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ABSTRACT 

Many problems, such as Aroclor Interpretation, are ill-conditioned problems in which trained programs, 
or methods, must operate in scenarios outside their training ranges because it is intractable to train them 
completely. Consequently, they fail in ways related to the scenarios. 

Importantly, when multiple trained methods fail divergently, their patterns of failures provide insights 
into the true results. The SI-Combiner solves this problem of Integrating Multiple Learned Models 
(IMLM) by automatically learning and using these insights to produce a solution more accurate than any 
single trained program. In application, the Aroclor Interpretation SI-Combiner improved on the accuracy 
of the most accurate individual trained program in the suite. 

For Smart Systems, the implication of trusting a single computation or sensor that is not able to report its 
own accuracy is devastating. Once one begins to compare multiple results, majority rule may not make 
sense, especially for computations that are not provably independent. With approximate understanding 
of the conditions that confound an individual computation or sensor, the presented IMLM method allows 
sensible interpretation of multiple, possibly disagreeing, results. 

This paper presents a new fuzzy IMLM method called the SI-Combiner and its application to Aroclor 
Interpretation. Additionally, this paper shows the improvement in accuracy that the SI-Combiner’ s 
components show against Multicategory Classification (MCC), Dempster-Shafer (DS), and the best 
individual trained program in the Aroclor Interpretation suite (iMLR). 

1. Introduction 
The SI-Combiner uses a suite of trained programs, or methods, which must operate in conditions that are 
outside of their training domains and in which they may fail. The SI-Combiner incorporates application- 
specific knowledge, called scenarios, about conditions in the testing domains that can distort the inputs 
and thereby cause divergent behavior among the methods. 
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Since scenarios are defined as signal conditions, during periodic retraining the method training set 
(which does not cover the testing domain) can be synthetically extended and distorted to provide training 
samples throughout the entire testing domain. 

From the extended training set, the SI-Combiner learns two types of information: 

Scenario Identification (SI) rules, which capture how patterns of method opinions give information about 
a sample’s scenario, and Method Weighting rules, which capture for each scenario, the accuracy of a 
method’s opinion. 

Armed with the SI rules and the learned biases in the Method Weighting rules, the SI-Combiner first 
analyzes a test sample and assigns values between zero and one for each possible scenario for the 
sample. Higher numbers indicate higher likelihood that the sample belongs to that scenario. This SI 
step is key and gives the SI-Combiner its name. 

Finally, the SI-Combiner blends the scenario-based accuracy information, the method opinions and the 
scenario information producing final results, confidences, context information and explanations. 

2. Application 

2.1 Chemistry 
Certain chemical compounds named Aroclor 1242TM,1ArocZor 1254 and Aroclor 1260 have become 
environmental concerns as carcinogens. One method of detecting them is to use gas chromatography, 
which produces data in the form of chromatograms, shown in Figure 1. 
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Figure 1: Chromatograms of Aroclor 1242, Aroclor 1254 and Aroclor 1260 

Aroclor 1242 

Aroclor 1254 

Aroclor is a trademark of Monsanto Corporation. 



2.1.1 Detecting and quantifying Aroclors in chromatograms 
Aroclor Interpretation examines a chromatogram, such as shown in Figure 1 and determines the 
presence or absence of each Aroclor. For each Aroclor present, the concentration in micrograms per 
milliliter (ug/ml) is measured. Each peak represents a separate component. The x-axis value for a peak 
reveals the component’s identity, while the y-axis value indicates the concentration. 

The y-axis value, however, has no units: interpretation of a test chromatogram with unknown content 
must be based on comparisons with standard chromatograms (or standards) with known Aroclor 
concentrations. 

2.2 The Training Domain For Aroclor Interpretation 
Before processing a batch of tests, operators produce a set of five standard chromatograms with standard 
concentrations for each of the three Aroclors to create fifteen standards By comparing the 
chromatogram of a test to the fifteen standard chromatograms, a chemist or an automated pattern 
recognition method estimates the concentration or quantity of an Aroclor believed present. These single, 
pure Aroclors constitute the training domain. 

