
* t

cod4505 19 3 - -3
Proceedings of the 1995 International Conference on Robotics and Automation.

Adaptive Path Planning: Algorithm and Analysis*

Pang C. Chen
Sandia National Laboratories

Albuquerque, NM 87 185-095 1, USA

Abstract
To address the need for a fast path planner, we present a
learning algorithm that improves path planning by using
past experience to enhance future performance. The algo-
rithm relies on an existing path planner to provide solutions
to difficult tasks. From these solutions, an evolving sparse
network of useful robot configurations is learned to support
faster planning. More generally, the algorithm provides a
framework in which a slow but effective planner may be
improved both cost-wise and capability-wise by a faster but
less effective planner coupled with experience. We analyze
the algorithm by formalizing the concept of improvability
and deriving conditions under which a planner can be im-
proved within the framework. The analysis is based on two
stochastic models, one pessimistic (on task complexity), the
other randomized (on experience utility). Using these mod-
els, we derive quantitative bounds to predict the learning
behavior. We use these estimation tools to characterize the
situations in which the algorithm is useful and to provide
bounds on the training time. In pxticular, we show how
to predict the maximum achievable speedup. Additionally,
our analysis techniques are elementary and should be useful
for studying other types of probabilistic learning as well.

1 Introduction
Path planning in known environments refers to finding a
short, collision-free path from an initial robot configuration
to a desired configuration. It has to be fast to support
real-time task-level robot programming. Accordingly, it
has received much attention [15, 121, and there are now a
number of implemented path planners based on a variety of
approaches. Unfortunately, current planning techniques are
still too slow to be effective, as they often require several
minutes, if not hours of computation.

To remedy this situation, we have developed a simple
learning algorithm [5] that uses past experience to increase
future performance. Thus, if there are more than one prob-
lem to be solved, the cost of each problem can be amortized
and decreased through learning. The algorithm relies on an
existing path planner to provide solutions to difficult tasks.
From these solutions, it learns a sparse network of useful
robot configurations that guides and supports fast planning.
More generally, the algorithm is actually a framework in

'This work has been performed at Sandia National Labora-
tories and supported by the U.S. Department of Energy under
Contract DE-AC04-94AL85000.

which a slow but effective planner may be improved both
cost-wise and capability-wise by a faster but less effective
planner coupled with experience. In this paper, we provide
a deeper analysis by formalizing the concept of improvabil-
ity, and deriving sharp conditions under which planners can
be improved within the framework.

To achieve predictive power while preserving some gen-
erality, we study the algorithm under models with different
simplifying assumptions and applications. The particular
(as opposed to general) analysis is based on two stochastic
models, one pessimistic (on task complexity), the other ran-
domized (on experience utility). Using these models, we
derive global quantitative bounds on planning cost and ca-
pability in terms of training time. We show that the reliance
of the improved planner on the original slow planner is at
most inversely proportional to the training time. We also
characterize the situations in which learning is useful and
prescribe the amount of training required. Finally, we use
these analytic performance estimation tools to gain insight
into some experimental results. Although our presentation
is in the context of motion planning, the algorithm and the
analysis are extensible to more general learning. In partic-
ular, they may be applied to higher-level task planning or
other domains in which experience is useful. Our theoret-
ical work should complement well with the experimental
work of others.

2 Related Work
Our research builds on the results of [SI, which presents the
algorithm for stationary environments along with some gen-
eral but weak analysis on the learning process. To cope with
incrementally changing environments, the algorithm can be
extended with an on-demand experience repair strategy and
an object-attached experience abstraction scheme [1,7]. In
this paper, however, we deal only with the fundamental sta-
tionary case as in [5]. Our paper is self-contained except
for two mathematical results from [5] which we use in the
analysis section without repeating the proofs.

As mentioned in the introduction, a large amount of re-
search has been done on robot path planning, most of which
deals with solving one-time problems in stationary envi-
ronments [2,3,6, 10, 14, 16, 211. Most implemented path
planners have been developed for mobile robots and ma-
nipulators with few degrees of freedom (dof). There are
some that are designed for many dof manipulators based
on random [2] (Brownian motion), sequential [IO] (back-
tracking with virtual obstacles), or parallel [3] (genetic opti-

QE Stus DaCUMENT E UNLIMfTE

73

DISCLAIMER

Portions of this document may be illegible
in electronic image
produced from the
document.

products. Images are
best available original

mization) search. All of these planners, however, typically
require minutes of computation for mobile robots, and tens
of minutes for 6 degrees of freedom manipulators.

