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1 Motivation 
We are developing massively parallel algorithms and software for molecular 
conformation, especially protein folding. This paper reports on our recent 
progress. 

The prediction of protein native structures and the understanding of how 
they fold from sequences of their constituent amino acids is one of the most 
important and challenging computational science problems of the decade. 
The protein folding problem is fundamental to almost all theoretical studies 
of proteins and protein-related life processes. It also has many applications 
in the biotechnology industries such as structure-based drug design for the 
treatment of important diseases like cancer, and AIDS. 

Optimization approaches to the protein folding problem are based on the 
hypothesis that the protein native structure corresponds to the global min- 
imum of the protein energy. The problem can be attacked computationally 
by minimizing the protein energy over all possible protein structures. The 
structure with the lowest energy is presumed to be the most stable protein 
structure. 

Mathematically, for a protein molecule of n atoms, let 2 = {z i  E R3, i = 
1,. . . , n) represent the molecular structure with each z; specifying the spa- 
tial position of atom i. Then the computational problem for protein folding 
is to globally minimize a nonlinear function f(z) for all 2 E S, namely, 

where S is the set of all possible molecular structures, and f(z) is the energy 
function for the protein defined for all z. 

The difficulty with this approach is that global optimization problems 
are computationally intractable in general, and especially difficult to solve 
when problem sizes are large and objective functions contain many local min- 
imizers. For protein folding, the problem sizes tend to be very large, with 
possibly thousands of variables, and the objective functions usually have 
exponentially many local minimizers. Therefore, in order to solve the opti- 
mization problems for protein folding, special algorithms must be developed 
that exploit the problem structure. In addition, parallel high performance 
computing is also essential for the solutions to be computationally feasible. 

Our work focuses on establishing a new continuation-based approach to 
global optimization; we develop efficient parallel algorithms and software 
specifically for molecular conformation and protein folding. 
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2 The Basic Approach 
The idea behind our approach is the following. To avoid directly minimiz- 
ing a “difficult” objective function, we introduce a smoothing technique to 
transform the function into a class of gradually deformed, but “smoother” 
or “easier” functions. An optimization procedure is then applied to the new 
functions successively, to trace their solutions back to the original function. 

To obtain our smoothing transformation, we introduce a parametrized 
integral transformation, transforming a given function into a class of new 
functions corresponding to a set of parameter values. A transformed hnc-  
tion is in some sense a coarse approximate to the original function. After 
applying the transform, the original function becomes smoother, with small 
and narrow minimizers being removed while the overall structure of the 
function is maintained. This allows a solution-tracing procedure to skip less 
interesting local minimizers and concentrate on regions with average low 
function values where a global minimizer is most likely to be located. 

Different methods can be employed to trace the solutions. For example, 
a simple method is to apply a random search procedure to the transformed 
functions successively to locate their low local minimizers. Another possi- 
ble method is to apply local optimization procedures to each transformed 
function and trace a set of local minimizers. 

Our approach is called continuation-based, because the transformation 
can actually be viewed as a special continuation process by the theory de- 
scribed in [7]. Following this theory, our new approach can be studied in 
a general numerical continuation setting, and algorithms can be developed 
by employing standard advanced numerical methods. We will discuss these 
issues later in this paper. 

- 

3 Transformation 
We first introduce the transformation. 

Definition 1 Given a nonlinear function f ,  the transformation < f >A for 
f is defined such that for all z, 

< f >A (z) = Cx 1 f(d) e-~lz-z’ l~2~x2 dx’, (2) 

(3) 

or equivalently, 
I 2 A2 < f > A  (z) = CA J f(z - 2‘) e+ 11 / dz’, 



where X is a positive number and Cx is a normalization constant such that 

To understand this transformation, consider that given a random func- 
tion g ( d )  and a probability distribution function p(d) for the random mi- 
able d, the expectation of the function g with respect to p is 

<g>,= / g(z‘) p(x ‘ )  dz’. ( 5 )  

In light of ( 5 ) ,  the defined transformation (2) yields a function value for 
< f >A at any s equal to the expectation for f sampled by a Gaussian 
distribution function centered at z. 

