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W e  have examined t h e  long-term (days)  f a t e  of b r e a k s  induced  i n  

t h e  DNA of human P3 e p i t h e l i a l  t e r a t o c a r c i n o m a  cells by a s i n g l e  

dose  of JANUS f i s s i o n - s p e c t r u m  n e u t r o n s  (mean energy  0.85 M e V ) .  

W e  u s e d  a l k a l i n e - f i l t e r  e l u t i o n  methods t h a t  a s s a y  t o t a l i t y  of 

s i n g l e -  and  doub le - s t r and  b reaks ,  g e n e r a l l y  referred t o  as 

s i n g l e - s t r a n d  b r e a k s  (SSBs). When t h e  ce l l s  are allowed a period 

of  r e p a i r  i n c u b a t i o n ,  t h e s e  b r e a k s  are t o t a l l y  sealed by  7 h o u r s  

af ter  t h e  o r i g i n a l  exposure,  b u t  f o l l o w i n g  t h e  i n i t i a l  r e p a i r  t h e  

DNA i s  d i sman t l ed ,  as r e v e a l e d  by t h e  reappearance  of  SSBs. T h i s  

secondary  breakage  i s  a lmost  as e x t e n s i v e  as t h a t  caused  by t h e  

o r i g i n a l  neu t ron  exposure,  wit.h a maximum a t  16-18 h o u r s  af ter  

i r r a d i a t i o n .  F i n a l l y ,  t he  DNA i s  once a g a i n  r e j o i n e d ,  r e g a i n i n g  

i t s  o r i g i n a l  s i z e  by 40 hour s  af ter  i r r a d i a t i o n .  T h e  secondary 

r e p a i r  phenomenon may have an  e d i t i n g  f u n c t i o n ,  o r  it may 

r e p r e s e n t  t h e  p r o c e s s i n g  of r e s i d u a l  damage l e f t  u n r e p a i r e d  

d u r i n g  t h e  i n i t i a l  r e j o i n i n g  of t h e  backbone b r e a k s .  
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1. Introduction 

Ionizing radiation, such as neutrons, of higher linear 

energy transfer (LET) than gamma- or x-radiation, have long been 

known to be more efficient per unit absorbed dose in the killing 

of cultured cells (Hall et al. 1975; Field, 1976; Ngo et al. 

1977). We confirmed this in our laboratory for human P3 cells 

exposed to fission-spectrum neutrons from the JANUS reactor (Hill 

et al. 1988, who discussed the use of these cells in 

radiobiological research). Neutrons have also been shown to be 

more efficient than low-LET radiations in cellular mutagenesis 

(Hei et al. 1988; Grdina et al. 1988, 1989), transformation (Han 

and Elkind 1979; Hill et al. 1985; Miller et al. 1988), the 

production of chromosome aberrations (Schwartz et al. 1988), and 

tumorigenesis (Thomson et al. 1981). The reason for this greater 

relative biological effectiveness (RBE) of neutrons is not known. 

DNA damage, which is clearly implicated in mutagenesis as 

well as transformation (Reddy et a l .  1982; Weinberg 19891, is 

also considered to be the critical target for radiation-induced 

cell death, and the possible importance of unrepaired DNA damage 

in lethality has been discussed (Dugle et a l .  1976; Ritter et al. 

1977; Painter et al. 1974; Painter 1980). However, studies of 

DNA damage and repair have revealed an RBE of less than one for 

the induction of DNA damage by neutrons. Our measurements of DNA 

single-strand breaks (SSBs) using the technique of alkaline 

elution (which measures the sum of all frank strand breaks, 

including double-strand breaks and alkali-labile sites) confirm 

the recent observations that these lesions are induced less 
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e f f i c i e n t l y  by n e u t r o n s  t h a n  by gamma- or  x-rays (Furuno et al. 