2.2.1 The Training Domain Cannot Cover The Testing Domain 
When the automated method or the chemist encounters a sample with conditions like those in the 
training domain, its chromatogram can be accurately compared with the standards. However, many real- 
life samples contain multiple Aroclors, no Aroclors, aged or weathered Aroclors, and materials that are 
not Aroclors but appear in the chromatogram. The lower chromatogram in Figure 2 contains the same 
Aroclor content as the upper chromatogram, but the added presence of oil distorts the baseline and 
creates nonAroclor peaks. It is intractable to train automated methods or humans on all possible 
conditions encountered in the testing domain. However, they must work on samples with conditions 
outside their training domain. The SI-Combiner enables this by exploiting the variations in conditions 
through the testing domain. 
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Figure 2: Chromatograms of Aroclor 1242 with and without oil contamination 

2.3 Automated Aroclor Interpretation 
The Aroclor Interpretation Data Interpretation Module (DIM)fi] is shown in Figure 3. 

2.3.1 SI-Combiner Uses Opinions From Trained Methods 
Five automated pattern recognition methods were implemented in the Aroclor Interpretation DIM. Each 
method, like a chemist, receives fifteen standards for each retraining. 

Four methods produce quantity estimates for each Aroclor: 

Iterative Multiple Linear Regression (iMLR) 

Neural Network (NN) 

Principle Components Regression (PCR) 

Peak Area Analysis (PA) 
The fifth method produces a value between zero and one for each Aroclor reflecting its belief that the 
Aroclor is present: 

Neural Network for Identification (NNI) [ii] 
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Figure 3: Aroclor Interpretation DIM including the SI-Combiner. 
Each method produces an opinion for each of the three target Aroclors, so that the SI-Combiner receives 
an opinion set containing fifteen views of a sample. 

2.3.2 Scenarios Are Signal Conditions That Distort Method Opinions 
Methods disagree due to conditions in the signal. In Aroclor Interpretation, and in other problems, these 
conditions can be approximately identified. 

Scenario elements are 
1. conditions in the method’s inputs that affect the methods responses, which in turn, are 

2. related to patterns of opinion sets. 

For Aroclor Interpretation, five scenario elements are used to partition the testing domain into scenarios. 
These elements include one contamination descriptor, three presence descriptors (none, single and 
multiple), and one overconcentration descriptor. Together, these can combine to partition the entire 
testing domain into ten scenarios, shown in Figure 4. Only the samples with a single, pure WDL 
Aroclor in them have conditions that match the Training domain for these particular Methods. 
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Figure 4: Samples with conditions inside and outside the Methods’ Training domain 
The effect of contamination is seen in the lower chromatogram of Figure 2. 

An opinion set is fifteen opinions, in a specified order, for a sample. Scenario changes cause observable 
changes in these patterns. 

Evidence of these observable changes in patterns of opinion sets, which are directly linked to changes in 
scenario, is shown in Figure 5. For simplicity, the opinion sets contain information for one Aroclor at a 
time, so five-tuples are plotted instead of fifteen-tuples. In these radar plots, each opinion is mapped on 
a separate spoke, creating a spatial view of the relationships among the opinions. The left plot of Figure 
5 shows opinion sets for samples in the training domain, i.e., single uncontaminated Aroclors. The 
radial symmetry reflects the identical performances by the four quantification Methods for each test 
sample, which are accurate since they are operating in their training domain. 
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Figure 5: Opinion set patterns vary according to scenario 
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The plot on the right side of Figure 5 shows the opinions sets for samples with multiple pure Aroclors. 
The pattern for samples in this scenario shows distortion along the upper left axis. Each of the ten 
scenarios for Aroclor Interpretation has a pattern. These patterns are learned automatically and matched 
approximately by the SI step. 

2.3.3 Artificially Extend the SI-Combiner’ s Training Domain 
To learn how method accuracy depends on scenario, the SI-Combiner needs training data consisting of 
method opinions for samples in all scenarios. The specific definition of scenario requires that the 
method opinions vary according to the scenario& that scenarios are due to conditions in the input 
signal. This allows the explicit manipulation of signals to synthesize artificial training data. The SI- 
Combiner artificially extends the Method training domain through the Synthetic Chromatogram 
Generator. The Synthetic Chromatogram Generator uses the fifteen genuine standards that constitute the 
Method Training Set and a Noise Engine to generate chromatograms in all scenarios. These 
chromatograms are representative; much of the testing domain is still not covered by the training 
samples. 1 

2.3.4 Automatically Learning SI And Method Weighting Rules 
Two types of rule sets are in the SI-Combiner: 

1. Scenario Identification: fuzzy classification produces scenario weights, one per scenario, which 
measure the test sample’s similarities to training examples in each scenario. The key to the SI-Combiner 
is the Scenario Identification (SI) step, as indicated in the technique’s name. 

