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ABSTRACT: An American Society for Testing and Materials (ASTM) standard method 

(E 192 1-97) has been developed that exclusively uses fracture mechanics test practices and 

advanced statistical methods to establish the ductile-to-brittle transition range of fracture 

toughness for structural steels. The development of suitably accurate analyses had been slowed in 

the past due to an incomplete understanding of the operational mechanisms that control the 

fracture toughness behavior of structural steels. New perspectives taken are (1) that dominant 

linear-elastic conditions need not be rigidly enforced in test specimens and (2) that the effect of 

specimen size on fracture toughness performance is mostly controlled by a weakest-link 
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mechanism instead of being completely controlled by crack tip constraint conditions. The 

weakest-link behavior is defined from local cleavage crack initiators such as precipitates, 

inclusions, and grain boundary embrittlement; namely, all microstructural features in steel, 

Statistical models can be built upon such mechanisms that result in defined fracture probability 

levels and, when coupled to a master curve concept, can more accurately define the true location 

of the ductile-to-brittle transition temperature. 

An integral part of the ASTM test standard development work has been the production of a 

supporting technical basis document. This document presents substantial background data and 

supporting theoretical aspects that have been used to just@ the method development. The paper 

will include some of the salient features presented. 

KEYWORDS: To, master curve, ASTM Standard E 1921, transition range, toughness, Weibull, 

pressure vessel steels 

INTRODUCTION 

The Eracture toughness property that is of most relevance to structural steel applications is 

the location of the ductile-to-brittle transition temperature. The empirical test results that have 

been used for many years to identify this temperature are test method-specific and are of uncertain 

relevance to in-service conditions for a sharp crack embedded in a dominant elastic stress field 

and loaded under semi-static conditions. Only fracture mechanics-based test methods are capable 



of such simulations. However, to simulate service conditions, linear elastic analyses will suffice 

and such conditions are usually associated with the ASTM K,, test practice E 399 [ I ] .  It is also 

necessary to test within the transition range where K,, validity conditions can only be satisfied 

with huge specimens that are beyond routine laboratory practice capabilities [2]. A special 

American Society of Mechanical Engineers (ASME) task group had found a temporary 

resolution in the early 1970s that has been used on pressure vessel steels [3]. Namely, a 

substantial collection of E 399 valid KIc data were obtained from a variety of sources and plotted 

against normalized temperature. All data were referenced to a nil-ductility temperature (RTNDT) 

(based on empirical test results) and then plotted, perhaps expecting all of the data to lie on a 

generic lower-bound curve. The result was considerable data scatter, so instead, an approximate 

statistical method applied was to draw a lower-bound curve to the data scatter and postulate that 

this curve will never be appreciably violated by data for past or fbture production of pressure 

vessel steels. From this standpoint, the lower-bound K,, curve has been regarded as a universal 

curve and, surprisingly, it has remained in use despite its limitations, for more than 25 years. 

Most prominent among these weaknesses is the uncertainty associated with empirically derived 

test temperatures, RTmT. Hence, the uncertainty in fracture analyses due to not knowing the 

correct transition temperature had not been eliminated. 

This paper describes a new fracture mechanics-based methodology for transition range 

toughness definition [4 ] .  The technology incorporates advanced statistical methods to model 

generic data scatter characteristics of steels. Elastic-plastic fracture toughness evaluation 

methods are used and the linear elastic-based constraint requirements are abandoned in favor of a 

weakest-link model to define the specimen size effects that have been observed experimentally 



[5]. The concept that fracture mechanics data tend to follow a universal curve shape is retained, 

except that, in this case, the concept of a universal curve is hlly justified both theoretically and 

experimentally. ASTM test method E 1921-97 [q uses these new concepts, and the background 

information developed in support of the standard has been prepared in a U.S. Nuclear Regulatory 

Commission NUREG report, Technical Basis for an ASIA4 Standard on Determining the 

Reference Temperature, T', for Ferritic Steels in the Transition Range. Temperature, To, is used 

as a reference temperature in a similar way as RTmT has been used, except that it is developed 

entirely from fracture mechanics data and it is based upon median toughness instead of a 

lower-bound curve, as has been the case for the ASME KIc curve. 