1979; van der Schans et a l .  1983; M c W i l l i a m s  et al. 1983; Peak et 

al. 1989) .  F u r t h e r ,  measurements of DNA damage u s i n g  t h e  

t e c h n i q u e s  of n e u t r a l  s ed imen ta t ion  and  n e u t r a l  e l u t i o n ,  a s s a y s  

t h a t  are c o n s i d e r e d  t o  measure p r i m a r i l y  double-s t rand  b r e a k s  

( D S B s ) ,  have shown t h a t  neu t rons  hav ing  RBE v a l u e s  between 1 and  

2 are n o t  s i g n i f i c a n t l y  more e f f i c i e n t  t h a n  gamma r a y s  a t  

i n d u c i n g  t h e s e  l e s i o n s  (Furuno et al. 1979; Maki et al. 1986; 

P r i s e  et al. 1987; Fox and McNally 1988; Grdina et al. 1989) .  W e  

have conf i rmed a n  RBE of 1 f o r  t h e  i n d u c t i o n  of DSBs by JANUS 

f i s s ion - spec t rum n e u t r o n s  (Peak and  Peak, unpubl i shed  

in fo rma t ion )  . 
These r e s u l t s  sugges t  t h a t  a h i g h e r  p r o p o r t i o n  of t h e  DNA 

damage caused  by  neu t rons ,  compared w i t h  t h a t  caused  by r a d i a t i o n  

o f  lower LET, must lead t o  ce l l  dea th ,  which implies  t h a t  t h e  

l e s i o n s  induced  by neu t rons  might be m o r e  s e v e r e  t h a n  t h o s e  

induced  by  low-LET r a d i a t i o n ,  s i n c e  t h e i r  repair m i g h t  be more 

d i f f i c u l t .  W e  r e c e n t l y  produced ev idence  of t h i s  i n  s t u d i e s  of 

the repair  of SSBs induced  by gamma-rays and  f i s s ion - spec t rum 

neu t rons .  I n  b o t h  a r o d e n t  (Chinese hamster  l ung  V 7 9 )  and a 

human ( P 3  e p i t h e l i o i d )  c e l l  l i n e ,  n e u t r o n s  induced SSBs (as 

assayed  by a l k a l i n e  e l u t i o n )  t h a t  were r e f r a c t o r y  t o  repa i r .  A 

s t a t i s t i c a l l y  s i g n i f i c a n t  f r a c t i o n  of SSBs induced by 6 Gy of  

neu t rons  remained u n s e a l e d  a f t e r  1 5 0  min, whereas t h e  l a r g e r  

number of b r e a k s  caused  by exposure t o  3 Gy of gamma-rays w e r e  

a l l  r a p i d l y  r e j o i n e d ,  w i t h  t h e  p r o c e s s  complete a f t e r  90  min 

(Peak e t  al. 1 9 8 9 ) .  
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The possibility exists that these unrepaired DNA breaks 

after a 6 Gy exposure may be significant in neutron-induced cell 

killing; thus it is important to elucidate their long-term fate 

and establish whether they are eventually repaired. 

experiments described here investigate the long-term processing 

of neutron-induced SSBs. 

The 

2.  Materials and methods 

2.1. Cell culture 

Methods for culture of P3 cells were as described previously 

(Peak et al. 1989). Culture medium was R P M I  1640 (GIBCO), 

supplemented with 10% fetal calf serum, glutamine (20 m o l  dm3), 

and antibiotics (penicillin, 100 units ml-’, and streptomycin, 100 

pg ml-’). 

growing cells. 

The experiments described here used asynchronously 

2.2. Radiolabelinq of cellular 

Cells were seeded into 25-ml T-flasks at an initial density 

of l o 6  cells per flask and allowed to grow for 48 h at 37OC in 
medium containing [14C] thymidine (ICN, Irvine, CA, 2.3 x l o 6  kBq 
mol-’) at a concentration of 0 . 3 7  kBq m1-I. The cells did not 

reach confluency during this period. Prior to radiation 

exposure, cells were incubated for 1 h in medium free of label 

and were not supplied with any additional labeled thymidine for 

the remainder of the experiment. 
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2.3. Irradiation 

Immediately prior to neutron irradiation, the T-flasks 

containing the cells were filled with ice-cold medium and placed 

in a neutron-compatible incubator specially designed so as not to 

perturb the radiation field. The cells were kept meticulously 

cold (0.5OC) during the irradiation. Neutron irradiations were 

carried out in the high-flux room of the JANUS reactor at Argonne 

National Laboratory at a dose rate of 35.8 cGy min-'. 

characteristics of this room were described previously (Peak et 

al. 1989). All cells were exposed to the same total dose (6 Gy) 

except for control cells, which were not irradiated. At the end 

of the irradiation period, cells were immediately transferred to 

wet ice prior to cold trypsinization or repair incubation. 

