
placed on testing these critical components,

A Software V&V Plan is written as part of the project management effort prior to or during the requirements
step. This document describes the V&V activities to be performed throughout the development effort. In addition, it
defines how the V&V effort will be managed and coordinated with other aspects of the project. It specifies V&V tasks,
reports, schedules, and procedures. See IEEE 1012-1986 for further details.

4.2.2 Specification Verification

The second step of the waterfall life-cycle producing a Functional Specification document and conducting a
Preliminary Design Review (PDR). The purpose of the PDR is to determine if all the requirements have been mapped
to detailed specifications and these, in turn, have all been allocated to the software functional components of the ‘
software system architecture. The Functional Specification (sometimes called a Functional Architecture) contains a
high level diagram specification of the logical software system architecture. It includes interfaces to other systems.

The system is divided into logical functional components which are further described in the Software Design
Description in the next step. The Functional Specification describes how the requirements will be met. This is done by
mapping each requirement to a functional component within the architecture.

It is at this stage that sophisticated specification verification techniques can be applied to determine the
sufficiency of the specification. The creation of an executable model of the specification permits simulation or
"animation” of real-time activities. Such animation is highly recommended for Class 1 V&V systems as described in
Section 2.4.3, as well as the high-complexity control systems of Class 2 (cells 1 and 2 in Table 2.4.3-1).

4.2.3 Design Verification
In the Design step, a Software Design Description is produced. It is then examined in a Critical Design
Review (CDR). The Software Design Description provides a description of the overall system architecture and

contains a definition of the control structures, algorithms, equations, and data inputs and outputs for each software
module. The complexity of each module is estimated and an effort is made to reduce complexity by breaking up large,

45

complex modules into smaller ones. IEEE Standard 1016-1987 provides a recommended practice for detailed software
design descriptions.

The purpose of the CDR is to evaluate the software design to determine if it correctly represents the
requirements and to identify extraneous functions. The Software Design Document is evaluated for software quality
attributes such as correctness, completeness, consistency, accuracy, and testability. Also, it verifies compliance with
any applicable standards. All interfaces between the software being developed and other software, hardware, and the
user environment are evaluated.

Requirements tracing continues during design verification by mapping documented design items to system
requirements. This ensures that the design meets all specified requirements. Additionally, non-traceable design
elements are identified and evaluated for interference with required design functions. Design analysis is performed to
trace requirement correctness, completeness, consistency, and accuracy.

One important aspect of design analysis is an evaluation of data flow, data structures, and the appropriateness
of the data attributes. This analysis verifies the correct and efficient handling of data items specified in the
requirements and necessary to implement the requirements. Data flow diagrams produced by the developers are
analyzed by the V&V evaluator. When data flow information is not included in the developers design documentation, it
is often necessary for the V&V group to produce this documentation to facilitate its review. Also, data base structures
and attributes are evaluated for correct and complete representations of the data requirements.

During the design phase of development, planning and designing begins for software component testing,
integration testing, and system testing. The Software V&V Plan is used as a model for the Software Validation Test
Plan. This Test Plan is completed in the Implementation Verification step.

4.2.4 Implementation Verification

During the coding and implementation phase of development, the software detailed design is translated into
source code. This activity also creates the supporting data files and data bases. The source code is compiled, assembly
errors removed, and individual modules are executed to detect obvious errors.

The purpose of implementation verification is to provide assurance that the source code correctly represents
the design. Source code is analyzed to obtain equations, algorithms, and logic for comparison with the design. This
process will detect errors made in the translation of the detailed design to code. Information gained during analysis of
the code, such as frequently occurring errors and risky coding structures and techniques, is used in finalizing test cases
and test data (e.g., Beizer, 1990).

Data flow analysis is a useful technique during implementation verification. Data can be traced through code
modules to assure that input values are used but not modified. All output values are assigned as required by the data
flow analysis performed during design verification. In some cases, data flow analysis can be automated or performed
manually (Beizer, 1990).

46

R o ol

Code instrumentation can be used to provide a means of measuring program characteristics. This process
inserts checks or print-out statements into the code to audit the behavior of the code while it is executing commands.
Instrumentation can be used to check data structure boundaries, data values within allowable ranges, loop control
checking, and tracing of program execution.

Unit or module testing is conducted to assure each software module is operating correctly before it is
integrated with the rest of the system. ANSI/IEEE Standard 1008-1987 provides a description of software unit testing
activities.

During V&V evaluations in this phase of the life-cycle, the source code is traced to design items and
evaluated for completeness, consistency, correctness, and accuracy. Interfaces between source code modules are
analyzed for compatible data elements and types. Source code documentation and programmer and user’s manuals are
all reviewed for completeness, correctness, consistency, and accuracy. A Verification Readiness Review is held to
determine if the system is ready for integrated system testing.

The Software Validation Test Plan (or alternately, Customer Acceptance Test Plan) is completed in
preparation for the next step. It identifies the testing approach, schedule, and activities. Detailed test cases and test
procedures are generated and documented using the knowledge gained about the program through its structure and
detected deficiencies.

4.2.5 System Validation

During the System Validation step, the system as a whole is evaluated against the original Requirements
Specification. Validation consists of planned testing and evaluation to ensure that the final system complies with the
system requirements. The Software Validation Test Plan (or Customer Acceptance Test Plan) is utilized during this
step, and validation may be performed by an independent third party.

Validation is more than just testing; it involves analysis. A test is a tool used by the validation team to
uncover previously undiscovered specification, design, or coding errors throughout the development process.
Validation uses testing plus analysis to reach the objectives stated above. The analysis is the design of test strategies,
procedures, and evaluation criteria, based on knowledge of the system requirements and design, which proves system
acceptability in an efficient fashion.

The purpose of system validation is to demonstrate that the final system meets the intent of the requirements.
Validation may consist of independent tests performed by a third-party V&V group, a combination of independent tests
and developers' tests, or an independent review of the developers tests by the V&V group. The amount of
independence of the V&V testing activity is determined by the criticality of the software being tested. For example,
USNRC requires that the V&V group be independent from the developers for Class 1E systems.

i A Software Validation Test Plan is a critical component in the success of the validation effort. Tests must be
defined to demonstrate that all testable requirements have been met. The test plan includes a description of the
purpose, scope, and level of detail for each testing activity. The test organization and responsibilities are fully
described. Documentation of testing activities and results should be specified to ensure consistent documentation for

47

all tests. ANSI/IEEE Standard 829-1983 provides a complete description of basic test documentation. It specifies that
test methods be described and justification for selected methods be provided. The standard requires the identification
of support software and hardware to be included in the testing environment. The ANSI standard suggests that test
standards and criteria for test results and product acceptance are specified so an informed acceptance judgment can be
made. In addition, it requires procedures developed for actions taken when tests fail and a determination if testing can
proceed.

Test cases and test procedures are evaluated for completeness, correctness, clarity, and repeatability.
Requirements tracing continues during validation by tracing test cases to requirements. This ensures that all testable
requirements are covered. Expected results specified in the test cases are verified for correctness against the
requirements and design documentation.

Tests are performed in accordance with the previously developed test plans and procedures. Test results are
evaluated against the criteria specified in the test procedures. Test results are verified to ensure that the correct test
inputs are used, outputs are correctly reported, and all test cases were correctly executed in the appropriate
environment.

In rapid-prototyping development efforts utilizing an iterative life-cycle, maintaining a regression test case set
is especially important. Each test case in the set must be indexed to the requirement(s), design element(s), and code
module(s) it tests. Therefore, if the requirements, design elements, or code module(s) change in a given iteration, the
test case can be marked for update, deletion, or replacement. Additionally, new test cases must be designed for new
requirements, design elements, and code modules which were added during the latest prototype development. Thus,
the regression test set is changed at the end of each prototype implementation to reflect the changes in the system
requirements, design and implementation.

4.2.6 Field Installation Verification

The purpose of field installation verification is to assure that the sofiware installed in its target environment
has not degraded since validation testing. This is typically accomplished by exccuting a subset of the functional tests
performed during validation testing with the software in its final configuration. During this time, all field inputs are
carefully checked to ensure that they are properly connected to the system in its operational environment.

During the field installation phase of the development, developers make final modifications to the sofiware
documentation. This final documentation represents the primary source of information about the software during
operation and maintenance. This final documentation should be verified to assure that it accurately and completely
represents the software being placed in operation.

The final V&YV step in the development life-cycle is the preparation of a report which summarizes the V&V

activities performed, describes results, and presents any recommendations and final conclusions resulting from the
V&V effort. This final report provides the status of all discrepancies reported during the V&V effort.

48

4.2.7 Operation and Maintenance Phase V&V

During the operation and maintenance phase of the life-cycle, modifications may be made to the software and
its operational environment. To maintain the verified and validated status of the operational software, an ongoing V&V
program is established. The V&V plan used during the development effort is revised to reflect the operational
environment constraints and procedures.

A critical factor in the success of V&V during operation and maintenance is the existence of a configuration
management program to control modifications to the code, documentation, and the operational environment. There is
no way to maintain the verified and validated status of the software system without adequate control of changes. One of
the first V&V tasks during operation and maintenance should be to evaluate the configuration management program for
adequate change control.

A configuration management program provides a formalized change request and approval process. Change
requests should be submitted for any proposed change to the softiware, documentation, or operating environment. All
change requests should be reviewed by the V&V group to determine the impact on the total operational system and
documentation. Appropriate V&V tasks are determined by evaluating which development phase products are affected.
For example, if a software modification impacts the requirements specification, then appropriate V&V activities should
be selected from requirements verification and each subsequent V&V phase.

Changes to the software operating environment include modifications of operating system software or
hardware. An impact evaluation on software performance is done when these types of changes are made to the
operating environment. This evaluation consists of appropriate field verification activities. The software is verified in
its new environment by performing a subset of field verification tests, including previously used regression test-suites,
and demonstrating no significant difference in the test results (Beizer, 1990).

49

5 CLASSIFICATION OF V&V METHODS FOR CONVENTIONAL SOFTWARE

The survey approach consists of three major stages: classification of conventional V&V methods,
characterization of these methods, and assessment of their applicability to expert systems. The classification of
conventional V&V methods is the subject of Section 5. The other stages (characterization and assessment) will be
described in detail in Sections 6 and 7, respectively.

5.1 General Qbgervations and Approach

The classification stage of the survey approach consists of three distinct activities, as illustrated in Figure
2.5.1-1. First, a wide variety of technical sources were reviewed for descriptions and references to conventional V&V
methods. Second, these methods were sorted by their relevance to the main life-cycle phase. Third, the life-cycle
groups were partitioned into natural sets.

A comprehensive survey was conducted. The authors gathered and reviewed over 300 technical sources.
Source material included journal articles, institutional reports, proceedings of software testing conferences, professional
communications, and standards or guidelines. The most informative sources were the more recent texts and
publications on software testing and methodology. Many of these sources were obtained internally, through local
libraries, or through a DIALOG search.

This search yielded the desired results; however, a few difficulties are noted. First, no single source, even the
best texts on testing, covered the whole body of assembled techniques. Second, different authors used different
phrases to refer to the same technique. Occasionally, the same author used synonyms for the same technique, without
explanation. Lastly, authors often did not give detailed definitions or descriptions of their methods, making it difficult
to determine how these methods were related or stood up to apparently similar methods.

The criterion for reporting similar methods as separate items or grouping them under a single name was
determined by the authors' contrasting (not detailing) methods within their article. Therefore, when similar methods
were grouped together, the most accepted name or description for that method was used. A large number of methods
are identified here, and it is important to emphasize that the V&V of any single software system would involve only a
small subset of these techniques.

5.2 The Three Major Categories and Their Classes

A total of 153 different techniques were discovered. Although these techniques fall into two distinct life-cycle
phases, they are clustered into three major categories, as shown in Figure 5.2-1. One category is for the
Requirements/Design phase of a Life-cycle, and two are for the implementation phase of a Life-cycle, corresponding to
the major distinction of static vs. dynamic testing. Static testing involves analysis and inspection of the system's source
code without actually executing the code. Dynamic testing involves the actual execution of the system's code. All the
appropriate environments, drivers, and interfaces are installed and operated on a platform, and the system's outputs are
obtained for a set of inputs. Each of the entries in Figure 5.2-1 represents a major class of techniques for that category.
Each of these classes may be divided into subclasses, but the total number of individually identified techniques in that
class is given in parentheses after each entry. The number of major classes, the total number of individual techniques,
and the relative percentages of the total by category are shown in Table 5.2-1.

51

R LRIy Z ORI X S UNDAMLYL,y LIS = e s Yo) S50 v R M PUR S CRREN S RO AT PUIREN. AN -+7 ST St T

V&V METHODS

Formal Methods (8)
Semi-formal Methods (11)
Reviews & Anal.yses @)
Traceability Assessments (2)

— Algorithm Analysis (13)

— Control & Performance

Analyses (8)

— Data Analysis (12)

— Fault/Failure
Analysis (11)

— Inspections (14)

— General Testing (10)

— Special Input Testing (10)
— Functional Testing (5)

— Realistic Testing (8)

— Stress Testing (5)

— Performance Testing (4)

— Execution Testing (5)

— Competency Testing (3)

— Acute Interface Testing (6)
— Structural Testing (8)

~-—Error-Introduction Testing (3)

* Number in parentheses indicate the number of individual number of V&V Methods of that type.
Figure 5.2-1. Classes of Conventional V&V Methods Organized by Life-Cycle Phase

52

Table 5.2-1 Statistics concerning the three
major categories of conventional V&V techniques

Major Category

Major Classes

Techniques

Percentage of Total
Techniques

Requirements/Design 4 28 18%
Static Testing 5 58 38%
Dynamic Testing 11 67 44%

TOTALS 20 153 100%

= o= ogmra,

53

The number of Requirements/Design methods reflects the relatively small number of system products for
examination at those early phases. The greater number of Dynamic over Static methods reflects the greater
complexities of testing an operational system in a specific operating environment. The greater number of Dynamic
techniques, 44% of the total, may also reflect programmers' preferences for the most direct approach of executing a
program to see how well it runs. Full descriptions of the three technique categories are provided in Table 5.2-2.

5.2.1 Requirements/Design Methods

The Requirements/Design techniques consist of four major classes and their various subclasses. These major
classes of techniques are: formal methods, semi-formal methods, reviews and analyses, and traceability assessments.
The methods for the first two Life-cycle phases are grouped together because three of the four classes are very much the
same whether applied to a requirement specification or a design description. However, the fourth class, Traceability
Assessments, involves comparisons between the products of the two phases. The descriptions of the 28 individual
conventional Requirements/Design V&V techniques are provided in Table 5.2.1-1; however, brief comparisons are
given below.

The Formal Methods involve mathematical and logical calculations for expressing relationships among data
and other objects and the processes which interact with them. Using these methods, one can prove various important
properties about the system represented, such as the absence of contradiction. The Semi-Formal Methods often involve
rigorous constraints on notations, sequencing, and selection of operators/objects to achieve their goal of guiding the
analysis or specification within well-defined limits. They are less difficult to apply than the Formal methods. Both the
Formal and Semi-Formal methods provide for language representations of systems of varying complexity; the former in
more mathematical notation and the latter in more graphical network styles. Both have had variants for the last 15
years, but they have been employed by very few software engineers. With the advent of powerful desk-top computers,
graphic interfaces, and local database management systems, these methods are increasingly promoted and are on the
rise in usage as they are implemented in computer-based tools.

A major advantage of the semi-formal methods is that their philosophy of supporting system-engineering
descriptions in a graphical mode greatly facilitates simulating or animating requirements specifications and designs.
Such capability is believed by many to be an essential aspect of developing and assuring the quality of highly complex
systems requiring high integrity.

Both the Reviews and Analyses and the Traceability Assessments are absolutely essential to effective quality
assurance of any system. Reviews and Analyses are well-worked out procedures for various parties having an interest
in the final system to hear presentations on the work in progress and express their concems. The Traceability
Assessments establish the relations between (in the present case) the requirements specification and the design,
matching elements of one to the other. After matching, all that remains is either a set of unmapped requirements
elements, unfulfilled requirements, or a set of unmotivated additional design elements, unintended design functions.
The first clearly signals design inadequacies, and the second raises strong concerns that the non-specified additional
functions might lead to unexpected errors and performance and/or safety problems.

54

Table 5.2-2 Description of major classes of techniques

V&V CLASSES/SUBCLASSES DESCRIPTION
1.0 REQUIREMENTS AND DESIGN EVALUATION OF THE ADEQUACY OF THE
EVALUATION REQUIREMENTS AND DESIGN

1.1 Formal Methods

1.2 Semi-Formal Methods

Use of mathematical and logic formalisms for
rigorous and unambiguous representation of
initial system documents, including the
requirements document, the requirements
specification, and the design document.
These representations may then be subjected
to formal (sometimes automated) deductive
reasoning to detect anomalies or defects such
as "correctness", "contradiction",
"completeness”, "deadlock”, and
"consistency”.

Techniques whose normal, forced, or
prescribed method of use effectively constrain
users in their specification of requirements or
designs, such that various problems of
expression and elaboration can be avoided or
reduced. Such problems include aspects of
ambiguity, incompleteness, inconsistency,
contradiction, and "ill-formedness.” These
techniques, while often based on
mathematical and logic formalisms, do not
explicitly require the user to specify or use such
formalisms. The techniques are typically
embedded in function-rich, computer-based
environments which provide sophisticated
graphical representations of user input and
often permit the user specifications to be
simulated or animated to permit assessment of
time and performance characteristics.

55

Table 5.2-2 (Continued)

V&V CLASSES/SUBCLASSES

DESCRIPTION

1.0 REQUIREMENTS AND DESIGN EVALUATION

{cont.)

1.3 Formalized Reviews and Analyses

EVALUATION OF THE ADEQUACY OF THE
REQUIREMENTS AND DESIGN

Reviews and specialized analyses by various
specified personnel of requirements or design
products. The reviews follow a detailed
checklist or set of procedures.

14

Traceability Assessments

Determination of correspondence between
individual requirements and design elements,
between individual requirements and
implemented system features, or between
design elements and implemented system
features. The two types of problems identified
by these analyses are (1) unfulfilled
requirements or design elements, and (2)
unintended (unmotivated) design or
implementation elements.

2.0 STATIC TESTING

21

22

23

24

25

Algorithm Analysis

Control Analysis

Data Analysis

Fault/Failure Analysis

Inspections

EXAMINATION OF THE PROGRAM SOURCE
CODE OR SOME TRANSFORMATION OR
MAPPING TO SUPPORT VARIOUS KINDS
OF ANALYSES (e.g., UNUSED CODE,
INCONSISTENCIES, ANOMALIES).

Analysis of the overall algorithm(s) for
achieving required function.

Analysis of the control characteristics of the
program.

Analysis of the data specifications and flow of
the program.

Analysis for particular or any kind of fault or
failure, and/or an analysis to determine how
particular faults and failures could occur.

Examination of various aspects of the program
by various personnel.

56

Table 5.2-2 (Continued)

V&V CLASSES/SUBCLASSES

DESCRIPTION

3.1

3.2

3.2.1

3.2.2

33

34

3.0 DYNAMIC TESTING

General Testing

Special Input Testing

Random Testing

Domain Testing

Functional Testing

Realistic Testing

ACTUAL EXECUTION OF THE PROGRAM,
GENERATING OUTPUT FOR SETS OF
INPUT CONDITIONS.

Generic and statistical methods for exercising
program.

Special methods for generating test-cases to
explore the domain of possible system inputs.

Selecting test-cases according to some
random statistical procedure.

Analysis of the boundaries and partitions of the
input space and selection of interior, boundary,
extreme, and external test-cases as a function
of the orthganality, closedness, symetry,
linearity, and convexity of the boundaries.

Selecting test-cases to assess required
functionality of program.

Choosing inputs/environments comparable to
intended installation situation.

3.10

Structural Testing

3.11 Error-Introducing Testing

3.5 Stress Testing Choosing inputs/environments which stress the
design/implementation of the code.

3.6 Performance Testing Measuring various performance aspects for a
list input.

3.7 Execution Testing Actively following (and possibly interrupting)
sequence of program execution steps.

3.8 Competency Testing Comparing the output "effectiveness” against
some pre-existing standard.

3.9 Active Interface Testing Testing various interfaces to the program.

Testing selected aspects of the program
structure.

Systematically introducing errors into the
program to assess various effects.

Table 5.2.1-1 Description of the conventional requirements/design V&V methods

V&V Classes/Subclasses

Description

1.1 Formal Methods

1.1.1 General Requirements Language
Analysis/ Processing (Davis, 1890)

1.1.2 Mathematical Verification of

Requirements (Jones, 1986)

1.1.3 EHDM (Rushby, 1981)

1.1.4 Z (Chisholm, 1990)

1.1.5 Vienna Definition Method (Jones, 1986)

1.1.6 Refine Specification Language (Ng,
1990)

1.1.7 Higher Order Logic (HOL) (Gordon,
1985)

1.1.8 Concurrent System Calculus

Expression of requirements
specifications in a special requirements language
and analysis of execution of that expression to
assess the adequacy of the requirements.

Translation of requirements into
mathematical form for proving various properties
(security, ultra-hi reliability).

A specification (and verification)
language based on a strongly typed higher-order
logic, incorporating elements of the Hoare relational
calculus, with complete formal semantic
characterization.

A typed set-theoretic language
employing mathematical expressions, schema, to
describe aspects of a system; the schema consist of
declarations grouped with property predicates about
the declarations.

A discrete-mathematical formalism
for rigorously defining the semantics specification
processes.

A knowledge-based commercial
specification language and environment based on
transformational programming concepts.

An implemented logic notation that
allows specifications to be written in terms of
hierarchically structured collection of logical theories
which contain axiomatic properties of the operations
that are introduced.

Provides a calculus for the
description and specification of concurrent systems.
Similar to Milner's (1986) calculus, and basis for
LOTOS (ISO, 1987) Language for Temporal
Ordering Specification.

1.2 Semi-Formal Methods

1.2.1 Ward-Mellor Method (Ward,
1986)

An extension of Structured
Analysis system specification techniques (e.g., Ross,
1977; DeMarco, 1978) developed at Yourdon, Inc.
for real-time systems, emphasizing data flow

[~ S

58

Table 5.2.1-1 (Continued).

V&V Classes/Subclasses

=

Description

122 Hatley-Pirbhai Method Like Ward-Mellor, except that the
(Hatley & Pirbhai, 1987) techniques were developed at the Boeing and Lear
companies; emphasizes control flow diagrams;
considered to have superior architectural modeling
capahility
123 Harel Method (Harel, 1987) | Like Ward-Mellor, but using unique
Statechart notations to accomplish similar modeling
as the above, but generally considered richer and
more elegant. Implemented in a set of tools called
STATEMATE (cf. Harel et al., 1990).
124 Extended Systems Modeling | A modeling language with elements
Language (ESML; Bruyn et. of the Ward-Mellor and Hatley-Pirbhai methods,
al., 1988) currently under development.
125 Systems Engineering A method combining structured
Methodology (SEM,; analysis techniques and software cost reduction
Wallace, 1987) methods (Heninger, 1980), similar to ESML.
1.26 System Requirements A hardware/software specification
Engineering Methodology language for describing both data-and control-flow of
(SREM; Alford, 1977) systems, used extensively in US DoD weapons
systems development (also known as the DCDS
method; later implemented in a commercial system
called TAGS). Now fully implemented, with
complete system support, as the RDD-100 tool
(supports design animation; Ascent, 1990).
127 FAM (Chisholm, 1990) Representation of systems in terms
of graphical annotated flow-nets, based on
extensions to Petri-net theory, permitting symbolic
execution with an automated theorem prover.
128 Critical Timing/Flow Modeling and (usually) simulation
Analysis (Wallace, 1989) of process and control timing aspects of the design
to determine if such requirements are satisfied (e.g.,
with Petri Nets).
129 Simulation-Language Representation of a system design
Analysis (Hariway, 1990) in a general purpose simulation language (e.g.,
SLAM 1), and analysis of the execution results.
1.2.10 Petri-Net Safety Analysis Systems modeling with untimed (and
(Leveson & Stolzy, 1987) timed) Petri nets to assure design adequacy for
catastrophic-failure and other safety problems.
1.2.11 PASL/PSA (Teichroew, Constrained natural language-like
1977) representation of requirements and specifications

with automated support.

59

BAE < XNl LA T

Table 5.2.1-1 {Continued).

V&V Classes/Subclasses

Description

1.3 REVIEWS AND ANALYSES

1.3.1 Formal Requirements Review
(NBS500-93, 1982)

1.3.2 Formal Design Review (NBSS00-93,
1882)

1.3.3 System Engineering Analysis (DSMC,
1990)

Review by special personnel of the adequacy of the
requirements specification according to detailed pre-
established set of criteria and procedures.

Review by special personnel of the adequacy of the
design according to detailed pre-established set of
criteria and procedures.

A variety of activities associated
with developing a complete operational system
which satisfies certain requirements; these activities
include creation of a functional architecture,
allocating function to hardware and software,
accomplishing trade-off and make/buy studies, and
development of a work-breakdown structure.

1.3.4 Requirements Analysis

1.3.5 Prototyping (Schuimeyer, 1892)

1.3.6 Database Design Analysis (Nijssen,
1989)

1.3.7 Operational Concept Design Review
(Rasmussen, 1987)

Analysis of requirements to ensure
completeness, consistency, clarity, explicitness, etc.

Building a model of a design to
evaluate one's approach or to better define the
requirements; prototypes may range from mock-ups
to initial versions which are retained and built on.

Checking the design of the

structure, normal form, declarations, and values of a
database.

Review of the design of the
concept of operations for the system, especially the
interaction with human operators.

1.4 TRACEABILITY ASSESSMENTS

1.4.1 Requirements Tracing Analysis
(NBS500-93, 1982)

1.4.2 Design Compliance Analysis (Wallace,
1989)

Identification of individual requirement aspects and
tracing of these to design aspects, and from the
design to aspects of the implemented program.

Verification process that design
is compliant with--realizes—all aspects of
requirements.

60

The following four trends could accelerate the development and use of this front-end class of V&V techniques:

1. CASE (Computer Aided Software Engineering) tools are becoming widely available. They provide
disciplined and feature-rich environments for developing specifications and designs, providing all
manner of data-dictionary and consistency-checking support.

2, The development of languages for specifications ontside the software community is emerging.
These activities are coming from the advanced manufacturing areas and are driven significantly by
the need for communication among CAD/CAM tools among various suppliers at various stages of
manufacturing. These range from the older entity-relation IDEF family of languages to the more
recent process-property relations and semantics, such as NIAM, EXPRESS, and the emerging
PDES/STEP, (Chen, 1990).

3. Standards and guideline activities, particularly in Europe, are emphasizing the utility and the
necessity of formal proving methods. This is evidenced by the British draft standards MOD 0055
and 0056, (UK, 1989).

4. The capability of automatic code-generators is increasing rapidly. This trend has been stimulated
by the success of automatic generation of application code for fourth-generation language query and
other systems, and by the burgeoning interest in reverse-engineering.

5.2.2 Static Testing Methods®

A
This category comprises five major classes of techniques, as described in Table 5.2.2-1. All of these involve
examinations based on the system source code without actual execution of that code. These major classes are:
algorithm analysis, control analysis, data analysis, fault/failure analysis, and inspection. Some involve only the source
code, while others involve transformations or simulations of that code into special analysis languages or formats,

The Algorithm Analysis methods, the first static-testing category, involve analysis of the algorithm(s) embodied in the
program and, in most techniques, the translation of the algorithm(s) into some kind of language or structured format (all
but Technique 2.1.9). Algorithm analysis provides the means for microscopic examination of the software system's
process-logic and its adequacy, in the area of the requirements and design. This examination permits the detection of
unimplemented or unintended functions.

Some control analysis techniques detect and characterize program control-flow with the sequential and hierarchical
aspects (2.2.1-2.2.3, 2.2.5). Two techniques detect the timing aspects (2.2.6-2.2.8). However, one method focuses on
the concept of operations, particularly as it involves the user (2.2.4).)

6Tomake this a comprehensive report it includes the few non-conventional V&V static testing methods that were discovered, in a different task, to
be regularly applied to Al systems. The methods are 2.1.12,2.1.13,and 2.4.8 - 2.4.11.

61

Table 5.2.2-1 Description of the Conventional Static Testing V&V Methods

2.1

Static Testing V&V Methods

Algorithm Analysis

Description

2141

Analytic Modeling (Jones, 1986)

Representing the program logic and processing
in some kind of model and analyzing it for
sufficiency.

Cause-effect Analysis (Davis, 1990)

Identifying the triggers of processes, their effect
during activation in states of variables, and the
final terminating conditions.

Symbolic Execution (King, 1976)

Representing the data computations as algebraic
equations and solving these algebraically through
the whole program.

Decision Tables (Omar, 1991)

Tables which represent different

logical combinations of events or conditions that
might occur and the actions to take when they do
occur. Used as a static method to identify
functionality and to provide the basis for selection
of dynamic testing test-class.

215

Trace-assertion Method (Parnas, 1988)

An algorithm specification (or

representation) method involving description of
the sequence of invocations of system madules,
including I/O values, in terms of v. axiomatic
assertions about the traces, in a "black-box"
fashion. Used in conjunction with "A-7 Table
Format” representation (similar to decision
tables).

Functional Abstraction (Mills, 1987)

Representing design or program as a series of
mathematical functions based on a small set of
primitive programming functions (e.g., iteration,
sequence, select, etc.) then, recursively, dividing
parent functional specifications into sub-
specifications and mathematically verify
equivalence.

21.7

L-D Relation Methods (Parnas, 1988)

An alternative to functional specifications for non-
deterministic programs using relations and the
competence set of states in which termination is
guaranteed.

21.8

Program Proving (Mills, 1987)

For each code segment, developing formal
specifications of functional intent and specific /O
characteristics; for actual or symbolic input then
proving via some proof procedure that the
segment performed as intended.

21.9

Metric Analyses (Jensen, 1985)

Computation of various complexity metrics for the
program.

21.10

Algebraic Specification (Uhrig, 1985)

Specification of program procedures
in terms of algebraic expressions.

62

Table 5.2.2-1 (Continued).

2.1.1

Static Testing V&V Methods

Induction-Assertion Method (Hoare, 1985)

2.1.12 Confidence Weights Sensitivity Analysis

(O'Leary, 1990)

2.1.13 Model Evaluation (Hamscher, 1992)

Description

Use of abstract data types to represent a
specification so that proofs of correctness can be
implemented using these.

Using statistical analyses to measure the
sensitivity, accuracy or bias in the confidence
factors/weights placed on rules’ conclusions.

Evaluation of models in the system by modeling
experts and by subject matter experts.

2,2 Control and Performance Analyses

221

222

223

Control Flow Analysis (Ward, 1985)

State Transition Diagram Analysis
(NBS500-93, 1982)

Program Control Analysis (NUREG/CR-
4640, 1987)

Analyzing the program into a series of decision
and process actions and representing all of the
possible alternative process sequences in the
program. Often used to assess whether program
is well-structured and has no unreachable code.

Determining the condition (variable states, etc.)
that trigger the onset and cessation of program
processes.

Related to 2.2.1 and 2.2.2 but concerned more
with the sequential aspects leading to a particular
execution path in a program.

224

225

226

227

228

Operational Concept Analysis
(Rasmussen, 1987)

Calling Structure Analysis (NBS 500-93,
1982)

Process Trigger/Timing Analysis (Hatley,

1987)

Worst-case Timing Analysis (Wallace,
1989)

Concurrent Process Analysis (Rattray,
1990)

Analysis of the manner in which the software
system interacts with and is dependent upon
states of the environment and external decisions,
especially of human operators.

Module by module analysis of hierarchically
structured programs involving procedure calls to
determine what sequence of higher level module
calls led to the invocation of a particular module,
and what modules in turn are called by it.

Analysis of the conditions which activate a
process (similar to 2.2.2) with special concern for
the timing of activation relative to other processes.

Analysis to determine the longest execution-time
path through a program often comparing this to a
reference safety limit.

Analysis of the overlap or concurrency of different
processes in multi-tasking, parallel processing, or
concurrent processing programs.

63

D> s ien

AT IR = § 7 e

Table 5.2.2-1 (Continued).

Static Testing V&V Methods

Description

m

2.3 Data Analysis

2.3.1 Data Flow Analysis (Deutsch, 1982) Analysis of the data inputs, outputs, and controls
to all program processes.

2.3.2 Signed Directed Graphs(Suddath, 1891) Graphical qualitative representation of the
directional effects of system states on other
states of certain other system components (also
called Influence Diagrams).

2.3.3 Dependency Analysis (Dunn, 1984) Determining what variables depend on what other
variables, similar to "influence diagrams”.

234 Qualitative Causal Models (Oyeleye; 1990) | Development of models of the process and event
causes of qualitative states and changes of a
system.

2.3.5 Look-up Table Generator (NBS 500-93, Generating the location within various modules of

1982) data and contro! variables.

236 Data Dictionary Generator (Ng, 1990) Generating a defined/used table of locations of all
program variables.

2.3.7 Cross-reference List Generator (NBS 500-

93, 1982) Generating the location of all data variables, in
form of cross-reference table of modules.

2.3.8 Aliasing Analysis (NBS 500-93, 1982)

Analysis of the aliases of variables used in the
main procedure and passed as
parameters/arguments to its called procedures

2.3.9 Concurrency Analysis (Rattray, 1990) (and theirs).

Analyzing programs for existing or potential

2.3.10 Database Analysis (Nijssen, 1989) concurrent data-paths and processing.

Checking the implementation of structure, normal

2.3.11 Database Interface Analyzer (NBS 500-83, | form, declarations, and values of a database.

1982)
Checking the interface(s) of a program with
primary data input for error-detection and

2.3.12 Data-Model Evaluation (Davis, 1990) handling, consistency-checking, etc.

Evaluating the adequacy and features of the data
schema or meta-schema used to organize the
DB and data structures.

64

Table 5.2.2-1 (Continued).

Static Testing V&V Methods

2.4 Fault/Failure Analysis

2.4.1 Failure Mode, Effects, Causality Analysis
(FMECA) (MIL-STD-1629A, 1984)

Description

ldentification of the failure modes of each system
component and analyzing the consequences of
each failure type. Information gathered includes
failure description, cause(s), defect(s), detection
means, resultant safety consequences or other
hazards, and recovery methods and conditions.

2.4.2 Criticality Analysis (Wallace, 1989)

Identification of the critical points of failure in a
program and the development of test cases to
verify their accuracy and robustness.

243 Hazards/Safety Analysis (Rushby,

244

245

246

24.7

2438

24.9

1988)

Anomaly Testing, (Ng, 1990)
Fault-tree Analysis (Event-tree Analysis)

(Leveson, 1983)

Failure Modeling (Davis, 1990)

Common-Cause Failure Analysis (UK,
1989)

KB Syntax Checking (Preece, 1991)

KB Semantic Checking (also "Knowledge-
Checking"; Stachowitz, 1987)

Analysis of failure data to develop metrics and
casual hypotheses about system components'
failure rates, fault-sources, and future behavior.
(BSI89)

Checking the program for irregularities of style,
syntax, or practice, or for signs of potential
defects.