For solving several problems in stationary environments,
there are a few other path planners that incorporate learning:
some [9,20] take a higher-level, reasoning approach, while
others [13, 191 take a lower-level, memory-based approach
similar to ours. Learning can be done incrementally, or in
phases which some consider as preprocessing [13]. To de-
crease the effective cost of solving each problem, all of these
work maintain a network (roadmap) of useful robot configu-
rations (landmarks) and employ some sort of a local planner
for moving through the network. Algorithmically, there are
some differences between ours and that of 113, 191. First,
we assume and use the same distribution of tasks (prob-
lems) for both training and subsequent problem-solving.
In [13, 191, a uniform problem distribution is used for train-
ing. Second, we assume the existence of a fairly reliable,
albeit slow, global planner, whereas they do not. Thus,
while their algorithms may be more general, they may also
require more training time to compensate for the lack of
solutions when local planning fails. Overall, the most sig-
nificant difference between all of the aforementioned work
and ours is that we aim to provide a theoretical foundation
for algorithm analysis to: 1) better understand and predict
our experimental results; and 2) suggest similar analysis
techniques so that others may apply to better understand
their algorithms.

3 Algorithmic Framework
Given an arbitrary work environment and an arbitrary
task (u, to) of moving the robot from configuration point u
to w, we assume that there are initially two path planners
available: fast and slow. Both return true (1) if successful,
false (0) otherwise. The fast planner is required to be fast,
symmetric, and only locally effective, i.e., it should have a
good chance of success if u and w are close to each other.
The slow planner, on the other hand, is required to be much
more globally effective than fast, and hence can be very
slow. It is the performance of this planner that we wish
to improve. Note that this ‘planner’ can even be a human
robot operator.

In our learning scheme, we retain the global effectiveness
of slow by calling it whenever necessary, while reducing
the overall time cost by calling fast whenever possible. To
utilize fast fruitfully, we remember significant intermedi-
ate robot configurations learned from the solution paths of
slow. These subgoals represent fully specified robot con-
figurations and are stored in memory V , with connecting
edges E (indicating successes of fast) maintained so that
complete solution paths may be regenerated through ap-
plications of fast. The subgoals V can be thought of as
‘trail-markers’ in that each marker can be traced to one an-
other through the trails E. We call the connected network
of trail-markers the experience graph G = (V, E) .

Formally, the learning algorithm Adapt is shown in Fig-
ure 1. The algorithm is based on two planners: Fast

Algorithm Adapt(Fast, Slow)
v t {current configuration};
do forever

w t goal configuration;
if (not Fast(w; V, h) and Slow(w; V, h)) then

p t Abstract(Slow[w; V, h]);
V +- Learn(V, p) ;

Figure 1: An algorithm for improving path planning.

and Slow, which are in turn based on fast and slow, re-
spectively. Using V , planners Fast and Slow attempt to
reach a desired configuration w from the current configura-
tion. Since V forms a connected component, the planners
only need to check the reachability of w from a known
reachable trail-marker in V using a heuristic subgoal or-
dering function h. Planner Fast simply goes through the
markers according to h, and finds the first marker v for
which fast(v, w) succeeds. Planner Slow simply selects the
best marker 21 according toh, and calls slow(v, w). Adapt is
essentially Fast backed up by Slow. Learning occurs when
Fast fails but Slow succeeds. In this case, we assume that
the solution path of slow(v, w), denoted by slow[w, w], is
somehow ‘abstracted’ into a short chain p of trail-markers
with each edge traversable by fast. (The abstraction can be
implemented by locating the markers with binary search on
a discretized solution path.) We achieve incremental 1, earn-
ing by absorbing p into memory using a procedure, Learn,
which is required to augment V with enough of p to ensure
a solution path for Fast!w) if it were to be called again.

4 Performance Analysis
In this section, we present an approach to analyzing speedup
learning [23], which is what the algorithm is doing -seeking
to improve program efficiency through learning. We first
formalize the concept of improvability, and derive general
conditions for such improvements. Next, we introduce
two models with additional simplifying assumptions and
parameters. Using these models, we then derive sharp
bounds on planning cost and capability in terms of training
time. Finally, we characterize the improvable situations in
terms of the model parameters, and prescribe the amount of
training required.

Two performance measures are of interest: efficiency
and capability. To quantify, we assume that the problems
are drawn randomly and independently from a distribution
(as in PAC-learning [181) on some configuration space (C-
space) S. We do not require slow to be complete; we do
require that it have a success probability c in solving a
random task. We assume that only slow, fast, and Learn
have costs, each being a constant. (The cost of Abstract
can be absorbed into the cost of Learn.) To normalize, let
1, T, and c be the respective costs of slow, fast, and Learn.
(Both P and c are typically < 1 .) We use subscript n on a
program variable to denote its value at the nth loop. Thus,
I f , denotes the memory V after Adapt has been trained

2 I

A, The probability that Adapt will need to call slow
in solving problem n + 1, Le., the failure proba-
bility that problem n+ 1 will not be Fast-solvable
with V,.
The number of times that slow has been called by
Adapt after n steps of training.
The cost of Fast in solving problem (n + 1).
The cumulative cost of Adapt after n steps of
training.