MANAGING DATA SCATTER 

The new viewpoint is that the scatter of fracture mechanics-type data is recognized as 

being an omnipresent characteristic of structural steels. The concept to be presented in the 

following sections acknowledges that data scatter results from randomly distributed cleavage 

triggering sources such as carbide cracking, multiple cleavage crack clustering, and dislocation 

pile-ups. The theoretical basis for data distributions uses weakest-link theory coupled to a 

Poisson distribution assumption for cleavage crack triggering as follows: 

P, = 1 -exp(-pV) . 



The exponential term in Eq. (1) is the probability of finding no critical cleavage sources in volume 

V when there are p critical particles per unit voiume. P, represents the cumulative probability of 

failure. 

In the present case, attention is given to volume elements that are local to the crack tip 

where the highest stresses are concentrated. The active volume for cleavage crack sources scales 

according to (BB,) K;' [ 71. B is a crack front length and Bo is an arbitrarily definable dimension. 

Other elements that define the critical volume are recognized as being fixed values. Hence, the 

findamental result from applying weakest-link theory is: 

Two deficiencies of Eq. (2) that do not model the true characteristics of steel are (1) that 

there can be some fraction of cleavage trigger sources that have weak crack drive energy that will 

arrest, and (2) steels do not approach zero fracture toughness as suggested by the equation. 

Hence, the statistical model was modified via introduction of the hazard fbnction that resolves 

both deficiencies mentioned. The model that emerges from these analyses as the most practical is: 



K- is the toughness level below which cleavage cracks cannot propagate. I& is a scale 

parameter identified at a point where K,, = K, and P, = 0.632. Equation (3) can be utilized to set 

up a convenient size effect relationship. By setting Pf equal for two specimen sizes, where B == B, 

or B = B,, the following relationship results: 

Equation (4) suggests that specimen size has a rather subtle effect on fracture toughness 

distributions and this appears to be quite apparent from the experimental evidence that has been 

obtained [5]. Hence, size effects can only be demonstrated with ample replications at each size 

level. On the other hand, the various constraint-based models that have been suggested usually 

indicate more pronounced size effects that are generally not well supported experimentally [5]. 

The important benefit from the abandonment of absolute constraint control theories is the 

recognition that elastic-plastic methods can be utilized to the extent that specimens of reasonable 

sizes can be applied to the development of plant-specific fracture mechanics data. Fracture 

toughness at the point of crack instability can be calculated in units of J-integral, J,, and these: 

values are then converted into their equivalence in units of stress intensity factor, IS,,, given by: 

K,, = . (5) 



SMALL SAMPLE STATISTICS 

Equation (3) is the statistical model tllat has been found to be the most suitable for fitting 

fracture mechanics-based data. At first, all three parameters, namely, Weibull slope, (b), scale 

parameter, (K.,,), and lower bound, (K&,,,), were best fitted to individual data sets [8].  Data 

replication needs for accurate characterization of data distributions were unappreciated at that 

time. Also, in the early stages, an application of this methodology for the establishment of a 

fracture mechanics-based transition curve using fracture mechanics-based reference temperatures 

had not been considered. The tools needed to apply the statistical approach were developed 

later [9] and have since served as a justification for the development of an ASTM standard 

method. The concept was made practical for general use after it was found through a sensitivity 

study using Monte Carlo techniques that Kj, data populations for a variety of steels tend to have a 

common Weibull slope of approximately 4 and when lower-bound & values are set to 

20 MPadm. These results compared favorably with available experimental data found in the 

literature (Fig. 1). This study also made it abundantly clear that extremely large data samplings, 

on the order of 50 or more specimens, must be used to develop sufficient measurement accuracy 

on slope, b, and minimum toughness, K-, in the Weibull model, Eq. (3). As has been previously 

discussed, the rationale for this characteristic Of Kj, data distributions has since been justified in 

theory. 

Experimental evidence for the ASTM test method justification has been found in the form 

of data taken from a Materials Properties CounciVJapan Society for the Promotion of Science 

(MPC/JSPS) round-robin activity [IO] [see Table 1, Part I(a)]. Eighteen participating laboratories 



had tested about 150 specimens divided between three test temperatures, -50, -75, and -1 00 "C. 

The test material was A 508 class 3 pressure vessel steel, and 1T compact specimens had been 

taken from the 1/4 and 3/4 through-thickness locations in the plate. Sample size (replication) for 

each participant was five specimens. Figure 1 suggests that for a sample size of 5 ,  Weibull 

slopes, b, obtained by least-squares fitting have a 95% probability of being between 2 and 12. 