Irradiation of cells with 6oCo gama-rays has been described (Hill 

et al. 1988; Peak et al. 1989). 

The 

2.4 .  Post-irradiation treatments 

Following neutron exposure, t..e co d growth medium was 

removed and cells were rinsed with ice-cold calcium- and 

magnesium-free phosphate-buffered saline (PBS-A). For control 

cells and those not permitted a repair period, this was 

immediately followed by trypsinization on ice. For DNA repair 

measurements, 5 ml of warm medium was pipetted into each flask 

and the cells were incubated at 37OC for from 0 to 4 7  h before 

trypsinization. In some experiments duplicate T-flasks of cells 

were treated in parallel. Following irradiation and repair 

incubation, one of the pair was exposed to trypan blue to measure 

the viability of the cells. 
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2.5 .  A l k a l i n e  e l u t i o n  

The a l k a l i n e  e l u t i o n  a s s a y  used  i n  o u r  l a b o r a t o r y  f o r  t h e  

measurement of DNA damage i n  mammalian cells  h a s  been described 

p r e v i o u s l y  ( H i l l  e t  al. 1988; Peak et al. 1 9 8 9 ) .  E l u t i o n  w a s  a t  

p H  1 2 . 1 ,  so t h e  damage a s sayed  r e p r e s e n t s  t o t a l  f r a n k  s c i s s i o n s  

p l u s  a l k a l i - l a b i l e  sites. These DNA l e s i o n s  are here 

c o l l e c t i v e l y  referred t o  as s i n g l e - s t r a n d  b r e a k s  (SSBs). The 

i n i t i a l  y i e l d  of SSBs produced by t h e  neu t ron  exposure  was 

c a l c u l a t e d  as described p r e v i o u s l y  ( H i l l  e t  al. 1988)  by 

comparison of t h e  e l u t i o n  of DNA f r o m  s t a n d a r d  cel ls  irradiated 

w i t h  3 Gy of 6oCo gamma-rays. 

damage, w e  c a l c u l a t e d  t h e  percentage  of i n i t i a l  b r e a k s  remaining 

af ter  repair  i n c u b a t i o n .  

To  estimate repair of t h e  DNA 

3; R e s u l t s  

W e  p r e v i o u s l y  showed t h a t  repair of SSBs  produced by neu t ron  

exposure  i s  s lower  t h a n  t h a t  fo l lowing  i r r a d i a t i o n  w i t h  gamma 

r a y s ,  and t h a t  a f te r  repair t i m e s  as l o n g  as 3 h, a s t a t i s t i c a l l y  

s i g n i f i c a n t  pe rcen tage  ( 1 0 % )  of t h e  b r e a k s  induced by n 

remained unsea led  (Peak e t  al. 1 9 8 9 ) .  

I n  t h e  c u r r e n t  s tudy ,  w e  a l lowed t h e  ce l l s  longe r  repair  

t i m e s  t o  de te rmine  whether t h i s  u n r e p a i r e d  f r a c t i o n  of b reaks  

would e v e n t u a l l y  be sealed, and w e  demonstrated t h a t  a l l  t h e  

b reaks ,  as  measured b y  a l k a l i n e  e l u t i o n ,  w e r e  sealed w i t h i n  

5-7 h .  F i g u r e  1 shows one such experiment t h a t  compares e l u t i o n  

p r o f i l e s  of DNA from u n i r r a d i a t e d  cel ls ,  cel ls  t h a t  had  r e c e i v e d  

6 Gy of neut rons ,  and t h o s e  t h a t  were i n c u b a t e d  f o r  6 hours  

fo l lowing  neu t ron  i r r a d i a t i o n .  C e l l s  exposed t o  6 Gy of neut rons  
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i n c u r r e d  many SSBs i n  t h e i r  DNA, as shown by t h e  i n c r e a s e d  rate 

of e l u t i o n  compared w i t h  DNA f r o m  u n i r r a d i a t e d  c o n t r o l  cells .  

