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ABSTRACT: An American Society for Testing and Materials (ASTM) standard method

(E 1921-97) has been developed that exclusively uses fracture mechanics test practices and
advanced statistical methods to establish the ductile-to-brittle transition range of fracture
toughness for structural steels. The development of suitably accurate analyses had been slowed in
the past due to an incomplete understanding of the operational mechanisms that control the
fracture toughness behavior of structural steels. New perspectives taken are (1) that dominant
linear-elastic conditions need not be rigidly enforced in test specimens and (2) that the effect of

specimen size on fracture toughness performance is mostly controlled by a weakest-link

'Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6151.

*Engineering Technology Division, Oak Ridge National Laboratory, Oak Ridge,
TN 37831-8049.

3Technical Research Centre of Finland, P.O. Box 1700, Kemistinte 3, Espoo, FIN-02044,
Finland. ' .




mechanism instead of being completely controlled by crack tip constraint conditions. The
weakest-link behavior is defined from local cleavage crack initiators such as precipitates,
inclusions, and grain boundary embrittlement; namely, all rnicréstructural features in steel.
Statistical models can be built upon such mechanisms that result in defined fracture probability
levels and, when coupled to a master curve concept, can more accurately define the true location

of the ductile-to-brittle transition temperature.

An integral part of the ASTM test standard development work has been the production of a
supporting technical basis document. This document presents substantial background data and
supporting theoretical aspects that have been used to justify the method development. The paper

will include some of the salient features presented.

KEYWORDS: T, master curve, ASTM Standard E 1921, transition range, toughness, Weibull,

pressure vessel steels

INTRODUCTION

The fracture toughness property that is of most relevance to structural steel applications is
the location of the ductile-to-brittle transition temperature. The empirical test results that have
been used for many years to identify this temperature are test method-specific and are of uncertain

relevance to in-service conditions for a sharp crack embedded in a dominant elastic stress field

and loaded under semi-static conditions. Only fracture mechanics-based test methods are capable




of such simulations. However, to simulate service conditions, linear elastic analyses will suffice
and such conditions are usually associated with the ASTM K|, test practice E 399 [/]. It is also
necessary to test within the transition range where K, validity conditions can only be satisfied
with huge specimens that are beyond routine laboratory practice capabilities [2]. A special
American Society of Mechanical Engineers (ASME) task group had found a temporary
resolution in the early 1970s that has been used on pressure vessel steels [3]. Namely, a
substantial collection of E 399 valid K;, data were obtained from a variety of sources and plotted
against normalized temperature. All data were referenced to a nil-ductility temperature (RTp1)
(based on empirical test results) and then plottéd, perhaps expecting all of the data to lieon a
gen»eric lower-bound curve. The result was considerable data scatter, so instead, an approximate
statistical method applied was to draw a lower-bound curve to the data scatter and postulate that
this curve will never be appreciably violated by data for past or future production of pressure
vessel steels. From this standpoint, the lower-bound K;_ curve has been regarded as a uni\}ersal
curve and, surprisingly, it has remained in use despite its limitations, for more than 25 years.
Most prominent among these weaknesses is the uncertainty associated with empirically derived
test temperatures, RT, ;. Hence, the uncertainty in fracture analyses due to not knowing the

correct transition temperature had not been eliminated.

This paper describes a new fracture mechanics-based methodology for transition range
toughness definition [4]. The technology incorporates advanced statistical methods to model
generic data scatter characteristics of steels. Elastic-plastic fracture toughness evaluation

methods are used and the linear elastic-based constraint requirements are abandoned in favor of a

weakest-link model to define the specimen size effects that have been observed experimentally




[5]. The concept that fracture mechanics data tend to follow a universal curve shape is retained,
except that, in this case, the concept of a universal curve is fully justified both theoretically and
experimentally. ASTM test method E 1921-97 [6] uses these new concepts, and the background
information developed in support of the standard has been prepared in a U.S. Nuclear Regulatory
Commission NUREG report, Technical Basis for an ASTM Standard on Determining the -
Reference Temperature, T, for Ferritic Steels in the Transition Range. Temperature, T,, is used
as a reference temperature in a similar way as RTyr has been used, except that it is developed
entirely from fracture mechanics data and it is based upon median toughness instead of a

lower-bound curve, as has been the case for the ASME K, curve.
MANAGING DATA SCATTER