For example, consider the following nonlinear function: 

which is a quadratic function augmented with a “noise” function. The trans- 
formation for this function can be computed: 

The function value < f > A  ( x )  for fixed x is equal to the integration with 
respect to the product of two functions, the original function f ( x ’ )  and the 
Gaussian distribution function p( s’) = Cxe-112-z’I12/x2 (Figure 1 (a)), where 
X determines the size of the dominant region of the Gaussian. Since the most 
significant part of the integration is that within the dominant region of the 
Gaussian, < f >A (z) can be viewed as the average value for the original 
function f within a small X-neighborhood around z. If X is equal to zero, 
the transformed function is exactly the original function. Otherwise, original 
function variations in small regions are averaged out, and the transformed 
function will become “smoother” (Figure 1 (b)). 

Figure 2 shows how the function < f >A in (7) behaves with increasing 
A. Observe that when X = 0.0, the function is the original function; when 
we increase X to 0.1, the function becomes “smoother”; when X is increased 
further to 0.2, the function becomes entirely “smooth.” As we will show 
in the following sections, what we observed here is a general property of 
the transformation: for any function f, the larger of A, the “smoother” the 
transformed function. 



Figure 1: A 1-dimensional transformation example 
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(c) X = 0.0 

Figure 2: A class of gradually deformed functions 
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4 Smoothness 
Let f be the Fourier transformation for function f ,  and < F > x  the Fourier 
transformation for function < f >A. Recall that the transformation < f >A 
for f is just a convolution of f and p, where p is the Gaussian distribution 
function 

(8) p ( z >  = cx e-llzI12/x2. 

Therefore the Fourier transformation for < f >A is equal to the product of 
the Fourier transformations for f and p. The Fourier transformation for the 
Gaussian distribution function is 

So, we have 

We see from (10) that if X -, 0, <-~LI>>x converges to f, and < f >A 
converges to f.  

Also by (lo), for fixed A, if w is large < ~ > A ( W )  will be very small. This 
implies that high-frequency components of the original function become very 
small after the transformation. This is why the transformed function is 
“smoother.” In addition, for larger X values, wider ranges of high-frequency 
components of the original function practically vanish after the transforma- 
tion. Therefore, the transformed function becomes increasingly smooth as 
X increases. We state these properties formally in the following theorem. 

Theorem 1 Let f, f, < f >A and <T>x all be given and well defined. 
Then VE > 0, 36 a 1 / X  for fized A, such that V u  with llwll > 6, 

Proof: See [7]. n 

From this theorem we learn that the relative size of < F > x ( w )  can be 
made arbitrarily small for all w with llwll greater than a small value 6. Since 
6 is inversely proportional to A, high-frequency components are removed 
when X is large. 

- 
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5 Numerical Properties 
The definition of the transformation (2) involves high-dimensional integra- 
tion which cannot be computed in general (except perhaps by the Monte 
Carlo method, which is not appropriate for our purposes because it is too 
expensive). So the transformation may not be applicable to  arbitrary func- 
tions, at least numerically. However, this transformation does apply to a 
large class of nonlinear partially separable functions, and especially to typ- 
ical molecular conformation and protein folding energy functions. 

Consider a large class of nonlinear par t idy separable functions, called 
generalized multilinear functions, 

i j  

where gj’s are one dimensional nonlinear functions. It is easy to verify that 

Since transformation <gj >A,  for all i and j, involves only one dimensional 
integration, the transformation for a generalized multilinear function can be 
numerically computed. 

In particular, let us consider a typical n-atom molecular conformation 
energy function, 

n 

(14) 
i=l , j > i  

where x = ( x i  E R3, i = 1,. . ., n) and h ; j  is the pairwise energy function 
determined by ~ ~ z ~ - x j ~ ~ ,  the distance between atoms i and j .  Because of the 
partial separability of this type of function, the transformation for f is equal 
to the sum of the transformations for the pairwise functions h ; j .  However 
the computation for the pairwise transformation still cannot be conducted 
directly, because there is still more than one variable. Nevertheless, the 
following theorem provides a feasible way to compute the molecular energy 
transformation: 

Theorem 2 Let f be defined as in (14). Then the transformation (2) for 
f can be computed using the formula 
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Proof: See [7]. 0 

Note that < hij >aA (Ilrijll) can be computed with a standard numer- 
ical integration technique; therefore, the transformation < f >A (z) can be 
computed in this fashion. 

