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Abstract 
To address the need for a fast path planner, we present a 
learning algorithm that improves path planning by using 
past experience to enhance future performance. The algo- 
rithm relies on an existing path planner to provide solutions 
to difficult tasks. From these solutions, an evolving sparse 
network of useful robot configurations is learned to support 
faster planning. More generally, the algorithm provides a 
framework in which a slow but effective planner may be 
improved both cost-wise and capability-wise by a faster but 
less effective planner coupled with experience. We analyze 
the algorithm by formalizing the concept of improvability 
and deriving conditions under which a planner can be im- 
proved within the framework. The analysis is based on two 
stochastic models, one pessimistic (on task complexity), the 
other randomized (on experience utility). Using these mod- 
els, we derive quantitative bounds to predict the learning 
behavior. We use these estimation tools to characterize the 
situations in which the algorithm is useful and to provide 
bounds on the training time. In pxticular, we show how 
to predict the maximum achievable speedup. Additionally, 
our analysis techniques are elementary and should be useful 
for studying other types of probabilistic learning as well. 

1 Introduction 
Path planning in known environments refers to finding a 
short, collision-free path from an initial robot configuration 
to a desired configuration. It has to be fast to support 
real-time task-level robot programming. Accordingly, it 
has received much attention [15, 121, and there are now a 
number of implemented path planners based on a variety of 
approaches. Unfortunately, current planning techniques are 
still too slow to be effective, as they often require several 
minutes, if not hours of computation. 

To remedy this situation, we have developed a simple 
learning algorithm [5] that uses past experience to increase 
future performance. Thus, if there are more than one prob- 
lem to be solved, the cost of each problem can be amortized 
and decreased through learning. The algorithm relies on an 
existing path planner to provide solutions to difficult tasks. 
From these solutions, it learns a sparse network of useful 
robot configurations that guides and supports fast planning. 
More generally, the algorithm is actually a framework in 
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which a slow but effective planner may be improved both 
cost-wise and capability-wise by a faster but less effective 
planner coupled with experience. In this paper, we provide 
a deeper analysis by formalizing the concept of improvabil- 
ity, and deriving sharp conditions under which planners can 
be improved within the framework. 

To achieve predictive power while preserving some gen- 
erality, we study the algorithm under models with different 
simplifying assumptions and applications. The particular 
(as opposed to general) analysis is based on two stochastic 
models, one pessimistic (on task complexity), the other ran- 
domized (on experience utility). Using these models, we 
derive global quantitative bounds on planning cost and ca- 
pability in terms of training time. We show that the reliance 
of the improved planner on the original slow planner is at 
most inversely proportional to the training time. We also 
characterize the situations in  which learning is useful and 
prescribe the amount of training required. Finally, we use 
these analytic performance estimation tools to gain insight 
into some experimental results. Although our presentation 
is in the context of motion planning, the algorithm and the 
analysis are extensible to more general learning. In partic- 
ular, they may be applied to higher-level task planning or 
other domains in which experience is useful. Our theoret- 
ical work should complement well with the experimental 
work of others. 

2 Related Work 
Our research builds on the results of [SI, which presents the 
algorithm for stationary environments along with some gen- 
eral but weak analysis on the learning process. To cope with 
incrementally changing environments, the algorithm can be 
extended with an on-demand experience repair strategy and 
an object-attached experience abstraction scheme [ 1,7]. In 
this paper, however, we deal only with the fundamental sta- 
tionary case as in [5]. Our paper is self-contained except 
for two mathematical results from [5] which we use in  the 
analysis section without repeating the proofs. 

As mentioned in the introduction, a large amount of re- 
search has been done on robot path planning, most of which 
deals with solving one-time problems in stationary envi- 
ronments [2,3,6, 10, 14, 16, 211. Most implemented path 
planners have been developed for mobile robots and ma- 
nipulators with few degrees of freedom (dof). There are 
some that are designed for many dof manipulators based 
on random [2] (Brownian motion), sequential [IO] (back- 
tracking with virtual obstacles), or parallel [3] (genetic opti- 
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mization) search. All of these planners, however, typically 
require minutes of computation for mobile robots, and tens 
of minutes for 6 degrees of freedom manipulators. 