I<,

E,
Fn

Table 1 : Variables of interest.

with n problems. We are interested in both the speedup
that Adapt has over the plain iterations of slow, and the
capability of Adapt as it increases with training. We are
also interested in the performance of Fast, which is Adapt
without the backup of Slow after some training. Thus, we
use the following definition of improvability.
Definition 1 Let A be a speedup learning algorithm de-
signed to improve the efficiency of another algorithm A'.
We say that

1. A can (cost-wise) improve A' with average failure
probability p iff A can perform the same task as A'
with average probability at least 1 - p, while costing
less on average.

2. A can effectively improve A' iff A can improve A'
with failure probability no greater than that of A'.

3. A can effectively replace A' ifj A calz effectively im-
prove A' without relying on A'.

The random variables in Table 1 are important in charac-
terizing the performance of Adapt. Their basic relationship
is given by the following lemma:

Lemma 1 The average planning cost of Adaptperproblem
after n steps of training is

EAF, sf E(Fn+j - Fn) (1 + cc)EAn + EEn. (1)
Consequently, the average cumulative cost of Adapt after
n steps of training is

EF, = (1 + uc)EK, + EEj. (2)
O < j < n

Proof The cost for AF, is obvious since in addition to
E,, a cost of (1 + cc)A, is required to call slow with
probability A, and Learn with probability aA,. Thesecond
equation follows immediately from the fact that EX, =
C o < j < n E'j ['I. I

Using these variables, we can immediately characterize
the conditions under which improvements can be achieved.
(Proof is clear.)
Lemma 2 After n steps of training,

I . Fast can improve slow with failure probability EA,

2. Adapt can effectively improve slow iffEAF, < 1.
i f lEE, < 1.

Figure 2: An environment with two traps.

3. Fast can effectively replace SIOW iff EE, < 1 and

To express these conditions in more useful terms of train-
ing time, we need to have further information such as the
specification of the vertex ordering function h and the in-
cremental learning strategy Learn. In the followingsubsec-
tions, we introduce two models, one pessimistic, the other
randomized, each with different applicability and additional
simplifying assumptions. Using these models, we derive
sharp bounds on the variables of Table 1, and explore the
ramifications of Lemma 2.

4.1 Pessimistic Model
In the pessimistic model, we study the worst-case conse-
quence of learning in environments in which the strategy of
Learn is specified, and the connectivity of S under fast is
characterized, To motivate, consider a point robot in a pla-
nar polygonal environment shown in Figure 2, and let fast
be 'go-straight'. Since we are dealing with a point robot,
the C-space and the work space are the same. Clearly, the
C-space is well-connected locally in the sense that each
feasible (configuration) point is connectable (visible) to at
least half of the entire C-space under fzst. However, this
environment may be difficult for the algorithms of [13, 191 ,

to handle in that the points randomly sampled will tend to
form two disconnected Components (traps) in A and B, and
will not help in solving problems that require reaching B
from A. In contrast, with the help of slow, our algorithm
will adapt to this environment efficiently.
Definition 2 Under pessimistic model M,,

EAn 5 1 - U.

1. Learn adopts the minimal memory strategy of adding
all necessary edges to take in only the minimal sub-
chain sufficient to Fast-solve the current problem.

2. C-space S is m-coverable for some m in that S can be
covered by m components (not necessarily disjoint),
with the initial configuration in SI and each compo-
nent Si (1 5 i 5 m) being connected under fast, i.e.,
every pair of points u, zi in Si satisfies fast(u, v).

Thus, the environment in Figure 2 is 2-coverable under
fast, with the two components being A and B. More gen-
erally, if the complexity of the C-space S relative to fast is
measured by m in that S is m-coverable, then the following
theorem basically says that the failure probability of Adapt
is at most proportional to m and inversely proportional to
the amount of training n, and that this bound is tight up to
some constant factor.
Theorem 3 Under M,, the expected Fast failure proba-
bility of Adapt after n steps of training has a upper bound
of

(3)