6 Minimization 
In summary, we have introduced a parametrized integral transformation to 
transform the object function of a global optimization problem. Statisti- 
cally, the transformation averages the function values, and provides coarse 
estimates for the function variation. Geometrically, the transformation de- 
forms the function into a class of “smoother” functions with small, high 
frequency components removed in the transformed functions, Physically, 
the transformation allows a physicd system to have small perturbations, 
and the transformed function reflects the average behavior of the system 
dynamics. Finally, the transformation can exploit partial separability and is 
particularly suitable for molecular conformation and protein folding energy 
functions. 

With this transformation, a general global minimization procedure can 
immediately be constructed as illustrated in Figure 3. That is, given a 
global minimization problem with a nonlinear objective function f ,  we first 
transform the function into a class of new functions < f > x l ,  < f >xz, . . ., 
< f >A, for A1 > A2 > . . . > A, = 0 with < f >A, corresponding to f .  
We then apply local optimization procedures to the transformed functions 
successively, to trace their solutions back to the original function. Since 
the transformed function with a larger X value is “smoother” with possibly 
fewer local minimizers, we can start by minimizing < f >xl and, next, take 
its solution as the initial point and minimize < f >x2, and so on. Since a 
transformed function is also a coarse approximate to the original function, 
its solution should also be a rough estimate for the solution of the original 
function. Then, by minimizing the transformed functions successively, the 
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1 Choose 

{ X i :  i = l ,  ..., m, X I >  ... > X , = O }  

2 For i=  1, ..., rn 

mi%& < h i  (2) 

Figure 3: A global minimization procedure 

whole process is concentrated in regions where the solution of the original 
function is most likely to be located. 

7 Tracing Solutions 
The continuation-based global minimization approach contains two major 
components: 

1. application and computation of the transformation (2), and 

2. a solution tracing procedure. 

Clearly, different algorithms can be implemented if different solution tracing 
procedures are employed. An efficient solution tracing method is crucial for 
the algorithm to be numerically effective and efficient. 

In principle, tracing solutions means tracing global minimizers: the so- 
lution for a global minimization problem is sought for each transformed 
function. However, in a broader sense, the solutions can actually be either 
global or local, as long as they form a “path” that can lead to a global min- 
imizer for the original objective function. Under some circumstances, such 
a “path” exists as a smooth curve, and then tracing solutions simply im- 
plies following a smooth solution curve determined by a set of transformed 
functions. 
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A random search procedure is an example of a simple solution trac- 
ing method, for example, the simulated annealing random search [l]. This 
method is easy to implement, and especially robust in the sense that the 
random search procedure can be designed to converge asymptotically to a 
global minimizer. However, convergence depends on how thoroughly the 
search can be conducted. Usually, an unaffordable amount of computation 
is required even for small problems. Another problem with this method is 
that the randomness introduces uncertainty. 

A more deterministic and efficient alternative is to use a local minimiza- 
tion procedure. This method applies local minimization to the transformed 
functions successively and returns a local minimizer as the candidate for the 
solution to the given problem. The method is relatively inexpensive and 
clearly more feasible for large-scale problems (e.g., the protein problems). 
In particular, it can take advantage of well-developed local optimization 
techniques [6]. 

The effectiveness of this method can be illustrated in the following simple 
experiment: Consider the function in (6), and suppose that we wish to find 
its global minimizer. First we transform the function to obtain a class of 
new functions given in (7). Choose XI = 0.2, Xz = 0.1, and = 0.0. We 
then have three transformed functions as shown in Figure 2 (a), (b), and 
(c). The function in Figure 2 (c) is equivalent to the original function. Then 
we apply a local minimization procedure to the transformed functions from 
< f >xl to < f >A,. Since < f >xl is “smooth” with only one local minimizer, 
the solution can immediately be found for it. Started from this solution, a 
local minimizer, being also a global minimizer, for < f >A, can be found 
subsequently. Continuing the process, the global minimizer for the original 
function can be located at the end. 

The example shows that the local minimization skips small local min- 
imizers at the first stages and goes directly to a region of interest, where 
a global minimizer is very likely to be found subsequently. In general, the 
method may not always be this fortunate. For example, the early trans- 
formed functions may still have more than one local minimizer; the chosen 
minimizer may not necessarily lead to a global minimizer for the function 
at the final stage. 