For solving several problems in stationary environments, 
there are a few other path planners that incorporate learning: 
some [9,20] take a higher-level, reasoning approach, while 
others [ 13, 191 take a lower-level, memory-based approach 
similar to ours. Learning can be done incrementally, or in 
phases which some consider as preprocessing [13]. To de- 
crease the effective cost of solving each problem, all of these 
work maintain a network (roadmap) of useful robot configu- 
rations (landmarks) and employ some sort of a local planner 
for moving through the network. Algorithmically, there are 
some differences between ours and that of 113, 191. First, 
we assume and use the same distribution of tasks (prob- 
lems) for both training and subsequent problem-solving. 
In [ 13, 191, a uniform problem distribution is used for train- 
ing. Second, we assume the existence of a fairly reliable, 
albeit slow, global planner, whereas they do not. Thus, 
while their algorithms may be more general, they may also 
require more training time to compensate for the lack of 
solutions when local planning fails. Overall, the most sig- 
nificant difference between all of the aforementioned work 
and ours is that we aim to provide a theoretical foundation 
for algorithm analysis to: 1) better understand and predict 
our experimental results; and 2) suggest similar analysis 
techniques so that others may apply to better understand 
their algorithms. 

3 Algorithmic Framework 
Given an arbitrary work environment and an arbitrary 
task (u, to) of moving the robot from configuration point u 
to w, we assume that there are initially two path planners 
available: fast and slow. Both return true (1) if successful, 
false (0) otherwise. The fast planner is required to be fast, 
symmetric, and only locally effective, i.e., it should have a 
good chance of success if u and w are close to each other. 
The slow planner, on the other hand, is required to be much 
more globally effective than fast, and hence can be very 
slow. It is the performance of this planner that we wish 
to improve. Note that this ‘planner’ can even be a human 
robot operator. 

In our learning scheme, we retain the global effectiveness 
of slow by calling it whenever necessary, while reducing 
the overall time cost by calling fast whenever possible. To 
utilize fast fruitfully, we remember significant intermedi- 
ate robot configurations learned from the solution paths of 
slow. These subgoals represent fully specified robot con- 
figurations and are stored in memory V ,  with connecting 
edges E (indicating successes of fast) maintained so that 
complete solution paths may be regenerated through ap- 
plications of fast. The subgoals V can be thought of as 
‘trail-markers’ in that each marker can be traced to one an- 
other through the trails E. We call the connected network 
of trail-markers the experience graph G = (V, E ) .  

Formally, the learning algorithm Adapt is shown in Fig- 
ure 1. The algorithm is based on two planners: Fast 

Algorithm Adapt( Fast, Slow) 
v t {current configuration}; 
do forever 

w t goal configuration; 
if (not Fast(w; V, h)  and Slow(w; V, h ) )  then 

p t Abstract(Slow[w; V, h]);  
V +- Learn(V, p ) ;  

Figure 1: An algorithm for improving path planning. 

and Slow, which are in turn based on fast and slow, re- 
spectively. Using V ,  planners Fast and Slow attempt to 
reach a desired configuration w from the current configura- 
tion. Since V forms a connected component, the planners 
only need to check the reachability of w from a known 
reachable trail-marker in V using a heuristic subgoal or- 
dering function h. Planner Fast simply goes through the 
markers according to h, and finds the first marker v for 
which fast(v, w) succeeds. Planner Slow simply selects the 
best marker 21 according toh, and calls slow(v, w). Adapt is 
essentially Fast backed up by Slow. Learning occurs when 
Fast fails but Slow succeeds. In this case, we assume that 
the solution path of slow(v, w), denoted by slow[w, w], is 
somehow ‘abstracted’ into a short chain p of trail-markers 
with each edge traversable by fast. (The abstraction can be 
implemented by locating the markers with binary search on 
a discretized solution path.) We achieve incremental 1, earn- 
ing by absorbing p into memory using a procedure, Learn, 
which is required to augment V with enough of p to ensure 
a solution path for Fast!w) if it were to be called again. 

4 Performance Analysis 
In this section, we present an approach to analyzing speedup 
learning [23], which is what the algorithm is doing -seeking 
to improve program efficiency through learning. We first 
formalize the concept of improvability, and derive general 
conditions for such improvements. Next, we introduce 
two models with additional simplifying assumptions and 
parameters. Using these models, we then derive sharp 
bounds on planning cost and capability in terms of training 
time. Finally, we characterize the improvable situations in 
terms of the model parameters, and prescribe the amount of 
training required. 