Only 1 of 28 experimental slope determinations was outside of these bounds. These same data, 

after combining into three test temperature groups to develop sample sizes of about 50 specimens, 

were analyzed for slopes (see the "Total" rows). All three groups tend to converge to a slope of 

four. Since two of the three Weibull parameters are declared to be deterministic parameters of 

the model, only the number of specimens needed to determine K, remained to be determined from 

experimental data. Monte Carlo methods were again employed to settle upon sample size 

requirements. Data populations (nominal groups of 50) were represented by data from the 

MPC/JSPS round-robin activity. Sample sizes ranged from 3 to 20 in the simulation, as is 

indicated in the first column of Table 2. Each sampling was repeated 100 times and standard 

deviation on KJcCmcd) values are also presented. Clearly, sample sizes on the order of 20 specimens 

provide the optimum accuracy, but, at the same time, this is obviously not a practical number to 

recommend for general use. Standard deviation among repeated tests always seemed to plateau 

between 6 and 8 replications. Such numbers represent a more practical recommendation for 

standardization purposes. However, it is accepted that error potential accompanies such 

replication. For a 6 to 8 specimen sampling, there is about 10% probability that there will be 

more than 10°C error in true transition temperature identification [ I l l .  To compensate, a 

recommendation is made to apply margin adjustments to To temperature determinations when the 

acknowledged error potential is not acceptable in a specific application. It should be noted at this 



point that there is a fixed relationship between K, and Kjc(mcd) so that the required sample size is 

the same for either parameter. 

Jc (med ) - 20 = ( K ~  - 20)[ln21”~ WaG. 

CONCEPT OF MASTER CURVE 

The title of E 1921-97 suggests that the main objective is to determine a reference 

temperature, To. This temperature is used to set up a master curve and here is where advanced 

statistical methods can be used to an advantage. Improved definition of transition range curve 

shape is the principal benefit. The following master curve equation applies to median toughness 

obtained from 1T specimens or for K,, data from specimens of other sizes converted to 

1T equivalence (1T size means that specimen thickness B = 1 in.). 

KJc(med = 30 + 70 exp [ 0.019 (T  - To)] W a 6 .  (7) 

Equation (7) expresses the median Kj, as a function of temperature for data scatter modeled by 

Eq. (3). Figure 2 shows an example of data sampling taken at eight test temperatures. The 

experiment used two weld metals identified as 72W and 73W and two conditions evaluated were 

in the as-received and as-irradiated conditions at 1.5 x 1019 n/cm2 0 1  MeV) fluence. Figure 3 

shows data reduced to median values. All data clearly follow the shape of the master curve. This 



master curve model has been tested on at least 14 different groups of data consisting mostly of 

pressure vessel steels [4]. 

DETERMINATION OF REFERENCE TEMPERATURE, To 

There are two options available to fit experimental data to the three-parameter Weibull 

model. The method that was first recommended in early drafls of E 1921-97 is known as a “rank 

method,” where KJ, data are ranked according to increased values and then each value is assigned 

a rank cumulative failure probability value obtained from the following expression [6J: 

(Pf)i = (i - 0.3) / (N + 0.4) . 

These data are then plotted in Weibull x-y coordinates, as shown in Fig. 4. Then a line with is 

fixed slope of 4 is lest-squares fitted to the data. 

The rank method mentioned above has been replaced (in the more recent versions of the 

standard) in favor of the maximum likelihood method of data fitting. The weakness of the rank 

method is that values of P, obtained from Eq. (8) also have a probability distribution that can 

contribute some to the uncertainty of KO determinations. In fact, Eq. (8) is simply one of several 

available estimator expressions for P, Figure 5 illustrates estimating uncertainties by showing the 

95% confidence limits on P, as a hnction of K,, for different sample sizes. As indicated, the 

accuracy of P, estimation by Eq. (8) is a function of sample size. There apparently is no 



satisfactory alternative since Eq. (8) is known to be the most accurate among the several available 

estimator equations [q. 

The maximum likelihood method [4] minimizes the error due to the P, estimate 

contribution. The point of maximum likelihood on the P, density function is solved in terms of 

likelihood slope, 6L/6K0; the derivation of which is covered in Ref. [4]. The result is that K, is 

determined without the necessity of ranking data and least-squares fitting to the Weibull slope of 

4. The solution for K, takes the following form: 

+ K -  WaJ;;;. (9) 

The term in the denominator of Eq. (9) is a bias adjustment factor, nominally equal to 

[ 1 - ln(2)l. Bias correction for all intents and purposes becomes insignificant when the numbler of 

replicates, N, is six or more. Table 1,  Part I(b), presents the use of Eq. (9) on the MPC/JSP!S 

round-robin data. 