To begin with the “right local minimizer,” either a good initial point is 
provided based on the known knowledge of given problem, or a set of locd 
minimizers can be selected and traced, and one of them may lead to a good 
solution. 
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8 Numerical Continuation 
Our recent work [7] shows that the parametrized integral transform in (2) 
defines for f a homotopy on [O,Xo] for any A0 < 00. Moreover, under 
appropriate assumptions, the transformed functions {< f >A: X E [0, Xo]} 
determine for any given local minimizer xo of < f >A,, a continuous and 
differentiable curve x(X) so that for all X E [O,Xo], .(A) is a local minimizer 
of < f >A. In this case, the deterministic trace of the solution, e.g., using 
local minimization, is equivalent to following a solution curve .(A) (or a 
set of such curves). This forms the theoreticd basis for our method as a 
special continuation approach to global optimization. Therefore, an initial 
value problem to determine the solution curve can be derived in a simple 
and computable form: 

where V2f is the Hessian of the function, and Ag the Laplace operation ap- 
plied to the components of the gradient. This result opens another direction 
for the effective trace of the solution - solve the initial value problem us- 
ing standard numerical IVP-methods, for example, the predictor-corrector 
methods [2]. One simple example is to use an Euler-Newton method as 
shown in Figure 4. In this method, at each iteration, an Euler predictor 
is computed to start a Newton's local minimization procedure to find a so- 
lution on the curve. The process is continued, and the solution curve is 
followed to its end. 

9 Parallelism 
Different levels of parallelism can be exploited for continuation-based global 
optimization, for example, parallel solution tracing, parallel function evalu- 
ation, and parallel linear algebra and optimization. 

At the solution tracing level, parallelism can be exploited by using mul- 
tiprocessors to generate multiple random searches, or trace a set of local 
minimizers in parallel. For the random search technique, increasing the 
number of processors is equivalent to increasing the number of trials. The 
more processors that are used, the higher the probability a solution can be 
found. For tracing multiple local minimizers, using multiprocessors simply 
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x = A*, 2 = 20 

Repeat 

Compute 2' = -A 2 < V2f >;I (2) .. 
X = X + h ,  z = z + z ' ~  

Repeat 

End 

End 

Figure 4: Euler-Newton prediction and correction 
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reduces the total computation and increases the potential for finding the best 
possible local minimizer. In either case, the parallelism is coarsely grained 
with little communication required among processors but intensive compu- 
tation for each, which is good for massively parallel computation, especially 
on the machines with high communication to computation ratios. 

Parallel function evaluation is important for both local and global op- 
timization. For the continuation-based global optimization method, more 
than half of the total computation involves function evaluation, and each 
evaluation is costly, requiring numerical integration. However, for molecular 
conformation and protein folding, the energy functions to be minimized are 
partially separable with typically a small number of element functions. So 
for each element function, we can construct a function value look-up table. 
The function evaluation can then be conducted with cubic spline interpola- 
tion using the function values already calculated in the look-up tables. In 
this way, the total function evaluation cost can be reduced; moreover, the 
function value look-up tables, no matter how expensive they are, can be 
computed in parallel with perfect parallel efficiency. In this sense, we say 
that the function evaluation can be indirectly parallelized. 

Finally, the continuation-based global optimization method is rich in 
linear algebra, which is good for high-performance computing. When the 
problem is large, say, the problem for a protein with ten thousand atoms, the 
parallelism at this level can also be exploited by parallelizing the major linear 
algebra operations, for example, linear system solve and local minimization. 
This type of parallelism has been well studied and understood and can be 
exploited using standard techniques. 

10 Numerical Experience 

The development of the continuation-based approach to global optimization 
has been accompanied with a series of computational works [3, 4, 51. The 
dgorithms have been implemented on parallel machines and tested with a 
set of molecular conformation problems. The results we obtained support 
the approach and show that the algorithms perform much more effectively 
and efficiently than conventional global optimization methods. They are also 
very suitable for massively parallel computation. We illustrate in the follow- 
ing some of our numerical experience with two particular algorithms. Both 
methods are continuation-based but differ in solution-tracing strategies. 

The first method, called the effective energy simulated annealing, uses 
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a random search procedure, the simulated annealing method, to trace the 
solutions. Recall that in the simulated annealing method, a temperature 
parameter, T, is decreased from a positive number to zero as the iteration 
count increases. For each value of T, a number of random trials is applied 
to the given energy function. For the effective energy simulated annealing 
method, a function X = Q T first is defined, where Q is a constant. For each 
value of T, a X value is determined, which, in turn, defines a transformed 

-function, called the effective energy function. A number of random trials 
is then conducted on this function to locate a solution. The parameter X 

. goes to zero as T decreases, and the transformed function changes to the 
original function. The process is equivalent to tracing the solutions for a 
set of transformed functions using the Monte Carlo search with a different 
temperature T for each different transformed function. Note that if CII is set 
to zero, X is equal to zero for all T. In this case all transformed functions 
are the same original function, and the algorithm is reduced to a standard 
simulated annealing procedure. 