Two performance measures are of interest: efficiency 
and capability. To quantify, we assume that the problems 
are drawn randomly and independently from a distribution 
(as in PAC-learning [ 181) on some configuration space (C- 
space) S. We do not require slow to be complete; we do 
require that it have a success probability c in solving a 
random task. We assume that only slow, fast, and Learn 
have costs, each being a constant. (The cost of Abstract 
can be absorbed into the cost of Learn.) To normalize, let 
1, T, and c be the respective costs of slow, fast, and Learn. 
(Both P and c are typically < 1 .) We use subscript n on a 
program variable to denote its value at the nth loop. Thus, 
I f ,  denotes the memory V after Adapt has been trained 
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A,  The probability that Adapt will need to call slow 
in solving problem n + 1, Le., the failure proba- 
bility that problem n+ 1 will not be Fast-solvable 
with V,. 
The number of times that slow has been called by 
Adapt after n steps of training. 
The cost of Fast in solving problem (n  + 1). 
The cumulative cost of Adapt after n steps of 
training. 

I<, 

E, 
Fn 

Table 1 : Variables of interest. 

with n problems. We are interested in both the speedup 
that Adapt has over the plain iterations of slow, and the 
capability of Adapt as it increases with training. We are 
also interested in the performance of Fast, which is Adapt 
without the backup of Slow after some training. Thus, we 
use the following definition of improvability. 
Definition 1 Let A be a speedup learning algorithm de- 
signed to improve the efficiency of another algorithm A'. 
We say that 

1. A can (cost-wise) improve A' with average failure 
probability p iff A can perform the same task as A' 
with average probability at least 1 - p,  while costing 
less on average. 

2. A can effectively improve A' iff A can improve A' 
with failure probability no greater than that of A'. 

3. A can effectively replace A' ifj A calz effectively im- 
prove A' without relying on A'. 

The random variables in Table 1 are important in charac- 
terizing the performance of Adapt. Their basic relationship 
is given by the following lemma: 

Lemma 1 The average planning cost of Adaptperproblem 
after n steps of training is 

EAF, sf E(Fn+j - Fn) (1 + cc)EAn + EEn. (1) 
Consequently, the average cumulative cost of Adapt after 
n steps of training is 

EF, = (1 + uc)EK, + EEj.  (2 )  
O < j < n  

Proof The cost for AF, is obvious since in addition to 
E,, a cost of (1 + cc)A, is required to call slow with 
probability A, and Learn with probability aA,. Thesecond 
equation follows immediately from the fact that EX, = 
C o < j < n  E'j ['I. I 

Using these variables, we can immediately characterize 
the conditions under which improvements can be achieved. 
(Proof is clear.) 
Lemma 2 After n steps of training, 

I .  Fast can improve slow with failure probability EA, 

2. Adapt can effectively improve slow iffEAF, < 1. 
i f lEE, < 1. 

Figure 2: An environment with two traps. 

3. Fast can effectively replace SIOW iff EE, < 1 and 

To express these conditions in more useful terms of train- 
ing time, we need to have further information such as the 
specification of the vertex ordering function h and the in- 
cremental learning strategy Learn. In the followingsubsec- 
tions, we introduce two models, one pessimistic, the other 
randomized, each with different applicability and additional 
simplifying assumptions. Using these models, we derive 
sharp bounds on the variables of Table 1, and explore the 
ramifications of Lemma 2. 

4.1 Pessimistic Model 
In the pessimistic model, we study the worst-case conse- 
quence of learning in environments in which the strategy of 
Learn is specified, and the connectivity of S under fast is 
characterized, To motivate, consider a point robot in a pla- 
nar polygonal environment shown in Figure 2, and let fast 
be 'go-straight'. Since we are dealing with a point robot, 
the C-space and the work space are the same. Clearly, the 
C-space is well-connected locally in the sense that each 
feasible (configuration) point is connectable (visible) to at 
least half of the entire C-space under fzst. However, this 
environment may be difficult for the algorithms of [ 13, 191 , 

to handle in that the points randomly sampled will tend to 
form two disconnected Components (traps) in A and B, and 
will not help in solving problems that require reaching B 
from A. In contrast, with the help of slow, our algorithm 
will adapt to this environment efficiently. 
Definition 2 Under pessimistic model M,, 

EAn 5 1 - U. 

