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Abstract 

The stress-induced failure of cavities in poroelastic media is investigated using an 
analytical solution of the elastic matrix inclusion problem of Eshelby and a rock failure 
criterion. The elastic properties of the porous matrix surrounding the cavity are modeled 
using a self-consistent version of the theory of Berryman while the cavity collapse 
criterion is based on a failure condition calibrated as a function of matrix mineralogy, grain 
size and porosity. The influence of the latter textural variables as well as pore fluid 
pressure and cavity shape and orientation relative to the far-field stress are evaluated. 
The region of failure on the cavity surface is identified. These results are applied to the 
prediction of vug stability in a sedimentary basin in the context of vuggy reservoir 
exploration and production. 



INTRODUCTION 
Cavities in porous media form as a result of natural and engineering processes. 

The issue of their mechanical stability is central to applications in petroleum exploration 
and production, materials engineering, civil engineering, and basic geoscience. Examples 
include cavitation created due to excessive matrix acidizing treatments, the prediction of 
vuggy reservoir location and characteristics, and the analysis of karsts and magma 
chambers. Failure or survival of a cavity is determined by far-field stress, cavity geometry 
and orientation relative to the far-field stress, fluid pressures inside the cavity and in the 
surroundmg matrix, and the textural properties of the surrounding matrix. The latter 
include porosity and grain sizes and associated mechanical properties. For multi-phase 
systems, capillarity and wetting also could affect the cavity stability. 

cavity inside a porous matrix and use it to set forth a criterion for failure/collapse of the 
cavity. The dimensions of the cavities of interest are much larger than the matrix grain 
sizes. The fluid pressure inside the cavity is assumed to be equal to the matrix fluid 
pressure. Only the single-phase aspects of the problem are addressed in this study. 

pore-fi-ee elastic inclusion in an infinite elastic, pore-fi-ee medium subjected to a far-field 
stress. In this study, these results were generalized and the stress at the surface of the 
ellipsoidal cavity inside a poroelastic media were obtained. 

of several minerals, were calculated using the self-consistent effective medium 
approximation of Berryman (1 986). For the stability analysis, Drucker-Prager failure 
criterion was used (Drucker and Prager, 1952) with calibrated parameters. In Sakrani 
(1 996), these parameters were calibrated with rock mechanics data and empirical relations 
for the dependence on rock texture were sefforth. Parametric studies of the stability of 
ellipsoidal cavities was performed to understand the nature of failure phenomena. The vug 
stability analysis was done for a homogeneous and a layered basin under overburden 
stresses and vug survival-depth curves were obtained. 

The purpose of the present study is to assess the stresses at the surface of a 

Eshelby (1 957) determined the stress inside and just outside of an ellipsoidal, 

Poroelasticity coefficients of the surrounding porous matrix, which is composed 

CAVITY IN A POROELASTIC MEDIUM 
Consider the computation of the stress around a cavity in a poroelastic medium. 

Let A be the tensor of poroelastic coefficients. Then the strain tensor E and stress tensor 
0 are related by 

for effective stress coefficient a, and pore fluid pressure p .  In Eq.( l), standard indicia1 
notation is used with the summation convention on repeated indices, all indices are within 
the range 1-3 and i$ is the Kronecker delta. The boundary conditions adopted are that the 

oii +ap6, = Aii,,&, (1) 
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normal stress at the cavity surface is -p, tangential shear is zero and that CF + o stress 
far fkom the cavity. 

Let E ‘(0 ”) be a solution of thr: aforementioned problem for p=O. Then the 
solution of the problem of interest here has been shown in S&ani (1996) and Sakrani and 
Ortoleva (1 997) : 

This result holds for voids of arbitrary shape as long as the tensor ZE is known for that 
shape. 

CFii = 2im (0; + p6,) . (2) 

In this study, the cavity is assurned to be an ellipsoid as seen in Fig.1. The xi - 
coordinate system lies along the principal axes of the ellipsoid (dashed lines in Fig. 1). 
According to this coordinate system, th.e surface of the ellipsoid can be written as 

n n n 

XIL x2‘ X 3 L  -+----ty=l 
a2 b2 c (3) 

where a, b and c are the principal dimensions. The poroelastic medium is assumed to be 
isotropic. With this 

Oii + q6, == A€& + 21uEij 
where A and p are the Lame’s constants. The Poisson’s ratio v is given by 

(4) 

( 5 )  
a 

m + p) 
V =  

Eshelby (1 957) determined the stress inside and just outside of an ellipsoidal, pore-free 
inclusion in an infinite elastic, pore-fi-ee medium when the system was subjected to far- 
field stresses. Following this study, one can obtain the elastic fields at the surface of an 
ellipsoidal cavity under the influence of a far-field disturbance. The derivation is given in 
the Appendix. The strain tensor at the boundary of the cavity is found to be related to the 
far-field strain tensor by 

V ninjnkn, - - 
1-v 

In h.(6), the ni’s are the components olf the unit normal vector n at the boundary of the 
cavity as seen in Fig. 1. The tensor C can be calculated from surface integrals of Kelvin 
solutions on the cavity surface; details are given in the Appendix. 