The effective energy simulated annealing algorithm has been implemented 
on a 32-node Intel iPSC/860 at Cornell. The machine is a parallel dis- 
tributed memory system with a hypercube interconnection network. Each 
processor has 8 Mbytes of local memory and achieves a theoretical peak 
performance of 40 Mflops. The parallelization of the algorithm is straight- 
forward: Multiple processors are used at each iteration to generate multiple 
sequences of trials independently. Little communication is required among 
processors except for calculating the global acceptance rate at  the end of 
each iteration. The load also is well balanced: the number of trials is the 
same each processor. For more implementation details, readers are referred 
to [3]. 

The algorithm is tested with a set of small sizes of Lennard-Jones mi- 
crocluster conformation problems, which have been well studied, and widely 
used as model problems for molecular conformation. Typical results for 
these problems are shown in Figure 5, where three pictures for clusters of 
n = 8,12,16 atoms are given. The curves indicate the energy levels for the 
solutions obtained by the algorithm with different CII values. We see when 
a is equal to zero, the algorithm corresponding to a standard simulated 
annealing procedure can only find solutions with very high energy levels. 
However, within the same amount of computation time, the effective energy 
simulated annealing algorithm with a proper choice of positive X value can 
find solutions whose energy levels are already very close to the best known 
values (the bottom lines of the pictures). As a matter of fact, by applying 



a local minimization procedure started with these solutions, we obtained 
immediately the best known solutions for all the clusters. These results just 
show how effective the method with the transformation scheme can be for 
molecular conformation, compared with a conventional global optimization 
technique . 

The parallel performance for the algorithm is illustrated in Figure 6, 
where two examples are given to show how rapidly the energy levels of 
the solutions found by the algorithm decrease with increasing numbers of 
processors. 

The second algorithm we wish to discuss is the deterministic local tracing 
algorithm, which uses local minimization as a solution tracing procedure. 
The algorithm first requires the objective function to be transformed into a 
class of new functions < f >xl, < f > x z ,  . . ., < f >A, for a set of parameter 
values XI > A2 > . . . > Am = 0, with < f >A, corresponding to  f.  A set of 
starting points is sampled randomly so that a group of local minimizers for 
< f >A, is obtained at the beginning. Then local minimization is applied 
to the remaining transformed functions successively to trace the changes of 
these local minimizers, and the one with the lowest function value is selected 
at the last stage as a candidate for the solution to the given problem. 

The deterministic local tracing algorithm has been implemented on a 
64-node IBM SP1 at Cornell. The SP1 is a parallel distributed memory 
system with a high-performance switch installed for better interprocessor 
communication. Each processor is an IBM RS/6000 with 128 Mbytes of 
memory and a peak performance of 125 Mflops. In this implementation, 
multiprocessors are used to trace multiple -local minimizers in parallel with 
one local minimizer for each processor. Little communication is required. 
Each processor carries a sequence of local minimizations. Basically, the more 
processors used, the more local minimizers traced, and hence the higher the 
probability of obtaining a good solution. Also, the larger the problem sizes, 
the more intensive the computation for each processor. Since the problem 
sizes of practical interest tend to be very large, the machines with high 
communication to computation ratios, such as the IBM SP1, can be very 
suitable for the algorithm to achieve good performance in practice. 

The algorithm has been tested with a set of "perturbed Lennard-Jones 
microcluster conformation problems." Such a problem is obtained by adding 
in each pairwise Lennard- Jones potential function a periodically varying 
term, p sin(wT)/T, where p and w are constants, and T is the distance between 
given pair of atoms. The functions with properly adjusted p and w can 
generate a set of even more complicated global optimization test problems. 
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Figure 5: Typical numerical results obtained by the effective energy simu- 
lated annealing algorithm 
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Figure 6: The parallel performance of the effective energy simulated anneal- 
ing algorithm 

18 



Table 1: Energy values obtained by the deterministic local tracing method 
for the perturbed Lennard- Jones problems 

I Deterministic Local Tracing I 

The perturbed functions reduce to pure Lennard-Jones problems when p is 
set to zero. In this test, p is set to 1, and w to 10. 