Beginning with a system hazard or failure, the
analysis identifies or hypothesizes immediate and
proximal causes, and describes the combination
of environment and events that preceded, usually
in the form of a directed graph or "and-or tree".
Often accompanied by an "event tree analysis"
showing relevant event-propagation information.

Analysis of the system (and requirements) to
identify potential hazards or safety events, or to
consider such events determined by dynamic
testing. Full analysis involves 2.4.2 in addition.

Identifying failures that affect apparently
indepedent modules.

Examination of a knowledge base for syntactic
errors or anomalies in the composition of rules,
frames, and other knowledge elements; no
additional external information is required (see
below).

Use of external meta-rules,

constraints, or engineering knowledge to check
the internal semantic consistency of a knowledge
base.

65

Table 5.2.2-1 (Continued).

Static Testing V&V Methods

2.4.10 Knowledge Acquisition/Refinement Aid
(Desimone, 1990)

2.4.11 Knowledge Engineering Analysis (Hart,

Description

Use of an automated tool during knowledge
acquisition or refinement (maintenance) to
prevent some types of errors from being created
in the first place or to assure complete coverage
of possible input values, possibly through
machine learning techniques.

Similar to Knowledge Acquisition/Refinement Aid,

1986) but a manual process.
2.5 Inspections
25.1 Informed Panel Inspection (Culbert, 1987) | Convocating a qualified group to review the

252 Structured Walkthroughs (Fagan, 1986)

253 Formal Customer Review (NUREG/CR-
4640, 1987)

quality of a program.

An analysis of a program module, usually by
programmer, with audience of programming
team members.

A formal evaluation by the customer
representatives of the adequacy of a program.

66

Table 5.2.2-1 (Continued).

254

2.5.5
256

25.7

258

259

25.10

25.1

25.12

25.13

Static Testing V&V Methods

Clean-room Techniques (Mills, 1987)

Peer Code-checking (Mills, 1987)
Desk Checking (Dunn, 1984)

Data Interface Inspection (Ng, 1990)

User Interface Inspection (NUREG/CR-
4227, 1985)

Standards Audit (Dunn, 1984)

Requirements Tracing (NBS 500-93,
1982)

Software Practices Review (Humphrey,
1990)

Process Oriented Audits (Humphrey,
1990)

Standards Compliance (Bryan, 1988)

Description

A number of analytic (and procedural) practices
for extremely high reliability code production.

Fellow programmers checking each other's code.

Inspecting program source code without benefit
of automated tools.

Inspection of all data interfaces of a program for
adherence to specification, error-handling,
consistency-checking, and other features.

Inspection of all aspects of the interface to the
user and operator for adequacy and other criteria.

Evaluation of the program to determine its
compliance with the set of governing standards
and guidelines.

Tracing forward from each unique requirement
element to specific code modules which are
intended to implement that requirement.
Requirements which cannot be so mapped are
flagged as "unfulfilled requirements." Program
elements which are not traceable back to any
requirement are flagged as "unintended
functions.”

A review of a software organization
fo advise its management and professionals on
how they can improve their operation.

An examination of products of the

software development effort (such as unit
development folders) with the emphasis on
improving the sofiware development process.

Comparison of system to imposed
standards (e.g., documentation content, coding
style, communication protocols, etc.).

25.14

System Engineering Review
{DMSC 1990)

A variety of checks and analyses to determine
that good sysem engineering principles have
been followed in the implementation (see 1.3.3).

67

Several of the Data Analysis methods are concerned with the relationships of named variables in one module to those
in other modules (2.3.5-2.3.8). Several methods are concerned with the database or data-model (2.3.10-2.3.12). The
remaining methods focus on the flow of data from input to output or one process to another; two of these methods

Some control analysis techniques detect and characterize program control-flow with the sequential and
hierarchical aspects (2.2.1-2.2.3, 2.2.5). Two techniques detect the timing aspects (2.2.6-2.2.8). However, one
method focuses on the concept of operations, particularly as it involves the user (2.2.4).

Several of the Data Analysis methods are concerned with the relationships of named variables in one module
to those in other modules (2.3.5-2.3.8). Several methods are concerned with the database pr data-model (2.3.10-
2.3.12). The remaining methods focus on the flow of data from input to output or one process to another; tow o these
methods deal with sequential and concurrent processes (2.3.1 and 2.3.9, respectively), while three methods deal with
qualitative relationships among system states as determined by data-flow (2.3.2-2.3.4).

The Fault/Failure Analysis methods examine programs for defects, using a general failure-analysis strategy
carried over from hardware testing. This approach uses high-level functional and operational descriptions to identify
how the system might logically fail. The program code is examined to determine if any of those failure-mode
possibilities could logically occur and in what context and under what conditions. Such program examinations often
lead to identification of software defects. In any case, they can provide the basis for the development of special failure
test cases to be executed with subsequent dynamic testing techniques. Examples of these failure-detecting methods are
FMECA (Failure mode, effects, causality analysis; 2.4.1), Criticality Analysis (2.4.2), and Hazards/Safety Analysis
(2.4.3). If the notion of failures is relaxed to include any type of apparent defect or anomaly, then the Anomaly Testing
method (2.4.4) is also included in this subset. Alternatively, these methods begin with actual (or suspected) program
failure data and work backwards seeking specific causes for these failures. Examples of these methods are Fault-tree
Analysis (2.4.5), Failure Modeling (2.4.6), and Common-Cause Failure (2.4.7).

Inspections are general examinations of programs. They are less focused on specific program problems than
the previous four classes. The first four (2.5.1-2.5.4) involve groups which serve as a critical review audience for a
discussion of program code. Clean-room techniques involves a variety of specific defect-exposure techniques, only a
few of which involve group review. Peer Code-checking (2.5.5) involves programmers trading code elements among
themselves for review, while Desk Checking (2.5.6) typically involves the programmer checking his or her own code.
The interface inspection techniques examine the data and the user interfaces (2.5.7 and 2.5.8) respectively. The
Standards Audit (2.5.9) examines the code for compliance with governing guidelines and standards. Requirements
Tracing (2.5.10) concerns the mapping of requirements to program elements. Software Practices Review and Process
Oriented Audits (2.5.11 and 2.5.12) examine the products and process of a software organization. System Engineering
Review (2.5.14) involves experts with a system engineering background examining the requirements and design.

5.2.3 Dynamic Testing Methods
The dynamic testing methods were the most discussed techniques for assessing the quality of implemented

software systems. In terms of the number of citations and publication pages, dynamic testing methods account for 44%
of the 153 methods identified in this report. Table 5.2.3-1 lists and describes these methods.

68

Table 5.2.3-1 Description of the conventional dynamic testing V&V methods

Dynamic Testing Methods Description

3.1 GENERAL TESTING
3.1.1 UnitModule Testing (Ng, 1990) General testing of single program modules.
3.1.2 System Testing (Dunn, 1984) Testing of the overall completed software system with

test-cases representative of general program
characteristics including its logic and computation, and its

timing.

3.1.3 Compilation Testing (Davis, 1990) Using compiler diagnostics and problem-reports to test
system.)

3.1.4 Reliability Testing (Boehm, 1981) Selecting test-cases to exercise particular aspects of the

system believed to be unreliable; also extensive testing to
assess component failure rates.

3.1.5 Statistical Record-Keeping (Boehm, Collecting data on errors discovered for particular system

1981) modules to suggest which modules should be tested
more thoroughly or even redesigned; especially important
in the maintenance phase of the lifecycle.

3.1.6 Software Reliability Estimation (BSI, Similar to 2.1.8 but applying sophisticated statistical

1989) estimation techniques to fault and error data, to guide
continued data collections and to predict system and sub-
system failures.

3.1.7 Regression Testing (NBS500-93, Repetition of a test suite after program maodification to
1982) assess effects of changes.
3.1.8 Metric-Based Testing (Jones, 1986) Selection of some aspect of the program for testing on the
basis of the value of some metrics computed for it (usually
"complexity").
3.1.9 Ad Hoc Testing (Dunn, 1984) Test-cases defined at whim by programmer without

careful planning.

3.1.10 Beta Testing (Dunn, 1984) Early release of the system to one
or more "beta" user sites for a final testing under realistic
field conditions.

3.2 SPECIAL INPUT TESTING

3.2.1 Random Testing' (Barnes, 1987) Selecting test-cases according to some random statistical
procedure.

69

Table 5.2.3-1 (Continued).

Dynamic Testing Methods

Description

3.2.1.1 Uniform whole program testing

3.2.1.2 Uniform boundary testing

Selecting test-cases such that each input variable is
assigned any value inside its range with equal probability,
over the whole program domain. (Best of the 4
techniques).

Selecting test-cases, with equal probability, around the
boundaries of the ranges of input variables (within the
range, at range limit, and outside range).

3.2.1.3 Gaussian whole program testing

3.2.1.4 Gaussian boundary testing

Selecting test-cases for input variables according to
Gaussian distribution (usually with a mean in the middle of
the variable range, and with a standard variation of 1/12 its
range).

Selecting test-cases for input variables drawn from a
Gaussian distribution across the boundaries of their valid
ranges.

3.2.2 Domain Testing' (Beizer, 1990)

Analysis of the boundaries and partitions of the input
space and selection of interior, boundary, extreme, and
external test-cases as a function of the orthganality,
closedness, symetry, linearity, and convexity of the
boundaries.

3.2.2.1 Equivalence Partitioning (Myers,
1879)

3.2.2.2 Boundary-value Testing (Myers,
1979)

1988)

3.2.2.4 Revealing Subdomains Method
(Weyuker, 1980)

3.2.2.3 Category-Partition Method (Ostrand,

A type of domain testing which partitions the input domain
into equivalence classes such thata testof a
representative value from a class is assumed to be a test
of all the class values.

A type of domain testing which selects test values at and
around (just inside, just outside) input boundaries.

Similar to equivalence partitioning, but the equivalence
classes are more rigorously derived from a functional
decomposition, and there is much more attention in
selecting representative value to co-occurrence
constraints among classes.

A type of domain testing which takes into account both the
partitioning of the overall input space by functional
decomposition and also the internal program path
structure.

1

sub-categories.

70

Both of the sub-categories of 3.2 (3.2.1 and 3.2.2) are included as distinct methods as well as their (non-exhaustive) sub-

Table 5.2.3-1 (Continued).

Dynamic Testing Methods

Description

3.3

FUNCTIONAL TESTING

3.341 Specific Functional Requirement

Testing (Howden, 1980)

3.3.2 Simulation Testing (Pritsker, 1986)
3.3.3 Model-Based Testing (Davis, 1990)

3.3.4 Assertion Checking (NUREG/
CR4640, 1987)

Selecting test-cases to assess the implementation of
specific required functions.

Generating special code to emulate various aspects of
code to-be-implemented system.

Use of an analytic or process model of desired function to
assess the implemented function.

Bracketing code segments with assertions which can be
compiled into executable code to verify assertions during
code operation. Similar to the static technique of program
proving but involves actual execution of code and
assertions.

3.3.5 Heuristic Testing (Miller, L., 1990)

Emphasizes the importance of prior fault prioritization and
analysis to determine fault-enabling conditions and
appropriate test cases.

71

Table 5.2.3-1 (Continued).

Dynamic Testing Methods

Descripfion

34
3.4.1

3.4.2

343

344

345

3.4.6

347

34.8

Realistic Testing

Field Testing (Rushby, 1988)

Scenario Testing (Ng, 1990)
Qualification/Certification Testing
(Jensen, 1979)

Simulator-Based Testing (Ng, 1990)

Benchmarking (Mayrhauser, 1990)

Human Factors Experimentation (CHI,
1988)

Validation Scenario Testing (ASME,
1990)

Knowledge Base Scenario Generation
(Vol. 6 of this report)

Testing of the program under actual installed conditions.
Lab or Field testing with highly ralistic cases or situations.

Extensive testing to meet some set of high standards of
quality or performance.

Use of a simulator to generate ealistic input data streams
to the system to be tested.

Use of standard widely supported tests to exercise a
number of aspects of system performance.

Evaluation of the human-user performance with the real
or simulated system to determine adequacy of the
human-computer interface.

A realistic dynamic system test which samples important
subsets of functional capability. Is usually the last type of
testing done,and is intended to provide assurance to the
end-user/customer (or regulator). More restrictive in
extent and focus than 3.4.2.

A proposed automated method for automatically
generating validation scenarios from knowledge bases.

3.5 STRESS TESTING

3.5.1

352

353

3.54

355

Stress/Accelerated Life Testing
(NBS500-75, 1981)

Stability Analysis (Dunn, 1984)

Robustness Testing (Miller, L., 1990)

Limit/Range Testing (Ng, 1990)

Parameter Violation (NBS 500-93,
1882)

Exercising the program as rapidly, with as much data
input, CPU tasking, and memory load, as possible.

Choosing test-cases to exercise and stress the stability of
the system.

Testing the program with bizarre inputs under variously
degraded conditions.

Selecting test-cases to test (and exceed) the extreme
ranges of allowable limits on variables/ parameters. (Also
called Boundary Testing; strategy for automating test-case
generation for rule basis given in Miller, 1980).

Determining the various design parameters which led to
the present implementation and systematically generating
test-cases which violate these parameters.

72

Table 5.2.3-1 {Continued).

Dynamic Testing Methods Description
3.6 PERFORMANCE TESTING
3.6.1 SizingMemory Testing (Wallace, Assessing the CPU and memory requirements of the
1989) program under various conditions.

3.6.2 Timing/Flow Testing (Dunn, 1984) Assessing the rate of operation (and concurrency) of
various program components and the rate of flow of
information.

3.6.3 Bottleneck Testing (Ng, 1990) Determining the location of undesired delays and
processing queries in the program’s operation.

3.6.4 Queue size, register allocations, Assessing any other performance aspect of the program.

paging, etc. (Beizer, 1990)
3.7 EXECUTION TESTING

3.7.1 Activity Tracing (Dunn, 1984) Monitoring and evaluating the results of a particular
program function or activity.

3.7.2 Incremental Execution (Ng, 1990) Halting program execution at multiple points to assess
performance variable values and data storage
characteristics.

3.7.3 Results Monitoring (NBS 500-93, Similar to 1.6.1 but more focused on a particular outcome

1982) regardless of the activity that generated it.

3.7.4 Thread Testing (Jensen, 1979) Following control and data for a single function through
mulitiple modules.

3.7.5 Using Generated Explanations (Miller, | Examining the explanations or rule traces produced by the

1989) expert system to evaluate if the reasoning process is
correct.
3.8 COMPETENCY TESTING

3.8.1 Gold Standard (Rushby, 1988) Measuring program results against widely accepted
standards.

3.8.2 Effectiveness Procedures (Llinas, Assessing the sequential effectiveness of the program

1987) against some external standard.
3.8.3 Workplace Averages (Rushby, 1988) Measuring program results against averages established

in some workplace.

73

Table 5.2.3-1 (Continued).

Dynamic Testing Methods

Description

3.9

3.91

3.9.2

ACTIVE INTERFACE TESTING

Data Interface Testing (Ng, 19380)

User Interface Testing
(NUREG/CR-4227, 1985)

Testing the data interfaces to
insure that all aspects of data /O are correct, including
buffering, change detection, checking, etc.

Evaluation of the user interface from low level ergonomic
aspects to instrumentation and controls human factors to
global consideration of ease-of-use and appropriateness,
taking into account CONOPS and information analyses
(below).

3.93

3.94

3.95

3.9.6

Information System Analysis
(NUREG/CR-4227, 1985)

Operational Concept Testing
(CONOPS Testing) (Miller, L., 1990)

Organizational Impact
Analysis/Testing (Booher, 1990)

Transaction-flow testing (Beizer, 1990)

Determining that operator-needed information is well
organized and is available directly, and quickly, neither too
much nor too little, neither inaccurate nor contradictory.

Testing that the concept of operations is adequate,
appropriate, and sufficiently flexible.

Testing or analyzing the effect of the system on the user
organization/corporate structure and/or methods after
installation.

Identifying the flow of information between people and
computers, for user-driven systems, as well as the internal
computer processing transformation of that information,
and developing a suite of tests to exercise each of the
processing steps.

74

Table 5.2.3-1 (Continued).

Dynamic Testing Methods

Description

3.10 STRUCTURAL TESTING

3.10.1 Statement Testing (Beizer, 1983)
3.10.2 Branch Testing (Miller, E., 1990)

3.10.3 Path Testing (Tung, 1990)

3.10.4 Call-Pair Testing (Miller, E., 1990)

3.10.5 Linear Code Sequence and Jump
(LCSAJ) (Miller, E., 1990)

3.10.6 Test-Coverage Analysis Testing
(Beizer, 1983)

3.10.7 Conditional Testing (Beizer, 1990)

3.10.8 Data-flow Testing (Beizer, 1990)

Generating test-cases to exercise specific (or all) program
statements in the source code.

Generating test-cases to exercise branches from
conditional or case control structures.

Augmenting branch testing to test various repetitions of
program flow through interactive or loop structures of the
program.

Developing cases to test the argument and parameter
interfaces among programs.

Selecting of test-cases based on control-flow analysis,
similar to branch testing, but often used in "lower" level
languages such as assembler.

Determining what statements, paths, branches, etc. are
exercised by a set of test-cases.

Testing of statements involving Boolean or Relational
(e.g., "A<B") tests. Selecting test-cases corresponding to
values equal to, less than, and greater than the values in
the conditions.

Selection of test-cases to explore data anomalies
discovered by examination of the program'’s control flow
graph.

3.1 Error-Introduction Testing

3.11.1 Error Seeding (Dunn, 1984)

3.11.2 FaultInsertion (Rushby, 1988)

3.11.3 Mutation Testing (Ng, 1990)

Introducing errors of arbitrary kinds in a software system
to assess the effects of such errors on system
performance.

Introducing modifications to a program which will induce a
failure or fault of a particular kind. '

Introducing errors of various kindsin a program and
determining whether a given suite of test-cases detect the
errors. Used to assess power of one's testing techniques
for discovering problems.

Dynamic testing requires actual execution of system source code on hardware platform under an operating
system. When the code is interpreted (as with BASIC), the code execution involves the appropriate interpreter. When
the code is compiled before execution, a number of other utilities are also involved, including the link-editor, the
loader, and the compiler. The use of these facilities may involve one or more program editors, the creation or
invocation of some minimum test-data set, a number of program-execution commands within one or more operating
environments, and possibly the use of several application software packages. It is a complex operation to test run a
system appropriately. Testers need to design a number of real world test-cases to exercise the system in various ways
for various test objectives. For example, testers may wish to ensure that a minimum number of program paths are
activated. To cause program control to transfer to a particular path, designated as P, requires working backwards from
the end of P through all preceding decision-points and external-inputs, recording the exact values of data which would
cause the program control to ultimately lead to P. When intermediate external inputs are required after the initial
primary inputs to the program are provided, the testers may be required to force the needed values by writing special
data drivers, creating data scripts for the data channel to access, or modifying parts of the tested program to dummy
these inputs. In addition, the testers may have to enter pre-determined values in response to program requests.

The testers are also involved in other kinds of program set-up activities. These activities include crafting and
seeding of specific types of errors, setting up monitoring software, recording performance and processing results,
calculating actual function coverage or structure, interpreting the results, analyzing, planning, and fixing and recording
program errors. Tester activities also include maintaining and running special regression test suites to ensure that
program fixes are free of side-effects. This testing is done in accordance with an overall test plan which specifies the
nature, purpose, and sequence of each designed test-case. Even with effective support tools, dynamic testing is a very
complex and labor-intensive activity.’

Each of the 67 dynamic testing techniques involves the complex execution activities described above. They
have been divided into 11 major categories. The first category, General Testing (3.1), is a catch-all for techniques
which did not fit into a focused class. Unit/Module Testing (3.1.1) involves intensive testing of the smallest program
unit, while System Testing (3.1.2) involves assessing total system functionality and performance over many program
interfaces (Table 2.4.3-1). Compilation Testing (3.1.3) involves using a specific language compiler (e.g., the IBM
Extended H Fortran Compiler) to check the program for errors. Some systems also have post-compiler checkers, such
as SUN Computer Corporation's LINT program (SUN, 1990) which automatically checks for suspected problems
and examples of poor programming practices. Reliability Testing (3.1.4) is used to gather information on the
"reliability", or the incidence of flaws, of various modules and also to select particular program sections for testing
based on prior evidence of unreliability.® Statistical Record-Keeping (3.1.5) is a related, more specific technique
which involves tracking errors reported for specific modules to build an empirical basis for prioritizing module testing.

7 A fiurther complicating factor is the fact that system source code may take on a wide variety of machine-code compilations depending on the particular
compiler, the version of the operating system and the platform used on the day of testing, and so on. These different versions do not usually lead to
noticeable functional differences, but there may be significant performance effects (e.g., when an optimizing compiler is or is not used).

8 The concept of "reliability” when applied to software is fundamentally different when it is applied to hardware. In the latter case, it is quite
reasonable to assume various kinds of physical deterioration of the hardware elements over time, as a function of the operating environment. However,
software source code, the symbolic representation of a to-be-stored and to-be-activated machine-language program, is impervious to such changes. If a
correctly compiled and executed software module produces an "error®, then that module has been incorrectly designed and/or implemented in source code.
Therefore, the term "unreliability" as applied to software really implies an inherent design error which happens to manifest itself at a certain time under
certain test conditions.

76

Software Reliability Estimation (3.1.6) is the third of the reliability-assessing techniques and employs statistical
estimation techniques applied to failure data such as recorded by Statistical Record-Keeping. Regression Testing
(3.1.7) involves running a previously-used test-suite on the whole program after modifications have been made to parts
ofit. This procedure checks to see if the additions affected previous work. Metric-Based Testing (3.1.8) evaluates
program units in terms of specially-computed metrics developed to detect modules with high "complexity” indices,
which are more likely to fail. Ad Hoc Testing (3.1.9) involves the arbitrary execution of a program without a test plan
and without careful consideration of functionality or performance requirements. Unfortunately, this method is highly
popular for module testing. Finally, Beta Testing (3.1.10) involves the early release of the system to "beta" user sites
for realistic testing. :

The second dynamic testing category is Special Input Testing (3.2), containing two subclasses. Random
Testing (3.2.1) is a technique covering a wide variety of possible means for randomly selecting input test-cases. The
four highly-related subcategorized methods under the Random Testing subclass deal with assumptions of four different
sampling distributions. This method randomly selects system-input test-cases. In empirically tested detection of
seeded and real errors for various test-case samplings using these four subclasses at the Halden STEM project, the
Uniform method (3.2.1.1), which selects cases with equal probability, was found to be the most powerful (Barnes,
1987). Domain Testing (3.2.2) is the stalwart technique of seasoned testers and involves detailed analyses of the input
space to design a careful selection of test-cases which specifically sample its features. It is itself a specific technique
but also has four specialized sub-category methods, each of which has strong proponents. Both Random Testing and
Domain Testing are considered separate methods in their own right, since they comprise a variety of means not covered
by the listed specializations. ‘

The third category, Functional Testing (3.3) uses five methods to assess whether the system exhibits specific
functionality as described in the requirements. This category is sometimes called "black box testing" since it focuses on
the input/output functionality of the system without taking into account the internal program structure. The most
common approach, Specific Functional Requirement Testing (3.3.1), generates test cases from two lines of reasoning.
The first approach focuses on a particular function and selects inputs and environment values to produce pre-
determined outputs if that function is implemented correctly. It is also known as the customary approach. The second
approach selects deviant or marginal input values for a particular function so that this function would not be activated,
or so that an error-condition would be returned. This is a lesser-used strategy. Simulation Testing (3.3.2) isa
technique often used for systems with particularly complex control or data-input streams. It compares the results of a
separately-developed simulated model of the system to the actual system outputs. All discrepancies signal problems in
the implemented code. Model-based Testing (3.3.3) is similar but implies a less-detailed, more analytic, qualitative, or
mathematical, modeling of a system, usually with much less data-dependency. Assertion Checking (3.3.4) occurs when
parts of the code are bracketed with executable assertions about what the code is supposed to do, and the asserted
outputs are compared to the actual code-generated ones to test the adequacy of the function. Lastly, Heuristic Testing
(3.3.5) involves analysis to identify and prioritize the potential faults of greatest concern and to generate test cases
which exercise the system to check for the next-remaining highest-priority fault.

The Realistic Testing methods (3.4) test the system under realistic conditions, often in the field (3.4.1),
frequently with realistic scenarios (3.4.2), and sometimes with special data-stream simulators (3.4.4).
Qualification/Certification Testing (3.4.3) provides for thorough testing under realistically stressful conditions for
special widely-used programs. Benchmarking (3.4.5) tests the program against accepted standard test situations, while

77

Human Factors Experimentation (3.4.6) involves conducting actual performance experiments with human users under
realistic conditions. Validation Scenario Testing (3.4.7) and Knowledge Scenario Generation (3.4.8) involve
generation and execution of realistic dynamic system tests which sample subsets of important functionality.

Stress Testing (3.5) exercises programs under heavy load conditions (3.5.1), using test cases which assess
stability (3.5.2), involve unusual inputs under degraded conditions (3.5.3), test the boundaries of variables (3.5.4), or
systematically violate design parameters (3.4.5).

The Performance Testing techniques (3.6) focus on various aspects of system performance, including CPU
and memory usage (3.6.1), timing characteristics (3.6.2), delays (3.6.3), and queues and paging (3.6.4).

The monitoring methods, Execution Testing (3.7), track various aspects of a program's execution (3.7.1-
3.7.3). Thread Testing (3.7.4) involves following the path ("thread") of execution of a particular functional capability
within and across program modules. Using Generated Explanations (3.7.5) evaluates the correctness of an expert
system's reasoning process.

The three Competency Testing methods (3.8) all involve constructing test cases to compare software system
output to an external standard.

Active Interface Testing (3.9), assesses the data interfaces (3.9.1), the user interfaces (3.9.2), the total
information organization and display characteristics (3.9.3), the concept of operations of the system (3.9.4), and the
impact of the system’s interfaces on the users' organization and procedures (3.9.5). Transaction Flow Testing (3.9.6) is
based on the concept of a transaction, a meaningful unit of information-exchange between users and the system, and
involves generation of a test suite to exercise these.

Structural Testing (3.10) is the traditional standard of dynamic testing. This class is sometimes called
"white box testing". This indicates that the actual program composition and structure is taken into account in
generating the test-cases. This contrasts "black box testing” which is concerned only with the external input and output.
Conceptually, the simplest structural testing technique is to select test-cases so that each source code statement is
executed at least once, as in Statement Testing (3.10.1). Branch Testing (3.10.2) develops test-cases to follow each
branch from transfer-of-control structures (e.g., in an IF-THEN-ELSE construction, testing the branch that occurs
after the THEN as well as testing the branch that occurs on the ELSE side). Path Testing (3.10.3) is an extension of
branch-testing. It involves testing of various numbers of repetitions of program loops. Call-Pair and Linear Code

Sequence and Jump testing (3.10.4, 3.10.5) test interfaces among modules and assembly-language control
flow. Test-coverage analysis testing (3.10.6) involves setting a goal for any kind of structural coverage. It measures
previous test-cases results and selects new test-cases on the basis of what remains to be covered. Conditional testing
(3.10.7) tests statements containing Boolean ("A AND B") and relational expressions at the boundaries where these
expressions are True and False. Data-flow testing (3.10.8) can follow from branch (or path) testing. This involves a
control-flow graph of the program created by reducing all non-branching statements to a single process element. This
control-graph is examined for various kinds of suspicious data-flow characteristics.

The last class of structural testing is Error-Introduction Testing (3.11). The first two techniques, error
seeding and fault insertion involve adding various kinds of errors into the program (3.11.1-3.11.2). The last of these

78

methods, Mutation Testing (3.11.3), also introduces errors into a program, to assess the sensitivity of the test-case
suite. If a test-suite previously used on an unmodified program can detect the inserted problems this test-suite has
high level detection capability.

5.3 Discussion

This survey has revealed a large array of testing and V&V techniques available for conventional system
software. It might be argued that some methods have been too finely sub-categorized or others should have been more
defined. Undoubtedly some important techniques have been omitted, and others should have been omitted.
Nonetheless, the availability of numerous methods clearly emerges. Some methods have very precise capabilities and
some have very general capabilities. However, most methods are oriented towards a particular aspect of the life-cycle
with a few techniques cutting across phases (e.g., reviews, requirements tracing).

The last two sections of this report discuss the tasks of more fully characterizing these methods and of gauging
their utility for use with expert systems. Note that if an expert system has a requirements or design phase, the
conventional techniques appropriate for testing requirements or design should be applicable to the expert system
documents that are created in these phases. This leaves more than a 100 implementation-phase Static and Dynamic
testing methods which also might apply to expert system implementations.

Finally, in addition to the methods (and commercial products embodying them) that were identified, there are
a number of automated tools and environments that are being used with considerable success for all aspects of testing
and V&V, especially in the nuclear industry. They and their descriptions are listed in Table 5.3-1. There is an
increasing number of commercial CASE (Computer Aided Software Engineering) tools available to support many
aspects of V&V. The review of these tools is beyond the scope of this paper. The reader is referred to published
articles and reviews (e.g., CASE Trends) for further discussion of this topic.

79

PR R T DA AR AL RS U ST A N 2 % DR e Rt) T Y L R M Se iR, (S e e O

Table 5.3-1 CASE tools for full life cycle support

Tools/Methodologies

Description

SAGA (Oakes, 1991)

A French tool for 2167A like lifecycle support, formal specification
language, grid for desired programmer practices, promotion of reuse
of certified subroutines, used in Design of Display and Control
Software (N4 French NPPs).

SPACE (Beltracchi, 1991)

German tool with specification and coding environments, strong
semantics, specification language, graphic interface for code
specification used for digital safety system design.

CAL - Disassembler (Dahli,
1990)

Translate machine code in CAL (Common Assembler Language).
Written in Pascal for analysis.

STAN (Static Analyzer)
(Dahll, 1987)

Takes in CAL code, translate into directed graph computer minimal C1
closure (full path coverage). Develop data flows of program variables,
single entry single exit analysis, dynamic structural testing analyses.
Translates CAL into Pascal.

REMAINDER (Ng, 1990)

A fast, simple and accurate program to record all different instruction-
execution paths for a set of test-cases, with much better performance
and memory requirements than other methods (linked-tree, binary-
tree).

LINT (Sun, 1980)

Sun microsystems program verifier for C programs with checks for
post-compiler bugs and violations of good programming practices.

ATRON Evaluator
(Beltracchi, 1991)

Runs regression test sufte, records results, from Cadre Technologies.

MAT (Beltracchi, 1991)

Maintainability analysis tools, quantifies statement complexity via
weightings of elements, reports instances of poor wage and other
understandability problems (including unnecessary elements).

OASIS (Beltracchi, 1991)

Workstation based simulator for liquid metal cooled reactor, static, and
dynamic analysis tools, safety analysis, analysis of decay heat removal
loops (Super Phoenix 1),

MOTH (Bamnes, 1987)

Generates various types of test case data for Halden testing compares
results of 3 trip code and logs discrepancies (SIM-MOTH generates
simulation data) (SOSAT Tool)

80

Table 5.3-1 (Continued)

Tools/Methodologies

Description

GOMO (iBarnes, 1988)

Provides statistical information on (45) inserted faults in Halden TRIP
Code testing - number detected/undetected faults, MTBF estimators
(SOSAT tool).

SETH (Barnes, 1988)

Runs 6 trip programs, applying test cases, studying common mode
factors between them, recording number of failures.

COVER (Barnes, 1988)

Measures branch and statement coverage of test cases for the trip
program.

SPADE (Carre, 1986)

Convert source code for PASCAL into an intermediate language (FOL)
for various analyses.

- dependency analysis

- path analysis

- symbolic execution for given variables

- conformance to pre-and-post-processing
conditions

RXVP80 (Carre, 1986)

Static Analysis of Fortran Code, including

- data type consistency

- subroutine parameter consistency checks

- consistency/usage checks on COMMON data
- check for inaccessible code

- derivation of control flow

LRDA (Liverpool, 1985)

For a given suite of test cases. Computes fractional coverage of
statements, branches, linear code sequences, and jumps (in terms of
Test Effectiveness Ratios).

81

6 CHARACTERIZATION OF CONVENTIONAL V&V METHODS

This section builds the framework for characterizing conventional V&V techniques. It begins by developing
a taxonomy of defects. Each method is rated by the types of defects it can detect. This classification system will
provide the fundamental basis for evaluating the power of the conventional V&V techniques.

The overall utility of particular V&V methods will depend on several factors. Initially, a number of features
that relate to the general power and ease-of-use aspects of the techniques are identified in Section 6.2. These features
provide the basis for two novel metrics on V&V methods -- "cost-benefit" and effectiveness. These measures are
developed and discussed in Section 6.3. Finally, Section 6.4 considers practical issues associated with selecting a set of
techniques to use for any system (expert systems or otherwise).

Please note that a new methodology for reviewing and evaluating V&V methods is being proposed. Under
this new methodology, individual software V&V techniques are rated on a number of features, then combined in
various ways to assess the cost-benefits and the effectiveness of each technique. While this general methodology has
been used successfully in other fields, it has not been applied to software testing. Therefore, this approach has yet to
receive acceptance among testing professionals. In addition, there is little empirical data detailing the effectiveness of
specific techniques. The rating judgments on each V&V technique are subjective. These issues might cause the
readers to have questions about the ratings of individual techniques, the derivation of the measures, and the
methodology itself. However, since this methodology is clearly set forth, an individual using this approach can easily
substitute different values or compute measures in a different way.’

6.1 Defect Detection

" Most texts on testing provide something of a taxonomy of possible defects (e.g., Boehm, 1981; Dunn, 1984;
Beizer, 1990). However, these texts were variously too broad or much too detailed. This was particularly true of the
early life-cycle phase descriptions. A classification scheme was therefore developed (Section 6.1.1) to obtain what was
believed to be the right level of detail and coverage.

In Section 6.1.2, each V&V technique was rated by the types of defects it could reasonably detect. Broad
Power describes the range of types of defects detectable by a technique. It is an important feature in the subsequent
rating of the cost-benefit value of the techniques (Section 6.3).

6.1.1 A Taxonomy of Defect Types for Conventional Software

Although there are various collections of data on actual defect occurrence (e.g., Beizer, 1990), these data are
relatively sparse. Additionally, these studies typically confound programmer skill, development environment,
application type, and management. There are also very few predictive theory principles concerning how and where
defects occur. The decision of defect importance is dependent upon the system's goals and functions. Finally, there is
scant data on the effectiveness of defect detecting techniques, coupled with empirical distribution of defect frequency,
to provide a sound basis for a software reliability and detectability analysis. All of these factors make construction of a

2 All of the ratings and measure computations were developed in a model using a commercial spreadsheet package; all of the tables characterizing
the V&V techniques are output from the spreadsheet model.