The new viewpoint is that the scatter of fracture mechanics-type data is recognized as
being an omnipresent characteristic of structural steels. The concept to be presented in the
following sections acknowledges that data scatter results from randomly distributed cleavage
triggering sources such as carbide cracking, multiple cleavage crack clustering, and dislocation
pile-ups. The theoretical basis for déta distributions uses weakest-link theory coupled to a

Poisson distribution assumption for cleavage crack triggering as follows:

P, = 1 -exp(-pV). )




The exponential term in Eq. (1) is the probability of finding no critical cleavage sources in volume
V when there are p critical particles per unit volume. P; represents the cumulative probability of

failure.

In the present case, attention is given to volume elements that are local to the crack tip
where the highest stresses are concentrated. The active volume for cleavage crack sources scales
according to (B/B,) K;* [7]. B is a crack front length and B, is an arbitrarily definable dimension.
Other elements that define the critical volume are recognized as being fixed values. Hence, thev

fundamental result from applying weakest-link theory is:

4

P, =1 - exp 2)
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Two deficiencies of Eq. (2) that do not model the true characteristics of steel are (1) that
there can be some fraction of cleavage trigger sources that have weak crack drive energy that will
arrest, and (2) steels do not approach zero fracture toughness as suggested by the equation.
Hence, the statistical model §vas modified via introduction of the hazard function that resolves

both deficiencies mentioned. The model that emerges from these analyses as the most practical is:

P.=1 - exp 3)
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K. 1s the toughness level below which cleavage cracks cannot propagate. K, is a scale
parameter identified at a point where K;, =K, and P, = 0.632. Equation (3) can be utilized to set
up a convenient size effect relationship. By setting P; equal for two specimen sizes, where B = B,

or B = B,, the following relationship results:

KJc(Z) = (K.Yc(l) -K

min)

Bl 1/4
B—] * Ko - 4)
2

Equation (4) suggests that specimen size has a rather subtle effect on fracture toughness
distributions and this appears to be quite apparent from the experimental evidence that has been
obtained [5]. Hence, size effects can only be demonstrated with ample replications at each size
level. On the other hand, the various constraint-based models that have been suggested usually
indicate more pronounced size effects that are generally not well supported experimentally [5].
The important benefit from the abandonment of absolute constraint control theories is the
recognition that elastic-plastic methods can be utilized to the extent that specimens of reasonable
sizes can be applied to the development of plant-specific fracture mechanics data. Fracture
toughness at the point of crack instability can be calculated in units of J-integral, J., and these

values are then converted into their equivalence in units of stress intensity factor, K, given by:

K, = /T.E . )




SMALL SAMPLE STATISTICS

Equation (3) is the statistical model that has been found to be the most suitable for fitting
fracture mechanics-based data. At first, all three parameters, namely, Weibull slope, (b), scale
parameter, (K,), and lower bound, (K,;)), were best fitted to individual data sets [8]. Data
replication needs for accurate characterization of data distributions were unappreciated at that -
time. Also, in the early stages, an application of this methodology for the establishment of a
fracture mechanics-based transition curve using fracture mechanics-based reference temperatures
had not been considered. The tools needed to apply the statistical approach were developed
later [9] and have since served as a justification for the development of an ASTM standard
method. The concept was made practical for general use after it was found through a sensitivity
study using Monte Carlo techniques that K, data populations for a variety of steels tend to have a
common Weibull slope of approximately 4 and when lower-bound K_;, values are set to
20 MPavm. These results compared favorably with available experimental data found in the
literature (Fig. 1). This study also made it abundantly clear that extremely large data samplings,
on the order of 50 or more specimens, must be used to develop sufficient measurement accuracy
on slope, b, and minimum toughness, K ;,, in the Weibull model, Eq. (3). As has been previously

discussed, the rationale for this characteristic of K;, data distributions has since been justified in

theory.