By putting the strain tensor in vector form and using constitutive relations for 
p=O, the relation between the surface stresses and far-field stresses is obtained from 
Eq.(6) as 

where CT and om are the stress vectors at the boundary of and far fi-om the cavity, 
0 = A(Z + PIJ)CA-’-‘O” (7) 

respectively. The stress vector is a 6x1 column vector having the form 
0 =[Oil 0 3 3  0 1 2  0 1 3  0231‘ 

where superscript T denotes the transpose. In Eq.(7), I is the 6x6 identity matrix, A is the 
elasticity matrix for isotropic materials which can be written in terms of shear modulus p 
and Poisson’s ratio v as 
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-1-v v ' v 0 0 0 -  
v 1-v v 0 0 0 

2P v 1-v  0 0 0 
0 

0 0 0 0 1-2v 0 

A =  
(1-2v) 0 0 0 1-2v 0 

0 0 0 0 0 1-2v - 
The matrix C in Eq.(6) is the inverse of a 6x6 matrix which depends on the elements Sgkl 
via Eq.(9) (see the Appendix for SGkl ). 

0 --l '1 - '1111 '1122 'I 133 0 0 

'2211 1 - SE22 '2233 0 0 0 

'3311 '3322 1 - '3333 0 0 0 
0 0 0 1 - 2 s 1 2 1 2  0 0 
0 0 0 0 - 'I313 0 

- 0 0 0 0 0 - '2323- 

C =  

Finally, in Eq.(6), N is the 6x6 matrix which specifies the position on the cavity surface 

(9) 

at which the stresses are to be calculated. It has the form given in Eq 

. 1  N = -  
1-v  

:lo). 

We can now define the Eshelby matrix, d, which transforms the far-field stresses 
to the stresses at the boundary of the ellipsoidal cavity. From Eq.(6), the Eshelby matrix 
is found to be 

oE = A(]+ N)CA-' . (1 1) 
The stress vector CF at the boundary is obtained bu applying the Eshelby matrix to the far- 
field stress vector. 

3 
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In this study, a computer code was developed to calculate the analytxal 
expressions in the matrix C and to evaluate the Eshelby matrix. The surface integrals for 
Sgkl were calculated numerically by subdividing the domain and using a 10 point Gaussian 
integration in each subdomain. The numerical scheme was checked with the analytical 
closed form solutions for spherical cavities given in Eshelby (1957). The results of our 
numerical scheme and the analytxal ones agree within the machine accuracy. 

After the Eshelby matrix is calculated via Eq.( 1 l), for cavities in porous media, the 
stress vector at the surface of ellipsoidal cavity can be evaluated according to Eq.(2). This 
equation can be written in the vector form - -  - 

0 1 1  G + P  
0 2 2  G + P  

0 1 2  0; 

O13 0; 

- O 2 3  - - 0; 

0 3 3  = B E .  G + P  

The elastic coefficients A, p and v depend the texture of the porous matrix. When 
the matrix is composed of grains of several minerals, these coefficients are approximated 
here by the effective medium approximations (Benyman, 1986). 

Effective Medium Approximation for Porous Matrices 
The effective medium approxirn.ation for porous matrices has been studied in 

Berryman (1986). Using his formulae and the self consistent approximation, the averaged 
(effective) bulk and shear moduli of the matrix and the effective stress parameter can be 
evaluated. Let the porous matrix be composed of N, solid constituents of volume 
fractions @j and porosity @ ( the void phase is the (Nc+l)* constituent, i-e., qf~ = qN,+,). 
The self consistent approximation formulae are 

where & and 
superscript * are the effective medium parameters of interest. In isotropic materials, the 

are bulk and shear moduli of constituent i, while the variables with 

bulk modulus can be expressed in term:; of Lame’s constants as 
2 
3 

K = a,+-jL. 

F* in Eq.(14) is given in Berryman (15186) in the form 

6 ~ * + 2 p *  - 
F* =- jL* 9 K *  + 8jL’ 

The nonlinear system of equations for two unknowns (effective bulk and shear 
moduli of the matrix) formed by Eqs.(l3) and (14) can be solved numerically. Since the 
shear and bulk moduli of the void phase are zero, numerical singularity may arise in this 
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system for some porosity values. Berryman (1 980) studied the singularity of this system 
for two phase matrices, when one phase has very small (or zero) shear modulus. 
Following his method, we define a new variable x as 