3

and a lower bound of

(4)

for n 2 (m - l) / u and some environment dependent on n.
Proof (3) Let wj be thej* random problem. Let Xi,j be the
0-1 random variable indicating that wj+l E Si and w j + ~ is
not Fast-solvable using 4. Since the Si's cover S, we have
E A , 5 E Xi,". Also, since Adapt never forgets, we
have 5 C 5+1 for all j , which implies that EXi,j 2
EXi,j+l because Fast(w; 5, h) j Fast(w; @ + I , h) for
all w. Finally, if Xi,j = 1 then Slow will be called. If it
is successful, wj+l will be remembered in 5+1 , causing
Xi , j f = 0 for j' > j. Consequently, for any i , E ci Xi, i I
1 /a , which is the expected number of times that Slow will be
called to reach some points in Si before one is remembered.
Combining all three inequalities, we have

1 m - 1 I E-=-.
un an i> 1

(4) Let S be composed of exactly m non-overlappingcom-
ponents, with every component disconnected from each
other except SI under fast. Let the distribution be uni-
form within each component and have total probability p =
l /(u(n + 1)) on Si for i > 1, and probability 1 - (m - 1)p
on SI. Then for i > 1, the probability that Adapt will be
given j training problems from Si after n steps and failed
to learn from them is (SI$(1 - p)"-j(1 - u) ~ . Thus, with
this probability summed over j , Adapt will Fast-fail on Si.
Summing up each i > 1, we have

= (m - l)p(l -pa)",
yielding the desired lower bound. 1

Using m as a complexity measure of the C-space, the
following theorem says that the Fast-planning cost of Adapt
is at most linear in r and m, and that this bound is tight up
to a constant factor. Further, the number of times slow
will be needed is at most proportional to m and inversely
proportional to its capability (T, and that this bound is tight
with sufficient amount of training.
Theorem 4 Under M,, the expected Fast-planning cost
of Adapt after n steps of training has an upper bound of

EE, I r 3m - 2 - (m - 1) (1 - 5) ") . (5)

The expected number of calls to Slow has an upper bound
o f

(

Conversely, there exists an environment in which EE, =
r(2m - 11, andan environment in which the equality of (G)
is reached.

Proof Let J , be the number of times slow is successful.
Classify the markers of p into two types: type 1 sharing
the same S,- for some i with the current V , and type 2 does
not. According to the 'memory minimizing' strategy of
Learn, at most one marker of the subchain can be of type 1 ,
and at most two markers per component not 'occupied' by
the current V can be of type 2. (Otherwise, an edge can
be introduced to shorten the subchain.) Thus, counting all
subchains, the total number of type 1 and 2 markers. are
at most J , and 2(m - l), respectively. Hence, IIVn/nll 5
1+2(m- 1)+J, .

For (3, it suffices to show that E J , 5 (m -
1) (1 - (1 - &),) . Partition S into m disjoint com-
ponents with the ith component being Si = Si \ Ui<iSj.
Let Xi be the 0-1 random variable indicating that one
of the n training problems is both in S,l and solvable
by Slow. Then J , 5 ci,l X , because there can be at
most one successful call of Slow for each i > 1. Let
pi be the probability that a random problem is both in Si
and solvable by Slow. Then E X i = 1 - (1 - pi)" and

pi = cr - p l . Using the fact that (p 2 , . . . , p m) ma-
jorizes [17] (=, . . ., -), m-l we have c , > l (l - pi)" >
(m - 1)(1 - s), 2 (m - 1)(1 - s),, as desired.
For (6), simply notice that u E K , = EJ,.

For the lower bound on EE,, let S be composed of ex-
actly m non-overlapping components, with the first m - 1
components consisting of exactly 2 points, si,l and si,=
Let the only inter-component connections under fast be be-
tween si,2 and s i + l , l . Let s1,1 be the initial configuration,
and let the distribution be 0 on the first m - 1 components.
Let h select the markers in the increasing order of the com-
ponent index. Then upon solving the first problem, a path
of 2m - 1 markers connecting s1,1 to a point in S, will be
incorporated into V . Consequently, a Fast-planning cost of
r(2m - 1) is required for latter problems.

For the lower bound on E&, let S be composed of
exactly m non-overlapping components, with every com-
ponent disconnected from each other except S1 under fast.
For each i > 1, let the distribution have equal total proba-
bility l / (m - 1) on Si. Then the learning process becomes
effectively a coupon collector's problem [SI with m - 1
types of coupons. Thus, E J , = Ci>o E X i , where Xi is
the 0- 1 random variable indicating that one of the n training
problems is both in Si and solved by Slow. The bound now

I follows since E X i = 1 - (1 - "-)". m- I

Finally, the following theorem discerns the situations in
which Adapt is useful by weighing 1/r , the speed of fast,
against m, the complexity of S. For those situations in
which Adapt can be useful, the theorem also prescribes the
amount of training required.