83

taxonomy of defects very difficult. The present taxonomy has face and construct validity, but it lacks empirical validity.
Nonetheless, it reflects a consensus of views on types of defects and is sufficiently detailed for this task. The reader is
reminded that the defects developed here are for conventional software. Defects peculiar to expert systems are not
included.' '

The taxonomy, shown in Table 6.1.1-1, lists 52 types of defects according to the three main Life-cycle phases:
requirements, design, and coding. The coding types of defects were further divided into three sub-categories of logic
and control, data operations and computations, and other. The two key criteria for defects were: (1) they did not
overlap or subsume each other, and (2) they were not specific to a particular language or environment, rather having
some commonality across programming languages, development environments, and system development approaches.

Unfortunately, there is a great deal of unevenness among the types of defects; some are broad while some are
very specific. Nevertheless, these are all things that software testers and V&V personnel are concerned about, and the
presence of any of them could be quite significant.

6.1.2 Detection of Defects by Conventional V&V Methods

In order to estimate the detection capability of the testing techniques, the 153 conventional V&V methods
were evaluated against the set of 52 types of defects. The question was whether individual techniques could be
expected to detect a specific type of bug. If the answer was "yes", the defect number was entered opposite the
technique, and the next defect for that technique was considered. Note that the question being asked here was whether
the technique could conceivably detect a particular defect. Not only was this an informed but still subjective
assessment, but also it ignored questions of how well or how easily a defect could be found by that method. The results
of these subjective judgments are shown in the second column of Table 6.1.2-1. The total number of detectable defect
types by a particular method is shown in parentheses in the second column. While every effort was made to be
consistent and thorough in these ratings, the reader should use them only as a general guide; abstract ratings in the
absence of actually using the method are bound to be variable and differ from one set of raters to another.

While Table 6.1.2-1 shows the most likely detectable defect types of a particular technique, this does not
mean that other defects might not be detected by that same technique. On the contrary, any technique, as a side-effect,
could theoretically expose any type of defect.

The number of detected defect types range from a low of 3 to a high of 52. The total number of detected
defect types is considered to be an index of what is called Broad Power. Broad Power is the capability of a technique
to detect a broad variety of types of defects. Given the defect taxonomy of Table 6.1.2-1, there are a number of
techniques which cover the majority of defects and three which were judged to cover all (2.5.4 Clean-room, 3.4.3
Qualification/Certification testing, and 3.4.4 Simulator-based testing). This is an important aspect in determining the
benefits of comparing one technique to another. However, using the number of types of defects detected as an indicator
of the Broad Power of a technique is a problem. It implies that all types of defects are equally weighted in importance.
This assumption is untrue. In order to improve the measure, a basis for weighing each defect type would have to be
developed. Unfortunately, there is no body of data to estimate the average economic consequences of each type of

1o Nor are they, with any confidence, known.

84

Table 6.1.1-1 Types of software defects

descriptions

Type Description Occurs
1.0 Requirements Originate in Requirements Phase; found in the
Requirements Specification
.1 Incomplete Decomposition Failure to adequately decompose a more abstract System,
specification. Sub, Mod
.2 Omitted Requirement Failure to specify one or more of the next lower System,
levels of abstraction of a higher level specified. Sub, Mod
.3 Improper Translation Failure to carry detailed requirement through System,
decomposition process, resulting in ambiguity in | Sub, Mod
the specification.
4 Operational Environment Specification which does not accommodate the System,
Incompatibility operational environment, such as data rates, Sub, Mod
data formats, etc.
5 Incomplete Requirement Failure to fully describe all requirements of a Mod
Description function.
.6 Infeasible Requirement Requirement which is unfeasible or impossible to Mod
achieve given other system factors, e.g., process
speed, memory available.
.7 Conflicting Requirement Requirements which are pairwise incompatible. System,
Sub, Mod
.8 Incorrect Assignment of Over-or-Under stating the computing resources Mod
Resources assigned to a specification.
.9 Conflicting Inter-system Requirements of cooperating systems, or System
Specification parent/embedded systems, which taken pairwise
are incompatible.
.10 Incorrect or missing external Specification of an incorrect value or variable, or a Mod
constants missing value or variable in a requirement
A1 Incorrect or missing Failure to specify the initial system state, when that Mod
description of initial system state is not equal to 0.
state
12 Overspecification of Requirements or specification limits that are System,
Requirements excessive for the operational need, causing Sub
additional system cost.
.13 Incorrect input or output Failure to fully describe system input or output. Mod

85

Table 6.1.1-1 (Continued).

level & detail design

at the other.

Type Description Occurs
2.0 Design Generated in design and appear in design
documentation
.1 Omitted requirement Failure to address a requirement or specification in System,
design. Sub, Mod
.2 Misinterpreted requirement Failure to accurately represent a requirement or System,
specification in design. Sub, Mod
.3 Data limitation Failure to accommodate the full range of possible Mod
data.
.4 Unintended Design Element Inclusion of design elements that cannot be traced Sub, Mod
to a requirement or specification.
.5 Hardware incompatibility Non-existent or more capable hardware resources Mod
prescribed beyond those available, e.g. process
cycles or memory.
.6 Software incompatibility Assumes commercial package, utilities or operating | Mod
system capabilities which are not available or
function differently than assumed.
.7 Poor man-machine interface | Man-machine interface is clumsy, hard to learn/use, | Sub, Mod
design hard to see/read, etc.
.8 Incorrect analyses of Design fails to adequately address factors of Mod
computational error computation error, such as round-off, truncation,
numerical approximation.
.9 Non-compliance Design fails to conform to standards. System,
Sub, Mod
A0 Lack of adequate error traps Failure to provide adequately frequent error traps, or | Mod
sufficient in scope, or error traps do not provide a
recovery mechanism.
.11 Failure to handle exceptions Failure to handle unique conditions, or boundary Mod
conditions.
A2 Weak modularity Design inadequately groups functions or Mod
requirements to modules.
.13 Rigid control structure Control structure is designed with in-line logic or in Mod
other ways which preclude ease of expansion or
modification.
.14 Missing or incorrect Control structure design does not allow processing System,
processing priorities priorities to be established or modified to satisfy Sub, Mod
requirements or implements them incorrectly.
.15 Breakdown between top- Design modifications at one level are not reflected Sub, Mod

86

Table 6.1.1-1 (Continued).

Type Description Occurs
3.0 Code Originate in code; exclisive of defects regularly
detected by an assembler or compiler.
3.1 Logic and Control
.1 Unreachable Code Code which fails to be accessed due to redundant, Mod
contradictory branching conditions.
.2 Improperly used flow control Improperly formed or used looping or branching Mod
constructs constructs undetected by the compiler.
.3 Inverted predicates A predicate (e.g. "if* statement) which is incomplete, | Mod
transposed or incorrect.
4 Improper process Processing sequential errors, e.g., attempttoread a | Sub, Mod
sequencing file before itis opened and
timing/synchronization errors in concurrent
processing.
.5 Halting problem A loop or recursive or non-deterministic machine Mod
without a meetable exit condition or halting
condition.
.6 Instruction modification Dynamic instruction modification. Mod
.7 Failure to save or restore Failure to save the contents of registers to be used Mod
process communication later or restore them upon exit, or to correctly
handle interprocess communication
mechanisms, e.g., semaphores, file/record
locks.
.8 Unauthorized or incorrect Code developed to be recursive with a language Mod
recursion which doesn't support recursion or improper use
of recursion.
.8 Incorrect labels or control A referenced but uncoded statement label or Mod

flags

control flag, or a missing statement label or
control flag or unreferenced labels, flags which
remain in the code.

87

Table 6.1.1-1 (Continued).

Type Description Occurs
3.2 Data Operations and
Computations

.1___Missing validity test Failure to test data imported by a procedure. Mod

.2 Incorrect data referencing Conditions which potentially allow a subscript, Mod
pointer or index to exceed the boundaries of a
declared array or other data structure.

.3 Mismatched parameter list Procedure calls where the parameter or argument Mod
list of the calling program differs in number or
type from that of the called program unit.

4 Definition or initialization fault | Failure to initialize or incorrect initialization, or Mod
variables used before they are defined.

.5 Anachronistic data A mix of data pertinent to the current iteration and System,
data erroneously included from previous Sub, Mod
iterations.

.6 Improperly used data Errors in use of data handling constructs such as Sub, Mod

handling construct type mismatches, improper transformations,
moves or subsetting.

.7 Variable misuse Any misuse of a variable, either locally or globally. Sub, Mod

.8 Incompatible data Inconsistency in units of data, e.c. pounds, Mod

representation kilograms.

.9 Insufficient data transport Poor handling of input and output operations which System,
have an effect on throughput, i.e., input-output Sub, Mod
statements, library routines or database,
indexing.

40 Input-Output faults Incorrect communication protocols and external System,
data mismatches. Sub, Mod
3.3 Other

.1 Calls to non-existent A call to a subprogram that is not yet in the system. Mod

subprograms

.2 Improper program linkages Involving a variable of one data type in a program System,
being declared as another data type in the Sub, Mod
calling program, or a mismatch in control
information between a called and calling
program.

.3 Failure to implement design A design element is missing from the code. System,

element Sub, Mod

.4 Improperly implemented Code that does not conform to the definition of its System,

design element corresponding design element. Sub, Mod

.5 Unintended function “"Extra” code that cannot be mapped to any design System,
element. Sub, Mod

88

Table 6.1.2-1 Capability of testing techniques to detect defects

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected

Requirements/Design Methods
1.1.1 General Requirements Language 11,12,1.3,15,1.6,1.7,1.8,1.9, 1.10,
Analysis/Processing 1.11,1.13 (11)1
1.1.2 Mathematical Verification of 11,12,13,1.6,1.7,1.8,1.9,1.10, 1.11,
Requirements 1.12,1.13 (11)
113 EHDM 11,12,13,1.6,1.7,1.8,1.9,1.10, 1.11,
1.12,1.13,2.2,24,2.8-2.11,2.14,2.15
(19
114 Z 1.1,12,13,16,1.7,1.8,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15
(19)
145 Vienna Definition Method 11,12,13,15,16,1.7,1.9,1.10,1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15
(19
1.1.6 Refine Specification Language 11,12,13,15,16,1.7,1.9,1.10, 1.11,
1.12,1.13,2.2,2.4,2.8-2.11,2.14,2.15
(19
1.1.7 Higher Order Logic (HOL) 11,12,13,15,16,1.7,1.9,1.10, 1.11,
’ 1.12,1.13,2.2,24,28,2.9,2.10, 2.11,
2.14,2.15 (19)
1.1.8 Concurrent System Calculus 11,12,13,15,16,1.7,1.9, 110, 1.11,
1.12,1.13,2.2,24,28,29,2.10, 2.11,
2.14,2.15 (19)
1.2.1 Ward-Mellor Method 11,1.2,13,15,16,1.7,1.9,1.10, 1.11,
1.12,1.13,22,24,28,2.9,2.10,2.11,
2.14,2.15 (19)
1.22 Hatley-Pirbhai Method 11,12,13,15,16,1.7,1.9,1.10,1.11,
1.12,1.13,22,24,28,29,2.10,2.11,
2.14,2.15 (19)
1.23 Harel Method 11,1.2,13,15,16,1.7,1.9,1.10,1.11,
1.12,1.13,22,24,238,29,2.10,2.11,
2.14,2.15 (19)
1.24 Extended Systems Modeling Language 114,12,13,15,16,1.7,1.8,1.9,1.10,
1.11,1.12,1.13,22,24,2.7,2.8, 29, 2.10,
2.11,2.12, 2.13, 2.14, 2.15 (23)

1 Numbers in parenthesis are sums

ST T T T e s

89

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected

125 Systems Engineering Methodology 1.1,12,13,15,16,1.7,1.8, 1.9, 1.10,
1.11,1.12, 1.13,22,24 2.7,2.8,29,2.10,
2.11,2.12,2.13, 2.14, 2.15 (23)

126 System Requirements Engineering 11,12,13,15,16,1.7,1.8,1.9,1.10,

Methodology 1.11,1.12,1.18,2.2,2.4,2.7,2.8, 2.9, 2.10,

2.11,2.12, 2.13, 2.14, 2.15 (23)

127 FAM 11,12,13,15,1.6,1.7,1.8,1.9, 1.10,
1.11,1.12,1.13,222,2.4,2.7,2.8,2.9, 2.10,
2.11,2.12,2.13, 2. 14 2.15 (23)

1.2.8 Critical Timing/Flow Analysis 14,16,18,24,26,2.7,31.2,3.16,
3.1.9,3.3.1 (10)

1.29 Simulation-Language Analysis 12,13,14,15,16,1.7,1.8,1.9,1.12,
1.13,2.10-2.12, 214(14)

1.2.10 Petri-Net Safety Analysis 12,13,14,15,16,1.7,1.8,1.9, 1.12,
1.13,2.1, 22(12)

1211 PSL/PSA 11,12,13,14,15,1.6,1.7,1.8, 1.9,
1.10,1.11,1.12,1.13,2.1,2.2,2.3, 2.4, 2.5,
26,27, 2.8, 29,212, 2.15 (24)

1.3.1 _ Formalized Requirements Review All of 1.0 (13)

132 Formal Design Review 11,12,1.3,14,15,16,1.7, 1.8, 1.9,
1.10,1.11,1.12,1.13,2.1,2.2,2.3,24, 25,
2.6,2.7,2.8,2.9,2.12 (23)

1.3.3 System Engineering Analysis 1.1-1.10,1.12,1.13,2.1,2.2, 2.7, 2.9, 2.11-
2.15 (21)

1.3.4 Requirements Analysis All of 1.0 (13)

1.3.5 Prototyping 1.4,15,1.6,1.8-1.13, 2.2, 23,25-27,
2.10-2.15 (20)

1.3.6 Database Design Analysis 1.2,2.3(2)

1.3.7 _ Operational Concept Design Review 1.13,2.1,2.2,2.7 (4)

1.4.1 Requirements Tracing Analysis 1.1,1.10,1.11,2.1,22,2.3,24, 2.5, 2.6,
2.7,2.8,2.9,2.12 (13)

142 Desigh Compliance Analysis 24,2.9,215 1)

Static Methods

2.1.1 Analytic Modeling

1.1 thru 1.11,1.13,2.1thru 2.3, 2.5, 2.6,
28,28,2.11,2.14,2.15,3.1.1, 3.26,3.3.1
thru 3.3.4 (28)

90

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected
from Table 2.3.1-1

2.1.2 Cause-Effect Analysis 1.1,1.9,2.6,2.8, 3.1.2 (5)

2.1.3 Symbolic Execution 1.13,2.3,2.9,3.1.1-3.15,3.1.9,3.3.1,3.3.2
an

2.1.4 Decision Tables 1.2,15,1.13,2.1,22,24,2.7,2.11,2.13,
214,31.2,3.1.3,3.1.8,3.2.6,3.3.3,3.34,
3.3.5(17)

21.5 Trace-Assertion Method 1.1,1.2,15,1.11,1.13,2.1,2.2,2.11, 2.14,
2.15,3.14,3.15,3.26,3.3.1,3.3.2,3.3.3
(16)

2.1.6 Functional Abstraction 1.1,1.2,1.5,1.11, 1.13, 2.14, 2.15, 3.1.5,
3.1.9,3.2.6,3.3.1 thru3.3.4 (14)

2.1.7 L-D Relation Methods 1.1,1.2,1.5, 1.11, 1.13, 2.15, 3.1.3 thru
3.1.6,3.2.6, 3.3.1 thru 3.3.4 (15)

2.1.8 Program Proving 1.7thru 1.10,2.1,26, 2.8, 2.8, 2.11, 2.14,
3.1.1-3.1.6, 3.1.8,3.2.6 (18)

2.1.9 Metric Analysis 3.1.1 thru 3.1.6, (6)

2.1.10 Algebraic Specification 1.9,1.11,1.12,1.13, 2.1, 2.4, 2.8, 2.15,
3.1.2,3.1.3,3.14,3.23,3.24,3.26-3.2.9,
all of 3.3 (22)

2.1.11 Induction-Assertion Method 1.9,1.11,1.12,1.13,2.1,2.4,2.8, 2.15,
3.1.2,3.1.3,3.1.4,3.23,3.24,3.26-3.2.9,
all of 3.3 (22)

2.1.12 Confidence Weights Sensitivity Analysis 2.11,3.26 (2)

2.1.13 Model Evaluation 1.1-1.5,1.7,1.9-1.11,1.13, 2.1-2.3, 2.7,
2.11,2.14,3.1.4,3.2.6-3.2.8,3.2.10,3.34
(22)

2.2.1 Control Flow Analysis 1.11,2.4,2.10, 2.13, All of 3.1 (13)

2.2.2 State Transition Diagram Analysis 1.11,2.4,2.10,2.13, All of 3.1 (13)

2.2.3 Program Control Analysis Allof3.1,3.3.1,3.3.2 (11)

2.2.4 Operational Concept Analysis 1.4 thru1.6,2.1,22,2.11,2.14 (10)

225 Calling Structure Analysis 1.11,24,2.10,2.11, 2.12, 2.13, All of 3.1
(15)

226 Process Trigger/Timing Analysis 16,1.7,1.8,1.9,1.12,24, 2.7,2.10, 2.11
©

| 2.2.7 Worst-Case Timing Analysis 1.8,1.10,2.3,2.5,2.6,2.7, 2.8, 2.14 (8)

91

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from Types of Defects Detected
Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1 from Table 2.3.1-1

2.2.8 Concurrent Process Analysis 16,17,1.8,1.9,25,26,2.7,2.14,31.7
:)

2.3.1 Data Flow Analysis 1.10, 1.11, 1.13, 3.1.4, 3.1.8, All of 3.2 (15)

2.3.2 Signed Directed Graphs 16,1.7,1.9,25,26,3.22,3.23 (@)

2.3.3 Dependency Analysis 16,1.7,1.9,25,26,63.2.2, 3.2.3(7)

234 Qualitative Causal Reasoning Analysis 16,1.7,1.9,25,26,3.22,323 (7)

2.3.5 Look-up Table Generator 2.9, All of 3.2 (11)

2.3.6 Data Dictionary Generator 2.9, Allof 3.2 (11)

2.3.7 Cross-Reference List Generator 2.9,3.1.7,3.1.9, All of 3.2 (13)

2.3.8 _ Aliasing Analysis 3.23,3.24,3.25,3.26,3.2.7 (5

2.3.9 Concurrency Analysis All of 3.1 (9)

2.3.10 Database Analyzer All of 3.2 (10)

2.3.11 Database Interface Analyzer All of 3.2 (10)

2.3.12 Data-Model Evaluation 2.3,2.4,2.7,2.8,2.9,2.10,2.11,2.14 (8)

24.1 Failure Mode, Effects, Causality Analysis 12,1.7,1.8,21, 2.8, 2.10,2.11, 3.1.2,
3.14,3.1.7,3.1.8,3.1.9, all of 3.2 (22)

242 Criticality Analysis 12,19, 2.8; 3.1.4,3.1.7,3.1.9,all of 3.2
(16)

2.4.3 Hazards/Safety Analysis 11,12,1.3,2.1,22,24,2.7,2.11,2.14,
3.14,3.1.9, all of 3.2, 3.3 (26)

24.4 Anomaly Testing 2.3,2.10,2.11,3.2.1,3.3.3,3.3.4 (6)

245 Fault-Tree Analysis 1.7,1.9,1.12,2.10,3.1.2, 3.1.3, 3.1.4,
3.2.1-3.2.4, 3.2.6, 3.2.10 (16)

24.6 Failure Modeling 12,13,1.4,16,1.7,21,2.3,24,2.7,
2.11,2.14,3.1.4,3.1.9, all of 3.2, 3.3 (28)

2.47 Common-Cause Failure 3.1.2,31.3,3.14,3.15,3.16,3.1.7, 3.1.8,
)

248 Knowledgebase Syntax Checking 1.3,1.10,1.11,1.13,2.3,2.11, 2,14, 3.1.1,

3.1.2,3.1.3,3.15,3.1.9,3.2.1-3.2.4, 3.2.6,
3.2.7,3.2.10,3.3.3,3.3.4 (22)

249 Knowledgebase Semantic Checking 1.3,1.10,1.11,1.13,2.3,2.11, 2.14, 3.1.1,
3.1.2,3.1.3,3.1.5,3.1.9,3.2.1-3.2.4, 3.2.6,
327,328 3.2.10,3.3.2,3.3.3,3.3.4 (24)

92

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Types of Defects Detected
from Table 2.3.1-1

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

2.4.10 Knowledge Acquisition/Refinement Aid 13,1.7,1.10,1.11,1.13,2.3,2.11,3.26,

3.2.8(9)
1.1-1.3,1.5,1.7,1.10,1.11, 113, 2.1-24,

2.4.11 Knowledge Engineering Analysis

2.7,211,214,322,3.24,3.2.6,3.2.10,
3.3.4 (20)

Informed Panel Inspection

2.5.1 All of 1.0, 2.0 (28)

252 Structured Walkthroughs Allof 3.1,3.2.3,3.2.6,3.2.7,3.3.1,3.3.2
(14

2.5.3 Formal Customer Review All of 1.0, all of 2.0 (28)

254

Clean-room Techniques

All of 1.0, 2.0, all of 3.0 (52)

255

Peer Code-Checking

27,29,2.11-2.15,3.1.1,3.1.2,3.1.3,3.1.9,
3.2.3,3.26,3.2.7,3.3.1,3.3.2(16)

256 Desk Checking 27,29,2141-2.15,3.1.1,3.1.2,3.1.3,3.1.8,
3.2.3,3.26,3.2.7,3.3.1,3.3.2 (16)
2.5.7 Data Interface Inspection 14,1.7,1.9,1.10,1.11,23, 2.9, 2.11,

3.2.1-3.2.4,3.26, 3.2.8,3.2.10, 3.3.2 (16)

2.5.8

User Interface Inspection

1.4,1.8,2.15 (3)

2.5.9 Standards Audit 25,26,2.8,2.12,3.34 (5

2.5.10 Requirements Tracing 11,1.2,1.3,1.7,1.9,1.10, 1.11, 1.12, 1.13,
2.1,2.2,2.4,2.8,2.9,2.15 (15)

2.5.11 Software Practices Review 29,3342

2.5.12 Process Oriented Audits 29,3332

2.5.13 Standards Compliance 2.9,3.2.10 (2)

25.14

System Engineering Review

1.1-1.10,1.12,1.13,2.1,2.2,2.7,2.9, 2.11-
2.15,3.1.7,3.21,3.28,3.2.9,3.2.10,3.33,
3.34 (27)

Dynamic Methods

3.1.1 UnitModule Testing 12,14,1.9,1.10,2.3,25,26, 2.7,2.8,
2.10,2.11,2.12,2.13, 2.14, 3.1.2-3.1.9, all
0f3.2,3.3(37)

3.1.2 System Testing 12,1.4,1.9,1.10,2.3,25,26,2.7,2.8,

2.10,2.11,2.12,2.13,2.14,3.1.2-3.1.9, all
of3.2,33 (37N

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected
from Table 2.3.1-1

3.1.3 Compilation Testing Allof 3.1,3.2.1-3.2.4,3.2.6, 3.2.10, 3.3.1,
3.3.2 (20)

3.1.4 _ Reliability Testing 3.1.3,3.1.4,3.1.7, all 0f 3.2, 3.3.2 (14)

3.1.5 Statistical Record-Keeping 3.1.1,3.1.2,3.15,3.1.6,3.1.7,3.1.9, (6)

3.1.6 __ Software Reiliability Estimation 3.1.1,3.1.2,3.15,3.3.1,3.3.2 (5)

3.1.7 Regression Testing 1.2,14,19,1.10,23,25,26,2.7,2.8,
2.10,2.11,2.12,2.13,2.14, 3.1.2-3.1.9, all
0f3.2,3.3 (37)

3.1.8 Metric-Based Testing 3.1.2,3.14,3.1.8,3.1.9,3.2.2,3.210,3.3.2
(4]

3.1.9 Ad Hoc Testing 3.1.2-3.14,3.1.9,3.2.1-3.24,3.26-3.2.9,
3.3.1 (14)

3.1.10 Beta Testing 12,1.4,18,1.13,2.1-24,2.7,2.8, 2.10,
2.11,2.14,3.1.4,3.1.5,3.2.5-3.2.10 (21)

3.2.1 Random Input Testing All of 2.0, all of 3.0 (39)

3.22 Domain Testing All of 2.0, all of 3.0 (39)

3.3.1 _ Specific Functional Requirement Testing All of 2.0, all of 3.0 (39)

3.3.2 Simulation Testing 12,1.4,1.6,1.7,1.9,1.10, 1.11, 1.12, 2.3,
26,2.7,210,2.14,3.1.2,3.1.4, 3.1.5, all of
3.2,3.3,3.3.3(33)

3.3.3 Model-Based Testing 2.1-2.8,2.10,2.11,2.14,3.1.2,3.1.4,3.1.7,
3.21,3.24,3.2.7,3.2.8,3.2.10 (19)

3.34 Assertion Checking 31.3,3.14,3.1.7,3.2.1,3.22,3.2.3,3.24,
3.26,3.2.7,3.2.10,3.3.2(11)

3.3.5 Heuristic Testing All of 2.0, all of 3.0 (39)

341 Field Testing All 0f 2.0, 3.0 (39)

342 Scenario Testing All of 2.0, 3.0 (39)

3.4.3 _ Qualification/Certification Testing All of 1.0, 2.0, 3.0 (52)

344 Simulator-Based Testing All of 1.0, 2.0, 3.0 (52)

3.4.5 Benchmarking All of 3.1,3.2 (19)

3.4.6 Human Factors Experimentation 2.7,2.13,2.14,3.2.10 (4)

3.4.7 Validation Scenario Testing 1.2,1.4,1.8,1.13,2.1-24,2.7,2.8,2.10,

2.11,2.14,3.1.4,3.1.5, 3.2.5-3.2.10 (21)

94

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected

3.4.8 Knowledgebase Scenaio Generation 3.1.2,3.1.4,3.1.5,3.1.7, 3.1.9, all of 3.2,
3.3.2-3.35(19

3.5.1 _ Stress/Accelerated Life Testing All of 3.0 (24)

3.56.2 Stability Analysis All of 3.0 (24)

3.5.3__ Robustness Testing All of 3.0 (24)

3.5.4 LimiRange Testing 2.3,238,2.10,2.11,3.1.3,3.1.4,3.1.7,
3.2.1,3.2.2,3.2.3 (10

3.5.5 Parameter Violation 2.3,2.8,2.10,2.11,3.1.3,3.14, 3.1.7,
3.21,32.2,3.23,3.26,3.2.8,3.3.2(13)

3.6.1__ SizingMemory Testing 16,1.8,2.5,2.7 (4

3.6.2 _ Timing/Flow Testing 24,2.7,3.1.2,3.1.6,3.1.9,3.3.1 (6)

3.6.3 Bottleneck Testing 2.7,2.14,3.2.9 (3)

3.6.4 Queue Size, Register Allocations, Paging, | 1.4,1.5,1.7,1.8,2.7,2.14,3.2.9,3.34 (8)

Etc.

3.7.1 ___ Activity Tracing 3.1.1 thru3.1.9, 3.2.4 (10)

3.7.2 Incremental Execution All of 3.1, 3.2,3.3.1,3.3.2 (21)

3.7.3 Results Monitoring 2.3,25,26,2.7,28,2.9,2.10, 2.11, 2.14,
3.2,3.3(24)

3.74 Thread Testing All 0f 2.0, 3.1.1-3.1.5, 3.2.1-3.2.4, 3.2.6-
3.2.10,3.3.1-3.3.5 (34)

3.7.5 Using Generated Explanations 3.14,3.1.7,3.21,3.2.2,3.24, 3.26-3.2.8,
3.2.10,3.3.3-3.3.5 (12)

3.8.1 Gold Standard 2.1-2.9,2.11,2.14,3.1.5, all 0f 3.2, 3.3.3-
3.3.5 (25)

3.8.2 Effectiveness Procedures 2.1-2.9, 2.11, 2.14, 3.1.5, all of 3.2, 3.3.3-
3.3.5 (25)

3.8.3 Workplace Averages 2.1-2.9,2.11,2.14,3.1.5, all 0of 3.2, 3.3.3-
3.3.5(25) -

3.9.1 Data Interface Testing 14,1.13,2.1,2.2,2.3,2.9,2.10, 2.11, 2.14,
3.1.5,3.1.7,3.2.1,3.2.8,3.2.9,3.3.3 (15

3.9.2 Userinterface Testing 1.1-1.7,2.1-24,2.7,2.10,2.11, 2.14, 3.1.5,
3.1.7,3.2.8 (18)

3.9.3 Information System Analysis 1.1-1.7,2.1-24,2.7,2.10, 2.1, 2.14, 3.1.5,
3.1.7,3.2.8 (18)

TTTANT e Ty
SR T MR

95

Table 6.1.2-1 (Continued).

Conventional V&V Testing Technique (from

Tables 2.2.1-1, 2.2.2-1, and 2.2.3-1

Types of Defects Detected
from Table 2.3.1-1

3.94 Operational Concept Testing 14,2.1,2.2,2.7,3.2.10 (5)

3.8.5 Organizational Impact Analysis/Testing 1.1thru1.4,1.10, 1.12,1.13,2.1, 2.2, 2.3,
2.8,2.9,2.11,2.14,2.15 (15)

3.96 Transaction-Flow Testing All of 2.0, 3.0 (39)

3.10.1 Statement Testing All of 3.0 (24)

3.10.2 Branch Testing All of 3.0 (24)

3.10.3 Path Testing All of 3.0 (24)

3.10.4 _Call-Pair Testing 3.2.3,3.2.8,3.3.2(3)

3.10.5 Linear Code Sequence and Jump 3.1.5,3.1.8,3.2.10,3.3.2 (4)

3.10.6 Test-Coverage Analyzer All of 3.0 (24)

3.10.7 Conditional Testing 3.1.3,3.14,3.2(12)

3.10.8 Data-Flow Testing All of 2.0, 3.0 (39)

3.11.1_ Error Seeding 3.1.3,3.14,31.7,319 (4

3.11.2 FaultInsertion All of 3.1, 3.2 (19)

3.11.3_Mutation Testing Allof 3.1, 3.2 (19)

96

defect," if a reasonable "importance" metric were developed, it could easily be incorporated into the derivation of the
Broad Power index.

Using the data in Table 6.1.2-1, one could ask how many techniques can detect each type of defect. This
question assesses whether there are sufficient alternative means of detecting a particular type of defect. In turn, this
indicates how critical it is to use a particular technique. That is, if finding a particular type of defect is considered to be
highly important, but only one or two techniques can detect it, then it is critical that one or both of these techniques be
included in the V&V plan. The results of this inversion of the technique/defect data are shown in Table 6.1.2-2. The
defect with the most covering methods is the Design defect 2.11, Failure To Handle Exceptions, with 35 techniques
judged to be able to detect this flaw. The least covered defect is the Code defect 3.1.6, (Dynamic) Instruction
Modification, with 10 applicable techniques. On average, each defect can be detected by 21 techniques. These
findings suggest that the identified 153 methods, taken together, do fairly well in covering the total set of system
defects,

6.2 Definition of the Cost and Benefit Factors Evaluation of Conventional Technique Effectiveness

Seven additional factors in addition to Broad Power are now introduced to characterize the costs and benefits
(and other measures) of V&V techniques. The four factors which define the benefits all measure the power aspects of
each technique.

1) Broad Power was defined in the previous section as a function of the number of different
defects detectable by the technique.

2) Hard Power is a judgment about the capability of the technique to detect hard

problems; problems which are not at all obvious on inspection. These problems may also be
intermittent because they depend on non-obvious aspects of the running context,or they are enabled
by various obscure means.

3) Formalizability assesses the extent to which a technique lends itself to formal calculus

or algebraic representations of the specification, design, or implemented system. This would

allow automated theorem-provers (if developed) to detect anomalies, contradictions, inconsistencies,
etc.

4) HCI Testability characterizes whether the Human-Computer Interface is directly testable using
the technique. Since the applications of strongest interest are decision-support type systems to help
users process and interpret information as well as to advise them on alternative actions, the HCI is an
important aspect to be tested. Techniques that test the HCI are seen as having higher power.

B By "economic consequences" is meant all the costs associated with an error being present in a system and actually occurring. Such costs will
include costs to identify, locate, and repair the problem as well as any costs due to impact on safety or loss of capability.

97

»t
4
3
p

T T T pad B3 oazeues

Table 6.1.2-2 Applicability of conventional tchniques
to defects in conventional software

Number of Test Ranking of
Software Defects Techniques Defect
Type Applicable Coverage' |
1.0 REQUIREMENTS

.1 Incomplete decomposition 15 39
.2 Omitted requirement 23 18
.3 Improper translation 19 30
4 Operational environment incompatibility 17 355
.5 Incomplete requirement description 13 47
.6 Infeasible requirement 14 43.5
.7 Conflicting requirement 17 355
.8 Incorrect assignment of resources 13 47
.9 Conflicting inter-system specification 15 39
.10 Incorrect or missing external constants 19 30
.11 Incorrect or missing description of initial system state 18 335
.12 Overspecification of requirements 12 495
.13 Incorrect input or output description 18 335

98

Table 6.1.2-2 (Continued).

Number of Test Ranking of
Software Defects Techniques Defect
Type Applicable Coverage' |
2.0 DESIGN
.1 Omitted requirement 23 18
.2 Misinterpreted requirement 27 105
.3 Data limitation 28 8.5
.4 Unintended design element 21 22
.5 Hardware incompatibility 14 435
6 Software incompatibility 15 39
.7 Poor man-machine interface 29 6.5
.8 Incorrect analyses of computational error 20 25.5
.9 Noncompliance 21 22
.10 Lack of adequate error traps 23 18
.11 Failure to handle exceptions 35 1
.12 Weak modularity 13 47
.13 Rigid control structure 14 435
.14 Missing or incorrect processing priorities 34 2
.15 Breakdown between top-level & detail design 14 43.5

99

SIS T TR

Table 6.1.2-2 (Continued).