2 3 -Ix<- 
6 K* +2p* 3 2 
1 9 K *  + 8p* X = -  

and after some mathematical manipulations, reformulate the system of equations as 
-=E 1 4ipi 
1 + ~  i=1 P ~ + X P  

i 

3 x - 2  Nc Q i K i  -=E 
4 *  

i=l K i  +? 1 + X  

x and p* can be evaluated fiom Eqs.( 18) without any numerical difficulty. The 
effective bulk modulus is then obtained from 

According to Berryman (1986), the effective stress parameter of the matrix can be 
approximated by 

where ai is the effective stress parameter of the i" constituent and can be calculated fiom 

where ( K , ) ~  is the bulk modulus of the grain when the grain has no pores in it. The values 
of ai vary between 0 and 1 corresponding to the pure solid grains and void cases, 
respectively. In this study, we consider pure solid grains only and the effective stress 
coefficient for solid grains in a porous matrix can be calculated as 

4 =- a* 
K 8 + $ p *  $P* . 

To simplify the notation, we omit * fiom the bulk modulus, shear modulus and 
effective stress parameter, henceforth. 

Failure/Collapse Criterion 
The computations of stress at the surface of the cavity, in conjunction with a rock 

failure criterion, allow us to estimate conditions under which the material around the 
cavity will fail. This calculation thereby is an estimate of the critical conditions for cavity 
collapse. Let 0 be the stress tensor at the point P on the cavity surface. Then failure will 
occur when a function F just exceeds zero: 

F(o,p,O) > 0 , collapse. (23) 

5 



Mechanical Failure of Cavities in Poroelastic Media I 
Here 0 is the texture (porosity, mineral volume fractions and grain sizes) of the porous 
matrix. From the poroelastic modified Eshelby solution, we see that 0 depends on 8, 
p ,  0, and the position of the boundary point P. Note that failure will occur under 
different conditions for different points on the cavity surface. Hence Eq.(23), the failure 
criterion, can be rewritten 

Finally, w represents a set of angles orimting the cavity relative to the principle axes of 
far-field stress 8 (see Fig. 1). 

F ( d  ,p,O,P,w) = F(o,p,O). (24) 

To calculate F, we use the Druclcer-Prager failure criterion in the form 
F = , L + a ( @ ) J ,  -b(O) (25) 

where J1 and J2 are the first and second invariants of the effective stress tensor dfl 
( oeff = o + a p l )  at the cavity surface and can be calculated from 

J, =P(beff) 

J ,  = -tr((oeff 1 - - -1 l2 )  J 1  
2 3 

The coefficients a and b in Eq.(25) depend on texture 0. In Sakrani (1 996), these 
parameters are calibrated with rock mechanics data and their relation to matrix porosity, 
constituent grain sizes and volumetric ratios is given. 

simultaneously over all the cavity surface as some parameter passes through a critical 
value. The spatial dimension of the failure zone depends on a number of factors, such as, 
the anisotropy of 8 , the cavity geometry and orientation with respect to the principal 
axes of far-field stress. Qualitatively speaking, the dimension increases with the 
symmetry of the problem. Nonetheless, the failure threshold for the cavity depends on 
the first indicated failure somewhere on. the cavity surface. 

Failure commences when F is just equal to zero at a point, curve or 

CAVITY STABILITY IN CARBONATE MA'I'RICES 
The developments of the previolus section can be integrated to study cavity 

stability in carbonate matrices. The porous carbonate matrix is composed of solid calcite 
and dolomite grains. In the matrix, there is an ellipsoidal cavity which is subjected to the 
far-field stress tensor CT O0 as seen in Fig. 1. A constant fluid pressure is assumed within the 
porous matrix and inside the cavity. 

For calcite-dolomite matrices, thLe Drucker-Prager failure criterion coefficients a(@) 
and b(0) are given in Sakrani (1996) as 

6 



b(O) = f i  b, 
I 

where5 is the matrix volume fraction of mineral @=calcite, dolomite), i.e.,J=&/I-$ and 
the coefficients ai and bi are 

-0.0068 -6.874$ 
acakite = 0*27'2Rco,ite e 

00669 -22.727@ a,,,, = 0.5673Rd;,,,e 

-0.1956 4.0615$ bcakire = 44.7655 Rea,, e 

-0.2225 -8.98710 
bdolomite = 49.1584Rdobmiree 

In Eqs.(28) Ri is the grain size (mm) of mineral i, and bi is in MPa. The values used in this 
study are 

Laki t e  = fhlomite 9 Rcakite = Rdolomire = O.lrnrn. (29) 
To calculate effective medium parameters of porous calcite-dolomite composites, 

we use the material bulk and shear moduli of pure calcite and dolomite grains. Values for 
physical properties of minerals and rocks can be found in Clark (1966). The isotropic 
elastic constants for calcite and dolomite are evaluated from this reference as 

K,,,, = 70 GPa pmlcire = 28 GPa . 

K ~ , ~ ~ ~  = 85 GPa pdolomise = 37 GPa 
The material and failure coefficients of the matrix with these parameters are 

summarized in Table 1. 