Data censoring is readily incorporated into Eq. (9) by replacing N with r, where r 

represents the number of valid data. When data are censored, it is because they are deemed to be 

ineligible members of the data population, the existence of which can be credited as information, 

but under restrictions. For example, if a value has been determined on a specimen that failed a 



constraint control limit, that datum is censored from the data population and a 

constraint-limit-based Kj, value obtained in the following Eq. (10) is used in its place: 

The term bo is the initial remaining ligament length and up is the material yield strength. It is 

required that when data censoring is used in the determination of K,, that Kj, data input be for only 

one specimen size. Having determined K,, at the known test temperature, T, Eqs. (6) and (7) can 

be used to determine reference temperature, To [see also Table 1, Part I(b)]. 

ESTABLISHMENT OF TOLERANCE BOUNDS 

Since slope is used as a deterministic parameter in the Weibull model, standard deviation 

can be calculated without any need for additional supporting data. The statistical on 

method uses gamma fbnctions that are calculated from the known Weibull slope. Reference lL4J 

shows how this determination is made. The result is: 



Gven known standard deviations that are a hnction of Kjc(mcdp tolerance bound curves on 

data scatter can be calculated by combining Eqs. (7) and (1 1) and tabulated standard normal 

deviates, 2, fiom mathematical tables given for cumulative probabilities. The general form for 

equations of upper or lower tolerance bound curves is as follows: 

K, = (30 f 2.82) + (70 f 19.62) exp[0.019(T - To)] M P a G  . 

An interesting outcome from Eq. (12) is that lower tolerance bound curves tend to be almost 

insensitive to specimen size effects (Fig. 6) [12]. Therefore, tolerance bounds drawn on the 

master curve with 1T specimen size assumption also tend to cover non-size-adjusted Kj, data 

fiom tests on large specimens. 

SOME VERIFICATION OF THE UNrVERSAL CURVE CONCEPT 

Originally, 12 data sets had been used to recognize that Kj, data distributions tend to 

follow a common curve shape (Fig. 7). In this case, scale parameter, KO, was used. Currently, 

Kjc(med) is used, differing by the proportionality indicated in Eq. (6). Many other materials have 

since been added to the original observation, covering different grades of ferritic steels, hence, 

broadening the applicability of the universal curve concept. At the same time, there have been 

concerns that the rationale for such behavior is not immediately evident. Among these, the 

retention of master curve shape after irradiation hardening seems to have violated the hypothesis 

of a consistent relationship between material yield strength and fracture toughness for a given 



material [12] .  Several theoretical models that explain transition range fracture toughness have 

been based on such an assumed relationship. However, Fig. 8 shows the seemingly typical 

retention of master curve shape after strengthening from irradiation exposure. 

It has been shown that material yield strength property appears to consist of thermal imd 

athermal components [4J. The athermal part is connected to certain dislocation slip-constricting 

effects local to precipitates and grain boundaries. On the other hand, the matrix material in grains 

will retain unaltered thermally sensitive characteristics and it is this part of the microstructure that 

controls the transition range fracture toughness trend. Figure 9 shows how the material strength 

versus temperature relationship is maintained when an athermal component of yield strength is 

removed. Hence, the lack of material-strengthening mechanisms influencing master curve 

toughness trend can be explained. Other areas of concern such as strain rate effects, temper 

embrittlement, low upper-shelf materials, etc., are currently being evaluated. 

CONCLUSIONS 

The accuracy of defining the true transition range behavior of structural steels has been 

improved by the introduction of a new statistically supported methodology. Fracture mechanics 

test methods are used to establish the true location of the transition curve. The cause of extreme 

data scatter and the reason for specimen size effects on data are explained by weakest-link theory. 