A f t e r  a 6-h repair incuba t ion ,  t h e  e l u t i o n  p ro f i l e  w a s  

i n d i s t i n g u i s h a b l e  f rom t h a t  of u n i r r a d i a t e d  DNA, i n d i c a t i n g  

complete r e j o i n i n g  of SSBs.  

W e  con t inued  t o  monitor  DNA s i z e  fo l lowing  even l o n g e r  

repair  i n c u b a t i o n  t i m e s .  The effect  of 18  h of repair  i n c u b a t i o n  

( a l s o  shown i n  F i g .  1) was t h a t  the  DNA t h a t  had r e g a i n e d  i t s  

o r i g i n a l  s i z e  after 6 h of repair had, af ter  18 h, become 

rebroken and e l u t e d  almost  as fas t  as t h e  DNA from cel ls  t h a t  had 

no repair  i n c u b a t i o n .  

The i n t e g r i t y  of t h e  DNA a t  v a r i o u s  t i m e s  th roughout  t h e  

47-h period f o l l o w i n g  exposure t o  6 Gy of neu t rons  i s  i l l u s t r a t e d  

i n  F i g .  2 ,  which summarizes t h e  r e s u l t s  of f i ve  separate repair 

exper iments .  A f t e r  each  repair time t h e  DNA w a s  eluted, and we 

c a l c u l a t e d  t h e  b reaks  as a percentage  of t h o s e  induced by t h e  

o r i g i n a l  r a d i a t i o n  i n s u l t .  Where three o r  more measurements w e r e  

made after t h e  s a m e  i ncuba t ion  t i m e ,  t h e  errors are shown. Other  

p o i n t s  r e p r e s e n t  t h e  mean of t w o  measurements. F ig .  2 c l e a r l y  

i l l u s t r a t e s  t w o  d i s t i n c t  phases  of DNA r e p a i r  fo l lowing  neu t ron  

i r r a d i a t i o n .  T h e  pr imary r e p a i r  phase w a s  completed between 5 

and 7 h a f t e r  t h e  i n i t i a l  i n s u l t ,  t o  t h e  e x t e n t  t h a t  SSBs as 

measured by a l k a l i n e  e l u t i o n  are a l l  r e j o i n e d .  Fol lowing t h i s  

i n i t i a l  s e a l i n g  of  t h e  breaks, t h e  DNA was once a g a i n  broken and 

t h i s  secondary breakage w a s  almost as e x t e n s i v e  as  t h a t  caused  by 

t h e  o r i g i n a l  neu t ron  exposure.  The amount of breakage seen  a f t e r  

1 6  h of r e p a i r  i ncuba t ion  w a s  80% of t h e  i n i t i a l  y i e l d  (F ig .  2 ) .  

The secondary round of  breakage w a s  i n  t u r n  fo l lowed by break  



9 

r e j o i n i n g ,  w i th  t h e  DNA r e g a i n i n g  i t s  o r i g i n a l  s i z e  (no 

9042 

measureable  b r e a k s  remaining)  w i t h i n  40-47 h a f t e r  n e u t r o n  

exposure .  