Table 1. M a e  elasticity and calibrated Drucker-Prager coefficients of the porous matrix defhed in 
Eqs.(29) and (30) for diffient porosity values. 

@ V a a(@) b(O) 
(MPa) 

0.05 0.309 0.136 0.178 54.84 
0.IO 0.301 0.263 0.096 40.10 
0.15 0.292 0.383 0.058 29.75 
0.20 0.283 0.495 0.038 22-39 

As seen from the table, the effective stress parameter a increases significantly, 
whereas Poisson's ratio is not strongly affected by porosity. The limits for the effective 
stress parameters are 0 and I ,  corresponding to $4 (no porosity) and $=I (hypothetical 
no matrix case). As the porosity of the medium increases, the failure parameters a and b 
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will decrease. Because b(O) decreases with increasing porosities, the failure will occur at 
lower stress states for higher porosity. 'The failure parameter a(@) introduces the 
favorable effects of normal stresses to the cavity stability (when the normal stresses are 
compressive). Therefore, as the porosity of the medium decreases, the contribution of 
normal stresses to stability increases. 

The principal dimensions of the ellipsoid are denoted a, b and c respectively. In 
this study, to reduce one of the parameters, two minor dimensions are set equal via 

a 2 b = c  (31) 
and the aspect ratio of the ellipsoid, E, is defined as (bla ) ratio. 

The principal axes of the far-field stress tensor CT will define the Xm system as shown 
in Fig. 1. Thus, the far-field stress vector has the form 

where o;, 0; and 0; are the principal compressive stresses in the X, Y and 2 directions, 
respectively. In this study, we set the stresses in the X and Y directions equal: 

and define the far-field stress anisotropy ratio CT;/CT;. 

frame) with respect to the principal axes of am (Xn frame). Since b=c and 0; = 0; , 
the cavity orientation o is the angle between 2 and q axes (Fig. 1). W U  represents the 
orientation in which the major principal axis of the cavity (XI axis) is perpendicular to 

The cavity deforms under the ef'fect of the fluid pressure p and far-field stress. 

0-=[-0; -0; -a; 0 0 o]r (32) 

0,- 20," = 0 g  (33) 

The cavity orientation is defmecl by the principal axes of the ellipsoid (x1x2x3 

the major principal stress axis (2 axis), whereas w d 2  represents the parallel case. 
Cavities having these orientations are called horizontal and vertical cavities, respectively. 

In cavity stability calculations, the failure function F is determined from Eq.(25) at 
every point of the surface. Failure stress corresponds to the smallest 0; value at which F 
is equal to zero for at least one point. Flor the most symmetric case (spherical cavity and 
hydrostatic far-field stress), failure hapipens everywhere on the surface of the sphere 
simultaneously. 

ellipsoidal cavity with ~ 0 . 5 .  The porous continuum has the matrix texture defined in 
Eqs.(29) and (30) with porosity 4 ~ 0 . 2 .  This texture yields the poroelastic and failure 
coefficients given in the last row of Tablle 1. The fluid pressure and far field stress 
anisotropy ratio are taken to be p=SMPa and 0; /u; =0.5. 

stress is max( aF)=27.40 MPa for this orientation and the failure function at this stress 
state is changing in the range (-20.76,U) MFa on the surface. Failure occurs at two points 
with coordinates (0, + ~ ) 5 ~ ,  0) in the XYiY frame. Fig.2b and Fig.2~ show the dependence of 
F on cavity orientation. In case b with w d 6 ,  the failure stress is 29.66 MPa and failure 
occurs at points (&0.898a7 0, k0.410a). In case c with u~7d3, the failure stress level 
increases to 36.86 MPa and the coordinates of failure points are (k0.647a7 0, k0.638~). 

In Fig.2, a series of F distributicrts on the cavity surface is presented for the 

In Fig.2a7 the distribution of F is plotted for the horizontal cavity. The failure 

I 
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Fig.2d presents the vertical cavity for which the failure stress is max( 0,")=44.61 MPa 
and the failure function has the range (-12.14,U) MPa on the cavity surface. Due to the 
symmetry of cavity geometry in the XY plane, failure occurs along equatorial circle of 
radius b. 

In Fig.3, the variations of failure stress of an ellipsoidal cavity (b/a=0.5) with 
porosity and fluid pressures are given. In the calculations, the matrix texture is taken as in 
Eqs.(29) and (30). The far-field stress anisotropy ratio is 0,"/0,"=0.5. As is seen fiom 
the graph, the cavities in the matrix with higher porosity fail at lower stresses than do 
those in a lower porosity matrix. For a fixed porosity, as the fluid pressure of the system 
increases, failure stress increases and the cavity becomes more stable. The increase in the 
cavity stability due to fluid pressure is independent of the porosity of the medium. 