Number of Test Ranking of

Software Defects Techniques Defect

Type Applicable Coverage'
3.0 CODE
3.1 L.ogic and Control

.1 Unreachable code 12 49.5
.2 Improperly used flow control constructs 20 255

.3 Improper predicates 19 30

.4 Improper process sequencing 25 14

.5 Halting problem 24 15

.6 Instruction modification 10 52

.7 Failure to save or restore process communication

data 20 25.5

.8 Unauthorized or incorrect recursion 11 51

Labels or control flags 19 30

3.2 Data Operations and Computations

.1 Missing validity test 28 8.5
.2 Incorrect data referencing 27 105
.3 Mismatched parameter list 26 125
4 Definition or initialization fault 26 12.5
.5 Anachronistic data 19 30
.6 Improperly used data handling construct 33 3
.7 Variable misuse 29 6.5
.8 Incompatible data representation 31 5
.9 Insufficient data transport 23 18
.10 Input-output faults 32 4
3.3 Other
.1 Calls to non-existent subprograms 15 39
.2 Improper program linkages 20 255
.3 Failure to implement design element 21 22
4 Improperly implemented design element 23 18
.5 Unintended function 15 39

1 =defect is covered by the most number of techniques 52 = defect is covered by the least number of techniques

100

The four factors which are used here to define the costs all measure the ease-of-use aspects of each technique.

1) Ease of Mastery is the ease with which a technique can be taught, understood, and applied. It
is measured in terms of the educational or professional level required to deal with the technique
concepts and the amount of training time needed to teach the concepts. These issues all impact cost.

2) Ease of Setup refers to the labor, time, and resources required to have the V&V
technique ready to be applied to the program.

3) Ease of Running/Interpretation measures the ease (or difficulty) of actually applying the
technique and interpreting the findings.

4) Usage is the extent to which the technique is generally and commonly used. The
inference is that the higher the usage the greater the general ease-of-use of the technique, or the easier it might
be to get approval to use it. This factor also reduces costs.

An inverse relationship is assumed between the ease-of-use factors and cost: the greater the ease-of-use, the
lower the costs associated with the technique.

It is believed that the ease-of-use factors are general and applicable across many application domains, levels
of system complexity, and implementation approaches. These were chosen to reflect the problems inherent in testing
the most complicated and important system; that is, a system having the highest levels of complexity and required
integrity, as discussed in Section 2.4.3. Hard Power emphasizes the capability to address extremely complicated
systems and to find the most difficult of types of defects within them; such types of defects rarely occur in simple
systems. Formalizability favors formal approaches that permit mathematical reasoning about the presence of defects
and anomalies, and HCI Testability emphasizes techniques and systems that concentrate on user interactions and the
system. These biases will restrict designations of greatest power to those techniques which are inherently formalizable
and are designed to assess complex systems with a high degree of human-computer interaction. Selective though this
may be, it is believed that these are exactly the kinds of techniques and systems which must be emphasized in this
review.

All eight factors are associated with a five-point rating scale (1-5), with 1 representing the least value (power
or ease-of-use), and 5 representing the greatest value. The interpretation of each of the five values for each of the eight
factors is given in Table 6.2-1. For Broad Power, the scale is based on percentage of applicable defects detectable.
For example, Requirements and Design Methods can conceivably detect 28 defects. A Broad Power of 1 indicates that
0-6.defects are detectable (0-23%). The assumption is that all eight factors are based on continuous underlying
distributions of values, and that these distributions dre of the same kind (e.g., Normal). It is also assumed that the
definitions of the five points of the eight scales are partitioned into five equal parts. These assumptions make it
reasonable to compare values across different factors. That is, a Hard Power value of 4 is comparable in degree to a

101

T T T T T T T T e PR S r ~ Y G N X AT IR S

Table 6.2-1 Interpretation of the 1-5 rating scale
values for each of the eight cost/benefit factors

Rating Scale Values

Factors
Value Explanation
Power Factors
1 0-23% of Applicable defects detectable
Broad Power .

2 24-44% of Applicable defects detectable

3 45-65% of Applicable defects detectable

4 66-86% of Applicable defects detectable

5 87-100% of Applicable defects detectable

1 Not good for finding hard defects

Hard Power .

2 Good at finding a few hard defects

3 Goad at finding several kinds of hard defects

4 Very good at finding a number of hard defects

5 Excellent at finding a wide number and variety of
difficult defects

1 Not really possible

Formalizability] . . .

2 Partially feasible, but requires extensive effort

3 Feasible to formalize simply in small software
systems .

4 Very feasible

5 Been done at least once or else designed
completely

1 Not really at all

Human-Computer
Interaction Tested 2 Somewhat, as a side effect

3 Tests some aspects OK

4 Quite thorough in testing HCl

5 A primary focus of the technique

102

Table 6.2-1 (Continued).

FACTORS

Rating Scale Values

Value

Explanation

Ease-of-Use Factors

Ease of Mastery

Very difficult, requires specialized mathematical or programming
skills and then specialized training

Quite difficult, but required skill level and training is somewhat less

Requires concentrated training, but most pebple can acquire the
method without difficulty

Requires only a litile training, almost everyone can acquire the skill

Requires virtually no training, anybody can pick it up while using it
after a few minutes

Ease of Setup

Have to do a considerable amount of programming or
specification in some language, days to weeks

Takes a significant amount of programming or specification to set
up, a day or so

Takes a moderate amount of time and thought, several hours

Sets up rapidly in an hour or so

Set-up is almost immediate

Ease of Run/
Interpretation

- | | W

Very complicated to run, and the findings take quite a while to
interpret, several hours to days

Difficult to run, interpretation requires detailed analysis over a
number of hours

Requires some time and care to run; interpretation requires
several hours

Quite easy to run, interpretation is accomplished within a few
minutes

($,]

Completely easy to run, interpretation is almost immediately made

Usage

Almost nobody uses it or is even familiar with it

Used by a few, some people have heard of it

Used by quite a few, most people have heard of it

Used by a majority, almost everyone has heard of it

a |1 o IN |-

Highly familiar to all and almost always used, no matter what other
techniques are employed

103

A PRI 1t 3)7 S W Yl MM STk M 4 o iy S A

Usage value of 4. These assumptions also justify combining the scores in various arithmetic formulas to derive the
"cost-benefit" and "effectiveness” metrics discussed in the next section.'

6.3 Evaluating "Cost-Benefit" and "Effectiveness" of Conventional V&V Methods

In this section, "metrics" for comparing techniques are developed. Table 6.3-1 lists all 153 methods, with the
identification number and technique name given in columns B and C, respectively. The authors rated each of these
techniques by using the previously described eight factors (Broad Power, Hard Power, Formalizability, Human-
Computer Interface (EICI) Testability, Ease of Mastery, Ease of Setup, Ease of Running/Interpretation, and Usage).
These ratings are based on the authors' judgments of the individual technique's capabilities, personal software
experiences, and extensive review of software literature. The results are shown in columns E-H and K-N of Table 6.3-
1. The primary objective of these ratings is to develop reasonable Cost-Benefit and Effectiveness measures for each
technique, given in column S and columns T-V, respectively. This is achieved by combining the eight rating factors
into single scores so that the higher score indicates a higher "cost-benefit" or more "effective” technique.

As will be demonstrated, these metrics were designed to be adaptable to the user's purpose by changing either
the method of computing the metrics themselves (Sections 6.3.1 and 6.3.2.1) or by changing the various weights
associated with them (Section 6.3.2.2). That is, if a user believes that a power rating or an ease-of-use measure should
be changed, then the user should simply make that change in the table (and recompute the value that depends on the
value changed). Similarly, if a user wishes to modify the definition of either the cost-benefit or the effectiveness
measure, this can be accomplished by substituting a new computation for combining the values of the eight factors (or
new factors could be added). Finally, the emphases given to the various factors under increasing need for V&V,
Classes 3 through 1, are explicitly expressed as a set of numerical weights. A user can easily modify these also if a
different set of emphases is preferred.

The complexity and required integrity of the system to be tested by V&V methods are taken into account in
computing the Effectiveness measures for the various techniques. The three Classes of V&V developed in Section
2.4.3 were used to represent the stringency with which V&V techniques need to be applied and the effectiveness
required of them. For example, the V&V Class 1 systems require the greatest capability for hard power,
formalizability, and human-computer interaction quality. Since these systems are the most complex and require the
highest integrity, the weighing of these three factors is increased relative to the other five factors. However, V&V Class
3 systems are different. The ease of use and broad power are more important; therefore, the weights for these factors
were increased (Section 6.3.2.2).

6.3.1 A Simple Cost-Benefit Metric

It is proposed that the four power measures generally assess the "benefits" of the technique, while the ease-of-
use factors indirectly address "costs". The proposed metric simply subtracts a measure of the total costs from a
measure of the total benefit. This measure can be expressed, generally, as follows, where benefits are represented by
the power factors and costs are represented by the "difficulty of use" factors discussed below:

e The authors have made these assumptions to justify the mathematics involved in the cost-benefit and, later, effectiveness measures. However,
there is no empirical data one way or the other. Another implicit assumption is that the factors are independent and uncorrelated. Although this is somewhat
unlikely, the authors feel that the factors are sufficiently independent to assess distinct underlying aspects of the techniques.

104

Somh

WA N NI V-

S0t

Table 6.3-1: Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

B c E | F| 6 | H 1 K] LI M] N] O Q S T | v | Vv
1 TECHNIQUE P 0 w E R EASE OF USE Difficulty| COST- EFFECTIVENESS:
2 [Technig) Pt P2 P3 P4 | TOTAL| EY E2 E3 E4 | TOTAL of |[BENEFI| vav vav V&V
3 | Numb NAME Hard | Broad | Formal | HC! POWER| Learn | Setup A Usage | EASE use |MEASURE]| Ciass 3 | Class 2 Class 1
4
5| 1.0 REQS./JDESIGN Methods
6] 11 FORMAL METHODS
7 111 |GenlReqgs. Lang. Analysis 2 4 3 2 11 2 4 2 2 10 14 -3 275 263 248
8 |1.1.2 |Mathematical Verification 3 4 4 1 12 1 2 1 2 6 18 -8 218 247 260
9 |1.1.3 |EHDM 3 4 4 1 12 1 1 2 1 5 19 -7 197 235 265
10j114 |z 3 4 4 1 12 1 1 1 1 4 20 -8 185 225 252
11]1.1.5 |Vienna Definiion Method 3 4 4 1 12 1 1 1 1 4 20 -8 185 225 252
12]1.1.6 {Refine Specification 9 4 4 4 2 14 2 2 2 2 8 16 -2 260 300 324
13]1.1.7 {Higher Order Logic 2 4 4 2 12 1 2 1 1 5 19 7 203 220 236
1411.1.8 [Concurrent System Calcukss 3 4 4 1 12 1 1 1 1 4 20 -8 185 225 252
15] 1.2 SEMI-FORMAL METHODS)
1641.2.1 Ward-Mellor Method 4 4 4 2 14 2 2 2 3 9 15 -1 280 312 327
1711.2.2 |Hatey-Pirbhal Method 3 4 4 2 13 2 2 1 2 7 17 -4 243 265 277
18]1.2.3 [Harel Method 3 4 4 2 13 2 1 2 2 7 17 -4 242 265 285
19]1.2.4 |Extended Sys. Model. Lang 3 4 4 2 13 1 2 2 1 6 18 -5 220 255 283
201125 |Sys. Eng. Methodology 3 4 4 2 13 1 1 2 1 5 19 £ 207 245 278
21§1.26 [Sys.Req. Eng. Method. ° 4 4 4 2 14 3 2 2 3 10 14 0 295 320 331
2211.2.7 |FAM 3 4 4 1 12 1 2 2 2 7 17 -5 230 257 213
231.2.8 [Criticel Timing/Flow Analysis 4 2 2 2 10 2 1 3 2 8 16 -6 209 250 276
241129 |si Language Analysis 4 3 4 3 14 2 2 3 2 9 15 -1 258 302 342
25]1.2.10 |Petri-Net Safety Analysis 3 2 4 1 10 1 2 2 2 7 17 -7 182 221 257
2611.2.11 |PSLPSA 2 4 3 2 11 1 1 2 2 6 18 7 221 225 227
27| 13 REVIEWS AND ANALYSES
2811.3.1 Formal Requirements Review 2 5 1 3 11 [4 4 4 17 7 4 416 345 271
291.3.2 |Formal Design Review 2 4 1 3 10 5 4 4 4 17 7 3 392 327 263
30{1.3.3 |System Engineering Analysis 3 4 1 3 1 1 3 3 2 [15 -4 272 276 257
31]1.34 Requirements Analysis 3 5 2 3 13 4 4 4 4 16 8 5 407 369 321
32]1.3.5 [Prototyping 2 4 2 4 12 3 2 4 3 12 12 0 37 296 275
3311.3.6 [Datsbase Design Analysls 3 1 1 1 6 3 2 4 3 12 12 £ 229 230 226
3411.3.7 |Operational Concept Design Review 3 1 1 4 9 3 3 3 3 12 12 -3 260 260 257
35} 14 TRACEABILITY ANALYSES
36}1.4.1 |Requirements Tracing 2 3 1 3 9 3 4 3 4 14 10 -1 326 283 234
37]1.4.2 |Deslgn Compliance Analysls 2 1 1 2 6 3 3 2 2 10 14 -8 203 193 181
38 ’
39
40] 2.0 STATIC TESTING METHODS
411 21 ALGORITHM ANALYS!S
421211 [Anaitic Modeing 2 3 1 1 7 2 2 2 1 7 17 -10 193 189 172
43]2.1.2 |Cause-effect Analysis 2 1 1 1 5 2 2 2 2 8 16 11 165 165 159
4412.1.3 |Symbolc Execution 3 2 5 1 1 1 1 2 1 [19] 150 206 269
45]2.1.4 |Dedsion Tables 3 3 3 2 11 2 3 2 3 10 14 -3 263 212 270
46]2.1.5 |Trace-asserion Method 4 2 4 2 12 2 1 1 1 5 19 -7 167 232 287
47]2.1.6 _ [Functonal Abstract 2 2 4 1] 2 1 1 1 [19 -10 147 172 206
4812.1.7 _ [L-D Reiation Method 3 2 4 2 11 2 1 1 1 5 19 -8 162 207 253
4912.1.8 |Program Proving 4 2 4 1 11 1 2 1 1 [19 -8 155 224 275
60[2.1.9 [Metic Analyses 1 [3 1 6 3 3 3 3 12 12 -8 22 194 190

901

Table 6.3-1: Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

B C E | F G H [K] L | mM] N o Q 3 T | u | v
1 TECHNIQUE P o] W E R EASE OF USE Difficulty} COST- EFFECTIVENESS:
2 |1 q Pt P2 P3 P4 | TOTAL| E1 E2 E3 E4 | TOTAL of |BENEFI] vav vav vav
3 | Number NAME Hard | Broad | Formal | HCI POWER | Learn | Setup f Usage | EASE use |MEASURE| Class 3 | Class 2 Class 1
4
6112.1.10 lAigebraic Specification 3 2 4 1 10 1 2 1 1 5 19 -8 150 199 241
6212.1.11 _ Jinduction-Assertion Method 3 2 4 1 10 1 A 1 1 4 20 -10 137 189 236
63 12.1.12 Confidence Weights Sensttivity Analysis 2 1 3 1 7 3 2 1 2 8 16 -9 170 177 190
654 12.1.13 _ |Model Evaluaton 3 3 2 2 10 2 2 2 1 7 17 -7 209 231 239
651 2.2 CONTROL ANALYSIS
56 2.2.1 Control Fiow Analysls 2 2 2 2 8 3 4 3 [15 9 -1 313 274 236
57)2.2.2 _ |State Transition Diagram 3 2 3 3 11 2 3 3 3 11 13 2 261 274 288
6812.2.3 _ {Program Control Analysis 3 1 2 2 3 3 3 3 5 14 10 2 281 21 257
5912.2.4 |Operational Concept Analysis 3 1 1 5 10 4 3 3 3 13 1 -1 285 278 274
60]2.25 |CalStnxture Analys 3 2 2 2 9 4 3 3 5 15 9 0 320 297 269
61]2.2.6 |Process Trigger/Timing Analysis 4 1 2 2 g 2 2 3 3 10 14 -5 218 254 276
6212.2.7 |Worst-case Timing Analysis 2 1 3 1 7 2 2 3 2 9 15 -8 179 189 212
6312.2.8 |Concument Process Analysis 4 1 2 2 9 2 2 3 1 8 16 -7 178 230 270
64) 23 DATA ANALYSIS 0 0
65]2.3.1 Data Flow Analysis 3 2 3 2 10 2 1 3 4 10 14 -4 245 256 268
66 {2.3.2 |[Signed Directed Graphs 3 1 2 2 8 2 3 3 2 10 14 £ 206 227 244
6712.3.3 |Dependency Analysis 2 1 3 2 8 2 3 4 3 12 12 -4 234 231 246
6812.3.4 |Quaitative Causal Analysis 3 1 3 2) 2 3 3 2 10 14 5 207 234 264
69]2.3.5 |Look-up Table Generator 2 1 2 1 6 4 5 4 4 17 7 -1 299 262 234
7012.3.6 Data Dictionary Generator 2 1 2 1 6 4 4 4 4 16 8 -2 288 252 229
7112.3.7 __ |Cross-reference List Generator 2 2 2 1 7 4 5 4 4 17 7 0 323 280 242
72]2.3.8 |asasing Analysis 3 1 2 2 8 4 4 3 2 13 11 -3 249 253 257
73)2.3.9 |Concurency Analysis 2 1 2 1 6 2 2 2 1 7 17 -1 146 160 176
74]2.3.10 |Databese Analysis 2 1 2 1 6 2 3 3 3 11 13 -7 211 204 200
75]2.3.11 | Database Interface Analysis 2 1 2 1 6 3 4 3 3 13 11 -5 239 222 209
76 12.3.12 | Data-Modei Evaluation 3 1 2 1 7 2 3 3 2 10 14 -7 196 217 234
7] 24 FAULT/FAILURE ANALYSIS
78)2.4.1 Falure-mode Effects Caus, Analysls 5 2 1 2 10 2 2 2 2 8 16 -6 214 268 282
79]2.4.2 |Criticaity Analsis 4 2 1 2 9 2 2 2 2 8 16 -7 209 243 248
80§2.4.3 IHazards/Safety Analysis 3 3 1 2 9 2 2 2 3 9 15 -6 248 248 225
8112.44 [Anomaly Testng 3 1 3 3 10 2 2 3 3 10 14 -4 224 246 215
82]2.45 [Faut-Tree Analysis 4 2 1 2 9 2 2 2 2 8 16 7 209 243 248
83]2.4.6 |Faiure Modesing 4 3 2 2 11 3 2 2 1 8 16 -5 229 264 21
8412.4.7 |Common-cause Falluwre Analysis 3 1 2 2 8 3 2 2 2 9 15 -7 196 215 230
85]2.4.8 |Knomedgebase Syntax Checking 4 2 [2 13 4 3 3 2 12 12 1 268 307 354
8612.49 |Knowledgeb Checking 5 3 5 3 16 4 2 4 1 11 13 3 286 348 414
87 12.4.10 |Knowledge AcquistiorvRefinement Ald 2 1 4 2 9 3 4 2 1 10 14 -5 199 212 243
8812.4.11 |Knowledge Engineering Analysis 3 2 3 2 10 2 2 2 2 8 16 -6 206 232 254
83] 2.5 INSPECTIONS
90]2.5.1 Informed Panel inspection 3 3 1 2 9 5 4 4 3 16 8 1 343 312 273
91]25.2 Structured Wak-tvoughs 3 2 1 2 8 4 5 4 4 17 7 1 337 308 269
921253 [FomalC Review 3 3 1 2 9 5 4 4 4 17 7 2 363 324 276
9312.54 |Cleanroom Techniques 5 5 2 2 14 2 3 2 2 9 15 -1 300 339 331
941255 |Peer Code Checiing 3 2 1 2 8 4 5 4 4 17 7 1 337 308 269
§512.56 [Desk Checiing 2 2 2 2 8 4 5 5 5 19 5 3 365 312 21
96 §2.5.7 | Data Interface Inspecton 3 2 1 3 9 5 4 4 3 16 8 1 329 304 278

PRI A

A YS L Al

LO1

o

Table 6.3-1: Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

B c E F G H] K] L | m] NJ] O Q S T | U | Vv
1 TECHNIQUE P O W E R EASE OF USE |Dbifficutyl] COST-] EFFECTIVENESS:
2 [Techniq P1 P2 P3 PA_ | ToTAL| E1 £2 E3 E4 [TOTAL of -|BENEFI vav V&V vav
3 § Number NAME Hard | Broad | Formal | HOI POWER | Learn | Setup |uninter] Usage | EASE use |MEASURE| Ciass 3 | Class 2 Class 1
4
97]2.5.8 |User interface Inspection 3 1 1 5 10 4 4 4 4 16 8 2 330 310 295
98]25.9 |Stendards Audit 2 1 1 2 6 3 3 3 3 12 12 -6 235 215 197
9912.5.10 |Reqirements Tracing 3 2 2 3 10 4 3 3 4 14 10 0 310 295 273
100]2.5.11 [Software Practices Review 1 1 1 1 4 3 3 3 3 12 12 -8 220 180 150
101]2.5.12 | Process Orlented Audits 1 1 1 1 4 4 3 3 3 13 1 -7 235 188 154
102|2.5.13 [standards Complance 2 1 3 2 8 3 3 3 3 12 12 -4 237 229 237
103]2.5.14 |System Engineering Review 3 3 1 3 10 1 3 3 2 9 15 5 248 258 249
104}
105
106] 3.0 |DYNAMIC TESTING METHODS
107] 3.1 GENERAL TESTING
108]3.1.1 |unitModue Testing 2 4 2 1 9 5 2 4 4 15 [0 347 294 247
109]3.1.2 [System Testing 3 4 2 3 12 5 5 5 [20 4 8 443 331 338
110]3.1.3 [Compilation Testing 2 2 2 2 8 5 5 5 3 18 6 2 340 298 269
111}3.1.4 |Retabilty Testing 2 1 2 2 7 4 4 5 3 16 8 -1 268 260 252
112{3.1.5 |Statstical Record-Keeping 2 1 2 1 6 4 2 4 2 12 12 -6 220 208 213
113{3.1.6 _ |Sotftware Relabifty Estimation 2 1 1 1 5 3 2 2 2 9 15 -10 180 173 163
114]3.1.7 |Regression Testng 2 4 2 3 1 5 5 4 5 19 [6 426 356 201
115[3.1.8 [Metric-based Testing 1 1 1 1 4 3 2 5 2 12 12 -8 211 178 168
116[3.1.9 |Ad-hoc Testing 1 1 1 2 5 5 5 [3 18 6 -1 310 248 207
1173.1.10 [Beta Testing 2 2 1 3 8 4 4 3 2 13 11 -3 21 249 224
118] 3.2 SPECIAL INPUT TESTING *
119]3.2.1 |Random Testng 4 4 2 2 12 3 4 5 4 16 8 4 376 368 343
120{3.2.2 |Domaln Testing 2 4 2 2 10 3 3 4 3 13 11 -1 320 286 254
121] 33 FUNCTIONAL TESTING
122{3.3.1 _ |Functional Regs. Testing 3 4 1 3 1 4 3 4 3 14 10 1 349 322 285
123[3.3.2 [Simuation Testng 4 3 3 2 12 3 1 4 3 1 13 -1 281 305 324
124]3.3.3 [Modetbased Testing 4 2 4 3 13 2 2 3 2 9 15 2 234 284 334
125|3.3.4 |Assertion Checking 3 1 4 1 9 1 2 1 2 6 18 -9 146 193 236
126[3.3.5 [Heurstic Testing 4 4 2 3 13 3 3 3 3 12 12 1 328 336 322
127] 3.4 REAUSTIC TESTING
128]3.4.1 |Fiewd Testing 3 4 1 3 11 5 4 5 5 19 5 6 429 374 313
129]3.4.2 [Scenaro Testing 3 4 2 3 12 4 3 5 3 18 9 3 362 339 318
130/3.4.3 |quaificationCertification 4 5 1 3 13 3 3 5 3 14 10 3 375 367 336
131]3.4.4 |Simuator-based Testng 4 3 3 3 13 3 2 3 3 1 13 0 292 315 329
132|345 {Benchmarking 2 2 1 1 6 3 2 3 3 11 13 7 236 213 187
133{3.4.6 |Human Factors Experimentation 3 1 1 5 10 3 3 3 3 12 12 2 270 270 270
134|3.4.7 _ [vardaion Scenario Testng 2 2 1 3 8 4 3 3 3 13 1 -3 284 251 22
135|3.4.8 |Knowedgebase Scenario Generation . 3 2 4 3 12 4 4 4 2 14 10 2 297 305 331
136] 35 STRESS TESTING
137)3.5.1 _ |Stress/accolerated Life Testng 3 3 1 1 8 5 3 4 3 15 9 -1 320 292 255
138]3.5.2 [Stabity Analsis Testing 3 3 1 2 9 2 3 3 3 11 13 -4 273 268 243
13903.5.3 |Robustness Testing 4 3 1 1 9 5 3 5 2 15 9 0 317 ats 299
140{3.54 |uimitRenge Testing 3 1 2 1 7 5 3 5 3 16 8 -1 285 213 272
141|3.5.5 {Perameter Violaton 3 1 2 2 8 4 3 5 3 15 9 -1 280 275 281
142] 36 PERFORMANCE TESTING

801

Table 6.3-1: Conventional V and V Techniques\ Power and Ease-of-Use Factor Ratings\Cost-Benefit and Effectiveness Measures

B [E | F G H] K] L | M] N O Q S T | U v
1 TECHNIQUE P o) w E R EASE OF USE Difflculty| COST- EFFECTIVENESS
2 |Vechniqu Pt P2 P3 P4 | TOTAL| Et E2 E3 E4 | TOTAL of IBENEFI vav vav vav
3 | Number NAME Hard | Broad | Formal | HCI POWER | Leamn | Setup juninter] Usage | EASE use |MEASURE| Cilass 3 | Class 2 Class 1
4
143]3.6.1 SizingMemory Testing 2 1 1 1 5 4 2 4 3 13 11 -6 239 213 196
144)3.6.2 [TimingFiow Testing 4 1 1 2 8 4 1 3 3 11 13 5 234 253 259
145]3.6.3 |Bottieneck Testing 3 1 1 2 7 4 1 3 3 11 13 -8 229 228 225
146[3.6.4 [Queuesize, etc. 3 1 1 1 6 4 2 3 3 12 12 6 232 28 217
147 3.7 EXECUTION TESTING
148]3.7.1 |Activity Tracing 3 1 1 1 6 4 2 5 4 15 9 -3 276 260 248
149[3.7.2 | Execute 4 2 1 1 8 4 2 4 4 14 10 2 293 293 275
150]3.7.3 _ |Resuits Monitoring 3 3 1 3 10 4 2 4 4 14 10 0 332 308 275
161|3.7.4 [Tivead Testing 3 3 2 1 9 4 2 3 3 12 12 3 281 271 253
152]|3.7.5 |Using Generated Explanations '3 1 2 2 8 3 2 3 3 11 13 -5 228 27 248
153] 3.8 COMPETENCY TESTING
154]3.8.1 | Goid Standard Testing 2 3 1 4 10 4 3 3 3 13 11 -1 318 2719 243
165/3.8.2 |Effectiveness Procedures 2 3 1 3 9 4 3 4 1 12 12 3 280 255 237
156/3.8.3 |workplace Averages 2 3 1 2 8 4 3 5 3 15 9 -1 32 279 243
157] 3.9 ACTIVE INTERFACE TEST
158(3.9.1 Data intorfaco Testing 3 2 2 3 10 4 2 5 4 15 9 1 321 305 300
158]13.8.2 |User interface Testing 3 2 1 5 11 4 3 4 5 16 8 3 361 330 301
160/3.9.3 |information System Analysls 2 2 1 4 9 3 3 3 3 12 12 -3 279 253 231
161]3.9.4 |Operational Concept Testing 3 1 1 5 10 5 4 5 3 17 7 3 337 316 309
162]3.9.5 |Organizational Impact Analysis 1 2 1 4 8 4 4 4 3 15 9 -1 314 256 219
16313.9.6 |Transaction-flow Test 3 4 2 4 13 3 3 3 2 11 13 0 313 309 298
164] 3.10 STRUCTURAL TESTING
165]3.10.1 _|Statement Testing 2 3 1 1 7 4 1 4 3 12 12 -5 274 239 207
166]3.10.2 |Branch Testing 2 3 1 1 7 4 1 4 3 12 12 -5 274 239 207
1673.10.3 |Path Testing 2 3 1 1 7 4 1 4 2 11 13 -6 254 227 204
168]3.10.4 |Calpair Testing 2 1 1 1 5 4 1 4 3 12 12 -7 226 203 191
169]3.10.5 |Lineer Code Seq 3 1 1 1 6 4 1 4 2 11 13 -7 211 218 22
170]3.10.6 _{TestCoverage Analysis 2 3 1 3 9 4 3 3 3 13 1 2 308 269 230
171]3.10.7 |Conditional Testing 2 1 1 1 5 4 1 4 3 12 12 7 26 203 191
172]3.10.8 | Data-Flow Testing 3 4 2 3 12 3 2 3 3 11 13 -1 310 301 283
173] 3.1 ERROR INTRODUCTION
174]3.11.1 |Emor Seedng 2 1 1 1 5 4 2 4 3 13 11 -6 239 213 196
175]3.11.2 |Fautinsertion 2 1 1 1 5 4 2 4 2 12 12 -7 219 201 193
176]3.11.3 {Mutation Testing 2 1 1 1 5 4 2 3 2 11 13 -8 207 191 180

Relative Cost-Benefit = Benefits - Costs (Eq. 6.3.1-1)

The cost-benefit values resulting from this metric, discussed below, are shown in column S of Table 6.3-1.
The values in column S are the values of the costs (Difficulty-of-use values) found in column Q subtracted from the
values of the benefits (total of Power values) found in column I. Simply stated, column I minus column Q equals
column S.

Difficulty-of-use is defined as the obverse of ease-of-use. If the ease-of-use of a specific method is ranked at
the maximum of 5, then difficulty-of-use is the lowest possible minimum of 1; if ease-of-use is ranked very low as 2,
then difficulty-of-use would be near the top of 4. Mathematically, this relationship is defined as:

Difficulty-of-use Score = 6 - (Ease-of-use Score) (Eq.6.3.1-2)

Thus, for example, consider method 1.1.1, General Language Requirements Analysis. Its ease-of-use for
learning (Column K) is rated as 2. By the above definition, the difficuity of learning for this method is a 4, using a 5-
point rating scale in which 1 = Least Difficult and 5 = Most Difficult.

To find the total Difficulty-of-use score for a method, one could subtract each of the scores for the four Ease-of-
use factors (columns K-N) from 6 and total these four values. Alternatively, an equivalent procedure is to total the four
Ease-of-use factors (as shown in column O) and subtract this total from 24 to produce the total Difficulty-of-use for that
method (as shown in column Q). To find the total Power, the estimate of benefit, add the four power values listed in
Table 6.3-1 columns E-H; the total of the Power factors is shown in column I.

A further word is needed to explain the Difficulty-of-use component as a measure of cost. The less easy a
technique is to use in the four ways discussed, the more difficult it is to implement. Consequently, such a technique
will increase the amount of personnel time involved with the technique. Since most of the techniques require very few
costs other than labor, this approach will estimate most of the actual costs. In the case of those techniques which
require special equipment or expensive software, it is further assumed that the cost of these will be amortized over
many uses and will, therefore, contribute very little to any one instance of use.

Returning to the details of the metric, if d; is the difficulty for the ;th difficulty-of-use factor for the th V&V

technique, and if p is the power of the th power-factor for the same jth V&V technique, then the cost-benefit
measure for the th V&V technique is defined as:

4 4
Relative Cost-Benefit = Y, p,, - Y 4, (Eq.63.1-3)
H H

for technique ;
This measure has a maximum positive value of +16, when all four power factors are at a maximum 5 value (4 X

5=20), and all four difficulty-of-use factors are at 8 minimum 1 value (4 x 1 = 4; Relative Cost-Benefit = 20 - 4 = 16).
This value of positive 16 means that the technique produces maximum-possible benefits at minimum-possible costs.

109

e

The Relative Cost-Benefit measure has a maximum negative value of negative 16 when power factors are minimum
and difficult-of-use factors are maximum (4 - 20 =-16). This value means that a technique produces the minimum-
possible benefits at the maximum-possible cost. Although the relation between costs and benefits are sometimes
expressed as a ratio of the two, this is a non-linear measure and is not as easily interpreted as the present linear one.
Note that a value of O means that the costs equal the benefits.”® -

To assist in the interpretation of the Relative Cost-Benefits scores, shown in column S of Table 6.3-1, the
following provides verbal descriptions. There is a range of plus or minus 2 points around zero where the benefits are
roughly equivalent to the costs:

RANGE . INTERPRETATION

2 to +2 Benefits and costs are roughly equivalent

For positive values of the measure, the following intervals and descriptions are suggested:

RANGE INTERPRETATION

+3 to 48 Benefits significantly exceed costs
19 to +12 Benefits greatly exceed costs

+13 to +16 Benefits maximally exceed costs

For negative values of this measure, the corresponding negative intervals are suggested:

RANGE INTERPRETATION

-3t -8 Costs significantly exceed benefits
-9 to -12 Costs greatly exceed benefits

-13 to -16 Costs maximally exceed benefits

The closer a score is to zero, the more uncertain it is. A score of +4 could be produced by having either four
very high power factors (e.g., 5-5-4-5) with a corresponding high level of difficulty-of-use (e.g., 4-4-3-4), or else it
could result from low power factors (e.g., 2-2-2-2) and even lower difficulty-of-use (e.g., 1-1-1-1).

This Relative cost-benefit measure identifies those techniques that have high negative values indicating that
costs greatly exceed benefits. The use of such costly methods is warranted only if some aspect of their power is greatly
needed, and cost effective methods are unavailable.

The conventional V&V techniques sorted by decreasing relative cost-benefit measures are shown in Table
6.3.1-1A through 6.3.1-1C. Each table, A through C, represents a different V&V Class: Requirements/Design, Static

L Ancther, equivalent, way of computing the cost-benefit metric is to add the total of all eight factors (e.g., column I + column O) and subtract 24
from that sum.