2. Method-Weighting: For Aroclor Interpretation, there are two types of accuracy measured since two 
questions need to be answered. The first Method-Weighting rule set is the Aroclor Presence Detection 
(AP) rule set, which is used to answer the question “Is the Aroclor Present?’. The second Method- 
Weighting rule set is the Aroclor Quantification (AQ) rule set, which characterizes each quantitative 
method’s bias in each scenario, and is used to answer “What quantity of Aroclor is present?’’ 

2.3.5 Approximately Match Opinion Patterns from Test Samples to Training 
Samples 
The SI-Combiner exploits very sparse and representative training data, through fuzzy logic, by 
approximately matching an SI rule. 

Every testing sample will match every rule to some degree, and a rule’s firing weight clearly reflects how 
closely the test sample resembles a sample seen in the training set. As shown in Figure 3, the SI- 
Combiner works in steps. First, SI produces fuzzy belief weights for each scenario by approximately 
matching the SI rules. 

2.3.6 Weight Method Opinions By Scenario Likelihood And Method 
Accuracy 
The SI-Combiner’s second step, AP, classifies each of three Aroclors aspresent or absent in a sample. 



The third step, AQ, produces quantitative values for the concentration of each Aroclor in a sample. 

Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the 
Methods in each scenario, and Methods’ results to determine results for a sample. AP and AQ use well- 
established techniques internally; their novel features are the use of SI’S scenario weights, and the nature 
of the bias estimations learned by each step. 

I AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. 

3. Results 
The SI-Combiner improves on two existing approaches to IMLM, which combine either 

0 multiple experts each viewing a portion of the problem, or 

selection of m e  expert’s view of the entire problem. 

The SI-Combiner, in contrast, blends multiple experts, each viewing the whole problem, according to 
likely accuracies for a given sample. The SI-Combiner uses: 

all available information 

biases found through empirical learning 

application-specific knowledge to predict and exploit variations in the scenarios 

3.1 Components of the SI-Combiner 
Figure 6 summarizes these results. 

Scenario Identification : 
Class 
Contamination 15% 
None 1 %* 
Single 55% 

Overconcentration 6% 
* MCC misclassified two samples; the Combiner correctly classified all samples 

Combiner vs. Multicategory Classification (MCC) 
Combiner improves on MCC by: 

Multiple 55% 

Aroclor Presence 
Detect ion : 
Error Tvpe 
False Positive 58% 
False Neqative 78% 

Aroclor Quantification: 

Combiner vs. Dempster Shafer (DS) 
Combiner improves on DS by: 

Combiner improves on listed technique by: 
MLR 14% 
Averaging 
Peak Area 

Figure 6: Summary of SI-Combiner improvements 

92% 
95% 



For SI, the SI-Combiner was compared to Multicategory Classification (MCC)Fii]. The SI-Combiner 
handled the nonlinear, poorly separated space far better than MCC did. 

Furthermore, 

as a fuzzy classifier, the SI-Combiner accrues evidence of a test sample’s membership in all 
scenarios, which is passed on without loss to the SI-Combiner’s method-weighting steps. 

SI rule firing weights are available for explanations, accountability and tracability. 

For AP, the SI-Combiner was compared to Dempster-Shafer (DS)[iv]. As summarized in Figure 6,  the 
SI-Combiner produced fewer errors than DS did, and referred fewer samples with indeterminate results 
to the operator. Furthermore, 

the SI-Combiner uses empirical biases; DS uses errors reported by the Methods, which, like 
opinions, are not guaranteed accurate for samples outside the training domain. 

For AQ, the SI-Combiner greatly outperformed a scenario-ignorant combining method of Averaging and 
the human representative Method of PA. The SI-Combiner improved on the best individual method, 
iMLR. 

4. Conclusion 
The SI-Combiner uses a suite of trained methods, which must operate in conditions that are outside of 
their training domains and in which they may fail. The SI-Combiner incorporates application-specific 
knowledge, called scenarios, about conditions in the testing domains that can distort the inputs and 
thereby cause divergent behavior among the methods. This problem is a version of Integrating Multiple 
Learned Models (IMLM). 

The SI-Combiner improves on existing approaches to IMLM, and its components perform better than 
traditional approaches to the same tasks. The SI-Combiner is a new and powerful solution for IMLM 
problems. 
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