The changes in failure stress with cavity shape and orientation are presented 
graphically in Fig.4, for the fured stress anisotropy level ( 0; /oz =0.5) and fluid pressure 
(p=5 MPa). The matrix texture is as in Eqs.(29) and (30) and porosity is taken to be 0.2. 
With these parameters, spherical cavities fail at 32.57 MPa. Horizontal cavities fail at 
lower stresses than those for spheres and the failure stress values are ordered according to 
their aspect ratios, as seen in Fig.4. On the other hand, vertical cavities fail at higher stress 
levels than those for spheres and their failure stresses increase with decreasing aspect 
ratio of the ellipsoid. The vertical cavity with b/a=0.2 withstands far-field stresses up to 
max( 0; )=51. I7 m a .  Ellipsoidal cavities become more stable as they become more 
vertical. 

Jn Fig.Sa, b, and c, failure diagrams (in terms of the variation of failure stress 
max( 0;) with lateral stress 0,") are shown for spherical and ellipsoidal (b/a=0.5) 
cavities. In the calculations, matrix texture is taken as in Eqs.(29) and (30) with porosity 
eO.2. Fluid pressure is kept constant at p=5 MPa. In these diagrams, there are finite 
survival zones bounded by two failure envelopes that can be identified with vertical stress 
and lateral stress-dominated failure mechanisms. The vertical stress-dominated failure 
curve determines &e upper boundary of the survival zone, whereas the lateral stress- 
dominated boundary bounds the survival zone fiom below. 

when there is no lateral stress. Failure occurs along the equatorial circle of the sphere; as 
the lateral stress increases, the sphere becomes more stable up to the hydrostatic stress 
state of 35.2 MPa. When the lateral stress is greater than this value, the sphere fails at its 
poles, as is indicated in Fig.5a. At the 09 = 0 termination of the lateral failure boundary 
curve, the lateral stress is 23.7 MPa and failure occurs along the equatorial circle. There 
appears to be a finite (but short) segment of this lateral failure curve that extends fiom the 
0; = 0 termination of the lateral failure curve to the point where the slope of that curve 
changes discontinuously. 

boundary is similar to that for the sphere. When vertical stress dominates, failure occurs 
on the equatorial circle whereas, for the lateral stress-dominated case, the poles are the 
sites of failure. The vertical stress-dominated failure boundary curve starts at max( og)= 

. 

For spherical cavities (Fig.Sa), the upper boundary starts at max( CY;)= 22.8 MPa 

The survival zone for vertical ellipsoids is seen in Fig. 5b. The survival zone 
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29.3 h4Pa for zero lateral stress and the failure lateral stress is 22.1 MPa when there is no 
vertical stress. When the lateral stress reaches 31.5 MPa, the failure mode changes from 
equatorial circle failure to polar, point fiiilure by a small change in conditions (o i ,  02). 

are by isolated point failure as indicated in Fig.5~. The position of failure points on the 
cavity surface changes at points of tangent discontinuity of the curve bounding the 
survival zone. The vertical stress-dominated failure boundary of the survival zone starts 
at max( OF)= 19.2 MPa when there is no lateral stress. In this case, failure occurs at the 
poles. As the lateral stress increases, the failure point switches from poles, to lateral 
equatorial points and back to the poles iis suggested in Fig. 5c. The horizontal failure 
curve appears to consist of two linear segments. For smaller vertical stresses the points of 
failure are at the poles while for the upper linear segment, failure occurs at the top and 
bottom lateral equatorial points. 

Breaks in slope of the survival zone boundary curve correspond to failure mode 
transition points (i.e., isolated stress states at which two modes of failure occur 
simultaneously). For the horizontal cavity, the vertical and horizontal failure envelopes 
meet at the 31.6 MPa lateral stress. At that point, the vertical stress of 24.6 MPa yields 
to failure at the poles, but when the vertical stress decreases to 24.4 m a ,  the failure 
points switch to the lateral equatorial positions. In Fig.Sd, the variation of failure function 
along the cavity surface at this critical stress state (6; = 31.6 MPa , where the 
0,- = 24.6 MPa) is given in three-dimensional perspective. As is seen in Fig.54 the region 
where the failure function exceeds zero extends from the poles to the lateral equatorial 
points. On that vertical pole-to-pole ellipse, values of the failure function are greater than 
zero at the points near the poles and very close to zero elsewhere along this curve. This 
figure suggests that, the transition between the two modes of point failure is through line 
failure. 

From the above numerical results a general picture seems to emerge. A cavity 
survival zone exists in the space of constraints ( oi, og , p ,  texture, etc.). This zone is 
bounded by a set of hypersurfaces each of which corresponds to a failure mode. For 
symmetric cavities (such as spheroids) the hypersurfaces join at conditions of high 
symmetry ( for example oi= 0,- for a sphere). The horizontal cavity illustrates the fact 
that while discontinuities in the slope of the boundary curve indicate a switch in the 
location of the failure points, such switching can occur in the absence of such a 
discontinuity. Finally, we conjecture that for low symmetry cavities, point failure (and 
not line or h l l  surface failure) is the dominant mode. 