110

1

Table 6.3.1-1A Conventional Requirements and Design V and V Methods Ranked by Decreasing Cost-Benefit Values (Range = +12t0-12)

COST BENEFIT MEASURE
| |
13.4 Requirements Analysis 5
1.3.1 Formal Requirements Review 4
1.3.2 Formal Design Review 3
1.2.6 Sys. Req. Eng. Method. | 0
1.3.5 Protyping 0
1.2.1 Ward-Mellor Method -1
1.2.9 Simulation-Language Anal. | -1
1.4.1 Requirements Tracing -1
1.1.6 Refine Spec'n. Language -2
111 Gen'l Regs. Lang. Anal, -3
1.3.7 Operational Concept Design Review -3
1.2.2 Hatley-Pirbhai Method -4
1.2.3 Harel Method -4
1.3.3 System Engineering Analysis -4
1.2.4 Extended Sys. Model. Lang | -5
1.2.7 FAM -5
1.1.2 Mathematical Verification | -6
1.2.5 Sys. Eng. Methodology -6
1.2.8 Critical Timing/Flow Anal. -6
1.3.6 Database Design Analysis -6
1.1.3 EHDM -7
1.4.7 Higher Order Logic -7
1.2.10 Petri-Net Safety Analysls | -7
1.2.11 PSL/PSA -7
1.1.4 Y4 -8
1.1.5 Vienna Definition Method -8
1.1.8 Concurrent System Calculus| -8
1.4.2 Deslgn Compliance Analysis| -8

(43

Table 6.3.1-1B Conventional Static Testing V and V Methods, Sorted by Decreasing Cost-Benefit Measure Values (range = +12 to -12)

COST BENEFIT MEASURE

24.9 Knowledgebase Semantic Checking 3

2.5.6 Desk Checking 3

25.3 Formal Customer Review 2

2.5.8 User Interface Inspection 2
24.8 Knowledgebase Syntax Checking 1

2.5.1 Informed Panel Inspection 1

25.2 Structured Walk-throughs 1

2.5.5 Peer Code Checking 1

2.5.7 Data Interface Inspection 1

2.2.5 Call Structure Analys 0

2.3.7 Cross-reference List Gen'r 0
2.5.10 Requirements Tracing 0

221 Control Flow Analysis -1
22.4 Operational Concept Anal. -1
2.3.5 Look-up Table Generator -1
25.4 Clean-room Techniques -1
22.2 State Transition Diagram -2
223 Program Control Analysis -2
2.3.6 " |Data Dictionary Generator -2
2.1.4 Decision Tables -3
2.3.8 Allasing Analysis -3
2.3.1 Data Flow Analysis -4
2.3.3 Dependency Analysis -4
244 Anomaly Testing -4
2513 Standards Compliance -4
226 Process Trigger/Timing Anal -5
2.3.4 Qualitative Causal Analysis -5
2.3.11 Database Interface Analysls -5
2.4.6 Failure Modeling -5
2410 Knowledge Acquisition/Refinement Aid -5
2.5.14 System Engineering Review -5
2.1.9 Metric Analyses -6
23.2 Signed Directed Graphs -6
241 Failure-mode Effects Caus, -6
243 Hazards/Safety Anal -6

Lot

€1l

Table 6.3.1-1B Conventional Static Testing V and V Methods, Sorted by Decreasing Cost-Benefit Measure Values (range = +12to -12)

2.4.1 Failure-mode Effects Caus. -6
24.3 Hazards/Safety Anal -6
24.1 Knowledge Engineering Analysis -6
2.5.9 Standards Audit -6
2.1.5 Trace-assertion Meth -7
2.1.13 Mode! Evaluation -7
228 Concurrent Process Analysis -7
2.3.10 Database Analysis -7
2.3.12 Date-Model Evaluation -7
24.2 Criticality Analysis -7
245 Fault-Tree Analysis -7
247 Common-cause Failure Anal -7
2512 Process Oriented Audits -7
2.1.3 Symbolic Execution -8
21.7 L-D Relation Method -8
21.8 Program Proving -8
2.2.7 Worst-case Timing Analysis -8
2.5.11 Software Practices Review -8
2.1.10 Algebraic Specification -9
2.1.12 Confidence Weights Sensitivity Analysis -9
2.1.1 Analytic Modeling -10
2.1.6 Functional Abstraction -10
2.1.11 Induction-Assertion Method -10
21.2 Cause-effect Analysis -11
2.3.9 Concurrency Analysis -11

Table 6.3.1-1C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Cost-Benefit Measure Values (Range = +12t0 -12)

COST BENEFIT MEASURE
|

3.3.5 Heuristic Testing 1
3.1.2 System Testing 8

3.1.7 Regression Testing 6

3.4.1 Fleld Testing 6

3.2.1 Random Testing 4
3.4.2 Scenario Testing 3
3.43 Qualification/Certification 3

3.9.2 User Interface Testing 3
3.9.4 Operational Concept Testing 3
3.13 Compilation Testing 2
3438 Knowledgebase Scenario Generation 2
3.3.1 Functional Regs. Testing 1

3.9.1 Data Interface Testing 1

3.1.1 Unit/Module Testing 0
3.4.4 Simulator-based Testing 0
3.5.3 Robustness Testing 0
3.7.3 Results Monitoring 0
3.9.6 Transaction-flow Test 0
3.14 Reliability Testing -1
3.1.9 Ad-hoc Testing -1
322 Domain Testing -1
3.3.2 Simulation Testing -1
3.5.1 Stress/Accelerated Life Tst -1
3.5.4 Limit/Range Testing -1
3.5.5 Parameter Violation -1
3.8.1 Gold Standard Testing -1
3.8.3 Workplace Averages -1
3.9.5 Organizational Impact Anal. -1
3.10.8 Data-Flow Testing -1
333 Model-based Testing -2
3.4.6 Human Factors Experiment'n -2
3.7.2 Incremental Execute -2
3.10.6 Test Coverage Analysis -2
3.1.10 Beta Testing -3
34.7 Validation Scenario Testing -3
3.7.1 Activity Tracing -3
3.74 Thread Testing -3
3.8.2 Effectiveness Procs -3
3.93 Information System Analysis -3
3.5.2 Stability Analysis Testing -4
3.6.2 Timing/Flow Testing -5
3.7.5 Using Generated Explanations -5
3.10.1 Statement Testing -5
3.10.2 Branch Testing -5
3.1.5 Statistical Record-Keeping -6
3.6.1 Sizing/Memory Testing -6
3.6.3 Bottleneck Testing l -6

114

Table 6.3.1-1C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Cost-Benefit Measure Values (Range = +12t0 -12)

|
COST BENEFIT MEASURE
3.64 Queue size, etc. -6
3.10.3 Path Testing -6
3.11.1 Eror Seeding -5
345 Benchmarking -7
3.10.4 Call-pair Testing -7
3.10.5 Linear Code Sequence -7
3.10.7 Conditional Testing -7
3.11.2 Fault Insertion -7
3.1.8 Metric-based Testing -8
3.11.3 Mutation Testing -8
3.34 Assertion Checking -9
316 Software Reliability Estim'n -10

115

SR L PRI e R

OB A IR T 7 SO i arte Sy - N

Testing, and Dynamic Testing. Findings indicate that there are more negative cost-benefit techniques than positive
ones and that the range of values is skewed towards the negative end. The mean value of all the techniques is around -
6. The reader is cautioned not to over-interpret the absolute values on this simplistic measure because it incorporates
many assumptions. One of the most important assumptions is that each of the factors carries equivalent cost or benefit
value. Nonetheless, the relative rankings shown in Tables 6.3.1-1A to C are quite consistent with intuitions, with the
proven high-usage high-benefit methods having the highest values.

For the Requirements/Design methods, the Reviews are judged to be the most cost-beneficial of the general
engineering methodologies. The least cost-beneficial are the
formal specification languages. The human inspection techniques are the most beneficial of the static testing
techniques, followed by the intensely analytical methods.

None of the above orderings are counter-intuitive, but the ordering of the dynamic methods may be surprising to
some readers. Many of the familiar "tried and true” methods are positioned in the middle and even towards the end of
the grouping, particularly those that accomplish structural "white-box" testing of program paths (e.g., 3.10.1 and
3.10.2). The reason these are rated lower than their widespread use might indicate is because of their generally much
lower power rating. The top three are familiar and used regularly: system, regression, and field testing. The next 15
non-negative methods are less frequently used and may be unfamiliar to many. They are at the higher position because
of their higher power (that is, their "benefit"). Given these results many V&V plans, with their recommended dynamic
testing techniques for the nuclear industry and elsewhere, might consider revising their V&V techniques. This table
suggests that it might be possible to compose a set of testing techniques with very effective cost-benefit values.

6.3.2 The Effectiveness Metrics

This section defines a metric which considers the four power factors (Broad Power, Hard Power, Formalization,
and Human-Computer Interface Testability) and the four ease-of-use factors (Ease of Mastery, Ease of Setup, Ease of
Running/Interpretation, and Usage) as contributing varying amounts of effectiveness to a particular technique.
Difficulty-of-use is not a consideration.

6.3.2.1 Deriving the Basic Metric

The extent to which any one of the eight factors is "beneficial" depends on the benefits one needs. If the only
concern was finding techniques to test the human-computer interface factor, then 100% of the benefit derived from the
eight factors would evolve from the HCI-Tested factor.

If percentage weights are attributed to each factor, then one would distribute 100 percentage points across the
eight factors in accordance with one's judgment of importance. In the example above, the 4th factor, HCI-Tested, was
believed to be the only factor important. Therefore, the percentage weight assignments to the factors would be the
following:

Factor No. 1 2 3 4 5 6 7 8

%Weight 0 0 0 100 0 0 0 O

116

If for all 153 techniques, each factor was multiplied by the weight assigned to it, and then these factor-by-weight
products were summed, a total for each method would be produced. The method(s) with the highest total would be the
one(s) that best met the system needs - in this particular case, the ones that best tested the HCI aspects of the system. It
is known that the maximum rating for any factor is 5. The above procedure would produce a value of 500 for any
technique which was rated S in its HCI-Tested factor (the values of the remaining seven factors would be zero, since
the ratings are all multiplied by a weight of 0 in this example).

To give another example, if there is no basis for judging one factor to be more important than another give equal
weight to all of them, splitting the 100 weighing percentage points equally across the 8 factors would produce the
following weights:

Factor No. 1 2 3 . 4 5 6 7 8
%Weight (w) 12.5 125 12.5 12.5 12.5 12.5 12.5 125

If a technique had a rating of 1 for all eight factors, its score would be 100. However, a method with 5 for alt factors
would have the maximum score of 500. This latter situation is shown below:

Factor No. 1 2 .3 4 5 6 7 8
%Weight (w) 125 12.5 12.5 12.5 12.5 125 125 125
Rating (r) 5 5 5 5 5 5 5 5
W x(@ . 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5
TOTAL 8x62.5=500

This procedure of assigning a weight for the expected benefit of each factor and then summing the product of these
weights multiplied by the rating is summarized below. This is called the Effectiveness Metric (EM). The
Effectiveness Metric for technique j is:

. 8
Effectiveness Metric,= EM, = E W, * I, (Eq.6.3.2.1-1)
f

where j is the jth V&V technique, and where w;; and 1, are the weight and ranking of the ith factor, respectively, both
for the jth technique. As stated above, a requirement of this metric is that the sum of the weights must equal 100:

8
Yy w, - 100 (Eq. 6.3.2.1-2)
£-1

117

gt b S g

This restriction reflects the fact that one cannot emphasize one aspect of a V&V method without de-emphasizing
some other aspect.

The Effectiveness Metric theoretically ranges from a minimum of 100 for a V&V method j (if all eight factors
are rated 1) to a maximum of 500 (if all eight factors are rated 5):

100 < EM, < 500 (Eq. 6.3.2.1-3)

Having defined the metric, the next step is to carefully decide how weights are to be assigned to the eight
individual factors. There are many ways to do this, but, however it is done, a disciplined approach for assigning
weights is necessary to make the metric a valid tool for measuring "effectiveness"”.

6.3.2.2 Development of Weights for Effectiveness

Whether or not a technique is "effective” in assuring the quality of a software system depends on the
characteristics of that system. For the purpose of this review, three different effectiveness metrics were developed in
terms of the three V&V classes proposed in Section 2.4.3 (see Table 2.4.3-1). These classes were based jointly on two
aspects of systems: their complexity and their required integrity. (Complexity in turn was previously characterized in
terms of six factors; see Table 2.4.3-1). Thus, the effectiveness metric for a V&V Class 3 system should take into
account that such a system is a stand-alone system of low complexity and low required integrity. Such a system is
unlikely to need extremely powerful error-finding techniques; testing methods should probably be broadly capable but
very easy to use. For a V&V Class 1 system, however, ease-of-use of the method is of little concern, but power to find
hard defects is. Thus, each V&V Class will have differing requirements for the eight Power and Ease-of-Use factors.
This section specifies how the weights for each of the V&V Classes were determined for these eight factors.

The following method was used iteratively to arrive at a stable set of weights. First, 100 percentage weight
points were assigned to the overall Power and the Ease-of-use classes. Various considerations yielded the following

effectiveness measurement constraints among V&V Classes:

® (Class 3, Power and Ease-of-Use weights should be within 20-30 points, but neither should be more than
15 points from the mid-point.

® The number of points allotted to Power should increase significantly from Class 3 to Class 1.

® Since Class 1 and Class 2 are numerically closer in complexity and integrity, the difference in point
values in the change from Class 2 to Class 1 should be less than the change from Class 3 to Class 2.

® The weights in should be assigned units of "S" to simplify this procedure.

118

In addition to the above rules, the eight factors were subject to the following more speciﬁc additional constraints
as a second step for any set of weights arrived at with the above rules.

Broad Power and Usage should receive the highest individual number of points for Class 3.

The importance of Broad Power should decrease from Class 3 to Class 2, and should decrease even
more from Class 2 to Class 1.

The usage factor should parallel the decrease of Broad Power.

HCI is probably the second most important Power factor for Class 3, and it should increase some to
Class 2 and more to Class 1.

Automatability is not important for Class 3, but is second only to Hard Power for Class 1.

Hard Power should increase steeply from a low level in Class 3 to the most important power factor in
Class 1.

Ease of Mastery and Ease of Setup should be relatively comparable in value, with the latter given
slightly more weight (since Mastery is amortized over a number of situations).

Ease of Mastery is important for Class 3 but decreases to a minimum for Class 1.
Ease of Setup is also important for Class 3 and also decreases to a minimum for Class 1.

Usage should be the most important Ease-of-Use factor for Classes 3 and 2, but it should be of little
concern for Class 1.

Each of these two sequential constraint steps' constraints is motivated separately, and together they constitute
a formidable set of constraints on the problem. There were several iterations between the first step of deciding on the
gross percentage points to allot to the collective power vs. the ease-of-use factors for the three classes of V&V and the
second step of breaking down the percentage points among the eight factors. A third step was to take what seemed to
be an acceptable set of weights and use them to compute the effectiveness of 3-8 selected techniques for each of the
three types of V&V techniques (Requirements/Design, Static Testing, and Dynamic Testing). These techniques were
well-understood and familiar, and there were strong -- and defensible -- pre-existing expectations concerning how the
orderings of these methods should be for the three V&V classes when the Effectiveness Metric was computed. Ifa
particular weighing scheme produced an ordering that was at odds with these expectations, it was rejected, and step one
was begun again.

The results of the accepted first step of assigning percentage-points to the general categories of power and
ease-of-use for each of the three V&V Classes, is shown below:

119

% Weight for % Weight for

Power Ease-of-Use
Class 3 40 60
Class 2 60 40
Class 1 75 25

The second process was to distribute the above combined weights for Power and Ease-of-Use to the four
factors in each of these categories. For example, the 75 percentage points giveh to Power factors for the Class 1 V&V
situation were distributed to the four factors which constituted Power. The distributing of weights among the four
factors in each of the two factor categories are shown in Table 6.3.2.2-1. All of the step one and step two constraints
are met by this assignment. Additionally, the ordering of the selected techniques was consistent with the expectations,
as determined in step three.

The overall measures of effectiveness for each conventional V&V technique was computed using formula
(6.3.2.1-1). A spread-sheet product was used to calculate the results of the weighing formulas (refer to the factor
ratings in columns E-H and K-N of Table 6.3-1). These ratings resulted in three overall scores for each method.
Scores for each of the three V&V classes are shown in columns T-V.

6.3.3 Rank-Ordered Methods

The methods were rank-ordered according to the V&V Class Effectiveness measures, and all of these results
are provided and discussed here.

The methods ordered by the Class 3 V&V Effectiveness measure were first examined, as shown in Tables
6.3.3-1A through 6.3.3-1C; the methods were grouped by major V&V category -- Requirements/Design (Table 6.3.3-
1A), Static Testing (Table 6.5.5-1B), and Dynamic Testing (Table 6.3.3-1C). The weights for this Class 3 situation
emphasize broad power strongly over the other power measures (with 24 or 60% of the possible 40 percentage points
allocated to it). Thus, if one only considers the power factors, any technique which has a broad defect-detection
capability will more likely be selected. If the technique is frequently used (weighted 20 percentage points), it will tend
to top the list. It is for these reasons that formal reviews and inspections lead the first two testing categories, and
system, field, and regression testing are the-top methods of the dynamic testing methods.

Upon closer examination for Requirements/Design techniques, the formal methods are considered least
effective for the Class 3 V&V situations. Semi-formal methods are found in the middle. A similar finding occurs for
the Static Testing methods, with the highly analytical and formal methods being considered least effective, and more
focused techniques being intermediate. The ranking of dynamic methods has the structural testing methods down in the
list, along with some of the more difficult simulation and analysis techniques. Note that the ranking of methods
according to the Class 3 weights very closely parallels the cost-benefit rankings found in the fourth column even though
the rankings are computed by different metrics. This is quite appropriate, since both metrics tend to emphasize Ease-of-
Use and Broad Power. Still, this finding tends to cross-validate both measures.

120

Table 6.3.3-1A Conventional Requirements and Design V and V Methods

Ranked by Decreasing V and V Class 3 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
Formal Requirements Review 4 416 345 271
Requirements Analysis 5 407 369 321
Formal Design Review 3 392 327 263
Prototyping 0 327 296 275
Requirements Tracing -1 326 283 234
Sys. Req. Eng. Method. 0 295 320 331
Ward-Mellor Method -1 280 312 327
Gen'l Regs. Lang, Anal. -3 275 263 246
System Engineering Analysis -4 272 276 257
Refine Spec'n. Language -2 260 300 324
Operational Concept Design Review -3 260 260 257
Simulation-Language Anal. -1 258 302 342
Hatley-Pirbhal Method -4 243 265 277
Harel Method -4 242 265 285
FAM -5 230 257 273
Database Design Analysis | -6 229 230 226
PSLIPSA -7 221 225 227
Extended Sys. Model. Lang | -5 220 255 283
Mathematical Verification -6 218 247 260
Critical Timing/Flow Anal. -6 209 250 276
Sys. Eng. Methodology -6 207 245 278
Higher Order Logic -7 203 220 236
Design Compliance Analysis -8 203 193 181
EHDM -7 197 235 265
y4 -8 185 225 252
Vienna Definition Method -8 185 225 252
Concurrent System Calculus -8 185 225 252
Petri-Net Safety Analysis -7 182 221 257

121

Table 6.3.3-1B Conventional Static Testing V and V Methods,
Sorted by Decreasing V and V Class 3 Values (Maximum = 500)

COST BENEFIT MEASURE] Class3| Class2| Class1
2.5.6 Desk Checking 3 365 312 271
2.5.3 Formal Customer Review 2 363 324 276
2.5.1 Informed Panel Inspection 1 343 312 273
2.5.2 Structured Walk-throughs 1 337 308 269
2.5.5 Peer Code Checking 1 337 308 269
2.5.8 User Interface Inspection 2 330 310 295
2.5.7 Data Interface Inspection 1 329 304 278
2.3.7 Cross-reference List Gen'r 0 323 280 242
2.2.5 Call Structure Analysis 0 320 297 269
2.21 Control Flow Analysis -1 313 274 236
2.5.10 Requirements Tracing 0 310 295 279
25.4 Clean-troom Techniques -1 300 339 331
2.3.5 Look-up Table Generator -1 299 262 234
236 Data Dictionary Generator -2 286 252 229
2.4.9 Knowledgebase Semantic Checking 3 286 348 414
2.2.4 Operational Concept Anal. -1 285 278 274
2.2.3 Program Control Analysis -2 281 271 257
24.8 Knowledgebase Syntax Checking 1 268 307 354
2.1.4 Decision Tables -3 263 272 270
2.2.2 State Transition Diagram -2 261 274 288
2.3.8 Aliasing Analysis -3 249 253 257
243 Hazards/Safety Analysis -6 248 248 225
2.5.14 System Engineering Review -5 248 258 249
2.3.1 Data Flow Analysis -4 245 256 268
2.3.11 Database Interface Analysis -5 239 222 209
2.5.13 Standards Compliance -4 237 229 237
2.5.9 Standards Audit -6 235 215 197
2.5.12 Process Oriented Audits -7 235 188 164
2.3.3 Dependency Analysis -4 234 231 246
2.4.6 Failure Modeling -5 229 264 277
244 Anomaly Testing -4 224 246 275
2.1.9 Metric Analyses -6 - 222 194 190
2.5.11 Software Practices Review -8 220 180 150
2.2.6 Process Trigger/Timing Anal -5 218 254 276
2.4.1 Failure-mode Effects Caus. -6 214 268 282
2.3.10 Database Analysis -7 211 204 200
2.1.13 Model Evaluation -7 209 231 239
24.2 Criticality Analysis -7 209 243 248
2.4.5 Fault-Tree Analysis -7 209 243 248
234 Qualitative Causal Analysis -5 207 234 264
2.3.2 Signed Directed Graphs -6 206 227 244
2.4.11 Knowledge Engineering Analysis -6 206 232 254
2.4.10 Knowledge Acquisition/Refinement -5 199 212 243
2.3.12 Date-Model Evaluation -7 196 217 231
24.7 Common-cause Failure Anal -7 186 215 230
2.1.1 Analytic Modeling -10 193 189 172
227 Worst-case Timing Analysis -8 179 189 212

122

Table 6.3.3-1B Conventional Static Testing V and V Methods,
Sorted by Decreasing V and V Class 3 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| "Class2| Class1
2.2.8 Concurrent Process Analysis -7 178 230 270
2.1.12 Confidence Weights Sensitivity Anal -9 170 177 190
2.1.5 Trace-assertion Meth -7 167 232 287
2.1.2 Cause-effect Analysis -11 165 165 159
21.7 L-D Relation Method -8 162 207 253
2.1.8 Program Proving -8 155 224 275
2.1.3 Symbolic Execution -8 150 206 269
2.1.10 Algebraic Specification -9 150 199 241
2.1.6 Functional Abstraction -10 147 172 206
2.3.9 Concurrency Analysis -11 146 160 176
2.1.11 Induction-Assertion Method -10 137 189 236

123

e L e T

MV INARCIES (i SO e ari o) Piliodiaiee s e T T T

Table 6.3.3-1C Conventional Dynamic Testing V and V Methods

Sorted by Decreasing Class 3 Values (Maximum = 500)

| |COST BENEFIT MEASURE Class 3 Class 2| Class1
3.1.2 System Testing 8 443 391 338
3.4.1 Field Testing 6 429 374 313
3.1.7 Regression Testing 6 426 356 291
3.2.1 Random Testing 4 375 368 343
343 Qualification/Certification 3 375 367 336
342 Scenario Testing 3 362 339 318
3.9.2 User Interface Testing 3 361 330 301
3.3.1 Functional Regs. Testing 1 349 322 285
3.1.1 Unit/Module Testing 0 347 294 247
3.1.3 Compilation Testing 2 340 296 269
3.9.4 Operational Concept Testing 3 337 316 309
3.7.3 Results Monitoring 0 332 306 275
3.3.5 Heuristic Testing 1 328 336 322
3.8.3 Workplace Averages -1 322 279 243
3.9.1 Data Interface Testing 1 321 305 300
3.2.2 Domain Testing -1 320 286 254
3.5.1 Stress/Accelerated Life Tst -1 320 292 255
3.8.1 Gold Standard Testing -1 318 279 243
3.5.3 Robustness Testing 0 317 315 299
3.9.5 Organizational Impact Anal, -1 314 256 219
3.9.6 Transaction-flow Test 0 313 309 298
3.1.9 Ad-hoc Testing -1 310 246 207
3.10.8 Data-Flow Testing -1 310 301 283
3.10.6 Test Coverage Analysis -2 308 269 230
3438 Knowledgebase Scenario Generation 2 297 305 331
3.7.2 Incremental Execute -2 293 293 275
344 Simulator-based Testing 0 292 315 329
3.1.4 Reliability Testing -1 288 260 252
354 Limit/Range Testing -1 285 273 272
3.4.7 Validation Scenario Testing -3 284 251 222
3.3.2 Simulation Testing -1 281 305 324
3.74 Thread Testing -3 281 271 253
3.5.5 Parameter Violation -1 280 275 281
3.8.2 Effectiveness Procs -3 280 255 237
3.9.3 Information System Analysis -3 279 253 231
3.1.10 Beta Testing -3 277 249 224
3.71 Activity Tracing -3 276 260 246
3.10.1 Statement Testing -5 274 239 207
3.10.2 Branch Testing -5 274 239 207
3.5.2 Stability Analysis Testing -4 273 268 243
3.46 Human Factors Experimentn -2 270 270 270
3.10.3 Path Testing -6 254 227 204
3.6.1 Sizing/Memory Testing -6 239 213 196
3.11.1 Error Seeding -6 239 213 196
34.5 Benchmarking -7 236 213 187
3.33 Model-based Testing -2 234 284 334

124

Table 6.3.3-1C Conventional Dynamic Testing V and V Methods

Sorted by Decreasing Class 3 Values (Maximum = 500)

3.6.2 Timing/Flow Testing -5 234 253 259
3.6.4 Queue size, etc. -6 232 228 217

COST BENEFIT MEASURE Class 3 Class 2| Class 1
3.6.3 Bottleneck Testing -6 229 228 225
3.7.5 Using Generated Explanations -5 228 237 246
3.10.4 Call-pair Testing -7 226 203 191
3.10.7 Conditional Testing -7 226 203 191
3.1.5 Statistical Record-Keeping -6 220 208 213
3.11.2 Fault Insertion -7 219 201 193
3.1.8 Metric-based Testing -8 211 178 168
3.10.5 Linear Code Sequence -7 211 216 222
3.11.3 Mutation Testing -8 207 191 180
3.1.6 Software Reliability Estim'n -10 180 173 163
3.3.4 Assertion Checking -9 146 193 236

125

Some general observations can be made across the three V&V Class Effectiveness measures concerning the
extent to which techniques came close to their theoretical maximum value of 500. First of all, the highest scores
occurred for the Class 3 V&V weights, and the lowest scores occurred for the Class 1 weights. This can be interpreted
as meaning that conventional V&V techniques are most appropriate for the V&V Class 3 systems and are less able to
meet the testing needs as the required V&V stringency increases.

A second observation is that for each V&V Class, the Requirements/Design methods always had the lowest
maximum scores, followed by the Static Testing methods, and the Dynamic methods being the best. The Dynamic
Testing methods had the three highest overall scores, up to 88% effectiveness, for System Testing (443), Field
Testing (429), and Regression Testing (426) in the Class 3 weighing. This finding might imply an ordering of
difficulty in being able to detect problems with the three types of techniques. Or, it may reflect the fact that the V&V
field has more methods and experience with Dynamic techniques than with Static ones, and least for
Requirements/Design ones. Thirdly, the next three top methods were Formal Requirements Review
(Requirements/Design, Class 3; 416), Requirements Analysis (Requirements/Design, Class 3; 407), and Formal
Design Review (Requirements/ Design, Class 3; 392). If there were no other constraints, these six top methods -- the
three top Dynamic methods and the next three top requirements/design methods -- would appear to constitute a very
impressive suite of V&V techniques, with the high cost-benefit values and a near 80% Effectiveness capability.

The techniques were then ranked in terms of decreasing Effectiveness values as computed by the Class 2
weights. The results are shown in Tables 6.3.3-2A through 6.3.3-2C. For the Requirements/Design methods (Table

6.3.3-2A), the Class 2 weights did not cause a major re-ordering. Rather, only a few techniques moved more than a
few spaces.

For the Static Testing methods, the change to Class 2 weights also did not cause significant re-clustering. The
Clean-room Technique moved up significantly (10 places) to second place, and Desk-checking, metric analyses, and
a few others dropped substantially. However, the majority held their general positions. The same general finding was
also true for the Dynamic methods.

Finally, the techniques were ranked in terms of the Class 1 Effectiveness Metric, as shown in Tables 6.3.3-3A
through 6.3.3-3C. This is the highest level of complexity/integrity requirements, and this situation calls for whatever it
takes to identify problems in the code, particularly the very hard problems. In this situation, 75 of the 100 percentage
points are assigned to the power factors for V&V Class 1. This is due their capability (34 points, 45%) to detect the
really hard problems. The HCI is also high for this Class because safety systems of the most concern are decision-
support systems with complex human-computer interactions (20 points, 27%).

Examination of the ranking of methods according to the Class 1 measure reveals entirely different orderings
than with Class 3 weighing. For the Requirements/Design methods (Table 6.3.3-3A), the semi-formal methods are
now very high on the list, with the extremely laborious formal methods now up in the top 40% of methods. The
workhorse review and tracing methods, as well as a number of the powerful inspection methods, are high on the list for
Static Testing. For Dynamic Testing, System Testing is still near the top, (second place) and first place is held by the
Random Testing method. In the Class 1 situation, the cost-benefit measure is uncorrelated with the effectiveness
rankings for the first half of the methods.Insert Table 6.3.2.2-1 herelt is stressed once more that there is nothing
sacrosanct about the rankings of methods according to the weighing matrix developed in Table 6.3.2.2-1. Some

126

Table 6.3.3-2A Conventional Requirements and Design V and V Methods
Ranked by Decreasing V and V Class 2 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
1.3.4 Regquirements Analysis 5 407 369 321
1.3.1 Formal Requirements Review 4 416 345 271
1.3.2 Formal Design Review 3 392 327 263
1.2.6 Sys. Req. Eng. Method. 0 285 320 331
1.2.1 Ward-Mellor Method -1 280 312 327
1.2.9 Simulation-Language Anal, -1 258 302 342
1.1.6 Refine Spec'n. Language -2 260 300 324
1.3.5 Prototyping 0 327 296 275
1.4.1 Requirements Tracing -1 326 283 234
1.3.3 System Engineering Analysis -4 272 276 257
1.2.2 Hatley-Pirbhal Method -4 243 265 277
1.2.3 Harel Method -4 242 265 285
1.1.1 Gen'l Regs. Lang. Anal. -3 275 263 246
1.3.7 Operational Concept Design Review -3 260 260 257
1.2.7 FAM -5 230 257 273
1.2.4 Extended Sys. Model. Lang -5 220 255 283
1.2.8 Critical Timing/Flow Anal. -6 209 250 276
1.1.2 Mathematical Verification -6 218 247 260
1.2.5 Sys. Eng. Methodology -6 207 245 278
1.1.3 EHDM -7 197 235 265
1.3.6 Database Design Analysis -6 229 230 226
1.2.11 PSL/PSA -7 221 225 227
1.1.4 ¥4 -8 185 225 252
1.1.5 Vienna Definition Method -8 185 225 252
1.1.8 Concurrent System Calculus -8 185 225 252
1.2.10 Petri-Net Safety Analysis -7 182 221 257
1.1.7 Higher Order Logic -7 203 220 236
1.4.2 Design Compliance Analysis -8 203 193 181

127

*
E
d

BTALL S AN S iy

Table 6.3.3-2B Conventional Static Testing V and V Methods

Sorted by Decreasing V and V Class 2 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
249 Knowledgebase Semantic Checking 3 286 348 414
2.5.4 Clean-room Techniques -1 300 339 331
2.5.3 Formal Customer Review 2 363 324 276
2.5.6 Desk Checking 3 365 312 271
2.5.1 Informed Panel Inspection 1 343 312 273
2.5.8 User Interface Inspection 2 330 310 295
25.2 Structured Walk-throughs 1 337 308 269
2.5.5 Peer Code Checking 1 337 308 269
2438 Knowledgebase Syntax Checking 1 268 307 354
2.5.7 Data Interface Inspection 1 329 304 278
2.2.5 Call Structure Analys 0 320 297 269
2.5.10 Requirements Tracing 0 310 295 279
2.3.7 Cross-reference List Gen'r 0 323 280 242
224 Operational Concept Anal. -1 285 278 274
2.2.1 Contro! Flow Analysis -1 313 274 236
22.2 State Transition Diagram -2 261 274 288
214 Decision Tables -3 263 272 270
2.2.3 Program Control Analysis -2 281 271 257
2.4.1 Failure-mode Effects Caus. -6 214 268 282
24.6 Failure Modeling -5 229 264 277
2.3.5 Look-up Table Generator -1 299 262 234
2.5.14 System Engineering Review -5 248 258 249
2.3.1 Data Flow Analysis -4 245 256 268
226 Process Trigger/Timing Anal -5 218 254 276
2.3.8 Aliasing Analysis -3 249 253 257
2.3.6 Data Dictionary Generator -2 286 252 229
24.3 Hazards/Safety Anal -6 248 248 225
24.4 Anomaly Testing -4 224 246 275
24.2 Criticakty Analysis -7 209 243 248
24.5 Fault-Tree Analysis -7 209 243 2438
234 Qualitative Causal Analysis -5 207 234 264
2.4.11 Knowledge Engineering Analysis -6 206 232 254
2.1.5 Trace-assertion Meth -7 167 232 287
2.3.3 Dependency Analysis -4 234 231 246
2.1.13 Mode! Evaluation -7 209 231 239
2.2.8 Concurrent Process Analysis -7 178 230 270
2.5.13 Standards Compliance -4 237 229 237
2.3.2 Signed Directed Graphs -6 206 227 244
2.1.8 Program Proving -8 155 224 275
2.3.11 Database Interface Analysis -5 239 222 209
2.3.12 Date-Model Evaluation -7 196 217 231
259 Standards Audit -6 235 215 197
24.7 Common-cause Failure Anal -7 196 215 230
2.4.10 Knowledge Acquisition/Refinement Aid -5 199 212 243
217 L-D Relation Method -8 162 207 253
21.3 Symbotic Execution -8 150 206 269
2.3.10 Database Analysis -7 211 204 200

128

Table 6.3.3-2B Conventional Static Testing V and V Methods

Sorted by Decreasing V and V Class 2 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
2.1.10 Algebraic Specification -9 150 199 241
2.1.9 Metric Analyses -6 222 194 190
211 Analytic Modeling -10 193 189 172
227 Worst-case Timing Analysis -8 179 189 212
2.1.11 Induction-Assertion Method -10 137 189 236
2512 Process Oriented Audits -7 235 188 154
2.5.11 Software Practices Review -8 220 180 150
2.1.12 Confidence Weights Sensitivity Analysis -9 170 177 190
2.1.6 Functional Abstraction -10 147 172 206
21.2 Cause-effect Analysis -11 165 165 159
2.3.9 Concurrency Analysis -11 146 160 176

129

Table 6.3.3-2C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 2 Values (Maximum = 500)