Theorem 5 Under M,, if 1," > (3m - 2), then Adapt
can effectively improve slow with

(m - 1)(1 + ac)
cr(1- r(3m - 2)) (7)

4

steps of training. I f SIOW is also not complete, then Fast
can effectively replace Slow with

m - 1
n > a(1 - u)

steps of training. If2m - 1 < 1/r 5 3m - 2, then after

(9)

steps of training, Fast can still improve slow with average
failureprobabilityno greater than (m - l)/(un). Ifl/r 5
2m - 1, then there exist environments in which neither
Adapt nor Fast can improve slow.
Proof From Theorem 4, we have EE, < r(3m - 2)
for any finite n. If (7) holds, then from Theorem 3 and
Lemma 1, we have EAF, 5 1 - r(3m - 2) + EE, < 1,
as prescribed by 2 of Lemma 2. Further, if a < 1 and (8)
holds, then EA, 5 1 - a and EE, < 1, as prescribed by 3
of Lemma 2. If 2m - 1 < 1/r 5 3m - 2 and (9) holds, then
from Theorem 4, EE, < r(2m - 1 + (m - 1)(1- (3m -
2 - l / r) / (m - 1))) = 1, as prescribed by 1 of Lemma 2. If
2m-1 2 1/r, thenbyLemma 1 andTheorem4, thereexists
an environment in which EF, 2 EE, = r(2m - 1) 2 1,
contrary to what is required for improvement in Lemma 2.
I

4.2 Randomized Model
In the randomized model, we study the average-case con-
sequence of learning in environments in which the number
of new trail-markers acquired by Learn and the power of
fast are randomized. Thus, we are interested in the aver-
age behavior for a class of environments instead of a fixed
environment.
Definition 3 Under randomized model M,,

1. The number of new trail-markers acquired by Learn,
A, is an independent random variable.

2. fast(u, w) is I for any established edge (u , w> in V ,
and is I otherwise with independent probability ji.

While M , may not be physically realizable as opposed
to M,, it does simplify the corresponding results for M,,
and provide reasonable estimation tools as demonstrated in
next section.
Theorem 6 Under JM,,

def where Ep(A) = 1 - E(1 - ,G)’ denotes the average utility
of a learned chain p.

Proof (sketch) Let L, = A, - An+l be the additional
probability of problems learned through the incorporation
of p, into V,. We call E(L, I A,) the expected learning
rate, which evaluates to A,uEp(X).

It now suffices to show that for n > 0, EA, 5
l / (a (n + 1)) for an expected learning of E(L, I An) =

aA,, a < 1. For n = 0, EA0 5 1 5 1 / ~ . For
n = 1, EA, = EAo(1 - aAo) has maximum value
1/(4a), which is less than the desired upper bound of
1/(2a). For n 2 2, it is known [5, Theorem 81 that
EA, 5 (a(n + I)) - ’ exp ((0.52- lnn)/(2n)) , which

1 implies the desired upper bound.

Notice how the theorem above, which bounds the failure
probability under M,, has the reciprocal of the average
trail-marker utility essentially replacing the C-space com-
plexity parameter for the corresponding Theorem 3 under
M,. Notice also how the following theorem corresponding
to Theorem 4 simplifies the planning cost of Fast in terms
of its failure probability.
Theorem 7 Under M, , the expected cost of Fast after n
steps of training is

(11)
r

P
EE, :(1 - EA,).

Consequently, the expected cost of Adapt per problem after
n steps of training is

EAF, = r/ji + (1 + ac - r/ji)EA,. (12)

Proof Let N be the number of markers in V,, and
Qi be the probability that problem n + 1 cannot be
reduced by fast to any of the first i markers. Then

&(l-E(QN f i I N)) = ~(l-EA,).TheformulaforEAF,
follows from Lemma 1. I

EEn = TECO<I<N E(Qi I N) = ‘&i<N(1 - PIi =

The following theorem, corresponding to Theorem 5,
discerns the situations in which Adap t is useful and pre-
scribes the necessary training period. Again, notice how
under M,, the power of fast, l/ji, is playing the role of the
C-space complexity parameter m under M,.
Theorem8 Under M,, Adapt can effectively improve
SIOW with suficient training iff r < ji. Sufficient train-
ing can be achieved with

number of examples. If slow is also not complete, then
Fast can effectively replace slow with

steps of training. If r 2 j i , then Fast may still improve
slow, but only with minimum failure probability EA, 2
1 - p/r .
Proof From Lemma 1 and Theorem 7, we have EAF, =
r/p + (1 + uc - r/,G)EA,. Combining Lemma 2, Theo-

I rem 6, and this formula yields the desired theorem.

Finally, we have the following global performance bound
of Adapt during training.