For the horizontal ellipsoid, both vertical and horizontal stress-dominated failures 

VUG STABILITY WITHIN A BASIN 
Vugs (natural cavities) are important for petroleum reservoir characteristics. Our 

analysis shows that the many system parameters interact in complex ways to produce 
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vug stability/instability to collapse/failure. The vug stability criteria is obtained in terms 
of basic parameters characterizing the internal state of a basin or reservoir system. 

vuggy reservoirs. Our analysis predicts the range of vug stability in terms of vug shape, 
orientation, far-field stress, fluid pressure and matrix texture. If the distribution of these 
parameters are known, then zones of vug stability within a basin can be delineated. 

To illustrate the nature of vug stability within a basin, consider the case of no net 
lateral basin compressiodextension and assess basin stresses via a purely poroelastic 
model. This one-dimensional problem can be solved exactly. The ratio of lateral stress to 
vertical stress (stress anisotropy ratio) at the depth d can be expressed in terms of fluid 
pressure and vertical stress at that depth as 

Our vug collapse criterion allows for the prediction of the range of stability of 

a; v I-2v p -=- +-a:. 
a; I - v  I -v  OZ 

(34) 

0; and 0; in the above equation are the principal compressive stresses as defined in 
Eq.(32). For the simple case wherein the fluid pressure is hydrostatic and the fluid mass 
density has a constant value pr then p = pfgd +O. lMPa (for gravitational acceleration g 
and depth 6). If the rock (matrix plus pore fluid) has constant mass density pT then one 
can evaluate vertical far-field stress and stress anisotropy ratio as 

0; = P,@ 

0; v I-2v P f  
a; I - v  I - v  p ,  

(35) 

-=- +-a- 

These formulae allow for the analysis of the depth-dependence of vug stability for a 
normally (i.e. hydrostatic) fluid pressured regime. 

Vug stability/depth curves for a homogeneous basin under the effect of overburden 
stresses and hydrostatic fluid pressure are shown in Fig.6. In this graph, depth is plotted 
against vug orientation for several ellipsoid aspect ratios. All other parameters (rock 
texture and mineralogy) are kept constant as in Eqs.(29) and (30) with porosity 4-0.2. 
The results of Fig.6 show the discrimination in the range of vug stability with respect to 
orientation and shape. For a given aspect ratio, the depth below which vugs are unstable 
depends strongly on orientation. 

must be accounted for. Thus, we developed a computational module which taken as 
input matrix poroelastic constants, far-field stress, fluid pressure and vug orientation and 
shape and then gives a judgment on vug stability as the output. 

In an actual system there is a statistical distribution of vug shapes and 
orientations: let o be the vug orientation angle (0 < o < z/ 2) and E be the vug aspect 
ratio (0 < E < =) . Let the vug distribution y( w, E )  be defined as 

To analyze a particular basin or reservoir system all the above-cited parameters 

' 

y d d e  =fraction of vugs in 
Then the fiaction of surviving vugs, xs, is 

1 1  



Mechanical Failure of Cavities in Poroelastic .Media 

0 9  

for 29(F)= I,F > O;U,F < 0 where F is The vug failure criteria (-0 for failure). From 
Fig.6 one may deduce that x s  starts as one at d = 0, remains one for a depth interval, and 
then monotonically decreases to zero for the simple case of Fig.6. However, if fluid 
pressure is locally nonhydrostatic and as rock texture and mineralogy are not d- 
independent, it is seen that xs can be a complex function of d. 

ffom Phillips Petroleum Company on the Midland Basin at the well location: 
longitude=102.8 and lattitude=32.2. At this location, the variations of lithology and 
mineralogy with depth are as in Tables 2 and 3. 

For simplicity, in each formation brittle minerals, such as quartz, feldspars and 
chert, are combined in the dolomite group, whereas softer minerals are combined in the 
calcite group. The grain sizes of the calcite and dolomite groups are assumed to be equal 
to the average grain size of the corresponding formation. The original and current fluid 
pressures are taken fkom the field reports (data of Phillips Petroleum Company) 
surveying the region of longitude 102.6-102.8 and lattitude 32.06-32.22 (that includes the 
well ffom which the lithological data was obtained). The lateral stress ratio is calculated 
throughout depth assuming there was no lateral displacement @e., using formula 34). 

The sequence of formations with depth, simplified rock texture and original (pre 
petroleum production) and current state fluid pressures in each formation are given in 
Fig.7. With these data, the vug survival analysis was performed for the Yates, San 
Andres, Clearfork, Simpson (McKee) and Ellenburger formations. The results are as 
follows. 