[] COST BENEFIT MEASURE| Class3| Class2| Class1
3.1.2 System Testing 8 443 391 338
3.4.1 Field Testing 6 429 374 313
3.2.1 Random Testing 4 375 368 343
3.4.3 Qualification/Certification 3 375 367 336
317 Regression Testing 6 426 356 291
34.2 Scenario Testing 3 362 339 318
3.3.5 Heuristic Testing 1 328 336 322
3.9.2 User Interface Testing 3 361 330 301
3.3.1 Functional Reqs. Testing 1 349 322 285
3.94 Operational Concept Testing 3 337 316 309
3.5.3 Robustness Testing 0 317 315 299
344 Simulator-based Testing 0 292 315 329
3.9.6 Transaction-flow Test 0 313 309 298
3.7.3 Results Monitoring 0 332 306 275
3.9.1 Data Interface Testing 1 321 305 300
3.4.8 Knowledgebase Scenario Generation 2 297 305 331
3.3.2 Simulation Testing -1 281 305 324
3.10.8 Data-Flow Testing -1 310 301 283
3.1.3 Compilation Testing 2 340 296 269
3.1.1 Unit/Module Testing 0 347 294 247
3.7.2 Incremental Execute -2 293 293 275
3.5.1 Stress/Accelerated Life Tst -1 320 292 255
3.2.2 Domain Testing -1 320 286 254
3.3.3 Model-based Testing -2 234 284 334
3.8.3 Workplace Averages -1 322 279 243
3.8.1 Gold Standard Testing -1 318 279 243
3.5.5 Parameter Violation -1 280 275 281
3.54 Limi/Range Testing -1 285 273 272
3.74 Thread Testing -3 281 271 253
346 Human Factors Experimentn -2 270 270 270
3.10.6 Test Coverage Analysis -2 308 269 230
3.5.2 Stability Analysis Testing -4 273 268 243
3.1.4 Reliability Testing -1 288 260 252
3.71 Activity Tracing -3 276 260 246
3.9.5 Organizational Impact Anal. -1 314 256 219
3.8.2 Effectiveness Procs -3 280 255 237
3.9.3 Information System Analysis -3 279 253 231
3.6.2 Timing/Flow Testing -5 234 253 259
34.7 Validation Scenario Testing -3 284 251 222
3.1.10 Beta Testing -3 277 249 224
3.1.9 Ad-hoc Testing -1 310 246 207
3.10.1 Statement Testing -5 274 239 207
3.10.2 Branch Testing -5 274 239 207
3.7.5 Using Generated Explanations -5 228 237 246
3.6.4 Queue size, etc. -6 232 228 217
3.6.3 Bottleneck Testing -6 229 228 225
3.10.3 Path Testing -6 254 227 204
3.10.5 Linear Code Sequence 7 211 216 222

130

Table 6.3.3-2C Conventional Dynamic Testing V and V Methods
Sorted by Decreasing Class 2 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
3.6.1 Sizing/Memory Testing -6 239 213 196
3.11.1 Etror Seeding -6 239 213 196
345 Benchmarking -7 236 213 187
3.1.5 Statistical Record-Keeping -6 220 208 213
3.10.4 Call-pair Testing -7 226 203 191
3.10.7 Conditional Testing -7 226 203 191
3.11.2 Fault Insertion -7 219 201 193
3.34 Assertion Checking -9 146 193 236
3.11.3 Mutation Testing -8 207 191 180
3.1.8 Metric-based Testing -8 211 178 168
3.1.6 Software Reliability Estim'n -10 180 173 163

131

Table 6.3.3-3A Conventional Requirements and Design V and V Methods
Ranked by Decreasing V and V Class 1 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1

1.2.9 Simulation-Language Anal. -1 258 302 342
1.2.6 Sys. Req. Eng. Method. 0 295 320 331
1.2.1 Ward-Mellor Method -1 280 312 327
1.1.6 Refine Spec'n. Language -2 260 300 324
1.34 Requirements Analysis 5 407 369 321
1.2.3 Harel Method -4 242 265 285
124 Extended Sys. Model. Lang -5 220 255 283
1.2.5 Sys. Eng. Methodology -6 207 245 278
1.2.2 Hatley-Pirbhai Method -4 243 265 277
1.2.8 Critical Timing/Flow Anal, -6 209 250 276
1.3.5 Prototyping 0 327 296 275
1.2.7 FAM -5 230 257 273
1.3.1 Formal Requirements Review 4 416 345 271
1.1.3 EHDM -7 197 235 265
1.3.2 Formal Design Review 3 392 327 263
1.1.2 Mathematical Verification -6 218 247 260
1.3.3 System Engineering Analysis -4 ' 272 276 257
1.3.7 Operational Concept Design Review -3 260 260 257
1.2.10 Petri-Net Safety Analysis -7 182 221 257
1.14 z -8 185 225 252
1.1.5 Vienna Definition Method -8 185 225 252
1.1.8 Concurrent System Calculus -8 185 225 252
1.1.1 Gen'l Regs. Lang, Anal, -3 275 263 246
1.1.7 Higher Order Logic -7 203 220 236
14.1 Requirements Tracing -1 326 283 234
1.2.11 PSL/PSA -7 221 225 227
1.3.6 Database Design Analysis -6 229 230 226
1.4.2 Design Compliance Analysis -8 203 193 181

132

Table 6.3.3-3B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 1 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
249 Knowledgebase Semantic Checking 3 286 348 414
2.4.8 Knowledgebase Syntax Checking 1 268 307 354
254 Clean-room Techniques -1 300 339 331
2.5.8 User Interface Inspection 2 330 310 295
2.2.2 State Transition Diagram -2 261 274 288
2.1.5 ‘Trace-assertion Meth -7 167 232 287
2.4.1 Failure-mode Effects Caus. -6 214 268 282
2.5.10 Requirements Tracing 0 310 295 279
2.5.7 Data Interface Inspection 1 329 304 278
24.6 Failure Modeling -5 229 264 277
2.5.3 Formal Customer Review 2 363 324 276
2.2.6 Process Trigger/Timing Anal -5 218 254 276
244 Anomaly Testing -4 224 246 275
2.1.8 Program Proving -8 155 224 275
2.2.4 Operational Concept Anal. -1 285 278 274
2.5.1 Informed Panel Inspection 1 343 312 273
2.5.6 Desk Checking 3 365 312 271
214 Decision Tables -3 263 272 270
2.2.8 Concurrent Process Analysis -7 178 230 270
2.5.2 Structured Walk-throughs 1 337 308 269
2.5.5 Peer Code Checking 1 337 308 269
2.2.5 Call Structure Analys 0 320 297 269
2.1.3 Symbolic Execution -8 150 206 269
2.3.1 Data Flow Analysis -4 245 256 268
234 Qualitative Causal Analysis -5 207 234 264
2.2.3 Program Control Analysis -2 281 271 257
238 Aliasing Analysis -3 249 253 257
24.11 Knowledge Engineering Analysis -6 206 232 254
2.1.7 L-D Relation Method -8 162 207 253
2.5.14 System Engineesing Review -5 248 258 249
24.2 Criticality Analysis -7 209 243 248
24.5 Fault-Tree Analysis -7 209 243 248
2.3.3 Dependency Analysis -4 234 231 246
2.3.2 Signed Directed Graphs -6 206 227 244
2.4.10 Knowledge Acquisition/Refinement Aid -5 199 212 243
2.3.7 Cross-reference List Gen't 0 323 280 242
2.1.10 Algebraic Specification -9 150 199 241
2.1.13 Model Evaluation -7 209 231 239
2.5.13 Standards Compliance -4 237 229 237
2.2.1 Control Flow Analysis -1 313 274 236

133

Table 6.3.3-3B Conventional Static Testing V and V Methods
Sorted by Decreasing V and V Class 1 Values (Maximum = 500)

COST BENEFIT MEASURE| Class3| Class2| Class1
2.1.11 Induction-Assertion Method -10 137 189 236
2.3.5 Look-up Table Generator -1 299 262 234
2.3.12 Date-Model Evaluation -7 196 217 231
247 Common-cause Failure Anal -7 196 215 230
2.3.6 Data Dictionary Generator -2 286 252 229
24.3 Hazards/Safety Anal -6 248 248 225
2.2.7 Worst-case Timing Analysis -8 179 189 212
2.3.11 Database Interface Analysis -5 239 222 209
2.1.6 Functional Abstraction -10 147 172 206
2.3.10 Database Analysis -7 211 204 200
2.5.9 Standards Audit -6 235 215 197
2.19 Metric Analyses -6 222 194 190
2.1.12 Confidence Weights Sensitivity Analysis -9 170 177 190
2.3.9 Concurrency Analysis -11 146 160 176
2.1.1 Analytic Modeling -10 193 189 172
212 Cause-effect Analysis -11 165 165 159
2.5.12 |Process Oriented Audits -7 235 188 154
2.5.11 Software Practices Review -8 220 180 150

134 .

Table 6.3.3-3C Conventlonal Dynamic Testing V and V Methods

Sorted by Decreasing Class 1 Values (Maximum = 500)

[COST BENEFIT MEASURE| Class3| Class2| Class1
321 Random Testing 4 375 368 343
3.1.2 System Testing 8 443 391 338
343 Qualification/Certification 3 375 367 336
3.33 Model-based Testing 2 234 284 334
34.8 Knowledgebase Scenario Generation 2 297 305 331
344 Simulator-based Testing 0 202 315 329
3.3.2 Simulation Testing -1 281 305 324
3.3.5 Heuristic Testing 1 328 336 322
342 Scenario Testing 3 362 339 318
34.1 Field Testing 6 429 374 313
3.94 Operational Concept Testing 3 337| . 316 309
3.9.2 User Interface Testing 3 361 330 301
3.9.1 Data Interface Testing 1 321 305 300
353 Robustness Testing 0 317 315 299
3.9.6 Transaction-flow Test 0 313 309 298
3.1.7 Regression Testing 6 426 356 291
3.3.1 Functional Regs. Testing 1 349 322 285
3.10.8 Data-Flow Testing -1 310 301 283
3.5.5 Parameter Violation -1 280 275 281
3.7.3 Results Monitoring 0 332 306 275
3.7.2 Incremental Execute 2 293 293 275
3.5.4 Limit/Range Testing -1 285 273 272
3.4.6 Human Factors Experiment'n -2 270 270 270
3.1.3 Compilation Testing 2 340 296 269
3.6.2 Timing/Flow Testing -5 234 253 259
35.1 Stress/Accelerated Life Tst -1 320 292 255
322 Domain Testing -1 320 286 254
374 Thread Testing -3 281 271 253
314 Reliability Testing -1 288 260 252
3.1.1 Unit/Module Testing 0 347 294 247
3.7.1 Activity Tracing -3 276 260 246
3.7.5 . Using Generated Explanations -5 228 237 246
3.8.3 Workplace Averages -1 322 279 243
3.8.1 Gold Standard Testing -1 318 279 243
352 Stability Analysis Testing -4 273 268 243
382 Effectiveness Procs -3 280 255 237
3.34 Assertion Checking -9 146 193 236
3.9.3 Information System Analysis -3 279 253 231
3.10.6 Test Coverage Analysis -2 308 269 230
3.6.3 Bottleneck Testing -6 229 228 225

135

Table 6.3.3-3C Conventional Dynamic Testing V and V Methods

Sorted by Decreasing Class 1 Values (Maximum = 500)

COST BENEFIT MEASURE| Class1 Class2f Class1
3.1.10 Beta Testing -3 277 249 224
347 Validation Scenario Testing -3 284 251 222
3.10.5 Linear Code Sequence -7 211 216 222
3.9.5 Organizational Impact Anal, -1 314 256 219
3.64 Queue size, etc. -6 232 228 217
3.15 Statistical Record-Keeping -6 220 208 213
3.1.9 Ad-hoc Testing -1 310 246 207
3.10.1 Statement Testing -5 274 239 207
3.10.2 Branch Testing -5 274 239 207
3.10.3 Path Testing -6 254 227 204
3.6.1 Sizing/Memory Testing -6 239 213 7 196
3.11.1 Error Seeding -6 239 213 196
3.11.2 Fault Insertion -7 219 201 193
3.104 Call-pair Testing -7 226 203 191
3.10.7 Conditional Testing -7 226 203 191
345 Benchmarking -7 236 213 187
3.11.3 Mutation Testing -8 207 191 180
3.1.8 Metric-based Testing -8 211 178 168
3.1.6 Software Reliability Estim'n -10 180 173 163

136

reasonable assumptions and constraints were made about the relative contributions of the eight factors in these three
situations and the weightings were adjusted accordingly. What is provided in this section is a methodology which
attempts to reduce the problems of subjective bias, habit, or other unreflective technique-selection processes, by
forcing consideration of each method on a set of eight relatively independent factors and then combining these
judgments according to a reasonable linear additive weighing procedure.

6.4 Which Techniques to Use, and When

The rankings of the V&V methods were accomplished without reference to any particular system or
application. In reality, every system will have specific requirements that will make certain techniques necessary
regardless of their ranking for any complexity/integrity combination..

Any project will only use a very small fraction of the total 153 V&V techniques. All of these methods are
discussed because each has its own special qualifications. However, a single project has a finite V&V budget and great
care must be taken to select appropriate methods. The best way to determine which V&YV technique to use is to
prioritize the problems that might occur. For example, decide which system problems will cause failure, list those
concerns, and choose the best methods to test for those problems. A reasonable standard procedure is first to decide
the AV&YV Class of the system, Table 6.3.3-2 and find the appropriate table ranking of the techniques according to the
Effectiveness weighing and metric for that class.

The order of using V&V techniques is also an important consideration. For example, if it is necessary to use
functional testing, random testing, and statement testing, it would be a mistake to generate test-cases to test program
statements first. Statements will be automatically tested by the other two methods. If one keeps track of the statements
covered by these two methods, then one needs only to generate test-cases for the remaining untested statements after
the others have been exercised.

Finally, a plan of action is needed when errors are detected. This is a very complicated issue. The worst
mistake is to make a quick fix and continue with testing. This will invariably introduce new errors or side effects.
Additionally, this event renders the documentation obsolete more rapidly than normal. The better approach is to
continue with reasonable testing until a collection of problems is detected. In fact, when an error is encountered,
subsequent tests can be designed to effectively explore an analysis of the causes of the error revealed. There may be
very serious design flaws due to certain overlooked processing factors. With a collection of problems, the best action is
to first analyze them for likely related problems (and test for these) and problems in one's processes of software

development; then one can plan a series of modifications to the system design followed by modifications to the code
and documentation.

The cost-benefit and effectiveness ratings for each of the 153 V&V techniques in Section 6.3 provide detailed
information with an overall ranking of these methods. Such a ranking is useful in assessing the most likely candidates

for V&V and analyzing the trends among the most beneficial V&V techniques. Therefore, each technique was ranked
within its category of either requirements/design, static, or dynamic testing.

137

st &

Within each of these categories, each technique was numerically ranked in accordance with its cost benefit
measure as delineated in Tables 6.3.1-1A-C. Then, each technique was numerically ranked in accordance with its
effectiveness rating for each of the three V&V classes as it is delineated in Tables 6.3.3-1A-C, 6.3.3-2A-C, and 6.3.3-
3A-C. These rankings appear as columns 2-5 in Table 6.4-1. After this rank assignment for each technique, the four
rankings (cost-benefit and effectiveness for V&V Classes 1, 2, and 3) were summed and appear in column 6. Finally,
these summed values were ranked, and the results are given in column 7. For example, technique 1.3.2, Formal Design
Review, would be ranked number 1 based on its cost benefit measure in Table 6.3.1-1A, ranked number 1 based on its
effectiveness for V&V Class 3 in Table 6.3.3-1A, ranked number 1 for V&V Class 2 effectiveness in Table 6.3.3-2A,
and ranked number 15 for V&V Class 1 for effectiveness in Table 6.3.3-3A. The sum of 18 was assigned to this
technique. In the same manner, the top ten V&V techniques for requirements/design, static, and dynamic testing were
calculated and are delineated in Table 6.4-1 in numerical order from 1 to 10.

The above method provides a way of determining the top-rated techniques based on all four of the measures
computed for them, the cost-benefit measure, and the three effectiveness measures. Several generalizations concerning
the final top-ten ranked methods in Table 6.4-1 can be made. In requirements and design testing, traditional formal
review methods along with some new automated techniques made this top list. For static testing V&V methods, all the
highly ranked techniques involve personal inspections and reviews; none are automated. Finally, in the area of dynamic
testing, all the techniques on this list were system level, function oriented "black box" methods; no structural "white
box" methods made the list. Some of the dynamic testing methods also involved automation.

Many of the high ranked methods listed in Table 6.4-1 are widely used and accepted as conventional software
V&V. These methods serve as a starting point in later activities for this project in selecting appropriate V&V methods
for expert systems. For those expert system component which are directly
amenable to conventional software V&V methods (to be discussed in Section 7 of this report), some of the highly
ranked techniques in Table 6.4-1 may be appropriate. In the case where new V&V techniques need to be developed,
the insights gained from examining highly ranked conventional V&V methods will provide guidance in selecting new
expert system V&V methods.

138

Table 6.4-1 Overall highest ranked conventional
V&YV techniques for all V&V classes

Cost Effectiveness Metric Ranking Sum Ranking
Conventional V&V Techniques Benefit of Over All
Metric! Class 1 Class 2 Class 3 | Ranks | 4 Metrics®
Ranking
S |
Requirement Analysis 1 5 1 2 9 1
R i
g || Systems Requirements 4.5 2 4 6 16.5 2
Q Engineering
S || Formal Requirements Review 2 13 2 1 18 3
& Ward-Mellor Method 7 3 5 7 21 4
Formal Design Review 3 15 3 3 24 5
D
E || Simulation Language Analysis 7 1 6 12 25 6
SI Prototyping 4.5 11 8 4 27.5 7
g Refine Specification Language 9 4 7 10.5 30.5 8
Harel Method 13 6 11.5 14 44.5 9
Requirements Tracing 7 25 9 5 45 10

Knowledgebase Semantic 14.5 1 1 14.5 18 1
Checking
.?. User Interface Inspection 6 4 6 6 19.5 2
‘.‘; Formal Customer Review 2 11.5 3 2 20 3
é Desk Checking 1 17 4.5 1 24 4
Informed Panel Inspection 3 16 4.5 3 30.5 5
g Clean-room Techniques 12 3 2 12 31.5 6
g Data Interface Inspection 7 9 10 7 33 7
I || Knowledgebase Syntax 18 2 9 18 36 8
N || Checking
¢ Structured Walk-Throughs 45 21.5 1.5 45 40.5 9.5
Peer Code Checking 45 215 7.5 4.5 40.5 9.5

139

Table 6.4-1 (Continued)

Cost Effectiveness Metric Ranking Sum Ranking
Conventional V&V Techniques Benefit of Over All
Metric! Class 1 Class 2 Class 3 | Ranks | 4 Metrics?
Ranking
.../ | [/ .. |

System Testing 1 2 1 1 5 1
Random Testing 4 1 3 4.5 12.5 2

D R -~

X || Field Testing 2.5 10 2 2 16.5 3

A

M || Qualification Certification 6.5 3 4 4.5 18 4

I

C || Regression Testing 2.5 16 5 3 26.5 5

T . .

E || Scenario Testing 6.5 9 6 6 275 6

S

T || User Interface Testing 6.5 12 8 7 335 7

1

g Operational Concept Testing 6.5 11 10 11 38.5 8
Heuristic Testing 12 8 7 13 40 9
Functional Requirements 12 17 9 8 46 10
Testing

! Based on the cost benefit measure (Column 5) of Table 2.3.2-2, all the methods (for a phase) have been ranked.

Note that only a subset are shown here.

* Based on the sums of rankings for the four metrics, ordered from lowest to highest.

140

7 ASSESSMENT OF THE APPLICABILITY OF CONVENTIONAL V&V
TECHNIQUES TO EXPERT SYSTEMS

The previous two sections discussed the results of classifying and characterizing conventional V&YV techniques.
This section examines whether these V&V techniques are applicable to expert systems.

Section 7.1 describes the heterogeneous components of expert systems and Section 7.2 identifies key V&V
features of these and suggests generally appropriate V&V approaches. Section 7.3 provides a detailed examination of
the applicability of the 153 conventional techniques to the components and to the system as a whole. In Section 7.4,
the limitations of using conventional V&V techniques for expert systems are summarized, along with suggestions for
extensions to these methods. This section ends with a suggested strategy for assuring the quality of expert systems.

7.1 Components of Expert Systems

Expert systems, regardless of their application, generally have several essential functions just as spread-sheet
packages or data-base management systems have different functional components. From the point of view of
developing or managing expert systems, authors have focused on two components: a Knowledge Base and an Inference
Engine. However, the best description of components from a V&V point of view is one which lists all the aspects that
have to be tested (or certified) in order to achieve the QA and V&YV objectives. The four components, and their
subcomponents, from this V&V perspective are shown in the left-most column of Table 7.1-1. In addition to the
components that were actually developed are all the elements that were used in the expert system development.

The first component is the Inference Engine. It is that part of the expert system which determines what gets done
next. It controls the interpretations and decisions, and manages the results. The inference engine works on declarative
knowledge which is most frequently in the form of IF-THEN rules. To process such rules, the engine possesses two
key subcomponents: the Pattern Matcher, which determines which rules could next be activated, and the Conflict-Set
Handler, which priorities these rules.

There are six additional subcomponents of the inference engine. The Proof Procedure subcomponent
determines the nature of the decision-making or reasoning. An example is the working backward (top-down) from
goals to facts to realize those goals, or working forward (bottom-up) from facts (data) to inferences or goals; the
former is a "backwards-chaining” procedure, while the latter is a "forward-chaining” one. Another important aspect of
the proof procedure is whether the possible rules or data to be examined are considered exhaustively at each level of
chaining ("breadth-first" search) or whether a single rule is followed to its consequence, then a rule linked to that
consequence is explored, and so on until a goal or dead-end is reached ("depth-first" search). The Proof Manager
records the activity of the proof procedure component in a goal-tree or similar structure and manages (and annotates)
that tree following decision-outcomes. The subcomponent called the Knowledge Processor is a specialized unit which
understands the formats and structures of the various knowledge representations and makes available those aspects
which the inference engine needs for processing. The Fuzzy Value/Uncertainty Handler is uncommon but provides for
specialized processing of fuzzy-logic and uncertainty calculations within inferences. The Inheritance Processor deals
with knowledge represented as a frame or object (see below). For a particular element, it determines what
information about that element is inherited from its parent elements. Finally, the Agenda Handler is the overall
scheduling module for the inference engine, determining what specifically is done next, controlling input/output, and
managing access to other tools, databases, and environments.

141

The second major component is the Knowledge Base. It is the heart of expert systems. It contains all the
specific domain knowledge for a particular application. Six possible representations of knowledge are identified:
rules, frames, objects, facts, external databases, and in-line Demons. The most common representation is that of
IF-THEN Rules, rules which specify a set of conditions to be satisfied before a set of actions can be taken. A Frame
is composed of a set of related attributes that describe some knowledge concept. Frames are organized in a hierarchy
in which the parent node is a more general concept, while the child nodes are particular and specific types of that
parent concept (e.g., there might be a frame describing valves in general, which might bave two specialization frames -
"relief valves” and "input valves”). If the attributes describing a parent frame are true in all respects for the child, then
these need not be actually be specified as attributes in the child-frame; they can be "inherited" by default. Objects
possess frame characteristics as well as a set of "methods" (special procedures for displaying or activating the objects).
Expert systems which involve objects as a major knowledge component are a hybrid between pure expert systems in
which the processing is done primarily by the inference engine and object-oriented systems, in which the processing is
accomplished by "messages” or sets of instructions which are passed among objects. Facts are relatively simple
attribute-values which ascribe properties to things, such as the status of a nuclear plant variable, (e.g.,
“RPV_PRESSURE(BELOW, RCIC_ISOLATION_PRESSURE)"). When there are a very large number of facts
which the expert system needs to use, they are often stored, not in some internal form as in the above example, but in
an External Database. These databases are typically either flat-file or relational in structure and are accessed via the
Knowledge Processor through the Database Interface. Finally, knowledge can be represented by Demons, which are
calls to some conventional software procedure which returns a value. The demons are typically expressed as the
values of attributes in the other types of knowledge representations. For example, in a frame describing various
features of an airplane in flight, the attribute describing the amount of gas still in the tanks might be expressed as:

Fuel: Call FUEL_REMAINING

The value of the Fuel attribute is the demon "FUEL_REMAINING", which is a software procedure which
interrogates sensors in the fuel tanks and returns a value of some number of gallons.

The third component of expert systems consists of Interfaces. Other than the primary User-Interface, these are
seldom considered in discussions of expert system components since most expert systems, historically, have been
stand-alone systems, with just a user-interface. Nevertheless, the typical modern expert system more and more has a
variety of data and other interfaces and is embedded in larger conventional software systems. Just as these must be
considered carefully in the V&V of conventional systems, so must they be for expert systems. The various aspects of
interfaces are: user interface, database interface, data input/output channels, communication ports, hyper-media, and
interfaces to other applications and the operating system. Most of these are self-explanatory, and two comments will
suffice. The difference between a data I/O channel and a communication port is that the former is usually a special
input/output capability designed specifically for certain types of data streams or sensor inputs, while the latter is a
standardized channel for communicating with other platforms or devices. Hyper-media involves information retrieval
from potentially several data storage and representation methods, including text, audio, and video.

142

Table 7.1-1 Components and typical testing-related features of
knowledge-based systems, with testing recommendations.

Features'
Typically Written High Reusability Potential Defects
in or Involving Across Different Known, Fairly
Procedural Code Applications Delineated, &
Components Amenable to Formal
Test Methods
Inference Engineer Y? Y S
Pattern Matcher Y Y S
Conflict-Set Handler Y Y S
Proof Procedure Y Y S
Proof Manager S S N
Fuzzy Value/Uncertainty Handler S Y S
Knowledge Processor S Y S
Inheritance Processor Y Y S
Agenda Handler Y Y S
Knowledge Base N N S
Rules N N Y
Frames N N Y
Objects M N S
Facts N N S
External Database M N S
In-line Demons, Procedures, Y N N
Functions
Interfaces Y S N
User Interface Y S N
Database Interface Y S N
Data I/O Channels Y S S
Communication Ports Y N N
Hyper-media Y N N
Interfaces to Other Applications
and the Operating System Y S N

! Explanation of table entries: Y=Yes, N=No, S=Sometimes, M=Mixed procedural and non-procedural code
2 The overall "average" of the cell

143

RN TS Ty L TN 3 T AN A I RS T o O P A i -95 vo I A it ol P eyl O3 oL ey o B Badie e e ge el

Table 7.1-1 (Continued)

Features
Typically Written High Reusability Potential Defects
in or Involving Across Different Known, Fairly
Procedural Code Applications Delineated, &
Components Amenable to Formal
Test Methods
Tools and Utilities Y Y N
Compilers Y Y S
Linkers/Loaders Y Y N
Debuggers/Code Checkers Y Y N
Knowledge Engineering Tools Y Y N
Graphics User Interface (GUI) Y Y N
Capability Y Y N
Expert System Shell Y N N
Custom Code

144

The fourth component of expert systems, Tools and Utilities, is also seldom considered. This component
comprises all of the general applications, tools, and programs that were used to develop the implemented expert
systems. Despite the fact that most of these are not actually delivered with the developed expert system, they can
introduce errors into the system and must be considered in the V&V plan. Compilers, linker/loaders, and
debugger/code checkers are standard programming development tools. Knowledge Engineering Tools refers to
special programs or products used to acquire or represent knowledge. They differ in capability from vendor to vendor.
The Graphics User Interface (GUI) utility provides the functionality for defining the communication capability in the
user interface in terms of graphical entities such as menus, buttons, icon symbols, etc., typically operated with a mouse.
This feature is usually provided by commercial packages and is more and more a feature of expert systems
development. The Expert System Shell is an integrating environment for the above components and is found in many
products. Finally, Custom Code refers to special systems-level or application code that was written to enable
communication among the various expert systems components or to accomplish special functions.

7.2 Key V&V Characteristics of Expert Systems Components

The three "features” columns of Table 7.1-1 are discussed below. These features were chosen in particular
because of the general implications they have for how V&YV should best be accomplished. They provide the basis for
suggesting general V&V strategies for each component and are used to guide the detailed examination of the
applicability of the 153 conventional techniques presented in the next section. The three features comprise questions
asked of both the main components of expert systems and each of their subcomponents. The outcome is indicated in
the table by Y for Yes, N for No, S for sometimes, and (for the first feature asking about code) M for Mixed procedural
and non-procedural code. The overall rating of a component, based on its subcomponent ratings, is given in the upper
left corner of each feature box.

The first feature asks whether conventional, procedural, programming languages such as C, FORTRAN, or Ada
are typically used to program the components. The second feature asks whether the components can easily be reused
over a wide variety of different applications; if the component has to be modified for each new application, it has low
reusability. The third feature focuses on all the problems or defects that could plague a component; the question is
whether these defects are fairly restricted, are pretty well known now, and are amenable to some kind of formal
detection procedure. A "yes" answer to this question means that enough progress has been made for practitioners to
agree that formal approaches are quite promising and should be further pursued.

"Yes" answers to the three feature questions shown in Table 7.1-1 define three very broad but appropriate V&V
strategies. For the first feature, a Yes answer for a component suggests that this component should be tested with
conventional V&V techniques. Thus, The Inference Engine, the Interfaces, and the Tools and Utilities should,
generally, all be tested using conventional approaches.

For the second feature, a Yes answer for a component suggests that this component should be bench-marked and
subject to certification tests, because it has such wide applicability. The Inference Engine and the Tools and Utilities
components qualify for this special treatment. Summarizing the results so far, the Inference Engine, the Interfaces,
and the Tools and Utilities should all be developed and tested with conventional V&V techniques, according to the
results of the first feature question. If these components are to be made available as a commercial product, according to
the second feature the Inference Engine and the Tools and Utilities should then be bench-marked and certified.

145

Concerning the third feature, a Yes answer for a component implies that some kind of automated defect-detectin
tool should be developed and used to examine the component for the known defects. Only the sub-types of Rules and
Frames of the Knowledge Base component now qualify for this recommendation..

7.3 Applicability of Conventional Methods

Each of the 153 individual conventional V&V techniques was rated as to its applicability to the four components
of expert systems as well as to the system as a whole. A rating of 1 indicates that the technique can be applied to the
component directly without modification, while the lowest rating of 4 indicates that the technique is not applicable to
that component. Techniques with the highest applicability rating for the expert system components are marked by an
asterisk in Table 7.3-1. The reader is cautioned that the present judgments of applicability are necessarily relatively
crude and certainly subjective. Moreover, the judgments do not take into account the capability of the conventional
techniques to detect defects which are unique to expert systems, whatever these defects might be.

7.3.1 Methods Applicable to the Interface Component

Expert systems' interfaces are typically written in conventional procedural code, but their reusability is not high.
Therefore, the best V&V strategy is to select conventional techniques for each sub-component which provide the
appropriate required safety, reliability, etc; Table 6.3-1, which rates each technique on eight power and ease-of-use
factors, can be used to aid this selection. Alternatively, if specific defects are of concern, one can use Tables 6.1.1-1
(which list the defects) and 6.1.2-1 (which lists the defects judged detectable by each technique). Since the interface
component mostly concerns data rather than control aspects of programs, a number of conventional techniques do not
apply as strongly to this component.

The techniques with the highest general applicability ratings to the interface component in Table 7.3-1 are the
following: Database Analyzer (2.3.10), Database Interface Analyzer (2.3.11), Data-Model Evaluation (2.3.12), Data
Interface Inspection (2.5.7), User Interface Inspection (2.5.8), Standards Audit (2.5.9), Requirements Tracing (2.5.10),
Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1), Specific Functional Requirements Testing
(3.3.1), Stress/Accelerated Life Testing (3.5.1), Data Interface Testing (3.9.1), and User Interface Testing (3.9.2)."

7.3.2 Methods Applicable to Tools and Utilities

With the exception of custom code, all of the Tools and Utilities are typically written in procedural code and have
high reusability across different applications. Rather than test these subcomponents for each application, it is more
appropriate to certify them for all applications. This includes both the commercial developer and independent agents.
To accomplish this testing, the qualification/certification testing method (3.4.3) can be used.

14 The suggestions in this section apply equally to the interfaces and the tools and utilities of conventional systems.

146

Table 7.3-1 Rating of the applicability of conventional techniques
to expert systems and their components®?

Expert System Components
Convengi.onal \!&V Testing Inference | Knowledge | Inter-faces | Tools & Total
echnique Engine Base Utilities | System
1.1.1 General Requirements 1 3 1 1 1
Language
Analysis/Processing
1.1.2 Mathematical Verification of 1 3 1 1 1
Requirements
1.1.3 EHDM 1 2-3 1 1 1
114 Z 1 2-3 1 1 1
1.1.5 Vienna Definition Method 1 3 1 1 1
1.1.6 Refine Specification Language 1 3 1 1 1
1.1.7 Higher Order Logic (HOL) 1 3 1 1 1
1.1.8 Concurrent System Calculus 1 3 1 1 1
1.2.1 Ward-Mellor Method 1 3 1 1 1
1.2.2 Hatley-Pirbhai Method 1 3 1 1 1
1.2.3 Harel Method 1 3 1 1 1
1.2.4 Extended Systems Modeling 1 3 1 1 1
. Language
1.2.5 Systems Engineering 1 3 1 1 1
Methodology
1.2.6 System Requirements 1 2-3 1 1 1
Engineering Methodology
1.2.7 FAM 1 3 1 1 1
1.2.8 Critical Timing/Flow Analysis 1 3 1 1 1
1.2.9 Simulation-Language Analysis 1 3 1 1 1

t Ratings are on a 1-4 scale:
1=the method can be used directly without any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

*® Technique with highest applicablity rating

147

Table 7.3-1 (Continued)*?

Expert System Components
Conven?:ga:‘\izsl‘]\; Testing inference | Knowledge | Inter-faces | Tools & Total
- || Engine | Base | | Utilities | System

1.2.10 Petri-Net Safety Analysis 1 3 1 1 1
1.2.11 PSL/PSA 1 3 1 1 1
1.3.1 Formalized Requirements 1 1 1 1 1*

Review
1.3.2 Formal Design Review 1 1 1 1 1*
1.3.3 System Engineering Analysis 1 3 1 1 1*
1.3.4 Requirements Analysis 1 1 1 1 1*
1.3.5 Prototyping 1 1 1 1 1
1.3.6 Database Design Analysis 4 2 34 34 3
1.3.7 Operational Concept Design 3 1-2 2 2 2

Review
1.4.1 Requirements Tracing 1* 1* 1* 1* 1*

Analysis
1.4.2 Design Compliance Analysis 1 1 1 1 1
2.1.1 Analytic Modeling 1 2 2 1 1
2.1.2 Cause-Effect Analysis 1 3 2 1 1
2.1.3 Symbolic Execution 1 4 2 1 1
2.1.4 Decision Tables 1 3 2 1 1
2.1.5 Trace-Assertion Method 1 4 2 1 1
2.1.6 Functional Abstraction 1 4 2 1 1
2.1.7 _L-D Relation Methods 1 4 2 1 1
2.1.8 Program Proving 1 4 2 1 1
2.1.9_Metric Analysis 1 3 2 1 1

U Ratings are on a 1-4 scale:
1= the method can be used directly without any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

* Technique with highest applicability rating

148

Table 7.3-1 (Continued)"?