5

Theorem 9 Under M,, the ratio of the average cost of
Adapt to that of slow is bounded asymptotically by r/ji a.s
the number of training problems approaches injinity. More
globally, the behavior is

--I-=+ Fn r (l + a c - : L) { Ay ifAoan> 1;
“ P otherwise,

(15)
where (Y = aEp(X). Accordingly, the maKimurn value that
the ratio can attain at any n is at most

Fn / n 5 ~ / f i + (1 + a c - r/P) Ao. (16)

Proof From Lemma 1 and Theorem 7, it suffices to prove
that EK, 5 In(eAoan)/a if Aoan > 1; and EK, 5
Aon otherwise. Since EI(, = cj<, EAj, and EA, 5
min(Ao,(a(n + 1))-’), we must have EK, 5 AOZ +
(H , - HZ)/cy, for all positive integers z 5 n. Since
H, - H , 5 In(n/z), we may extend the domain of z to
thereals and obtain EK, 5 Aoz+ln(n/z)/a, which yields
the theorem when minimized at z = min(n, l/(aAo)). I

5 Application and Verification
We now demonstrate the applicability and fidelity of the
theory thus developed.

5.1 Pessimistic Model
Going back to the example of a point robot, in a 2-coverable
workspace of Figure 2, we see that from Theorem 3, the
expected failure probability of Adapt can be no greater
than l/(an) with n being the number of training problems.
Notice that this result does not depend on what the prob-
lem distribution is, as long as it is fixed for both training
and subsequent problem-solving. More generally, we have
the following theorem for a point robot in simple planar
environments,

Theorem 10 Consider a point robot in a planar simple
polygonal workspace jilled with b simple polygonal obsta-
cles and having a total of c corners. Let fast be “go-
straight”. Then the workspace is (26 + c - 2)-coverable.
Consequently, after n steps of training, the expected proba-
bility that Adapt will succeed in reaching the next random
goal using only “go-straight” via the learned markers V,
is at least 1 - (2b + c - 3)/(crn). Furthel; the expected cost
ofFast is at most 3r(2b + c - 2).

Proof It suffices to show that the feasible workspace
(a simple polygon with holes) can be triangulated into
m = 26 + c - 2 triangles, since each triangle is convex,
hence connected under “go-straight”. It is known that every
simple polygon with holes has a valid constrained triangu-
lation [22] whose edges are a superset of the input edges,
and whose vertices are the input vertices (no added vertices
are necessary). Let m and d be the number of triangles
and edges in such a triangulation. Then by Euler’s for-
mula [22], we have (m + b + 1) - d + c = 2. Also,
counting each edge of every triangle yields 3m = 2d - c.

Figure 3: A 10-dof robot environment.

Hence, m + b + c - (3m + c)/2 = 1 implies the desired
result of rn = 2b + c - 2. I

Beyond immediate applications to point robots, the theo-
ries thus developed can also help us make plausible perfor-
mance predictions for more complicated robots. Shown in
Figure 3a is a 10-dof robot in a planar environment studied
in [13]. Let fast implement the following procedure:

1. move one end of the robot straight to the desired loca-
tion with the rest of the robot complying;

2. with the first end point fixed, move the other end of
the robot straight to the its desired location with the
rest of the robot complying;

3. with both end points fixed, move the rest of the robot
to their desired configuration using standard potential
field approach.

Since the robot is snake-like with high dof, it is quite con-
ceivable that fast will succeed if both end points a e visible
from their desired locations, and that there is indeed a so-
lution. Under this plausible assumption, we can bound the
number of fast-connected components necessary in cover-
ing the 10-dimensional C-space. From Figure 3b, we see
that the workspace is 1 1-coverable for each end point under
visibility. Also, from visual inspection, we see that there
are at most 12 topologically distinct inverse-kinematic so-
lutions for a given pair of end points. Hence, the C-space
is at most 11 . 11 . 12 = 1452-coverable. Consequently,
if the teacher slow were a complete planner, it will take at
most 145100 training problems for Adap t to attain a 99%
expected capabi 1 ity.

5.2 Randomized Model
To demonstrate the randomized model, we explain results
and make performance predictions on two separate experi-
ments previously reported in [5]. Figure 4a shows a planar
2-link robot environment in which Adapt is applied. In this
experiment, slow implements an incomplete but fairly ef-
fective planner [4], and fast implements a simple potential-
field based hill-climb. There are 5 polygonal obstacles in
the fixed workcell, and a goal set consisting of 9 preselected
goal positions. Startingat home position0, the robot is to go
through a sequence of 100goals randomly selected from the
goal set. In Figure 4b, the ratio of the cumulative planning
cost of Adapt to that of slow only is plotted against problem

6

.