A preliminary vug stability analysis was performed with lithological data obtained 

e 

e 

e 

In the Yates formation, the spherical vugs within the lower 110 meters of the 
formation (i.e., below 1270 meters from the surface) are predicted to collapse. The 
survival curves for ellipsoidal vugs are similar to those in Fig.6, i.e., the vertical vugs 
survive deeper than spherical vugs do, whereas the horizontal ones collapse at 
shallower depths. 
In the San Andreas formation, curreint fluid pressures are much lower than the original 
ones. At the original state, all vugs survive at all depths within the formation. With 
the current state of fluid pressures, although spherical vugs do not collapse within the 
formation, horizontal or nearly horizontally oriented ones with aspect ratio &0.5 do. 
Additional decrease in the fluid pressure will result in large scale vug collapse in this 
formation. 
In the Clearfork formation, all vugs survive at all depths within the formation for both 
the original and current state of fluid pressures. 

12 



Table 2. Lithology and thickness of formations at the well location longitude=102.8 and lattitude=32.2. 

Geologic Age 
Quaternary 
Tertiary 
Cretaceous 
Triassic 
Permian-Ochoan 
Permian-U.Guand. 
Permian-L.Guand. 
Permian-Leonardian 
Permian-Wolfcamp 
Pennsylvanian 
Mississipian 
Devonian 
Silurian 
Ordovician- 
Mohawkian 
Ordovician-Canadian 

Formation 

OgaIlala 

D o c h  
Dewey-Lake 

Yates 
San Andres 
Clearfork 
Wolfcamp 

Atoka 
Barnett 

Woodford 
Fusselman 
Simpson 
(McKee) 

Ellenburger 

Lithology 
SS-Sh 

Sandstone 
ss-LS 
Shale1 

SS-Anhyd. 
Dolomite 1 
Dolomite3 
Limestone 
Limestone 
Conglomer. 

Shale3 
Dolomite4 

Sh-LS 

LS-Sh 

Dolomite5 

Thickness (m) 
170 
175 
175 
170 
170 
520 
630 
405 
15 
10 
10 
110 
110 
50 

990 

Table 3. Mineralogy of formations at the well location longitude=102.8 and lattitude=32.2. 

Formation 

Quaternar 
Y 

Cretaceous 
Dockum 
Dewey- 
Lake 
Yaks 
SZUl 

Andres 
Clearfork 

Atoka 
Barnett 
Woodford 
Fusselman 
Simpson 
Ellenburger 

ogallala 

wolfcamp 

- 
A V . ~  
size 

0.60 

1.10 
0.90 
0.03 5 
0.03 

0.25 
0.20 

0.15 
0.20 
5.00 
0.15 
0.03 
0.25 
0.20 
0.25 

(m) 

- 

0.60 

0.92 
0.48 
0.30 
0.25 

0.30 
0 

0 
0 
0.55 
0.04 
0.25 
0 
0.23 
0 - 

Felds. 

0.10 

0.03 
0.05 
0.05 
0.05 

0.04 
0 

0 
0 
0.10 
0.01 
0.05 
0 
0.02 
0 - 

Clays 

0.30 

0.05 
0.05 
0.65 
0.70 

0.03 
0.08 

0.15 
0.35 
0.35 
0.35 
0.40 
0.01 
0.25 
0.02 - 

Calcit 

0 

0 
0.40 
0 
0 

0.05 
0 

0.60 
0.55 
0 
0.60 
0 
0.18 
0.48 
0.10 - 
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Dolo. 

0 

0 
0.02 
0 
0 

0.50 
0.80 

0.15 
0.04 
0 
0 
0 
0.78 
0.01 
0.85 - 

Anhy 

0 

0 
0 
0 
0 

0.06 
0.09 

0.08 
0.05 
0 
0 
0 
0 
0 
0.03 - 

Halite 

0 

0 
0 
0 
0 

0 
0.01 

0 
0 
0 
0 
0 
0 
0 
0 - 

Chert 

0 

0 
0 
0 
0 

0.0 1 
0.02 

0.02 
0 
0 
0 
0.30 
0.02 
0 
0 - 

- 
Pyrite 

0 

0.01 
0 

0 
0.01 
0 
0 
0 
0.01 
0.01 
0 - 



-7 

Mechanical Failure of Cavities in Poroelastic Media 

In the Simpson (McKee) formation, for the original state of fluid pressures, most of 
the vugs survive except the horizontal ones with aspect ratio ~10.3. For the current 
state of fluid pressures which are much lower than the original ones, the sphere critical 
line is within the formation and the spherical vugs collapse in the lower 10 of the total 
50 meters. 
In the Ellenburger formation, all vugs survive at all depths within the formation for 
both the original and current state of fluid pressures. But the current fluid pressure is 
very near to the limit of vug collapse. For example, when the current pressure is 
lowered by I MPa (such that, it is (decreased fi-om 9.65 MPa to 8.65 MPa at the top 
of the formation), the horizontal vugs with aspect ratio ~<0.2 located near the bottom 
of the formation will collapse. Furtliermore, the horizontal vugs with E= 0. I will 
collapse in the lower 70 meters of the formation. 
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APPENDIX 