Expert System Components
convenfli.zga:“iﬁ‘l‘é Testing lnfergnce Knowledge | Inter-faces To_o_l§ & Total
Engine Base Utilities | System
2.1.10 Algebraic Specification 1 4 1 1
2.1.11 Introduction-Assertion 1 4 1 1
Method
2.1.12 Confidence Weights 3 2 3 3 2
Sensitivity Analysis
2.1.13_ Model Evaluation 4 1-2 3 4 2
2.2.1 Control Flow Analysis 1 3
2.2.2 State Transition Diagram 1 2* 1 1 1
Analysis
2.2.3 Program Control Analysis 1 3 2 1 1
2.2.4 Operational Concept Analysis 1 3 .3 1 1*
2.2.5 Calling Structure Analysis 1 4 3 1 1
2.2.8 Process Trigger/Timing 1 3 1 1 1
Analysis
2.2.7 Worst-Case Timing Analysis 1 4 1 1 1
2.2.8 Concurrent Process Analysis 1 4 1 1 1
2.3.1 Data Flow Analysis 1* 2 1 1 1
2.3.2 Influence Diagrams 1 2 2 1 1
2.3.3 Dependency Analysis 1 2 1 1 1
2.3.4 Qualitative Causal Reasoning 1 2 1 1 1
Analysis
2.3.5 Look-up Table Generator 1 3 1 1
2.3.6 Data Dictionary Generator 1 3 1 1

1 Ratings are on a 1-4 scale:

1 = the method can be used direclly without any modification; 2 = the method largely applies, but some modifications are necessary

3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

* Technique with highest applicability rating

149

Table 7.3-1 (Continued)"?

Expert System Components
Convenfli_on'a‘l VSLV Testing Inference | Knowledge | Inter-faces | Tools & Total
ecnnique _| Engine Base Utilities | System
2.3.7 Cross-Reference List 1 3 2 1 1
Generator
2.3.8 Aliasing Analysis 1 4 2 1 1
2.3.9 Concurrency Analysis 1 4 1 1 1
2.3.10 Database Analysis 1 3 1* 1 1
2.3.11 Database Interface 1 4 1" 1 1
Analyzer
2.3.12 Data-Model Evaluation 1 4 1* 1 1
2.4.1 Failure Mode, Effects, 1 2 1 1
Causality Analysis
2.4.2 Criticality Analysis 1 3 2 1 1
2.4.3 Hazards/Safety Analysis 1 3 2 1 1
2.4.4 Anomaly Testing 1 2" 1 1 1
2.4.5 Fault-Tree Analysis 1 3 2 1 1
2.4.6 Failure Modeling 1 3 1 1 1
2.4.7 Common-Cause Failure 1 3 2 1 1
2.4.8 Knowledgebase Syntax 4 1 4 4 1*
Checking
2.4.9 Knowledgebase Semantic 4 1 4 4 1
Checking
2.4.10 Knowledge 4 1 4 4 1
Acquisition/Refinement Aid
2.4.11 Knowledge Engineering 4 1 4 4 1
Analysis
2.5.1 Informed Panel Inspection 1 2 1 1 1

! Ratings are on a 1-4 scale:

1 = the method can be used directly without any modification; 2 = the method largely applies, but some modifications are necessary

3 = the general concapt of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

® Technique with highest applicability rating

150

Table 7.3-1 (Continued)" 2

Expert System Components

Convenfli_:r;:ln\ilq%\é Testing Inference | Knowledge | Inter-faces | Tools& | Total
___ _ _ Engine Base _lit_lhtles S)Etem

2.5.2 Structured Walkthroughs 1 3 1 1 1
2.5.3 Formal Customer Review 1 4 1 1 1
2.5.4 Clean-room Techniques 1 4 1 1 1
2.5.5 Peer Code-Checking 1 3 1 1 1.
2.5.6 Desk Checking 1 1 1 1 1
2.5.7 Data Interface Inspection 1 2 1* 1 1*
2.5.8 User Interface Inspection 1 2 1* 1 1*
2.5.9 Standards Audit 1 2 1* 1 1*
2.5.10 Requirements Tracing 1™ 1 1* 1* 1
2.5.11 Sofiware Practices Review 2 2 1 1 1
2.5.12 Process Oriented Audits 1 1 1 1 1
2.5.13 Standards Compliance 1 1 1 1 1
2.5.14 System Engineering Review 1 2 1 1 1
3.1.1_UnitModule Testing 1 2 1 1 1
3.1.2 System Testing 1 3 1 1 1
3.1.3 Compilation Testing 1 4 2 1 1
3.1.4 Reliability Testing 1 4 2 1 1
3.1.5 Statistical Record-Keeping 1 4 2 1 1
3.1.6_Software Reiliability Estimation 1 4 2 1 1
3.1.7 Regression Testing 1" 1* 1* 1* 1
3.1.8 Metric-Based Testing 2 2 3 1

3.1.9 Ad Hoc Testing 4 4 4 4 4

: Ratings are on a 1-4 scale:

1 = the method can be used directly without any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

* Technique with highest applicability rating

151

Table 7.3-1 (Continued)"?

Expert System Components
Conven?ri_on?ll _I&V Testing Inference | Knowledge | Inter-faces | Tools & Total
echnique Engine Base Utilities | System
e e e e e o G
3.1.10 Beta Testing 1 1 1 1 1*
3.2.1 Random Input Testing 1 1 1 1 1
3.21.1 Uniform Whole Program 1* 1* 1* 1* 1
Testing
3.2.1.2 Uniform Boundary Testing 1 1 1 1 1
3.2.1.3 Gaussian Whole Program 1 1 1 1 1
Testing
3.2.1.4 Gaussian Boundary Testing 1 1 1 1 1
3.2.2 Domain Testing 1 1 1 1 1
3.2.2.1 Equivalence Partitioning 1 1 1 1 1
3.2.2.2 Boundary-value Testing 1 1 1 1 1
3.2.2.3 Category-Partition Method 1 1 1 1 1
3.2.24 Revealing Subdomains 1 1 1 1 1
Method
3.3.1 Specific Functional 1™ 1* 1* 1 1*
Requirement Testing
3.3.2 Simulation Testing 1 3 1 1 1
3.3.3 Model-Based Testing 1 2" 1 1 1
3.3.4 Assertion Checking 1 4 2 1 1
3.3.5 Heuristic Testing 1 3 1 1 1*
3.4.1 Field Testing 1 1 1 1 1
3.4.2 Scenario Testing 1 1 1 1 1
3.4.3 Qualification/Certification 1* 1 1 1 1
Testing

U Ratings are on a 1-4 scale:
1 = the method can be used direclly without any modification; 2 = the method largely applies, but some modifications are necessary
3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

* Technique with highest applicability rating

152

Table 7.3-1 (Continued)"2

Conventional V&V Testing

Expert System Components

Teomigue 0| Mfornce | Koowedge | nerfaes | ook | Tl
e — = ==
3.4.4 Simulator-Based Testing 1 3 1 1 1
3.4.5 Benchmarking 1* 3 1 1* 1
3.4.6 Human Factors 1 1* 1* 1 1
Experimentation
3.4.7 Validation Scenario Testing 2
3.4.8 Knowledgebase Scenario 4 4
Generation
3.5.1 Stress/Accelerated Life 1 3 1 1 1
Testing
3.5.2 Stability Analysis 1 2 1 1 1
3.5.3 Robustness Testing 1 1 1 1
3.5.4 Limit/Range Testing 1 1* 1 1 1
3.5.5 Parameter Violation 1 2 1 1 1
3.6.1 Sizing/Memory Testing 1 4 1 1 1
3.6.2 Timing/Flow Testing 1 4 1 1 1
3.6.3 Bottleneck Testing 1 4 1 1 1
3.6.4 Queue Size, Register 1 4 2 1 1
Allocations, Paging, Etc.
3.7.1 Activity Tracing 1 2* 1 1 1
3.7.2_Incremental Execution 1 2 1 1 1
3.7.3 Results Monitoring 1 2 1 1 1
3.7.4 Thread Testing 1 3 1 1 1
3.7.5 Using Generated Explanations 4 1 4 4 4
3.8.1 Gold Standard 1 1 1 1 1

U Ratings are on a 1-4 scale:

1 = the method can be used directly without any modification; 2 = the method largely applies, but some modifications are necessary

3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

* Technique with highest applicability rating

153

Table 7.3-1 (Continued)"?

Expert System Components

Conventli_zgralln\ilqi\é Testing Infere_nce Knowledge | Inter-faces To.o.ls_: & Total
Engine Base Utilities .| System
3.8.2 Effectiveness Procedures 1 1 1 1 1
3.8.3 Workplace Averages 1 1 1 1 1
3.9.1 Data Interface Testing 1 2 1* 1 1
3.9.2 User Interface Testing 1 1 1* 1 1
3.9.3 Information System Analysis 1 4 1 1 1
3.9.4 Operational Concept Testing 1 2 1 1 1
3.9.5 Organizational Impact 1 4 2 1 1
Analysis/Testing
3.9.6 Transaction-Flow Testing 1 2 1 1 1
3.10.1_ Branch Testing 1 2 1 1 1
3.10.2 Path Testing 1 2 1 1 1
3.10.3 Statement Testing 1 3 1 1 1
3.10.4 Call-Pair Testing 1 4 2 1 1
3.10.5 Linear Code Sequence and 1 4 2 1 1
Jump
3.10.6 Test-Coverage Analyzer 1 2 1 1 1
3.10.7 Conditional Testing 1 1* 1 1 1
3.10.8 Data-Flow Testing 1 2 . 1 1 1
3.11.1 Error Seeding 1 1 1 1 1
3.11.2 Fault Insertion 1 2 1 1 1
3.11.3 Mutation Testing 1 2 1 1 1

1 Ratings are on a 1-4 scale:

1=the method can be used directly without any modification; 2 = the method largely appliss, but some modifications are necessary
3 = the general concept of the method applies but extensive changes are needed; 4 = the method does not really apply at all

2 Ratings are the subjective evaluation of the authors

b Technique with highest applicability rating

154

The certification problems are often considered and addressed for the tools and utilities used in conventional
programming and they should be identified and followed for new products.’* Two utilities, knowledge engineering tools
and the expert system shell, have received very little certification activity. A suite of problems or benchmarks which has
proven useful in finding problems in these types of components should be developed for certification.

Applications with high complexity and integrity requirements should also be directly tested by other means. Since
their source code is unlikely to be available, one is restricted to using Dynamic Testing techniques. Of these, the most
efficient techniques are Random Testing (3.2.1) and Robustness Testing (3.5.3). Again, these techniques are listed in
Table 6.3-1. The criteria for selecting techniques would be the same as discussed in Section 7.3.1 if source code was
available in fully custom-developed expert systems. The overall highest applicability ratings in Table 7.3-1 for Tools
and Utilities are for the following conventional V&V techniques:- Requirements Tracing Analysis (1.4.1), Requirements
Tracing (2.5.10), Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1), Specific Functional
Requirement Testing (3.3.1), Qualification/Certification Testing (3.4.3), and Benchmarking (3.4.5).

7.3.3 Methods Applicable to the Inference Engine Component

The two unique expert system components have been left for last. While the inference engine is most often thought
of in connection with the knowledge base it is very unlike that component in terms of applicability of conventional V&V
techniques. Virtually all of these techniques apply to the inference engine, but only a few fully apply to the knowledge
base. The inference engine subcomponents mostly tend to be written in procedural code, and when these have high
reusability across applications the certification procedures discussed above in 7.3.2 should be followed, preferably by
the vendor of the inference engine. Of course, if the vendor has not certified the inference engine, or if it is custom-built,
then it should be tested with individual techniques which have been selected according to the principles developed in
7.3.1.

In assuring the quality of the overall inference engine, it is necessary to have test cases which exercise all of the
engine subcomponents, particularly with problems which test the various proof procedures and all the knowledge
management and associated goal-reasoning aspects. What is particularly needed is a set of special problems, e.g.,
planning, which are known to have complicated chains of reasoning, involve the need to re-inference, undo prior
reasoning, and are appropriate for various kinds of decision-methods. A number of workers in the field of V&V are
aware of this need, but very little work has yet been performed.

The overall highest technique ratings for testing the Inference Engine are found in Table 7.3-1. They are the
following: Requirements Tracing Analysis (1.4.1), Data Flow Analysis (2.3.1), Requirements Tracing (2.5.10),
Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1), Specific Functional Requirement Testing
(3.3.1), Simulation Testing (3.3.2), Qualification/Certification Testing (3.4.3), and Benchmarking (3.4.5).

l""-'I‘hil raises the question for expert (and conventional) systems used in regulated applications whether or not regulatory concerns should be extended
to all commercial or custom tools used in the construction of these systems.

155

7.3.4 Methods Applicable to the Knowledge Base Component

The knowledge base component of expert systems is the least addressed by conventional V&V techniques. Itis
difficult to test the function of how knowledge is employed or how the inference engine uses the knowledge. Only a few
of the conventional static and dynamic techniques can be used. Nevertheless, if the most applicable techniques were
used, it is believed that the knowledge base would be borderline tested for Class 3 V&V systems, and partially tested for
Class 2 V&V ones. The highest rated V&V testing techniques for the Knowledge Base in Table 7.3-1 are:
Requirements Tracing Analysis (1.4.1), State Transition Diagram Analysis (2.2.2), Anomaly Testing (2.4.5),
Requirements Tracing (2.5.10), Regression Testing (3.1.7), Uniform Whole Program Testing (3.2.1.1), Specific
Functional Requirement Testing (3.3.1), Model-Based Testing (3.3.3), Human Factors Experimentation (3.4.6),
Limit/Range Testing (3.5.4), Activity Tracing (3.7.1), and Conditional Testing (3.10.7).

7.3.5 Methods Applicable to Overall System V&V

All conventional V&V techniques apply fully to expert systems when viewed as total systems'®. Since three of the
four components involve conventional procedural languages, many of the techniques apply at the systems-testing level.
Although the conventional techniques are appropriate for the overall system, an expert system cannot be considered
completely assessed until there are better testing methods for the knowledge base component, particularly for Class 1
V&V type applications.

In Table 7.3-1, the highest rated techniques for overall expert system testing are the following: Formal
Requirements Review (1.3.1), Formal Design Review (1.3.2), System Engineering Analysis (1.3.3), Requirements
Analysis (1.3.4), Requirement Tracing Analysis (1.4.1), Operational Concept Analysis (2.2.4), Knowledgebase Syntax
Checking (2.4.8), Knowledgebase Semantic Checking (2.4.9), Heuristic Testing (3.3.5), Regression Testing (3.1.7),
Beta Testing (3.1.10), Uniform Whole Program Testing (3.2.1.1), and Specific Functional Requirement Testing (3.3.1).

7.4 Limitations of Conventional V&V Methods

This section concludes with a discussion of the limitations of conventional techniques when testing expert systems
and a proposed strategy for developing new testing techniques.

7.4.1 Aspects of Expert Systems Not Adequately Evaluated with Conventional Methods

Conventional V&V techniques are found to be appropriate for testing three of the four components of expert
systems. They also adequately test the overall system. Therefore, conventional techniques are adequate to test expert
systems for low and possibly moderate levels of system complexity and integrity, V&V Classes 3 and 2. However,
conventional techniques are believed to be inadequate to fully test expert systems for the highest degrees of complexity
and integrity since conventional techniques cannot fully test the knowledge base component without modification.

16 An exception to this statement is ad-hoc testing (3.1.9). This technique, although widely used, is considered to be so inappropriate, wasteful of
effort, and difficult to interpret that the poorest evaluations were assigned for it in Table 7.3-1.

156

There are three iriadequate aspects of conventional techniques for the knowledge base: (1) it is not sufficiently
tested as a separate component in the requirements, design or the implementation phases;, (2) it is not tested in controlled
dynamic interaction with the inference engine; and (3) it is not fully tested in performance in interaction with the
interfaces as an integral part of the overall system. However, some suggestions for extending conventional V&V
techniques to the knowledge base are provided."”

Since the knowledge base contains most of the application-dependent information, it should be analyzed on the
basis of the requirements specification and its subsequent design, which was developed in the early phases of the Life-
cycle. However, neither the V&V classes/subclasses formal methods (1.1) nor the semi-formal methods (1.2; Table
5.2.1-1) are oriented towards specification or design of rule bases, object-oriented knowledge structures, or sets of
knowledge frames'®, Each of these major knowledge representations has a host of specific Al or expert system
engineering considerations associated with it (Wolfgram et al, 1987, for discussion of design of rules and frames; and
Booch, 1990, for object-oriented design).

Some appropriate extensions of the formal and semi-formal methods are possible. However, relying heavily on
formal methods is questionable. It is difficult with these methods to express system concepts formally and move from
representations to a mapping onto the proposed physical components while maintaining traceability. Nevertheless, it
does seem that the formal methods of EHDM (1.1.3) and Z (1.1.4) would be among the most appropriate to consider for
development of formalism which would extend them to knowledge base specification and design-representation testing.
The authors are more optimistic about proposing extensions and adaptations to the SREM methodology (1.2.6) of the
Semi-Formal methods, particularly as represented in the RDD-100 tool, for analysis of knowledge base specifications
and representation of its design. This methodology, if augmented by proper systems engineering discipline, would
permit smooth movement from requirements specification representation into an allocation of requirements to logical
functions and finally to a mapping of these onto physical components broken down between software and hardware.
Simulation or "animation" of design is easily accomplished, and there are many automated formal checks for
inconsistency, contraction, and incompleteness.

During implementation, both static and dynamic conventional techniques are deficient for singularly testing the
knowledge base component. Suitable static examination of the knowledge base could reveal a great deal about the
effects of data inputs on transitioning to new states, and thus extensions to the State Transition Diagram Analysis
technique (2.2.2) could be especially useful for applying to rule bases and objects. Perhaps the most powerful and
useful extension would be to Anomaly Testing (2.4.5) to search for various kinds of problems of rules, frames, and
objects. Some of the promising expert system rule-base automated syntax checkers can be considered extensions of this
method (e.g., D-EVA, COVER, and CRSV; see, respectively: Stachowitz et al; 1987; Preece & Shinghal, 1991; and
Culbert et al, 1987).

17 These suggestions are from the constrained point of view of adapting conventional techniques to knowledge base testing. However, these
suggestions may be quite limited, since there may well be novel expert system testing approaches already in existence, or which could be developed, that
might not fit at all under conventional technique categories. This issue will be addressed in subsequent tasks of this project.

I Many expert system shells do provide good support for documenting and handling various types of knowledge representations, but this is intended
primarily for the system implementation, and possibly the design, not for requirements.

157

For dynamic testing of knowledge bases the Heuristic Testing method itself (3.3.5) or extensions of Conditional
Testing (3.10.7) or its close associate, the Limit/Range testing method (3.5.4), would seem especially appropriate for
rules and frames. The IF part of rules involves a relational test (e.g., A>=B, C~=D), while frames specify the
equivalence between an attribute and a set of values (e.g., F = <1,2,3>;, G ="Open'). Test-case generation can be
automated for these tests by selecting values in relation to those given: (1) from within the specified values, such that the
test is true (e.g., A>B, F=1, G ="'Open'); (2) just outside the range or value specified (e.g., A<B, C=D, G="Oper"); and
(3) extremely outside the value/range (e.g., A=B/1000, F=9999, G="XXXX"). For a discussion of this approach to rule
testing, and its relation to reliability assurance, see the discussion of "Expert Systems Dynamic Testing” (Miller, 1990).

These three sets of extensions seem to be the most important for assurance of the quality of the knowledge base
component in isolation from all the used data and other interfaces. The only way to determine how the knowledge base
will interact with the inference engine and the interfaces is by running the inference engine on the knowledge base with
active or simulated interfaces to determine the rule firings, frame activations, facts utilization, or object-messages. A
modification of one of the methods of Execution Tracing (3.7), such as Activity Tracing (3.7.1), would provide one of
the most appropriate ways of testing this interaction. The Activity Tracing would involve simulation of the other
components in special test-drivers written for this assessment, so as not to actually require interfaces, tools, or utilities to
be activated, so that the "pure” interaction of the knowledge base and the inference engine could be tested. Model-based
Testing technique (3.3.3) could also be extended to apply to expert systems. Also, the Functional Requirement Testing
(3.3.1) can be utilized, using test-cases obtained from the prior types of testing.

7.4.2 A Proposal for a Generic Testing Strategy

A different classification of testing techniques is presented in this section. This two dimensional classification
approach provides a strategic direction for the evolution of new methods for software systems.

In the first classification dimension, a distiniction is made in the technique classification. Methods involve either a
static examination of the development artifacts (requirements, specification, design, or implementation) or they involve a
dynamic execution of the implemented system on some physical platform and operating system for real data inputs. The
second classification dimension concerns the targets or objects of detection techniques. It is useful to characterize these
as either anomalies, which are defined as unusual, deviant, improper, or nonsensical situations; or invalidates, which
are defined as known incorrect values, definite errors, mistakes, or false representations of external situations.

Since both static and dynamic testing techniques can be applied to both anomalies and invalidates, both
classifications can be represented as a 2 x 2 table, as shown in Table 7.4.2-1. The chart provides plus signs (+) and
minus signs (-) for each cell combination to indicate positive and negative features of that condition. The following
summary observations are based on this table:

1) Some dynamic testing is essential to test run-time system performance and for full customer
acceptance.

2) Dynamic testing costs more to accomplish than static testing because of longer technique-learning times, time
to generate test-cases, setup time, execution time, and time tointerpret results.

158

Table 7.4.2-1. Characterization of Techniques for

Testing Implemented Systems in Terms of
Technique Type and Target Type

Testing Target
Testing . i
Technique Anomalies Invalidities
Static +) Can by formalized “) More difficult to detect
+) Can be automated +) Some inspection
+) Not difficult to understand, run, approaches (e.g., Clean
or interpret Room, 2.5.4) very effective
+) Don't require experts O] Requires experts to make
+) Can reduce level of dynamic the judgement
testing needed O] Judgements often need
() Greatly reduce overall testing run-time context
costs information to make
“ Not sufficient for complete
testing
Dynamic +) Test-case generation is simple | () Requires experts to
+) Detection, during testing, can evaluate
be greatly automated “ Labor-intensive and
*+) Don't require experts expensive to learn how to
+) Especially good for do, to generate test cases
performance problems and to set up, to run, and to
run-time violations (e.g., type interpret
errors)) Some amount is essential
(O] Moderately expensive to set up to assess whether system
and run is giving right answers and
o) Run-time anomalies not for customer acceptance
caught by compilers more of testing resuits
difficult to define and develop (O] Run-time output is usually
code for detection very complex, making
interpretation difficult and
errors likely
159
- A ~ T " L AU X e

3) Since anomalies can be formally specified and automated, they are much cheaper and easier to look for than
invalidates.

Based on the above observations, the following strategy is proposed for shifting future testing resources and

development:

1) Wherever possible, within a technique type, shift the detection target from an invalidity to an anomaly.
Provide the system with independent information about the results so that the system can automatically compare
its results to these values to detect inconsistencies. For example, give expected ranges and ballpark figures to
provide known values of constants that must appear in the output.

2) Wherever possible, within a target type, shift the technique from dynamic testing to static testing by using
any variety of inspection, semi-formal, or other static techniques.

3) Give priority to the most important problems/faults to be detected and always conduct testing so that
the subsequent testing activity focuses on the remaining most important or untested problem.

4) For maximum cost-effectiveness in use of testing resources always start with static testing techniques; look for
anomalies, then investigate invalidates; fix the problems encountered; and use dynamic testing as a last step.

160

8 SUMMARY and CONCLUSIONS

This report presented the results of a detailed survey of V&V methods currently used for conventional software as
the first activity of a project for developing expert system V&V guidelines which is sponsored by the USNRC and EPRI.
This survey resulted in the identification of 153 different methods.

The 153 conventional software V&V techniques were classified using a sequential Life-cycle model for the
process of software development and maintenance. These techniques were categorized as either in the
requirements/design phase or the implementation phase of the software. This first level of classification divided the 153
methods into 28 applicable to the requirements/design phase and 125 applicable to the implementation phase. This
skewed distribution of V&V methods reflects the emphasis on testing software after it has been designed rather than
during its design phase. In analyzing the 125 implementation phase methods, 58 were determined to involve static
testing while the remaining 67 fall within the category of dynamic testing. Static testing deals with software V&V that
requires inspecting software documentation without actually running the software while dynamic testing does rely on
executing the software,

In order to assess the effectiveness of the 153 identified conventional software V&V techniques, different types of
software defects were identified. A total of 52 different types of conventional software defects were categorized as either
pertaining to requirements, design, or the computer code itself. These 52 defects are divided into 13 requirements, 15
design, and 24 code types of defects. Then, each of the 153 V&V techniques were evaluated to determine which of
these 52 defects they were capable of detecting. Individual V&V techniques were found to be able to detect anywhere
from 2 to 52 software defects. It was also found that each software defect was detectable by anywhere from 21 to 50
different V&V methods.

A method to rate each V&V method was developed based on eight factors. Four factors (Broad Power, Hard
Power, Formalizability, and Human-Computer Interface Testability) deal with the power of the technique to detect
defects while the other four (Ease of Mastery, Ease of Setup, Ease of Running/Interpretation, and Usage) are related to
ease-of-use considerations for each technique. The rating of each V&YV technique by these eight factors was then used
to determine a cost-benefit and effectiveness measure.

Since the end result of this project is to provide V&V guidelines for a wide range of expert systems in the nuclear
industry, a scheme was developed for classifying expert system applications in terms of their needed V&V. This scheme
used two variables; software complexity and the required integrity of the software. Software with both high integrity and
high complexity was placed in V&V Class 1. A medium level of integrity and complexity resulted in V&V Class 2
while a low level of complexity and integrity was used to define V&V Class 3. For each of these three V&V Classes,
the 153 techniques were rated by their effectiveness as well as cost-benefit.

As aresult of the aforementioned rating of V&V techniques by cost-benefit and effectiveness for each software
V&YV class, the highest ranking methods were determined in requirements/design, static, and dynamic testing. For
requirements/design V&V, the most effective and cost beneficial methods for all V&V classes were found to be a
combination of traditional formal reviews and some new automated techniques. In the case of static testing, the highest
ranking techniques for all V&V classes involved personal inspections and reviews without the aid of any automation.

161

Finally, in the area of dynamic testing, the leading V&V techniques for all V&V classes were system-level function-
oriented methods that did not involve testing internal features of the software code, i.e., "black box" testing.

Afier classifying and evaluating conventional software V&V techniques, their applicability to expert systems was
assessed. Expert systems were first divided into four basic components: knowledge base, inference engine, interfaces,
and tools and utilities. Each of these four components were further divided into subcomponents which were analyzed to
determine their features related to testing. The three testing features are: written in or involving procedural language,
high reusability across different applications, and potential defects known and amenable to formal test methods.

Each of the 153 conventional software V&V techniques were evaluated in terms of their applicability to the four
expert system components. Most of the conventional software V&V techniques were found to be directly applicable to
the inference engine, interfaces, and tools-utilities components of expert systems. The conventional software V&V
techniques that were juuged to be most applicable to all four expert system components were: requirements tracing,
regression testing, uniform whole program testing, and specific functional requirements testing.

Conventiona! software V&V techniques were fourd to be directly applicable to expert systems, but not completely
adequate in finding defects in the knowledge base. These techniques cannot adequately test the knowledge base as a
separate component or in dynamic interaction with the inference engine. However, several extensions of conventional
techniques were suggested for testing the knowledge base component.

An overall scheme for software testing was developed and presented that is equally applicable to
conventional and expert system software. Testing is divided into two types: static and dynamic. These two
different types of testing are distinguished by whether they require actually running the software (dynamic) or
just inspection and review of the software documentation (static). Static testing is generally less expensive that
dynamic testing. Software defects are also divided into two types entitled anomalies and invalidates. Where
invalidates are obvious errors or incorrect values, anomalies are unusual or nonsensical. Anomalies are usually
easier to look for than invalidaties. A 2 x 2 table can be constructed with static and dynamic testing on one
axis and invalidates and anomalies on the other. A test strategy with these parameters would be to
emphasize static testing tor anomalies. After looking for anomalies, static testing should be used to search
- for invalidates. Dynamic testing should not be used until after static testing has been completed and defects

have been corrected.

In conclusion, a large number of V&V techniques for conventional software were identified and evaluated for their
capability in uncovering software defects. Conventional software V&V methods were found to be directly applicable to
three of the four components of expert systems. These three components are the inference engine, external interfaces,
and tools or utilities. The fourth expert system component, the knowledge base, is not fully tested with conventional
V&YV techniques. Therefore, the main emphasis of the balance of this project will be to identify and, if necessary,
develop new V&V methods for the knowledge base component of expert systems and present guidelines for specific
V&YV techniques that should bec appiied to each software V&V class.

162

9 REFERENCES

Ackerman, F.A., L.S. Buchwald, and F.H. Lewski, Software Inspections: An Effective Software Verification Process,
IEEE Software, Vol. 6, No. 3, May 1989.

Alford, M., SREM At The Age of Eight: The Distributed Computing Design System, Computer, 18 (4), pp. 36-46,
1985. :)

Alford, M. A Requirements Engineering Methodology for Real-Time Processing Requirements, IEEE Transactions on
Software Engineering, SE-3(1), pp. 60-69, 1977.

ANSI/ANS-10.4-1987, Guidelines for the Verification and Validation of Scientific and Engineering Computer
Programs for the Nuclear Industry, American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois,
60525, May 13, 1987. ’

ANSI/IEEE ANS-7-4.3.2-1982, Application Criteria for Programmable Digital Computer Systems of Nuclear Power
Generating Stations, American Nuclear Society, 555 North Kensington Ave., La Grange Park, lllinois, 60525, July 6,
1982, e

ANSIIEEE 1008-1987, IEEE Standard for Software Unit Testing, IEEE Standards Board, New York, New York,
American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525, 1986.

ANSI/ANS-3.5-1985, American National Standard Nuclear Power Plant Simulators for Use in Operator Training,
American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525, October 25, 1985.

ANSVIEEE 1012-1986, Software Verification and Validation Plans, American Nuclear Society, 555 North
Kensington Ave., La Grange Park, Illinois, 60525, November 14, 1986.

ANSV/IEEE 729-1983, Glossary of Software Engineering Terminology, American Nuclear Society, 555 North
Kensington Ave., La Grange Park, Illinois, 60525, February 18, 1982.

ANSI/IEEE 830-1984, IEEE Guide to Software Requirements Specifications, IEEE Standards Board, New York, New
York, Americen Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525, 1984.

ANSI/IEEE 1016-1987, Recommended Practice for Software Design Description, IEEE Standards Board, New York,
New York, American Nuclear Society, 555 North Kensington Ave., La Grange Park, Illinois, 60525, 1987.

ANSVIEEE 828-1983, Software Configuration Management Plans, American Nuclear Society, 555 North Kensington
Ave., La Grange Park, Illinois, 60525, June 24, 1983.

ANSUVIEEE 1042-1987, Guide to Sofiware Configuration Management, American Nuclear Society, 555 North
Kensington Ave., La Grange Park, Illinois, 60525, September 12, 1988,

163

ANSI/IEEE 829-1983, Software Documentation, American Nuclear Society, 555 North Kensington Ave., La Grange
Park, Illinois, 60525, February 18, 1983.

Ascent Logic Corporation, Requirements Driven Design, RDD-100, Ascent Logic Technology, 180 Rose Orchard Way,
San Jose, California, 95134, 1991.

ASME/NQA-22-1990 Part 2.7., Quality Assurance Requirements of Computer Software for Nuclear Facility
Application, The National Institute of Standards and Technology Computer Systems Laboratory, Gaithersburg,
Maryland 20899, 1990.

Barnes, M., P. Bishop, B. Bjarland, G. Dahll, D. Esp., J. Lahti, H. Valisuo, and P. Humphreys, Software Testing and
Evaluation Methods (The STEM Project), Technical Report, OECD Halden Reactor Project, HWR-210, The Institutt
for Energiteknikk, Halden, Norway, May 1987.

Bames, M., P. Bishop, B. Bj arland, G. Dahll, D. Hufton, and H. Valisuo, Software Testing and Evaluation Methods
Final Report on the STEM Project, Technical Report: OECD Halden Reactor Project, HPR-334, The Institutt for
Energiteknikk, Halden, Norway, May 1988.

Bames, M., P. Bishop, M. Brewer, P. Bradley, G. Dahll, F. Ross, and T. Sivertsen, Safety Assessment of Programs (The
SAP Project), Technical Report: OECD Halden Reactor Project, HWR-269, Institutt for Energiteknikk, Halden,
Norway, January 1990.

Beizer, B., Software Testing Techniques, Van Nostrand Reinhold, New York, New York, 1990.

Beltracchi, L., Overview of Computer Standards and Tools in the European Nuclear Industry, Presentation at the
JTEC Workshop on Assessment of European Nuclear Controls and Instrumentation, National Science Foundation,
Washington, D.C., January 31, 1991.

Berns, G.M., 4ssessing Software Maintainability, Communications of the ACM, Vol. 27, No. 1, pp. 14-23, January
1984.

Bishop, P., et al., PODS ~ 4 Pro_]ect on Diverse Software, IEEE Transactions on Software Engineering, Vol. SE-12 (9),
ISBN 0098-5589, 1986.

Bishop, P., et al., STEM — A Project on Software Test and Evaluation Methods, Paper presented at SARS '87 and
published in Achieving Safety and Reliability with Computer Systems, B. Daniels (Ed.), ISBN 1-85166-167 0, Elsevier
Applied Science,New York, New York, 1987.

Boehm, B.W., 4 Spiral Model of Software Development and Enhancement, IEEE Computer, pp. 61-72, May 1988.

Boehm, B.W., Software Engineering Economics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1981.

164

Booher, H. (Ed.), MANPRINT: AnApproach to Systems Integration Van Nostrand Reinhold, New York, New York,
1990,

Booth, G., Object Oriented Design, With Applications, Benjamin/Cummings Publishing Co., Redwood City, California,
1991.

Borgida, A., S. Greenspan, and J. Mylopolous, Knowledge Representation as the Basis for Requirements
Specifications, Computer, 18(4), pp. 82-91, 1985.

Bryan, W.L., and S.G. Siegal, Software Product Assurance: Techniques for Reducing Software Risk, Elsevier, New
York, New York, 1988.

BSI, Standards Guide to Assessments of Reliability of Systems Containing Software: Draft for Development,
Document 89/97714, BSI Standards, 2 Park Street, London W1A 2BS, September 12, 1989.

Carre, B., et al., SPADE — the Southampton Program Analysis and Development Environment, Published in Software
Engineering Environment, I. Sommerville (Ed.), IEEE Computing, Series 7, 1986.