1. Learn adopts the minimal memory strategy of adding 
all necessary edges to take in only the minimal sub- 
chain sufficient to Fast-solve the current problem. 

2. C-space S is m-coverable for some m in that S can be 
covered by m components (not necessarily disjoint), 
with the initial configuration in SI and each compo- 
nent Si (1 5 i 5 m) being connected under fast, i.e., 
every pair of points u, zi in Si satisfies fast(u,  v). 

Thus, the environment in Figure 2 is 2-coverable under 
fast, with the two components being A and B. More gen- 
erally, if the complexity of the C-space S relative to fast is 
measured by m in that S is m-coverable, then the following 
theorem basically says that the failure probability of Adapt 
is at most proportional to m and inversely proportional to 
the amount of training n, and that this bound is tight up to 
some constant factor. 
Theorem 3 Under M,, the expected Fast failure proba- 
bility of Adapt after n steps of training has a upper bound 
of 

( 3 )  
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and a lower bound of 

(4) 

for  n 2 ( m  - l ) / u  and some environment dependent on n. 
Proof (3) Let wj  be thej* random problem. Let Xi,j be the 
0-1 random variable indicating that wj+l E Si and w j + ~  is 
not Fast-solvable using 4. Since the Si's cover S, we have 
E A ,  5 E Xi,". Also, since Adapt never forgets, we 
have 5 C 5+1 for all j ,  which implies that EXi,j 2 
EXi,j+l because Fast(w; 5, h )  j Fast(w; @ + I ,  h )  for 
all w. Finally, if Xi,j = 1 then Slow will be called. If it 
is successful, wj+l will be remembered in 5+1 ,  causing 
Xi , j f  = 0 for j' > j. Consequently, for any i ,  E ci Xi, i  I 
1 /a ,  which is the expected number of times that Slow will be 
called to reach some points in Si before one is remembered. 
Combining all three inequalities, we have 

1 m - 1  I E-=-. 
un an i> 1 

(4) Let S be composed of exactly m non-overlappingcom- 
ponents, with every component disconnected from each 
other except SI under fast. Let the distribution be uni- 
form within each component and have total probability p = 
l /(u(n + 1)) on Si for i > 1, and probability 1 - ( m  - 1)p 
on SI. Then for i > 1, the probability that Adapt  will be 
given j training problems from Si after n steps and failed 
to learn from them is (SI$( 1 - p)"-j(  1 - u ) ~ .  Thus, with 
this probability summed over j ,  Adapt will Fast-fail on Si. 
Summing up each i > 1,  we have 

= ( m -  l)p(l -pa)", 
yielding the desired lower bound. 1 

Using m as a complexity measure of the C-space, the 
following theorem says that the Fast-planning cost of Adapt 
is at most linear in r and m, and that this bound is tight up 
to a constant factor. Further, the number of times slow 
will be needed is at most proportional to m and inversely 
proportional to its capability (T, and that this bound is tight 
with sufficient amount of training. 
Theorem 4 Under M,, the expected Fast-planning cost 
of Adapt after n steps of training has an upper bound of 

EE, I r 3m - 2 - ( m  - 1) (1 - 5) ") . ( 5 )  

The expected number of calls to Slow has an upper bound 
o f  

( 

Conversely, there exists an environment in which EE, = 
r(2m - 11, andan environment in which the equality of (G)  
is reached. 

Proof Let J ,  be the number of times slow is successful. 
Classify the markers of p into two types: type 1 sharing 
the same S,- for some i with the current V ,  and type 2 does 
not. According to the 'memory minimizing' strategy of 
Learn, at most one marker of the subchain can be of type 1 ,  
and at most two markers per component not 'occupied' by 
the current V can be of type 2. (Otherwise, an edge can 
be introduced to shorten the subchain.) Thus, counting all 
subchains, the total number of type 1 and 2 markers. are 
at most J ,  and 2(m - l),  respectively. Hence, IIVn/nll 5 
1+2(m- 1)+J, .  