Experimental evidence for the ASTM test method justification has been found in the form

of data taken from a Materials Properties Council/Japan Society for the Promotion of Science

(MPC/JISPS) round-robin activity [/0] [see Table 1, Part I(a)]. Eighteen participating laboratories




had tested about 150 specimens divided between three test temperatures, -50, -75, and -100°C.
The test material was A 508 class 3 pressure vessel steel, and 1T compact specimens had been
taken from the 1/4 and 3/4 through-thickness locations in the plate. Sample size (replication) for
each participant was five specimens. Figure 1 suggests that for a sample size of 5, Weibull
slopes, b, obtained by least-squares fitting have a 95% probability of being between 2 and 12.
Only 1 of 28 experimental slope determinations was outside of these bounds. These same data,
after combining into three test temperature groups to develop sample sizes of about 50 specimens,
were analyzed for slopes (see the “Total” rows). All three groups tend to converge to a slope of
four. Since two Aof the three Weibull parameters are declared to be deterministic parameters of
the model, only the number of specimens needed to determine K, remained to be determined from
experimental data. Monte Carlo methods were again employed to settle upon sample size
requirements. Data populations (nominal groups of 50) were represented by data from the
MPC/JSPS round-robin activity. Sample sizes ranged from 3 to 20 in the simulation, as is
indicated in the first column of Table 2. Each sampling was repeated 100 times and standard
deviation on K. values are also presented. Clearly, sample sizes on the order of 20 specimens
provide the optimum accuracy, but, at the same time, this is obviously not a practical number to
recommend for general use. Standard deviation among repeated tests always seemed to plateau
between 6 and 8 replications. Such numbers represent a more practical recommendation for
standardization purposes. Howevér, it is accepted that error potential accompanies such
replication. For a 6 to 8 specimen sampling, there is about 10% probability that there will be
more than 10°C error in true traﬁsition temperature identification [//]. To compensate, a

recommendation is made to apply margin adjustments to T, temperature determinations when the

acknowledged error potential is not acceptable in a specific application. It should be noted at this




point that there is a fixed relationship between K, and K4 so that the required sample size is

the same for either parameter.

K - 20 = (K, - 20)[In2]"* MPay/m. (6)

Je(med)

CONCEPT OF MASTER CURVE

The title of E 1921-97 suggests that the main objective is to determine a reference
temperature, T,. This temperature is used to set up a master curve and here is where advanced
statistical methods can be used to an advantage. Improved definition of transition range curve
shape is the principal benefit. The following master curve equation applies to median toughness
obtained from 1T specimens or for K, data from specimens of other sizes converted vto
1T equivalence (1T size means that specimen thickness B =1 in.).

K omeay = 30 + 70 exp[0.019 (T - T,)] MPaym. 0

Equation (7) expresses the median K, as a function of temperature for data scatter modeled by
Eq. (3). Figure 2 shows an example of data sampling taken at eight test temperatures. The
experiment used two weld metals identified as 72W and 73W and two conditions evaluated were
in the as-received and as-irradiated conditions at 1.5 x 10" n/em? (>1 MeV) fluence. Figure 3

shows data reduced to median values. All data clearly follow the shape of the master curve. This




master curve model has been tested on at least 14 different groups of data consisting mostly of

pressure vessel steels [4].

DETERMINATION OF REFERENCE TEMPERATURE, T,

There are two options available to fit experimental data to the three-parameter Weibull
model. The method that was first recommended in early drafts of E 1921-97 is known as a “rank
method,” where K, data are ranked according to increased values and then each value is assigned

a rank cumulative failure probability value obtained from the following expression [6]:

(). = (i - 03)/(N + 04) . ®)

These data are then plotted in Weibull x-y coordinates, as shown in Fig. 4. Then a line with a

fixed slope of 4 is lest-squares fitted to the data.