Chapanis, A., Man-Machine Engineering Brooks/Cole Publishing Company, Monterey, California, 1965.

Chen, R., The Integration of the Air Force Content Data Monel and MIL-STD-1833-2B, David Taylor Research
Center Report No. DTRCC-90/034, Carderock Division, Naval Surface Warfare Center, Code 3323, Bethesda,
Maryland 20084-5000, 1990.

Chisholm, G.H., B.T. Smith, and A.S. Wojcik, Formal System Specifications - A Case Study of Three Diverse
Representations, ANL-90/43, The Mathematics and Computer Science Division and The Reactor Analysis Division,

Argonne National Laboratory, Argonne, Illinois, 60439, December 1990.

Culbert, C., G. Riley, and R.T. Savely, Approaches to the Verification of Rule-Based Expert Systems, SOAR '87 First
Annual Workshop on Space Operations Automation and Robotics, SCAMC, Inc., August 1987. -~~~ 7~

Dahll, G., and JLE. Sjoberg, Software Safety Tools - The SOSAT 2 Project, Technical Report: OECD Halden Reactor
Project, HWR-268, Institutt for Energiteknikk, Halden, Norway, January 1990.

Davis, R., B. Buchanan, and E.H. Shortliffe, Production rules as a representation for a Knowledge-Base Consultation
Program, Attificial Intelligence, pp. 15-45, August 8, 1977.

Davis, A.M., Software Requirements: Analysis and Specification, Prentice-Hall, Inc., New York, New York, 1990.

Department of Defense, Software Master Plan, Volume 1: Plan of Action, Preliminary Draft, Department of Defense,
Washington, D.C. 20362, February 9, 1990.

165

Department of Defense, Military Standard 2167, Defense System Software Development, Department of Defense,
Washington, D.C. 20362, June 4, 1985.

Desimone, R., and J. Rininger, Expert System Validation and Verification, SRI Intematioﬁal, Contract DAAB07-86-D-
A035, SRI Project 3002, Final Report, SRI International, Menlo Park, California 94025, August 1990.

Deutsch, M., Software Verification and Validation: Realistic Project Approaches, Prentice Hall, Inc., Englewood
Cliffs, New Jersey, 1982.

Downs, T., An Approach to the Modeling of Software Testing With Some Applications, IEEE Transaction on Software
Engineering, SE-11(4), April 1985.

Doyle, J., Methodological Simplicity in Expert System Construction: The Case of Judgements and Reasoned
Assumptions, The Artificial Intelligence Magazine, 4(2), pp. 39-43, 1983.

Dunn, R, Software Defect Removal, McGraw- Hill, New York, New York, 1984.

Eason, K.D., Dialogue Design Implications of Task Allocation Between Man and Computer, Ergonomics, 3(9), pp.
881-891, 1990.

Ehrig, H., and B. Mahr, Fundamentals of Algebraic Specification, Springer Verlag, New York, New York, 1985.

Electric Power Research Institute, Verification and Validation of Expert Systems for Nuclear Power Plant
Applications, Final Report, NP-5978, The Electric Power Research Institute, Palo Alto, California 94303, August 1988.

Fagan, M.E., Advances in Software Inspection, IEEE Transactions on Software Engineering, SE-12(7), pp. 744-751,
July 1986.

Ghezzi, C., D. Mandrioli, S. Morasea, and M. Pezze, A General Way to Put Time in Petri Nets (as in Kramer), ACM
Order Department, P.O. Box 64145, Baltimore, Maryland 21264, pp. 60-67.

Gilmore, W.E., Human Engineering Guidelines for the Evaluation and Assessment of Video Display Units,
NUREG/CR-4227, United States Nuclear Regulatory Commission, July 1985.

Gilmore, W.E., D.I. Gertman, and H.S. Blackman, The User-Computer Interface in Process Control, Academic Press,
Boston, Massachusetts, 1989.

Goodenough, J., and S. Gerhart, Toward a Theory of Test Data Selection, IEEE Transactions on Software Engineering,
Vol. SE-1, No. 2, 1975.

166

Gordon, M., HOL: A Machine Oriented Formulation of Higher Order Logic, Technical Report No. 68, University of
Cambridge, United Kingdom, 1985.

Gould, J.D., and C. Lewis, Designing for Usability: Key Principles and What Designers Think, Communications of the
- ACM, Volume 28, pp. 300-311, 1985,

Halstead, M., Elements of Software Science, Elsevier North-Holland, New York, New York, 1977.

Harel, D., H. Lachover, A. Naamad, A. Pnueli, M. Politi, R. Sherman, and A. Shtul-Trauring, STATEMENT: A
Working Environment for the Development of Complex Reactive Systems, Proceedings of the 10th International
Conference on Software Engineering, Singapore, IEEE Computer Society Press, 1730 Massachusetts Ave., N.-W.,
Washington, D.C. 20036-1903, pp. 396-406, April 1988.

Harel, D, and S. Rolph, Modeling and Analyzing Complex Reactive Systems: The Statement Approach, Logix, Inc.,
Burlington, Massachusetts, 1989.

Harel, D., Statecharts: A Visual Formalism For Complex Systems, Science of Computer Programming 8, North-
Holland Elservier, New York, New York, pp. 231-274, 1987.

Hartway, B., J. Young, and D. Thomas, Simulation Characterization, Proceedings of Third International Conference on
Software for Strategic Systems, 27-28 February 1990, Huntsville, Alabama, pp. 64-85.

Hasling, D.W., Abstract Explanations of Strategy in a Diagnostic Consultation System, Proceedings of the National
Conference on Artificial Intelligence, AAAI-83, The MIT Press, Cambridge, Massachusetts 02142, 1983.

Hatley, D. and 1. Pirbhai, Strategies for Real-Time System Specification, Dorset House, New York, New York, 1987.
Hayakawa, H., K. Monta, T. Sato, and M. Tani, Concepts of Integrated Information and Control Systems for Future
Nuclear Plants, IAEA International Conference on Man-Machine Interface in the Nuclear Industry, Tokyo, The
International Atomic Energy Agency, Wagramerstrasse 5, P.O. Box 100, A-1400, Vienna, Austria, February 1988.

Hayes-Roth, F., D.A. Waterman, and D.B. Lenat, Building Expert Systems, Addison-Wesley Publishing Co., Inc.,
Reading, Massachusetts, Chapter 8, pp. 241-280, 1983.

Heninger, K., et al., Specifying Software Requirements for Complex Systems: New Techniques and Their Application,
IEEE Transactions on Software Engineering, 1980.

Hill, 1.V., Software Development Methods in Practice, Elsevier Applied Science, New York, New York, 1991.
Hoare, C., Communicating Sequential Processes, Prentice-Hall International, New York, New York, 1986.

Hoare, C. and J. Shephardson (Eds.), Mathematical Logic and Programming Languages, Prentice-Hall, New York,
New York, 1985.

167

Howden, W.E., Functional Program Testing, IEEE Transactions on Software Engineering. SE-6(2), pp. 162-169,
March 1980.

Humphrey, W.S., Managing the Software Process, Addison-Wesley Publishing Company, Reading, Massachusetts,
1990.

IEC 880, Software for Computers in the Safety Systems of Nuclear Power Stations, Bureau Central de la Commission
Electrotechnique Internationale, 3 rue de Varemoe, Geneve, Suisse, 1986.

Ince, D.C., The Automatic Generation of Test Data, Computer Journal, 30(1), pp. 63-69, February 1987.

ISO Draft International Standard, Information Processing Systems — Open Systems Inter-Connection — Lotos — A
Formal Description Technique Based on the Temporal Ordering of Observational Behavior, ISO/TC 97/SC 21, ISO
DIS 8807, The National Institute of Standards and Technology Computer Systems Laboratory, Gaithersburg, Maryland
20899, July 20, 1987.

Jackson, P., and P. Lafrere, On the Application of Rule-Based Techniques to the Design of Advice-Giving Systems,
International Journal of Man-Machine Studies, 20(1), pp. 63-68, 1984.

Jagodzinski, A.P., A Theoretical Basis for the Representation of On-Line Computer Systems to Naive Users,
International Journal of Man-Machine Studies, Volume 18, pp. 215-252, 1983,

Jensen, R., and C. Tonies, Software Engineering, Prentice-Hallf Englewood Cliffs, New Jersey, 1979.

Jensen, H., and K. Vairavan, An Experimental Study of Software Metrics for Real-Time Software, IEEE Transactions
on Software Engineering, Vol. SE-11(2), pp. 231-234, 1985.

Jones, C., Systematic Software Development Using VDM, Prentice-Hall International, New York, New York, 1986.
Jones, T.C., Programming Productivity, McGraw- Hill, New York, New York, 1986.

Kidd, A.L., and M.B. Cooper, Man-Machine Interface Issues in the Construction and Use of an Expert System,
International Journal of Man-Machine Studies, Volume 22, pp. 91-102, 1985.

King, J.C., Symbolic Execution and Program Testing, Communications of the ACM, 19(7), pp. 385-394, July 1976.
Knowledge CASE Tool, 1650 Tyson Blvd., Suite 800, McLean, Virginia 22102 (703) 506-0800.

Koch, C.G., User Interface Design for Maintenance/Troubleshooting Expert System, Proceedings of the Human
Factors Society, 29th Annual Meeting, pp. 367-371, ACM Order Department, P.O. Box 64145, Baltimore, Maryland
21264, 1985.

168

Kramer, J., J. Magee, and M. Sloman, Configuration Support for System Description, Construction and Evolution,
Proceedings of the Fifth International Workshop on Software Specification and Design, 19-20 May 1989, Pittsburgh,
Pennsylvania, ACM SIGSOFT Engineering Notes, Vol. 14 No.3 pp. 28-33, IEEE Computer Society, Order
Department, 10662 Los Vaqueros Circle, Los Alamitos, California 90720-2578, 1983.

Lapassat, A M., Real Time Systems Software Validation and Verification, Commissariat a LEnergie Atomique, France,
Cen/Saclay - Irdi/D_leti/Dein/sir, 91191 Gif sur Yvette Cedex, France.

Lehner, P.E., and D.A. Zirk, Cognitive Factors in User/Expert-System Interaction, Human Factors, 29(1), pp. 97-109,
1987.

Leveson, N.G., and J.L. Stolzy, Safety Analysis Using Petri Nets, IEEE Transactions on Software Engineering, SE-
13(3), 1987.

Leveson, N.G., and P.R. Harvey, Analyzing Software Safety, IEEE Transactions on Software Engineering, SE-9(5), pp.
569-579, September 1983.

Liverpool Data Research Associates Ltd., LDRA Software Tested, FORTRAN, User Documnentation, Liverpool, United
Kingdom, 1985.

Llinas, J., S. Rizzi, and M. McCown, The Test and Evaluation Process for Knowledge-Based Systems, Technical
Report of Science Applications International Corporation, San Diego, California, June 1987.

McCabe, T., 4 Complexity Measure, IEEE Transactions on Software Engineering, Vol. SE-2(4), pp. 308-320, 1976.

Miller, E., Better Software Testing, Proceedings of Third International Conference on Software for Strategic Systems,
February 27-28, 1990,pp. 1-7, Huntsville, Alabama, 1990.

Miller, L.A., Behavioral Studies of the Programming Process, IBM Research Report, Rc7367, International Business
Machines (IBM), Yorktown Heights, New York, 1978.

Miller, L.A., Testing and Evaluation of Expert Systems, Paper distributed at the Fourth IEEE Conference on Al
Applications, San Diego, California, The Computer Society of the IEEE, P.O. Box 80452, Worldway Postal Center, Los
Angeles, California 90080, March 18, 1988.)

Miller, L.A., Dynamic Testing of Knowlea’gé Bases Using the Heuristic Testing Approach. Expert Systems with
Applications: An International Journal, Special Issue: Verification and Validation of Knowledge-Based Systems, Vol
1, No. 3, pp. 249-269, 1990.

Miller, L.A., Tutorial on Validation and Verification of Knowledge-Based Systems, Proceedings of the Conference on

Expert Systems Applications for the Electric Power Industry, Science Applications International Corporation, 1710
Goodridge Drive, McLean, Virginia 22102, June 1989.

169

Miller, L.A., Verification and Validation of Expert Systems, Invited paper presented at the United States Army Test and
Evaluation Command Conference on Al, Sierra Vista, Arizona, Science Applications International Corporation, 1710
Goodridge Drive, McLean, Virginia 22102, January 15, 1992.

Miller, L.A., 4 Realistic Industrial-Strength Life-cycle Model for Knowledge-Based System Development and Testing,
Knowledge Based Systems Verification and Validation Workshop Proceedings, AAAI-90, The MIT Press, Cambridge,
Massachusetts 02142, July 1990.

Mills, H., V. Basili, J. Gannon, and R. Hamlet, Principles of Computer Programming: A Mathematical Approach,
William C. Brown, New York, New York, 1987.

Milner, R., 4 Calculus of Communicating Systems, Laboratory for the Foundations of Computer Science, Edinburgh
University Report No. ECCS-LFCS-86-7, University of Edinburgh, Scotland, 1986.

Montalban, M., Decision Tables, Science Research Associates, Inc., Chicago, Ilinois, 1974.
Myers, G.J., The Art of Software Testing, Wiley, New Yor, New York, '1 979.

Naser, JA. (Ed.), Expert System Applications for the Electric Power Industry, Hemisphere Publishing Corporation,
New York, New York, 1991. '

National Aeronautical and Space Administration, Space Station Freedom Program Human-Computer Interface
Guidelines, NASA USE 1000, Version 2.1, NASA, Reston, Virginia, 1989.

NBS 500-93, Software Validation, Verification, and Testing Technigue and Tool Reference Guide, The National
Institute of Standards and Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, September 1982.

NBS 500-75, Validation, Verification, and Testing of Computer Software, The National Institute of Standards and
Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, February 1981.

NBS-500-98, Planning for Software Validation, Verification and Testing, The National Institute of Standards and
Technology Computer Systems Laboratory, Gaithersburg, Maryland 20899, November 1982.

Nelson, W.R., and H.S. Blackman, Response Tree Evaluation: Experimental Assessment of an Expert System for
Nuclear Reactor Operators, NUREG/CCR-4272, United States Nuclear Regulatory Commission, September 1985.

Ng, P., and R. Yeh (Eds.), Modern Sofiware Engineering: Foundations and Current Perspectives, Van Nostrand
Reinhold, New York, New York, 1990.

Nicoud, J., and P. Fah, Common Assembly Language for Micro-Processors, CAM3, Draft 3.3, EFPL, Lausanne,
Switzerland, 1983.

170

Norman, D.A., and S.W, Draper (Eds.), User-Centered System Design: New Perspectives on Human-Computer
Interaction, Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1986.

NSAC-39, Verification and Validation for Safety Parameter Display Systems, Nuclear Safety Analysis Center, Atlanta,
Georgia, December 1981.

NUREG/CR-4640, PNL-5784, Handbook of Software Quality Assurance Techniques Applicable to the Nuclear
Industry, August 1987.

NUREG/CR-4227, Human Engineering Guidelines for the Evaluation and Assessment of Video Display Units, W.
Gilmore, July 1985.

NUREG-0653, Report on Nuclear Industry Quality Assurance Procedures for Safeiy Analysis Computer Code
Development and Use, August 1980.

O'Leary, D.E., Verification of Frame-based Knowledge Base, Knowledge Based Systems Verification, Validation and
Testing Workshop Proceedings, AAAIT-90, The MIT Press, Cambridge, Massachusetts 02142, July 1990.

Oskes, L., Transition from Analog to Digital Technologies, Presentation at the JTEC Workshop on Assessment of
European Nuclear Controls and Instrumentation, NSF, Washington, DC, The National Science Foundation, Washington,
D.C. 20031, January 31, 1991.

Omar, A., and F. Mohammed, 4 Survey of Software Functional Testing Methods, ACM SIGSOFT Software
Engineering Notes, Vol. 16, No. 2, pp. 75-82, 1991.

Ostrand, T.J., and M.J. Balcea, The Category-Partition Method for Specifying and Generdting Functional Tests,
Communications of the ACM, Vol 31, No. 6, pp. 676-686, June 1988.

Oyeleye, O., Qualitative Modeling of Continuous Chemical Processes and Applications to Fault Diagnosis, Ph.D
Dissertation, Massachusetts Institute of Technology, February 1990.

Parnas, D.L., D.G. Smith, and T. Pearce, Making Formal Software Documentation More Practical: A Progress
Report, Technical Report #88-236, ISSN 0836-0227, November 1988, Department of Computing and Information
Science, Queen's University, Kingston, Ontario, Canada K7L 3N7.

Parnas, D., and W. Bartussek, Using Traces to Write Abstract Specifications For Software Modules, Lecture notes in
Computer Science (65), Information System Methodology Proceedings IOS, Springer Verlag, New York, New York,
1978.

Parnas, D.L., and P.C. Clements, 4 Rational Design Process: How and Why to Fake It, IEEE Transactions on
Software Engineering, Vol. SE-12, No. 2, pp. 251-257, February 1986. :

171

DR waf v M Y AN M A S Y A R A (- T v B o T I 4 7~ A e e N v st B A e gt 1 5 74 T ——

Peters, L., Timing Extensions to Structured Analysis for Real-Time System, pp. 83-90, IEEE Computer Society, Order
Department, 10662 Los Vaqueros Circle, Los Alamitos, California 90720-2578.

Preece, AD., and R. Shinghal, Practical Approach to Knowledge Base Verification, Ed. M. Trivedi, Proceedings of
Applications of Artificial Intelligence IX, pp. 608-619, Concordia University, Montreal, Canada H3G 1M8, April 1991.
Pritsker, A.A.B., Introduction to Simulation and SLAMII, John Wiley and Sons, New York, New York, 1986.

Rapps, S., and E.J. Weyuker, Selecting Software Test Data Using Data Flow Information, IEEE Transactions on
Software Engineering, SE-11(4), pp. 367-375, April 1, 1985.

Rasmussen, J., and K.J. Vicente, Cognitive Control of Human Activities and Errors: Implications for Ecological
Interface Design, Presented at The Fourth International Conference on Event Perception and Action, Trieste, Italy,
August 24-28, 1987, Riso National Laboratory, Roskilde, Denmark, 1987.

Rattray, C. (Ed.), Specification and Verification of Concurrent Systems, Springer-Verlag, New York, New York, 1990.

Regulation Guide 1.52 (Task IC 127-5) Criteria for Programmable Digital Computer System Software in Safety-
Related System of Nuclear Power Plants, United States Nuclear Regulatory Commission, November 1985.

Roe, R, and J. Rowland, Some Theory Concerning Certification of Mathematical Subroutines by Black Box Testing,
IEEE Transactions Software Engineering, Vol. SE-13, No. 6, 1987.

Ross, D., Structured Analysis (SA): A Language for Communicating Ideas, IEEE Transactions on Software
Engineering, SE-3(1), pp. 16-33 (SADT), 1977.

Rushby, J., F. von Henke, and S. Owre, An Introduction to Formal Specification and Verification Using EHDM, SRI
International, SRI-CSL-91-02, CSL Technical Report, SRI International, Menlo Park, California 94025, February 1991.

Rushby, J., Quality Measures and Assurance for Al Software, NASA Contractor Report 4187, SRI International,
Menlo Park, California 94025, October 1988.

Schnell, D.A., Usability Testing of Screen Design: Beyond Standards, Principles, and Guidelines, Proceedings of the
Human Factors Society, 30th Annual Meeting, pp. 1212-1215, The Human Factors Society, Box 1369, Santa Monica,
California 90406, 1986.

Schulmeyer, G.G. and J.I. McManus, Handbook of Software Quality Assurance, Van Nostrand Reinhold, New York,
New York, 1992.

Schulmeyer, G., Zero Defect Software, McGraw-Hill, Inc., New York, New York, 1990.

172

Seamster, T.L., S.A. Fleger, and D.R. Eike, The Prototype Process and User Interface Design, Science Applications
International Corporation, 1710 Goodridge Drive, McLean, Virginia 22102, 1987.

Sivertsen, T., and H. Valisuo, Algebraic Specification and Theorem Proving Used in Formal Verification of Discrete-
Event Control Systems, Technical Report: OECD Halden Reactor Project, HWR-260, Institutt for Energiteknikk,
Halden, Norway, December 1989.

Sizemore, N.L., Test Techniques for Knowledge-Based Systems, ITEA Journal, Vol. 11, No. 2, 1990.

Smith, S.L., and J.N, Mosier, Guidelines for Designing User Interface Software, ESD-TR-86-278, Electronic Systems
Division, Air Force Systems Command, Hanscom Air Force Base, Massachusetts, United States Air Force, 1986.
Software A&E, SNAP: Strategic Networked Applications Platform, Technical Brief, Reston, Virginia, 1992.

Spivey, J., The Z Notation -- A Reference Manual, Prentice-Hall International, New York, New York 1986.

Stachowitz, R.A., and J.B. Combs, Validation of Expert Systems, Proceedings of the Hawaii International Conference
on Systems Sciences, Kona, Hawaii, Lockheed Corporation, Palo Alto, California 94304, January 1987.

Stachowitz, R.A,, C.L. Chang, T.S. Stock, and J.B. Combs, Building Validation Tools for Knowledge-Based Systems,
First Annual Workshop on Space Operations Automation and Robotics (SOAR '87), NASA Johnson Space Center,
Houston, Texas, August 1987.

Straker, E.A., and N.C. Thomas, Verification and Validation as an Integral Part of the Development of Digital
Systems for Nuclear Applications, Nuclear Safety, Vol. 24, No. 3, pp. 338-351, May/June 1983.

Sudduth, A., Diagnostic Reasoning Using Qualitative Causal Models, Paper presented at the Electric Power Research
Institute Conference and Expert System Applications for the Electric Power Industry, Boston, Electric Power Research
Institute, Palo Alto, California, September 9-11, 1991)

Sun Microsystems Reference Manual, pp. 169-180, Revision A of March 27, 1990, pp. 169-180, Sun Microsystems,
Inc., 2650 Park Tower Drive, Merrifield, Virginia 22116.

Swartout, W.R., XPLAIN: A System for Creating and Explaining Expert Consulting programs, Artificial Intelligence,
21(3), pp. 285-325, 1983.

Szygenda, S., D. Yatim, and J. Girardeau, Fault Modeling for Digital Systems: A State of the Art Review, Proceedings

of Third International Conference on Software for Strategic Systems held February 27-28, 1990, Huntsville, Alabama,
pp. 144-153, Addison-Wesley Publishing Company, Order Department, Jacob Way, Reading, Massachusetts 01867.

173

Teichroew, D. and E. Hershey, IlI, PSL/PSA: A Computer-Aided Technique for Structure Documentation and
Analysis of Information-Processing Systems, IEEE Transactions on Software Engineering, SE(3)-1, pp. 41-48
((PSL/PSA)), 1987.

Thomas, N.C., and E.A. Straker, Application of Verification and Validation to Safety Parameter Display Systems,
Technical Report, Science Applications International Corporation, Lynchburg, Virginia, 1985.

Thomas, N.C., and C.L. Evans. Life-cycle Verification, Validation and Testing, Insights ‘86 Engineering & Operating
Computer Forum, Edison Electric Institute, Washington, D.C., September 1986.

Tung, C., On Control Flow Error Detection and Path Testing, Proceedings of Third International Conference on
Software for Strategic Systems, Huntsville, Alabama, February 27-28,1990, pp. 144-153, Addison-Wesley Publishing
Company, Order Department, Jacob Way, Reading, Massachusetts 01867.

United Kingdom Ministry of Defense Draft Interim Defence Standard 00-55, Requirements for the Procurement of
Safety Critical Software in Defense Equipment, National Institute of Standards and Technology Computer Systems
Laboratory, Gaithersburg, Maryland 20899, May 9, 1989.

Von Mayrhauser, A., Software Engineering: Methods and Management, Academic Press, Inc., Boston, Massachusetts,
1990.

Wallace, D.R., and R.U. Fujii, Software Verification and Validation: An Overview, From IEEE Software, Vol. 6, No.
3, May 1989.

Wallace, R., J. Stockenberg, and R. Charette, 4 Unified Methodology for Developing Systems, McGraw-Hill, New
York, New York, 1987.

Ward, P., The Transformation Schema: An Extension of the Data Flow Diagram to Represent Control and Timing,
IEEE Transactions on Software Engineering, 12(2), pp. 128-210, 1986.

Wasserman, AL, Extending State Transition Diagrams for the Specification of Human-Computer Interaction, IEEE
Transactions on Software Engineering, Vol SE-11 (8), pp. 699-713, 1985.

Weyuker, E., and T. Ostrand, Theories of Program Testing and the Application of Revealing Subdomains, IEEE
Transactions on Software Engineering, Vol SE-6 (3), 1980.

Williges, R.C., B.H. Williges, and J. Elkerton, Software Interface Design, In G. Salvendy (Ed.) Handbook of Human
Factors, John Wiley & Sons, New York, pp. 1416-1449, 1987.

Winchester, J., and G. Estin, Requirements Definition and its Interface to the SARA Design Methodology for

Computer-based Systems, AFIPS Conference Proceedings, 51, pp. 369-379, ((RDL)), Addison-Wesley Publishing
Company, Order Department, Jacob Way, Reading, Massachusetts 01867, 1982.

174

Wolfgram, D.D., T.J. Dear, and C.S. Galbraith, Expert Systems for the Technical Professional, John Wiley & Sons,
New York, New York, 1987.

Wood, D.P., and W.G. Wood, Comparative Evaluations of Four Specification Methods for Real-time Systems,
Carnegie-Mellon University/Software Engineering Institute Technical Report CMU/SEI 89-TR-36, Carnegie-Mellon
University Library, Carnegie-Mellon University, EDSH 109, Pittsburgh, Pennsylvania 15213-3890, 1989.

Wood, W., R. Pethia, L. Gold, and R. Firth, 4 Guide to the Assessment of Software Development Methods, Carnegie
Mellon University/Software Engineering Institute Technical Report CMU/SEI 88-TR-8, Carnegie-Mellon University
Library, Carnegie-Mellon University, EDSH 109, Pittsburgh, Pennsylvania 15213-3890, April 1988.

Woods, D.D., Cognitive Technologies: The Design of Joint Human-Machine Cognitive Systems, The Al Magazine,
6(4), pp. 86-92, 1986.

175

Yram PRI IR T A MR- . S X (R NS UL A L DD e P N L Vi S G- I Ayt

U.S. NUCLEAR REGULATORY COMMISSION § 1. REPORT NUMBER
T (Assigned by NRC. Add Vol., SUVp . Rev,,

l(\lRCgA 1102, and Addendum Numbers, If any.

3201, 3202 BIBLIOGRAPHIC DATA SHEET
(See instructions on the reverse) ’ NUREG/CR-6316
2, TITLE AND SUBTITLE SAIC-95/1028
Vol. 2
Guidelines for Verification ?nd Validation of Expert 5 DATE REPORTPUBLISHED
Systems Software and Conventional Software T 17 VERR
Survey and Assessment of Conventional Software 4.H¥g:ggANTNUMBE§995
Verification and Validation Methods 11530
5. AUTHORI(S) 6. TYPE OF REPORT

L.A. Miller, E. H. Groundwater, J. E. Hayes, S M. Mirsky

7. PERIOD COVERED (Inciusive Dates)

name and maillng address,)

Science Applications International Corporation
1710 Goodridge Drive
McLean, VA 221001

8. PERFORMING ORGANIZATION — NAME AND ADDRESS (/f NRC, provide Division, Office or Region, U.S. Nuclear § y C ission, and mailing address; if contractor, provide

9, SPONSORING ORGANIZATION — NAME AND ADDRESS (if NRC, type “Same as above”’; if contractor, provide NRC Division, Office or Region, U.S. Nucl latory C
and malling address.)
Division of Systems Technology Nuclear Power Division
Office of Nuclear Regulatory Research Electric Power Research Institute
U.S. Nuclear Regulatory Commission 3412 Hillview Avenue
Washington, DC 20555-0001 Palo Alto, CA 94303

10. SUPPLEMENTARY NOTES

11, ABSTRACT (200 words or less)

By means of literature survey, a comprehensive set of methods was identified for the
verification and validation of conventional software. The 153 methods so identified
were classified according to their appropriateness of various phases of a development

into two, static testingand dynamic testing methods. The methods were then
characterized in terms of eight rating factors, four concerning ease-of-use of the
methods and four concerning the methods; power to detect defects. Based on these
and an Effectiveness Metric. The Effectiveness Metric was further refined to provide
three different estimates for each method, depending on three classes of needed
stringency of V&V (determined by ratings of a system's complexity and required
integrity). Methods were then rank-ordered for each of the three classes in terms of
their overall cost-benefits and effectiveness. The applicability was then assessed
of each method for the four identified components of knowledge-based and expert
systems, as well as the system as a whole.

validation, verification, V&V expert systems, knowledge base,

. . . . 14, SECURITY CLASSIFICATION
guidelines, scenarios, software quality assurance

lifecycle -- requirements, design, and implementation; the last category was subdivided

12, KEY WORDS/DESCR!PTORS (List words or phrases that will assist researchers in locatng the report,) 13. AVAILABILITY STATEMENT

{This Page)

{This Report)

-

15. NUMBER OF PAGES

16. PRICE

NRC FORM 335 (2-89)

e EralS T

	EXECUTIVE SUMMARY
	1 INTRODUCTION
	1.1 Background
	1.2 Objective and Scope
	1.3 Report Organization

	2 PURPOSE AND CONTENT
	2.1 PurposeoftheSurvey
	2.2 Nature of V&V
	2.3 The Standards Environment
	2.4 Scope of Survey
	2.4.1 Management vs Technical Aspects
	2.4.2 System Complexity
	2.4.3 Definition of Systems in Terms of V&V Classes
	2.4.4 System Components
	2.4.5 Nuclear vs Non-nuclear Applications
	2.4.6 United States vs Foreign
	2.4.7 Evaluation Criteria :
	2.4.8 Phase in the Life-cycle
	2.4.9 Other

	2.5 Approach

	3 MANAGEMENT ASPECTS OF CONVENTION& V&V
	3.1 V&V Documents Procedures and Reviews
	3.2 Contrast of V&V with QA & CM
	3.3 The Value of Detecting Defects Early in the Life-cycle

	4 SOFIWARE DEVELOPMENT LIFE-CYCLES
	4.1 Alternatives
	4.1.1 Sequential Life-cycles
	4.1.2 Itemtive Life-cycles

	4.2 Reference Life-cycle
	4.2.1 Requirements Verification
	4.2.2 SpecificationVerification
	4.2.3 Design Verification
	4.2.4 Implementation Verification
	4.2.5 SystemValidation
	4.2.6 Field Installation Verification
	4.2.7 Operation and Maintenance Phase V&V

	5 CLASSIFICATION OF V&V METHODS FOR CONVENTION AI SOFTWARE
	5.1 General Observations and Approach
	5.2 The Three Major Categories and Their Classes
	5.2.1 RequirementdDesign Methods
	5.2.2 Static Testing Methods
	5.2.3 Dynamic Testing Methods

	5.3 Discussion

	6 CHARACTEIUZATION OF CONVENTIONAL V&V METHODS
	6.1 Defect Detection
	6.1.1 A Taxonomy of Defect Types for Conventional Sohare
	6.1.2 Defection of Defects by Conventional V&V Methods

	Effectiveness
	6.3 Evaluating "Cost-Benefit" and "Effectiveness" of Conventional V&V Methods
	6.3.1 A Simple Cost-Benefit Metric
	6.3.2 The Effectiveness Metrics
	6.3.2.1 Deriving the Basic Metric
	6.3.2.2 Development of Weights for Effectiveness
	6.3.3 Rank-ordered Methods

	6.4 Which Techniques to Use and When

	EXPERT SYSTEMS
	7.1 Components of Expert Systems
	7.2 Key V&V Characteristics of Expert Systems Components
	7.3 Applicabiliv of Conventional Methods
	7.3.1 Methods Applicable to the Interface Component
	7.3.2 Methods Applicable to Tools and Utilities
	7.3.3 Methods Applicable to the Inference Engine Component
	7.3.4 Methods Applicable to the Knowledge Base Component
	7.3.5 Methods Applicable to Overall System V&V

	7.4 Limitations of Conventional V&V Methods
	Conventional Methods
	7.4.2 A ?roposal for a Generic Testing Strategy

	8 SUMMARY AND CONCLUSIONS
	9 REFERENCES
	Performance Factors and 21 Subfactors

	Survey classification of discovered V&V Methods
	Life-cycle
	Activities fiomNSAC-39
	Software Life-cycle from NUREG/CR-4640
	Spiral Model of the Software Process
	Consistent with Conventional Software Life-cycle
	Testing for Incremental System Builds
	Life-cycle Phase
	Conventional Software Systems
	Conventional Software Systems
	Six Factors of Software System Complexity
	Expert System Software in the Nuclear Power Industry

	Illustration of Use
	Components of Larger Conventional Software Systems
	Classes of Requirements

	Definition of Software Quality Subfactors
	Appendix B Criteria from 10 CFR
	Quality Assurance QA). and Configuration Management (CM)
	Conventional V&V Techniques

	Description of Major Classes of Techniques
	V&VMethods
	Methods
	Methods

	CASE Tools for Full Life-cycle Support

	Capability of Testing Techniques to Detect Defects
	Defects in Conventional Software
	the Eight Cost-Benefits Factors
	Effectiveness Measures
	Ranked by Decreasing Cost-Benefit Values
	Decreasing Cost-Benefit Measure Values
	Decreasing Cost-Benefit Measure Values
	Ranked by Decreasing V&V Class 3 Values
	Decreasing V&V Class 3 Values
	Decreasing V&V Class 3 Values
	Ranked by Decreasing V&V Class 2 Values
	Decreasing V&V Class 2 Values
	Decreasing V&V Class 2 Values
	Ranked by Decreasing V&V Class 1 Values
	Decreasing V&V Class 1 Values
	Decreasing V&V Class 1 Values
	V&VClasses
	Knowledge-Based System with Testing Recommendations
	Expert Systems and Their Components
	Systems in Terms of Technique Type and Target Type

	RequiremenWesign
	Static Testing
	Dynamic Testing
	TOTALS
	I Omitted requirement
	2 Misinterpreted requirement
	3 Data limitation
	4 Unintended design element
	5 Hardware incompatibility
	6 Soflware incompatibility
	7 Poor man-machine interface
	Incorrect analyses of computational error
	9 Noncompliance
	I 0 Lack of adequate error traps
	I 1 Failure to handle exceptions
	I2 Weak modularity
	I3 Rigid control structure
	I4 Missing or incorrect processing priorities
	I 5 Breakdown between toplevel & detail desiqn

	LUD I dENEFlT MEASURE1 Class 31 Class 21 Class
	3.4.1 Field Testing
	3.1.4 I Reliability Testing
	3.7.1 [Activity Tracing
	hsertionchecking ™