For (3, it suffices to show that E J ,  5 ( m  - 
1) ( 1  - (1 - &),) . Partition S into m disjoint com- 
ponents with the ith component being Si = Si \ Ui<iSj. 
Let Xi be the 0-1 random variable indicating that one 
of the n training problems is both in S,l and solvable 
by Slow. Then J ,  5 ci,l X ,  because there can be at 
most one successful call of Slow for each i > 1. Let 
pi  be the probability that a random problem is both in  Si 
and solvable by Slow. Then E X i  = 1 - (1 - pi)" and 

pi = cr - p l .  Using the fact that ( p 2 ,  . . . , p m )  ma- 
jorizes [17] (=, . . ., -), m-l we have c , > l ( l  - pi)" > 
( m  - 1)(1 - s), 2 ( m  - 1)(1 - s),, as desired. 
For (6), simply notice that u E K ,  = EJ,. 

For the lower bound on EE,, let S be composed of ex- 
actly m non-overlapping components, with the first m - 1 
components consisting of exactly 2 points, si,l and si,= 
Let the only inter-component connections under fast be be- 
tween si,2 and s i + l , l .  Let s1,1 be the initial configuration, 
and let the distribution be 0 on the first m - 1 components. 
Let h select the markers in the increasing order of the com- 
ponent index. Then upon solving the first problem, a path 
of 2m - 1 markers connecting s1,1 to a point in S, will be 
incorporated into V .  Consequently, a Fast-planning cost of 
r(2m - 1) is required for latter problems. 

For the lower bound on E&, let S be composed of 
exactly m non-overlapping components, with every com- 
ponent disconnected from each other except S1 under fast. 
For each i > 1, let the distribution have equal total proba- 
bility l / ( m  - 1) on Si. Then the learning process becomes 
effectively a coupon collector's problem [SI with m - 1 
types of coupons. Thus, E J ,  = Ci>o E X i ,  where Xi  is 
the 0- 1 random variable indicating that one of the n training 
problems is both in Si and solved by Slow. The bound now 

I follows since E X i  = 1 - (1 - "-)". m- I 

Finally, the following theorem discerns the situations in 
which Adapt is useful by weighing 1/r ,  the speed of fast, 
against m, the complexity of S. For those situations in 
which Adapt can be useful, the theorem also prescribes the 
amount of training required. 

Theorem 5 Under M,, if 1," > (3m - 2), then Adapt 
can effectively improve slow with 

( m  - 1)( 1 + ac) 
cr(1- r(3m - 2 ) )  ( 7 )  
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steps of training. I f  SIOW is also not complete, then Fast 
can effectively replace Slow with 

m - 1  
n >  a(1 - u) 

steps of training. If2m - 1 < 1/r  5 3m - 2, then after 

(9) 

steps of training, Fast can still improve slow with average 
failureprobabilityno greater than (m - l)/(un). Ifl/r 5 
2m - 1, then there exist environments in which neither 
Adapt nor Fast can improve slow. 
Proof From Theorem 4, we have EE, < r(3m - 2) 
for any finite n. If (7) holds, then from Theorem 3 and 
Lemma 1, we have EAF, 5 1 - r(3m - 2) + EE, < 1, 
as prescribed by 2 of Lemma 2. Further, if a < 1 and (8) 
holds, then EA, 5 1 - a and EE, < 1, as prescribed by 3 
of Lemma 2. If 2m - 1 < 1/r 5 3m - 2 and (9) holds, then 
from Theorem 4, EE, < r(2m - 1 + (m - 1)(1- (3m - 
2 - l / r ) / (m - 1))) = 1, as prescribed by 1 of Lemma 2. If 
2m-1 2 1/r, thenbyLemma 1 andTheorem4, thereexists 
an environment in which EF, 2 EE, = r(2m - 1) 2 1, 
contrary to what is required for improvement in Lemma 2. 
I 

4.2 Randomized Model 
In the randomized model, we study the average-case con- 
sequence of learning in environments in which the number 
of new trail-markers acquired by Learn and the power of 
fast  are randomized. Thus, we are interested in the aver- 
age behavior for a class of environments instead of a fixed 
environment. 
Definition 3 Under randomized model M,, 

1. The number of new trail-markers acquired by Learn, 
A, is an independent random variable. 

2. fast(u, w) is I for  any established edge ( u ,  w> in V ,  
and is I otherwise with independent probability ji.  