The rank method mentioned above has been replaced (in the more recent versions of the
standard) in favor of the maximum likelihood method of data fitting. The weakness of the rank
method is that values of P, obtained from Eq. (8) also have a probability distribution that can
contribute some to the uncertainty of K, determinations. In fact, Eq. (8) is simply one of several
available estimator expressions for P;. Figure 5 illustrates estimating uncertainties by showing the
95% confidence limits on P; as a function of K, for different sample sizes. As indicated, the

accuracy of P, estimation by Eq. (8) is a function of sample size. There apparently is no




satisfactory alternative since Eq. (8) is known to be the most accurate among the several available

estimator equations [4].

The maximum likelihood method [4] minimizes the error due to the P, estimate
contribution. The point of maximum likelihood on the P; density function is solved in terms of
likelihood slope, OL/OK,; the derivation of which is covered in Ref. [4]. The result is that K is
determined without the necessity of ranking data and least-squares fitting to the Weibull slope of

4. The solution for K, takes the following form:

1/4

N (K, -K_.)*
(K = Kon) +K_. MPay/m . )

i=1 (N -¢)

The term ¢ in the denominator of Eq. (9) is a bias adjustment factor, nominally equal to
[1-In(2)]. Bias correction for all intents and purposes becomes insignificant when the number of
replicates, N, is six or more. Table 1, Part I(b), presents the use of Eq. (9) on the MPC/JSPS

round-robin data.

Data censoring is readily incorporated into Eq. (9) by replacing N with r, where r
represents the number of valid data. When data are censored, it is because they are deemed to be

ineligible members of the data population, the existence of which can be credited as information,

but under restrictions. For example, if a K;, value has been determined on a specimen that failed a




constraint control limit, that datum is censored from the data population and a

constraint-limit-based K, value obtained in the following Eq. (10) is used in its place:

KJc(limit) = (Ebocys/3 0)1/2 : (10)

The term b, is the initial remaining ligament length and oy, is the material yield strength. It is
required that when data censoring is used in the determination of K, that K, data input be for only
one specimen size. Having determined K, at the known test temperature, T, Egs. (6) and (7) can

be used to determine reference temperature, T, [see also Table 1, Part I(b)].

ESTABLISHMENT OF TOLERANCE BOUNDS

Since slope is used as a deterministic parameter in the Weibull model, standard deviation
on Ky, ..q) can be calculated without any need for additional supporting data. The statistical
method uses gamma functions that are calculated from the known Weibull slope. Reference [4]

shows how this determination is made. The result is;

K_
o =028 Ky .0 [1 - — } (11)
Jo(med)




Given known standard deviations that are a function of Ky, tolerance bound curves on
data scatter can be calculated by combining Eqgs. (7) and (11) and tabulated standard normal
deviates, z, from mathematical tables given for cumulative probabilities. The general form for

equations of upper or lower tolerance bound curves is as follows:

Ko = (30 £ 2.82) + (70 £ 19.62) exp[0.019(T - T,)] MPaym . (12)

An interesting outcome from Eq. (12) is that lower tolerance bound curves tend to be almost
insensitive to specimen size effects (Fig. 6) [/2]. Therefore, tolerance bounds drawn on the
master curve with 1T specimen size assumption also tend to cover non-size-adjusted K, data

from tests on large specimens.
SOME VERIFICATION OF THE UNIVERSAL CURVE CONCEPT

Originally, 12 data sets had been used to recognize that K, data distributions tend to
follow a common curve shape (Fig. 7). In this case, scale parameter, K,, was used. Currently,
Kiemea) 15 used, differing by the proportionality indicated in Eq. (6). Many other materials have
since been added to the original observation, covering different grades of ferritic steels, hence,
broadening the applicability of the universal curve concept. At the same time, fhere have been
concerns that the rationale for such behavior is not immediately evident. Among these, the
retention of master curve shape after irradiation hardening seems to have violated the hypothesis

of a consistent relationship between material yield strength and fracture toughness for a given




material [/2]. Several theoretical models that explain transition range fracture toughness have
been based on such an assumed relationship. However, Fig. 8 shows the seemingly typical

retention of master curve shape after strengthening from irradiation exposure.