It  i s  clear from Fig .  1 t h a t  t h e  e l u t i o n  p r o f i l e s  of 

irradiated DNA are v i r t u a l l y  i d e n t i c a l  i n  shape  t o  t h e  18-h 

rebroken  DNA. T h i s  i s  evidence  t h a t  t h e  rebreakage  phenomenon i s  

n o t  due t o  a random degrada t ion  of t h e  DNA, which would have 

caused  an  i n i t i a l ,  v e r y  r a p i d  e l u t i o n .  I n  o r d e r  t o  f u r t h e r  

de t e rmine  t h a t  t h e  secondary breakage  of DNA was n o t  j u s t  t h e  

m a n i f e s t a t i o n  of  DNA degrada t ion  i n  ce l l s  t h a t  had n o t  s u r v i v e d  

the  n e u t r o n  i n s u l t ,  t he  state of  t h e  ce l l s  fo l lowing  exposure  t o  

6 Gy of n e u t r o n s  w a s  monitored by mic roscop ic  examinat ion .  C e l l s  

t h a t  had been  exposed t o  t h i s  dose  of  n e u t r o n s  remained a t t a c h e d  

t o  t h e  s u r f a c e  of t h e  T-f lask th roughou t  t h e  repair i n c u b a t i o n  

(up t o  47 h p o s t  i r r a d i a t i o n ,  t h e  l o n g e s t  t i m e  measured) .  During 

t h i s  t i m e  t h e r e  was no decrease i n  t r y p a n  b l u e  exc lus ion ,  

demons t r a t ing  t h a t  t h e  ce l l s  r e t a i n e d  i n t e g r i t y  of  t he  membrane. 

A s  f u r t h e r  ev idence  t h a t  t h e  c e l l s  were s t i l l  viable a t  t h e  t i m e  

o f  t h e  r e p a i r  measurements, t h e  cel ls  completed a d i v i s i o n  c y c l e  

d u r i n g  t h e  f i r s t  24 h r e p a i r  i n c u b a t i o n  and reached  conf luence .  

However, because  cel ls  w e r e  on ly  a l lowed t o  i n c o r p o r a t e  labeled 

thymidine  i n t o  t h e i r  DNA du r ing  t h e  p r e - i r r a d i a t i o n  p e r i o d ,  o u r  

a l k a l i n e  e l u t i o n  measurements d i d  n o t  i n c l u d e  newly s y n t h e s i z e d  

DNA. 

4 .  Discuss ion  

I t  has been sugges t ed  t h a t  t h e  h igh  b i o l o g i c a l  e f f e c t i v e n e s s  

of  n e u t r o n s  f o r  k i l l i n g  and muta t ing  ce l l s  may  be t h e  r e s u l t  of 
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a n  i n a b i l i t y  of t h e  cells t o  repair neutron-induced damage (Peak 

et al. 1989), u t  r e l a t i v e l y  l i t t l e  i s  known about  t h e  repair of 

DNA damage after exposure t o  neut rons .  R e s u l t s  from some s t u d i e s  

have i n d i c a t e d  t h a t  s t r a n d  b reaks  induced by fast neu t rons  are 

r a p i d l y  repaired, a l though  i n  some cases a f r a c t i o n  of t h e  b reaks  

appeared t o  be r e f r a c t o r y  t o  r e p a i r  (van der Schans et al. 1983; 

Sakai  et al. 1987; Hesslewood 1978). A f e w  s t u d i e s  have 

compared t h e  k i n e t i c s  of break  repair fo l lowing  expos'ure t o  

neu t rons  and gamma r a y s  and reported t h a t  k i n e t i c s  w e r e  s i m i l a r  

a f te r  r a d i a t i o n  doses  i n  t h e  2-5 Gy range .  ( M c W i l l i a m s  et al. 

1983; Maki et al. 1986) .  However, by c o n t r a s t ,  ano the r  

comparison u s i n g  doses  two o r d e r s  of magnitude larger did show 

t h a t  more neutron- t h a n  gamma-induced b reaks  remained un repa i r ed  

(Furuno et al. 1979) .  Our own p r e v i o u s l y  pub l i shed  work showed 

t h a t  a s t a t i s t i c a l l y  s i g n i f i c a n t  f r a c t i o n  of t h e  SSBs induced  by 

6 Gy of f i s s ion - spec t rum neut rons  remain un re jo ined  fo l lowing  

repair t i m e s  as  l o n g  as 3 h (Peak et al. 1989) .  None of t h e s e  

s t u d i e s  has  examined r e p a i r  of b reaks  af ter  incuba t ion  t i m e s  

l onge r  t h a n  3-4 h, so t h e  even tua l  fa te  of  t h e  u n r e j o i n e d  b reaks  

was unknown. 