While M ,  may not be physically realizable as opposed 
to M,, it does simplify the corresponding results for M,, 
and provide reasonable estimation tools as demonstrated in 
next section. 
Theorem 6 Under JM,, 

def where Ep(A) = 1 - E( 1 - ,G)’ denotes the average utility 
of a learned chain p. 

Proof (sketch) Let L,  = A, - An+l be the additional 
probability of problems learned through the incorporation 
of p, into V,. We call E(L, I A,) the expected learning 
rate, which evaluates to A,uEp(X). 

It now suffices to show that for n > 0, EA, 5 
l / (a (n  + 1)) for an expected learning of E(L, I An) = 

aA,, a < 1. For n = 0, EA0 5 1 5 1 / ~ .  For 
n = 1, EA, = EAo(1 - aAo) has maximum value 
1/(4a), which is less than the desired upper bound of 
1/(2a). For n 2 2, it is known [5, Theorem 81 that 
EA, 5 (a(n  + I ) ) - ’  exp ((0.52- lnn)/(2n)) , which 

1 implies the desired upper bound. 

Notice how the theorem above, which bounds the failure 
probability under M,,  has the reciprocal of the average 
trail-marker utility essentially replacing the C-space com- 
plexity parameter for the corresponding Theorem 3 under 
M,. Notice also how the following theorem corresponding 
to Theorem 4 simplifies the planning cost of Fast in terms 
of its failure probability. 
Theorem 7 Under M, ,  the expected cost of Fast after n 
steps of training is 

(11) 
r 

P 
EE, :( 1 - EA,). 

Consequently, the expected cost of Adapt per problem after 
n steps of training is 

EAF, = r/ji + (1 + ac - r/ji)EA,. (12) 

Proof Let N be the number of markers in V,, and 
Qi be the probability that problem n + 1 cannot be 
reduced by fast to any of the first i markers. Then 

&(l-E(QN f i  I N ) )  = ~(l-EA,).TheformulaforEAF, 
follows from Lemma 1. I 

EEn = TECO<I<N E(Qi I N )  = ‘&i<N(1 - PIi  = 

The following theorem, corresponding to Theorem 5, 
discerns the situations in which Adap t  is useful and pre- 
scribes the necessary training period. Again, notice how 
under M,, the power of fast, l/ji, is playing the role of the 
C-space complexity parameter m under M,. 
Theorem8 Under M,, Adapt can effectively improve 
SIOW with suficient training iff r < ji. Sufficient train- 
ing can be achieved with 

number of examples. If slow is also not complete, then 
Fast can effectively replace slow with 

steps of training. If r 2 j i ,  then Fast may still improve 
slow, but only with minimum failure probability EA, 2 
1 - p/r .  
Proof From Lemma 1 and Theorem 7, we have EAF, = 
r/p + (1  + uc - r/,G)EA,. Combining Lemma 2, Theo- 

I rem 6,  and this formula yields the desired theorem. 

Finally, we have the following global performance bound 
of Adapt  during training. 
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Theorem 9 Under M,, the ratio of the average cost of 
Adapt to that of slow is bounded asymptotically by r/ji a.s 
the number of training problems approaches injinity. More 
globally, the behavior is 

--I-=+ Fn r ( l + a c - :  L) { Ay ifAoan> 1; 
“ P  otherwise, 

(15) 
where (Y = aEp(X). Accordingly, the maKimurn value that 
the ratio can attain at any n is at most 

Fn / n  5 ~ / f i  + (1 + a c  - r/P) Ao. ( 16) 

Proof From Lemma 1 and Theorem 7, it suffices to prove 
that EK, 5 In(eAoan)/a if Aoan > 1; and EK, 5 
Aon otherwise. Since EI(, = cj<, EAj, and EA, 5 
min(Ao,(a(n + 1))-’), we must have EK, 5 AOZ + 
( H ,  - HZ)/cy, for all positive integers z 5 n. Since 
H, - H ,  5 In(n/z), we may extend the domain of z to 
thereals and obtain EK, 5 Aoz+ln(n/z)/a, which yields 
the theorem when minimized at z = min(n, l/(aAo)). I 