I
20 40 60 80

task number

I
0.1 0.2 0.3

In (task number+l)/(task number + I)

Figure 4: Time improvement on a planar 2-link robot environment.

number n. The planning costs are averaged over 100 runs
and are measured by the number of robot-to-obstacle dis-
tance evaluations, which is the dominating factor in the
computing cost of each planner. Figure 4c plots the ratio
against (In(n + l)) / (n + 1) to show their asymptotic linear
relationship, hinted at by Theorem 9.

The experiment shows that Adapt is able to increase
its performance relative to slow from 150% slower (ratio
= 2.5) to 50% faster at the end of 100 training examples.
We can use Theorem 9 to predict the maximum speedup
achievable. If we believe that (15) is also an asymptotic
lower bound, then the plot implies that r/j i k 0.38 is the
minimum xhievable cost ratio, equivalent to a maximum
speedup of 62%. From other empirical observations, we
estimate that T = 0.1, c = I , c = 1, and A0 = 0.9. Hence,
/I = 0.26. Since X = 2, we also estimate Ep(X) = 0.45.
To see how consistent these numbers are, we estimate the
number of training problems required by Adapt to have its
cumulative cost first become less than that of slow. Using
(15), we have a = 0.45 and ~ ~ ~ ~ : / ~) =
0.156. giving us eAoan = 19, or n = 17.2, which is very
close to the observed n = 17 in the plot.

We use our theory to explain and predict another exper-
iment performed previously in which Adapt is applied on
a 3-dimensional 6-dof gantry robot environment 151. The
same slow and fast used for the planar case are also used
here. In this environment (left side of Figure 5), there are
4 obstacles: a (16 + 2)-sided polyhedral approximation of
a cylindrical cask, two cask stands, and a floor. Motivated
by problems in radiation survey [1 I], the goal positions are
chosen randomly, and correspond to the robot end effector
touching the cask surface in a prescribed orientation. The
tasks are sufficiently difficult that the original planner, slow,
fails to reach 7 out of a sequence of 100 random goals. In
contrast, Adapt is able to accomplish all but 1 task during
the exercise, thereby increasing the capability of the origi-
nal planner. Moreover, Adap t calls slow only 5 times, and
stores only 11 trail-markers in addition to the initial robot
position. Figure 5 plots the task number against the the
ratio of the cumulative effort expended by Adapt to that
expended by slow only. The 5 large points indicate Adapt's
calling of slow, and the single white point indicates the only

5

failure of Adapt.
5 93% because of the

7 failures; Ep(X) = 1 - 0.011/5 = 80% because only 5
chains are involved. Using (14) of Theorem 8, we then
estimate n = 1/(0.93.0.07.0.8) A 19.2 to be the number
of training tasks n required for Fast to improve both the
speed and the capability of slow. This estimate means that
fast is already very powerful, and that roughly only 2 calls
(#I7 and #I8 in the plot) to slow are necessary for Fast to
catch up with slow in task solving capability.

With Theorem 9, we can predict the maximum speedup
achievable. We estimate A0 = 1/17 = 6% because Adap t
first failed at task #1?. We also estimate c = 0.1 from
empirical observation. Again, if we believe that (15) is
also a lower bound, then the maximum cost ratio is r/j i +
(1 + 0.1 - r//1)0.06 = 0.32 from the plot, which implies
that r/ji A 0.27, which is incidentally very close to the
cost ratio at the end of task #loo. Consequently, we do not
anticipate Adapt to do much better with more training.

Using the data, we estimate

6 Conclusion
We have presented a learning algorithm that can improve
path planning. The algorithm adapts to its working envi-
ronment by maintaining an experience graph with vertices
corresponding to useful robot configurations. It can both
reduce time cost and increase task solving capability of
existing planners.

To gain insight into this algorithm, we have presented
some theoretical analysis based on two stochastic models:
pessimistic M , and randomized M,.. The models have
different assumptions and applications: M , quantifies C-
space complexity while M , quantifies experience utility.
Using these models, we characterize the situations in which
speedup learning is useful, and provide global quantitative
bounds on planning cost and capability in terms of train-
ing cost. We have also demonstrated the applicability and
fidelity of our analysis on several robot path planning en-
vironments. In particular, we h&e illustrated a technique
for predicting the maximum achievable speedup. Our the-
oretical results and techniques are elementary and should
be useful for studying other types of probabilistic learning
as well.

.- - -

7

t

..................................

................ 0.. *‘
*-..... * 0.2 .

wl -g0.31 n o.,k
L I I I I

20 40 60 80
task number

Figure 5: Time improvement on a 3-d, 6-dof robot problem.