The experiments  r e p o r t e d  h e r e  have confirmed t h a t  DNA breaks  

induced by neut rons  are much more d i f f i c u l t  t o  repair t h a n  t h o s e  

induced by gamma r a y s .  It r e q u i r e d  a f u l l  5-7 h of post- 

i r r a d i a t i o n  incuba t ion  b e f o r e  a l l  measurable b reaks  w e r e  

r e j o i n e d .  A p o s s i b l e  reason  f o r  t h e  r e c a l c i t r a n c e  of neutron-  

induced DNA damage i s  sugges ted  by models f o r  DNA damage based on 

t h e  energy d e p o s i t i o n  by r a d i a t i o n s  of  d i f f e r e n t  LET. High-LET 

r a d i a t i o n  may g i v e  r ise t o  c l u s t e r s  of damage i n v o l v i n g  b o t h  base 
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and s u g a r  damage a t  t h e  sites of  s t r a n d  breakage, and  these 

damage sites c o u l d  be more d i f f i c u l t  t o  repair t h a n  t h e  isolated 

b reaks  o r  damaged bases caused  by low-LET radiat ion (Holley and 

C h a t t e r j e e  1990) .  The importance of such c l u s t e r s  of damage i n  

the repair of double  s t r a n d  b r e a k s  h a s  been d i s c u s s e d  by Ward 

(1988) .  F u r t h e r ,  neu t rons  cou ld  g i v e  r i se  t o  chemical  changes i n  

DNA d i f f e r e n t  t h a n  t h o s e  produced by low-LET r a d i a t i o n s .  T h i s  

might lead t o  d i f f e r e n c e s  i n  t h e i r  repair. Bedford and  Goodhead 

(1989) sugges t ed  t h a t  t h e  d i f f e r e n t  RBEs shown by r a d i a t i o n  of 

d i f f e r e n t  q u a l i t i e s  might depend on a d i f f e r e n t  chemica l  spectrum 

of damage b e i n g  induced  i n  i n d i v i d u a l  n u c l e o t i d e s .  

By c o n t i n u i n g  t o  incuba te  t h e  cel ls  f o r  periods of up t o  

47 h, w e  have demonstrated f o r  t h e  f irst  t i m e  t h e  complex n a t u r e  

of qhe c e l l u l a r  p r o c e s s i n g  of DNA fo l lowing  neut ron  exposure,  

i n v o l v i n g  t w o  d i s t i n c t  phases  of repair. Two p o s s i b l e  hypotheses  

t o  e x p l a i n  t h e s e  repair k i n e t i c s  are i l l u s t r a t e d  i n  F i g .  3 .  The 

f irst  phase  may s imply  be a l i g a t i o n  p rocess  t h a t  seals t h e  

r ad ia t ion - induced  SSBs t o  r e g a i n  t h e  i n t e g r i t y  of t h e  DNA, wi th  

damage t o  i n d i v i d u a l  n u c l e o t i d e s  l e f t  un repa i r ed .  Th i s  damage, 

which c o u l d  be produced d u r i n g  t h e  f i r s t  repair  p r o c e s s  i t s e l f  

(upper p a n e l )  o r  formed as a r e s u l t  o f  t h e  o r i g i n a l  r a d i a t i o n  

i n s u l t  ( lower p a n e l ) ,  i s  t h e n  r e p a i r e d  du r ing  an  e x c i s i o n  repair  

p r o c e s s  t h a t  t a k e s  many hours  t o  complete .  The  secondary 

breakage t h a t  w e  see i s  t h e  r e s u l t  of t h e  e x c i s i o n  s t ep  i n  t h i s  

r e p a i r .  I n  t h e  case of r e p a i r  of photoproducts  (py r imid ine  

dimers)  caused  by exposure t o  short-wavelength u l t r a v i o l e t  l i g h t ,  

t h e  e x c i s i o n  step h a s  been shown t o  r e s u l t  i n  measureable  DNA 

breakage i n  b o t h  mammalian c e l l s  and y e a s t  (Bradley and Taylor  
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1981, 1983; Wang and  Smith 1986; Frankenberg-Schwager et al. 