It has been shown that material yield strength property appears to consist of thermal and
athermal components [4]. The athermal part is connected to certain dislocation slip-constricting
effects local to precipitates and grain boundaries. On the other hand, the matrix material in grains
will retain unaltered thermally sensitive characteristics and it is this part of the microstructure that
controls the transition range fracture toughness trend. Figure 9 shows how the material strength
versus temperature relationship is maintained when an athermal component of yield strength is
removed. Hence, the lack of material-strengthening mechanisms influencing masfer curve
toughness trend can be explained. Other areas of concern such as strain rate effects, temper

embrittlement, low upper-shelf materials, etc., are currently being evaluated.
CONCLUSIONS

The accuracy of defining the true transition range behavior of structural steels has been
improved by the introduction of a new statistically supported methodology. Fracture mechanics
test methods are used to establish the true location of the transition curve. The cause of extreme
data scatter and the reason for specimen size effects on data are explained by weakest-link theory.
Data scatter is modeled and tolerance bounds on data scatter are defined in terms of cumulative
probabilities for occurrence. A universal transition curve is defined, the shape of which has been

justified by repeated confirmatory experimental evidence. The universal curve concept appears to




be undisturbed by material hardening mechanisms and the reason for this insensitivity to material

hardening mechanisms can be rationalized.
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Table 1. Analysis of MPC/JSPS round-robin data

I(a) I(b)
Laborat e K,* T,
oratory slope® (MPavm) O
Test temperature, -50°C
B 3.0 294 -115
C 4.1 284 -113
E 26 241 -103
H 43 277 -111
J 12.6 177 -83
0] 1.8 205 -93
P 6.0 187 -87
Q 3.5 262 -108
R 38 233 -101
Combined data 3.75 250 -105
Test temperature, -75°C
A 28 184 -111
C 3.7 168 -105
D 8.8 161 -103
H 58 156 -101
J 55 148 -97
K 7.1 177 -109
N 39 163 -104
Q 5.1 192 -114
R 6.5 150 -98
Combined data 5.8 166 -105
Test temperature, -100°C
A 5.0 118 -107
C 3.0 127 -112
E 4.0 132 -114
F 54 120 -108
G 5.6 109 -101
H 5.1 114 -104
L 11.3 143 -120
M 34 101 -95
Q 39 139 -118
R 2.8 114 -104
Combined data 43 . 123 -109
“By linear regression.
*Maximum likelihood with K, = 20 MPavm.




Table 2. Monte Carlo simulation
(100 trials; population, 50 1T C(T) A 508 class 3 specimens; -75°C test temperature)

Population Standard
size NS Kiemas deviation Total population
of trials | (MPavm)
(MPavm)
3 50 100 154.2 165 | Kimeo = 153 MPavm
4 50 100 154.4 15.0 T,=-104°C
5 50 100 154.5 12.5 '
6 50 100 153.4 11.8
7 50 100 151.9 11.6
8 50 100 152.2 11.1
9 50 100 153.7 9.1
10 50 100 153.4 8.5 .
20 50 100 153.1 6.1




FIGURE CAPTIONS

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. S.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Comparison of the distribution of Weibull slopes calculated from small data sets
with Monte Carlo predicted confidence limits when K ;, is set at 20 MPavm.

Example of master curve and data from the HSSI Fifth Irradiation Series.

Median K, values plotted against master curve for two weld metals in the
unirradiated and irradiated conditions.

Example K, data plotted in Weibull coordinates along with a least-squares fitted
line with a slope of 4.

Reliability of small sample data sets of size n, when expressed in cumulative
probability coordinates.

Effect of specimen size on median K, and tolerance bound trends as predicted by
the weakest-link model, established at test temperature equal to T,.

Original data used to develop the master curve equation shown.

Relation between fracture toughness and temperature for unirradiated and
irradiated steel.

Thermal part of material yield strength after the separation of “athermal” part of
yield strength.
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