ELASTIC FIELDS AROUTVD AN ELLIPSOIDAL CAVITY 

Eshelby (1 957) determined the t:lastic fields inside and outside of an ellipsoid 
inclusion in an infinite medium by superposition of several strain fields. When the 
medium is isotropic the stress-strain relation has the form 

where c&is the Kronecker delta, A is Lame’s constant and v is the Poisson’s ratio. 
Eq.(Al) is written in indicia1 notation (all indices having the range 1-3) with the 
summation convention on repeated indices implied. 
Consider an ellipsoidal inclusion referred to a rectangular xl-fi-ame (i=1-3) with origin at 
the center of the ellipsoid (see Fig. 1). Following the work of Eshelby (1957), the 
“constrained” and “transformed7’ strain fields are related by 

V ninjE& - nk(nie;, + nj&) 1 
.$(out) = &i(in)+-ninjn,.n,~& -- 

1-v 1-v 
where E $  and &bare the elements of “constrained7’ and “transfo~med~~ strain tensors, and 
(in) and (out) describe the fields inside and just outside the inclusion boundary, 
respectively. ni is the i* component of the unit normal at the boundary pointing inside the 
inclusion. The transformed strain is an arbitrary uniform strain whereas the constrained 
strain is the strain due to the applied trimsfomed stress at the boundary of the inclusion 
while the boundary is constrained and c:an not have any displacements. The relation 
between constrained and transformed six-ains is 

where S is a forth order tensor containing the spatial derivatives of the integral of the 
Kelvin solution over the ellipsoidal boundary. The elements of this tensor are 

E; (in) = Sij,,,,&, (A31 

where 
g ,  = (1 - 2v)(6,r, + 6,r, - Skll;) + 3l;EJ 

(5) = (sin@cosO,sin$sinO,cos@) 
S depends only on ellipsoid geometry (a, b, c) and Poisson’s ratio v. From 

symmetry SUM = Sjjkl = Sufi.  The non zero elements of S are 
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where 

and the underlined indices do not obey summation convention. 

outside the inclusion is obtained by superposition 
When a far-field strain (or stress) field if (or om) exists, the total strain just 

Eii = €;(Out) + E; (A71 

If there is a cavity instead of the inclusion, the stress continuity condition will yield a 
relation between far-field strain and transformed strains as 

E;(in)+E&; - E ;  = O (A81 
Using Eqs.(A2), (A7) and (A8), the elements of total strain tensor can then be 

expressed in terms of the transformed strain 

(A91 

(A101 

V ninjnkn& - - ninj& - n,(niEJk + nj&;k) 

and the relation between the transformed and far-field strains are obtained as 

1 
Eii = €; +- 

1-v 1-v 

E&; = (6ik6jl - Siiw)&L 

&; = qjmE;n (A1 1) 

(A10) leads to an inverse expression between transformed and far-field strain 
fields through a forth order tensor C in the form 

We can now express the strain field at the boundary of the cavity in terms of far- 
field strains 

17 



ninjak, - nknii5jl - nknjSi, ‘V ninjnkn, - -- 
1-v 

1 
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CAPTIONS OF FIGURES 

Fig.1 Schematic ellipsoidal cavity in a poroelastic continuum with properties v , a 
subjected to stress ow applied far from the cavity. 

Fig.2 Failure function values on the surface of the ellipsoidal cavity ( b l ~ 0 . 5 )  at the 
failure state of stress. (a) horizontal cavity (w=O). (b) w= d6. (c) u= d 3 .  (d) 
vertical cavity (cc, = d2). 

Fig.3 Variation of failure stress of an ellipsoidal cavity (b/a=0.5) with porosity and 
fluid pressure, at the stress anisotropy /oF=0. 5. 

Fig.4 Effect of cavity shape and orientation to the failure stress, at constant 
porosity Cp= 0.2, fluid pressure p=5 MPa and stress anisotropy 0,- /oi =0.5. 

Fig.5 Lateral versus vertical far-field stress failure envelopes for cavities in constant 
porosity e0.2 and fluid pressure p=5 m a .  (a) spherical cavity, (b) vertical 
ellipsoidal cavity (b/a=O. 5), (c) horizontal ellipsoidal cavity (b/a=O. 5), (d) 
failure function on the surface of the horizontal ellipsoid at the failure mode, 
transition zone. 

Fig.6 Depth of survival curve for ellipsoidal vugs with different shape and 
orientations in a calcite-dolomite basin (QF0.2) under overburden stresses and 
hydrostatic fluid pressure. 

Fig.7 Sequence of formations, simplified rock texture and fluid pressures at each 
formation of the Midland basin at the well location: longitUde=102.8, 
lattitude=32.2. 
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