1987) .  I n  t h e  f i rs t  hypothes is ,  t h e  second phase of repair 

s e r v e s  an  e d i t i n g  f u n c t i o n  f o l l o w i n g  a n  i n i t i a l  misrepair. The 

second h y p o t h e s i s ,  which seems t h e  more l i k e l y ,  i s  c o n s i s t e n t  

w i t h  o u r  knowledge of repair processes. For example, i n  t h e  

s i t u a t i o n  i n  which a damaged base o c c u r s  on .one  s t r a n d  and  a SSB 

on t h e  o t h e r ,  the  SSB would be repaired f i rs t  because base-damage 

g l y c o s y l a s e  i s  n o t  able t o  act  on s i n g l e  s t r a n d e d  r e g i o n s  of DNA. 

Par t ia l  DNA rebreakage  and subsequent  r e j o i n i n g  h a s  been 

observed  by L e t t  and  coworkers . (Goldin et al. 1980; Okayasu 1987) 

fo l lowing  low-dose x - i r r a d i a t i o n  t o  a n  u l t r a s e n s i t i v e  murine ce l l  

l i n e  L5178Y S/S. W e  p l a n  measurernents of t h e  long-term 

p r o c e s s i n g  of t h e  DNA of P3 ce l l s  f o l l o w i n g  exposure t o  gamma 

r a y s  i n  order t o  de termine  whether t h e  complex repair  k i n e t i c s  

t h a t  w e  have observed i n  r e p a i r - p r o f i c i e n t  human cel ls  af ter  

exposure  t o  n e u t r o n s  r e s u l t  from gamma i r r a d i a t i o n  a lso.  

T h i s  work demonst ra tes  t h a t  cells  w i t h  normal repa i r  a b i l i t y  

exposed t o  high-LET r a d i a t i o n  may be a c t i v e  i n  me tabo l i c  n u c l e i c  

acid r e p a i r  processes f o r  days,  r a t h e r  t h a n  hours ,  a f t e r  

exposure.  
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LEGENDS TO FIGURES 

FIG. 1. DNA a l k a l i n e  e l u t i o n  prof i les  f o r  P3 cells after exposure  

t o  6 Gy of n e u t r o n s  fo l lowed  by repair i n c u b a t i o n .  

t r i a n g l e s ,  c o n t r o l  u n i r r a d i a t e d  cells;  circles, 6 Gy 

neu t rons ;  t r i a n g l e s ,  6 Gy neu t rons  p l u s  6 h repair; s q u a r e s ,  

6 Gy n e u t r o n s  p l u s  1 8  h repair. 

I n v e r t e d  

F I G .  2 .  Repair of SSBs by P3 cel ls  fo l lowing  exposure  t o  6 Gy of 

n e u t r o n s  as a f u n c t i o n  of i n c u b a t i o n  t . i m e .  E r r o r  bars 

r e p r e s e n t  one s t a n d a r d  e r r o r  of t h e  mean. P o i n t s  w i thou t  

e r r o r  bars are the mean of two measurements. 

FIG. 3 .  Hypotheses t o  i l l u s t r a t e  t h e  p o s s i b l e  s i g n i f i c a n c e  of t h e  

secondary  breakage  and r e j o i n i n g  of DNA f o l l o w i n g  exposure  

t o  n e u t r o n s .  A, Removal of  damage i n c u r r e d  d u r i n g  t h e  

i n i t i a l  rapid s e a l i n g  of  DNA breaks ;  B, Removal o f  damage 

l e f t  u n r e p a i r e d  d u r i n g  the  i n i t i a l  r a p i d  s e a l i n g  of  DNA 

b r e a k s .  
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