References
[l] Barbehenn, M., Chen, P.C., Hutchinson, S., “An Ef-

ficient Hybrid Planner in Changing Environments,”
Proc. of IEEE Int. Con. on Robotics and Automation,
pp. 2755-2760,1994.

[2] Barraquand, J. and Latombe, J., “A Monte-Carlo al-
gorithm for path planning with many degrees of free-
dom,” Proc. of IEEE Int. Con$ on Robotics and Au-
tomation, pp. 1712-1717, 1990.

[3] Bessiere, P., Ahuactzin, J.M., et al., “The ‘Ariadne’s
Clew’ algorithm: Global planning with local meth-
ods,” Proc. of IEEWRSJ Con$ on Intelligent Robots
and Systems, 1993.

[3] Chen, P.C., “Effective Path Planning through Task
Restrictions,” Sandia Report SAND91- 1964, 1992.

[SI Chen, P.C., “Improving Path Planning with Learn-
ing,” Machine Learning: Proc. of the Ninth Pnt. Con.,
pp. 5541,1992.

[6] Chen, P.C. and Hwang, Y.K., “SANDROS: A Mo-
tion Planner with Performance Proportional to Task
Difficulty,” Proc. of IEEE Int. Con. on Robotics and
Automation, pp. 2346-2353, 1992.

171 Chen, P.C., “Adaptive Path Planning for Flexi-
ble Manufacturing,” Proc. of Fourth Int. Con$ on
Computer Integrated Manufacturing and Automation
Technology, Oct., 1994.

[SI Feller, W., An Introduction to Probability Theory and
Its Application, 3rd edition, v. 1, John Wiley & Sons,
1968.

[9] Goel, A., Callantine, T, Donnelian, M., Vazquez, N.,
“An intergrated experience-based approach to navi-
gational path planning for autonomous mobile robot,”
Proc. of IEEE Int. Con. on Robotics and Automation,

[101 Gupta, K.K., Zhu, X., “Practical Global Motion Plan-
ning for Many Degrees of Freedom: A Novel Ap-
proach w i t h Sequential Framework,” Proc. of IEEE
Int. Con. on Robotics and Automation, pp. 2038-
2043,1994.

pp. 818425,1993.

Harrigan, R.W., Sanders, T.L., “A Robotic System
to Conduct Radiation and Contamination Surveys

on Nuclear Waste Transport Casks,” Sandia Report

[121 Hwang, Y.K. and Ahuja, N., “Gross Motion Planning
- A Survey,” ACM Computing Surveys vol 24, no 3,
pp. 219-292, Sept. 1992.

[131 Kavraki, L. and Latombe, J.-C, “Randomized prepro-
cessing of configuration space for fast path planning,”
Proc. of IEEE Int. Con$ on Robotics and Automation,

[14] Kondo, K., “Motion Planning with Six Degrees of
Freedom by Multistrategic Bidirectional Heuristic
Free-Space Enumeration”, IEEE Tran. on Robotics
and Automation, vol. 7, no. 3, pp. 267-277, June
1991.

[151 Latombe, J., Robot Motion Planning, Kluwer Aca-
demic Publishers, 1991.

[161 Lozano-Perez, T., “A Simple Motion-Planning Algo-
rithm for General Robot Manipulators,” IEEE J. of
Robotics and Automation, vol. RA-3, no. 3, pp. 224-
238, June 1987.

[171 Marshall, A.W., Olkin, I., Inequalities: Theory of
Majorization and Its Applications, Academic Press,
1979.

[181 Natarajan, B.K., Machine Learning: A Theoretical
Approach, Morgan Kaufmann, 199 1.

[191 Overmars, M.H., VSvestka, P., “Probabilistic Learn-
ing Approach to Motion Planning,” Workshop on the
Algorithmic Foundations of Robotics, Feb. 1994.

[20] Pandya, S., Hutchinson, S., “A Case-based Ap-
proach to Robot Motion Planning,” Proc. of IEEE
Int. Conf on Systems Man and Cybernetics, pp. 492-
497,1992.

[21] Paden, B., Mees, A. and Fisher, M., “Path Plan-
ning Using a Jacobian-Based Freespace Generation
Algorithm,” Proc. of IEEE Int. Con. on Robotics and
Automation, pp. 1732-1737,1989.

[22] Preparata, F.P., Shamos, M.I., Computational Geom-
etry: An Introduction, Springer-Verlag, 1988.

[23] Tadepalli, P., “A Theory of Unsupervised Speedup
Learning,” Proc. of AAAI, pp. 229-234, 1992.

SAND89-0017,1990.

pp. 2138-2145,1994.

8