5 Application and Verification 
We now demonstrate the applicability and fidelity of the 
theory thus developed. 

5.1 Pessimistic Model 
Going back to the example of a point robot, in a 2-coverable 
workspace of Figure 2, we see that from Theorem 3, the 
expected failure probability of Adapt can be no greater 
than l/(an) with n being the number of training problems. 
Notice that this result does not depend on what the prob- 
lem distribution is, as long as it is fixed for both training 
and subsequent problem-solving. More generally, we have 
the following theorem for a point robot in simple planar 
environments, 

Theorem 10 Consider a point robot in a planar simple 
polygonal workspace jilled with b simple polygonal obsta- 
cles and having a total of c corners. Let fast be “go- 
straight”. Then the workspace is (26 + c - 2)-coverable. 
Consequently, after n steps of training, the expected proba- 
bility that Adapt will succeed in reaching the next random 
goal using only “go-straight” via the learned markers V, 
is at least 1 - (2b + c - 3)/(crn). Furthel; the expected cost 
ofFast is at most 3r(2b + c - 2). 

Proof It suffices to show that the feasible workspace 
(a simple polygon with holes) can be triangulated into 
m = 26 + c - 2 triangles, since each triangle is convex, 
hence connected under “go-straight”. It is known that every 
simple polygon with holes has a valid constrained triangu- 
lation [22] whose edges are a superset of the input edges, 
and whose vertices are the input vertices (no added vertices 
are necessary). Let m and d be the number of triangles 
and edges in such a triangulation. Then by Euler’s for- 
mula [22], we have ( m  + b + 1) - d + c = 2. Also, 
counting each edge of every triangle yields 3m = 2d - c. 

Figure 3: A 10-dof robot environment. 

Hence, m + b + c - (3m + c)/2 = 1 implies the desired 
result of rn = 2b + c - 2. I 

Beyond immediate applications to point robots, the theo- 
ries thus developed can also help us make plausible perfor- 
mance predictions for more complicated robots. Shown in  
Figure 3a is a 10-dof robot in  a planar environment studied 
in [13]. Let fast implement the following procedure: 

1. move one end of the robot straight to the desired loca- 
tion with the rest of the robot complying; 

2. with the first end point fixed, move the other end of 
the robot straight to the its desired location with the 
rest of the robot complying; 

3. with both end points fixed, move the rest of the robot 
to their desired configuration using standard potential 
field approach. 

Since the robot is snake-like with high dof, it is quite con- 
ceivable that fast will succeed if both end points a e  visible 
from their desired locations, and that there is indeed a so- 
lution. Under this plausible assumption, we can bound the 
number of fast-connected components necessary in cover- 
ing the 10-dimensional C-space. From Figure 3b, we see 
that the workspace is 1 1-coverable for each end point under 
visibility. Also, from visual inspection, we see that there 
are at most 12 topologically distinct inverse-kinematic so- 
lutions for a given pair of end points. Hence, the C-space 
is at most 11 . 11 . 12 = 1452-coverable. Consequently, 
if the teacher slow were a complete planner, it will take at 
most 145100 training problems for Adap t  to attain a 99% 
expected capabi 1 ity. 

5.2 Randomized Model 
To demonstrate the randomized model, we explain results 
and make performance predictions on two separate experi- 
ments previously reported in [5]. Figure 4a shows a planar 
2-link robot environment in which Adapt is applied. In this 
experiment, slow implements an incomplete but fairly ef- 
fective planner [4], and fast  implements a simple potential- 
field based hill-climb. There are 5 polygonal obstacles in  
the fixed workcell, and a goal set consisting of 9 preselected 
goal positions. Startingat home position0, the robot is to go 
through a sequence of 100goals randomly selected from the 
goal set. In Figure 4b, the ratio of the cumulative planning 
cost of Adapt to that of slow only is plotted against problem 
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Figure 4: Time improvement on a planar 2-link robot environment. 

number n. The planning costs are averaged over 100 runs 
and are measured by the number of robot-to-obstacle dis- 
tance evaluations, which is the dominating factor in the 
computing cost of each planner. Figure 4c plots the ratio 
against (In(n + l ) ) / (n  + 1) to show their asymptotic linear 
relationship, hinted at by Theorem 9. 