Data scatter is modeled and tolerance bounds on data scatter are defined in terms of cumulative 

probabilities for occurrence. A universal transition curve is defined, the shape of which has been 

justified by repeated confirmatory experimental evidence. The universal curve concept appears to 



be undisturbed by material hardening mechanisms and the reason for this insensitivity to matttrial 

hardening mechanisms can be rationalized. 
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Table 1. Analysis of MPC/JSPS round-robin data 

1 I I 

Test temperature, -50°C 

3.0 
4.1 
2.6 
4.3 

12.6 
1.8 
6.0 
3.5 
3.8 

294 
284 
24 1 
277 
177 
205 
187 
262 
233 

-1 15 
-1 13 
-103 
-111 
-83 
-93 
-87 

-108 
-101 

B 
C 
E 
H 
J 
0 
P 
Q 
R 

Combined data 3.75 250 -105 

Test temperature, -75 "C 

A 
C 
D 
H 
J 
K 
N 
Q 
R 

184 
168 
161 
156 
148 
177 
163 
192 
150 

-111 
-105 
-103 
-101 
-97 

-109 
-104 
-1 14 
-98 

2.8 
3.7 
8.8 
5.8 
5.5 
7.1 
3.9 
5.1 
6.5 

Combined data -105 5.8 1 166 

Test temperature, -100°C 

5.0 
3 .O 
4.0 
5.4 
'5.6 
5.1 

11.3 
3.4 
3.9 
2.8 

118 
127 
132 
120 
109 
114 
143 
101 
139 
114 

-107 
-1 12 
-1 14 
-108 
-101 
-104 
-120 

-9 5 
-1 18 
-104 

A 
C 
E 
F 
G 
H 
L 
M 
Q 
R 

'-1091 Combined data 4.3 123 
1 

"By linear regression. 
bMaximum likelihood with IL = 20 MpaJm. 



Table 2. Monte Carlo simulation 
(100 trials; population, 50 1T C(T) A 508 class 3 specimens; -75°C test temperiiture) 

~ 

Sample 
size 

3 
4 
5 
6 
7 
8 
9 
10 
20 

~~ 

Population 
size 

50 
50 
50 
50 
50 
50 
50 
50 
50 

Number 
of trials 

100 
100 
100 
100 
100 
100 
100 
100 
100 

Standard 

(MPaJm) 
KJCCItICd, deviation Total population 

154.2 16.5 = 153 M P d m  
154.4 15.0 To = - 104°C 
154.5 12.5 
153.4 11.8 
151.9 11.6 
152.2 11.1 
153.7 9.1 
153.4 8.5 . 
153.1 6.1 

(MPadm) 



FIGURE CAPTIONS 

Fig. 1 .  

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Comparison of the distribution of Weibull slopes calculated from small data sets 
with Monte Carlo predicted confidence limits when JC- is set at 20 MPadm. 

Example of master curve and data from the HSSI Fifth Irradiation Series. 

Median Kj, values plotted against master curve for two weld metals in the 
unirradiated and irradiated conditions. 

Example K,, data plotted in Weibull coordinates along with a least-squares fitted 
line with a slope of 4. 

Reliability of small sample data sets of size n, when expressed in cumulative 
probability coordinates. 

Effect of specimen size on median Kj, and tolerance bound trends as predicted by 
the weakest-link model, established at test temperature equal to To. 

Original data used to develop the master curve equation shown. 

Relation between fracture toughness and temperature for unirradiated and 
irradiated steel. 

Thermal part of material yield strength after the separation of "athermal" part of 
yield strength. 



1 1 1  I I I 1 I 

8 0 
F 

l-- 



h 
n 
(D 

8 
v) 

0 
0 rn 8 cv 

0 
0 

c> -'- 
r 



0 

0 
0 
tn 

0 
0 
Tt 

0 
0 cu 

0 
0 
l- 

0 

0 
tn I 

0 
0 

I 
7 

0 
tn 

o - 1  



‘d 
V 

cu a0 m 0 
to c ci 0 

i 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 

0 N 
I 

ro 
I 

m 

(u 

0 

i 



L 

ln 0 ln o m  9 ln 0 
T T 0 T T 0 

0 
0 
T 

0 

0 
rr, 

0 



0 
v) 
F 

0 
v) 

0 0 
v) 0 

0 
0 
u) 
l- 

0 
0 

0 
u) 

0 
0 0 
v) 



7 
23 
m m m 
2 

0 
x- 
cu 

cn cn 
I 

g 

0 
xi 

g 
cu 

cn cn 
I 

t .- cu 
cn cn 
I 

e 
8 
5 
cu 
Z 

0 
T- 

8 
5 
cu 
Z 

0 
r 

in' 
t 
9 
W cn 
k i  

0 
0 

0 



0 

0 
in 

1 

0 
0 

1 
F 

0 



0 0 0 0 0 0 0 
0 u3 0 0 v) v) m cv cv 7 r 

0 
0 
rc) 

0 
0 cu 

0 