The experiment shows that Adapt is able to increase 
its performance relative to slow from 150% slower (ratio 
= 2.5) to 50% faster at the end of 100 training examples. 
We can use Theorem 9 to predict the maximum speedup 
achievable. If we believe that (15) is also an asymptotic 
lower bound, then the plot implies that r/j i  k 0.38 is the 
minimum xhievable cost ratio, equivalent to a maximum 
speedup of 62%. From other empirical observations, we 
estimate that T = 0.1, c = I ,  c = 1, and A0 = 0.9. Hence, 
/I = 0.26. Since X = 2, we also estimate Ep(X) = 0.45. 
To see how consistent these numbers are, we estimate the 
number of training problems required by Adapt  to have its 
cumulative cost first become less than that of slow. Using 
(15), we have a = 0.45 and ~ ~ ~ ~ : / ~ )  = 
0.156. giving us eAoan = 19, or n = 17.2, which is very 
close to the observed n = 17 in the plot. 

We use our theory to explain and predict another exper- 
iment performed previously in which Adapt is applied on 
a 3-dimensional 6-dof gantry robot environment 151. The 
same slow and fast used for the planar case are also used 
here. In this environment (left side of Figure 5), there are 
4 obstacles: a (16 + 2)-sided polyhedral approximation of 
a cylindrical cask, two cask stands, and a floor. Motivated 
by problems in  radiation survey [ 1 I], the goal positions are 
chosen randomly, and correspond to the robot end effector 
touching the cask surface in a prescribed orientation. The 
tasks are sufficiently difficult that the original planner, slow, 
fails to reach 7 out of a sequence of 100 random goals. In 
contrast, Adapt is able to accomplish all but 1 task during 
the exercise, thereby increasing the capability of the origi- 
nal planner. Moreover, Adap t  calls slow only 5 times, and 
stores only 11 trail-markers in addition to the initial robot 
position. Figure 5 plots the task number against the the 
ratio of the cumulative effort expended by Adapt to that 
expended by slow only. The 5 large points indicate Adapt's 
calling of slow, and the single white point indicates the only 

5 

failure of Adapt. 
5 93% because of the 

7 failures; Ep(X) = 1 - 0.011/5 = 80% because only 5 
chains are involved. Using (14) of Theorem 8, we then 
estimate n = 1/(0.93.0.07.0.8) A 19.2 to be the number 
of training tasks n required for Fast to improve both the 
speed and the capability of slow. This estimate means that 
fast is already very powerful, and that roughly only 2 calls 
(#I7 and #I8 in the plot) to slow are necessary for Fast to 
catch up with slow in task solving capability. 

With Theorem 9, we can predict the maximum speedup 
achievable. We estimate A0 = 1/17 = 6% because Adap t  
first failed at task #1?. We also estimate c = 0.1 from 
empirical observation. Again, if we believe that (15) is 
also a lower bound, then the maximum cost ratio is r/j i  + 
(1 + 0.1 - r//1)0.06 = 0.32 from the plot, which implies 
that r/ji A 0.27, which is incidentally very close to the 
cost ratio at the end of task #loo. Consequently, we do not 
anticipate Adapt to do much better with more training. 

Using the data, we estimate 

6 Conclusion 
We have presented a learning algorithm that can improve 
path planning. The algorithm adapts to its working envi- 
ronment by maintaining an experience graph with vertices 
corresponding to useful robot configurations. It can both 
reduce time cost and increase task solving capability of 
existing planners. 

To gain insight into this algorithm, we have presented 
some theoretical analysis based on two stochastic models: 
pessimistic M ,  and randomized M,.. The models have 
different assumptions and applications: M ,  quantifies C- 
space complexity while M ,  quantifies experience utility. 
Using these models, we characterize the situations in which 
speedup learning is useful, and provide global quantitative 
bounds on planning cost and capability in terms of train- 
ing cost. We have also demonstrated the applicability and 
fidelity of our analysis on several robot path planning en- 
vironments. In particular, we h&e illustrated a technique 
for predicting the maximum achievable speedup. Our the- 
oretical results and techniques are elementary and should 
be useful for studying other types of probabilistic learning 
as well. 

.- - -  
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Figure 5: Time improvement on a 3-d, 6-dof robot problem. 
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