Table 1 lists the results for some example problems (n = 16, 20, 24), 
obtained by the algorithm using different numbers of processors (p). The 
data in the table are the energy values for the  solutions obtained by the 
algorithm. In order to transform the function, a set of values {A; : i - =  
1,. . . , m }  are used with A; = ( i  - l )h ,  h = 0.01. So, m = 1 simply implies 
that no transformation is used, and the algorithm is just a local minimization 
sampling procedure. The comparison between the two cases, m = 1 and 
m = 40, shows that with transformation, the algorithm performs much more 
effectively than directly doing local minimization on the given function. In 
the table, we can also see that as the number of processors increases, the 
energy d u e s  for the solutions obtained by the algorithm decreases rapidly. 

11 Software Development 
Based on this work, we are currently developing a parallel continuation- 
based global optimization software system, called Cglop (Figure 7), for 
molecular conformation and protein folding. An initial version of the system 
has just been completed (see [5] for more details). 

The system transforms the objective function into a sequence of gradu- 
ally deformed functions. There are three subsystems corresponding to  three 
different solution-tracing procedures, namely, the global simulated anneal- 
ing random search (GLOBAL), the Newton’s local minimization method 
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(LOCAL), and the Euler-Newton predictor-corrector method (PC). As we 
have discussed in this paper, the random search method is more robust but 
also costly. The deterministic local tracing is efficient but may not guar- 
antee a global minimizer. The predictor-corrector method provides a more 
accurate way to trace the solution. Overall, each of these methods has ad- 
vantages and disadvantages, but the combination of them provides a robust 
set of numerical tools for both effective and efficient trace of the solutions. 
The system also provides transformationroutines (TRANSFORMATION) 
to both transform user-supplied functions (USER FUNCTIONS) using nu- 
merical integration (INTEGRAL) and construct corresponding look-up ta- 
bles of function values. The function evaluations in the solution tracing 
process are conducted by cubic spline (SPLINE) using the function values 
in the look-up tables. 

The system is written in C and developed on the IBM SP1 with PVM 
used for parallel message passing extensions. It is easy to port to a variety of 
parallel architectures including a cluster of local workstations. The system 
is meant to be used as a computational platform for basic interdisciplinary 
studies on molecular conformation and protein folding. 

Acknowledgments - 

This research was supported partially by the Cornell Theory Center, which 
receives funding from members of its Corporate Research Institute, the Na- 
tional Science Foundation (NSF), the Advanced Research Projects Agency 
(ARPA), the National Institutes of Health (NIH), New York State, and IBM 
Corporation. 

References 

[l] Emile Aarts and Jan Korst [1989]. Simulated Annealing and Boltzmann 
Machines. John Wiley & Sons, New York, NY. 

[2] Eugene L. Allgower and Kurt Georg [1990]. Numerical Continuation 
Methods. Springer-Verlag, New York, NY. 

[3] Thomas F. Coleman, David Shalloway and Zhijun Wu [1993]. Isotropic 
Ef7ective Energy Simulated Annealing Searches for Low Energy Molec- 
ular Cluster States. Computational Optimization and Applications, 2, 
145-170,1993. 



[4] Thomas F. Coleman, David Shalloway and Zhijun Wu [1994]. A Paral- 
lel Build- Up Algorithm for Global Energy Minimizations of Molecular 
Clusters Using Eflectiue Energy Simulated Annealing. Journal of Global 
Optimization, 4, 171~185,  1994. 

[5] Thomas F. Coleman and Zhijun Wu [1994]. Cglop - A Parallel 
Continuation-Based Global Optimization Package for Molecular Con- 
formation. Advanced Computing Research Institute, Gornell Univer- 
sity, Ithaca, NY. 

[SI J. E. Dennis, Jr. and R. B. Schnabel [1983]. Numerical Methods for 
Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, 
Englewood Cliffs, NJ. 

[7] Zhijun Wu [1993]. The Eflectiwe Energy Transformation Scheme as a 
General Continuation Approach to Global Optimization with Applica- 
tion to Molecular Conformation. Technical Report CTC93TR143, Ad- 
vanced Computing Research Institute, Cornell University, Ithaca, NY. 

21 



# 

Solving the Pmtn'n Fdmng PmbZmx 
A Parallel Continuation-Based Global Optimization System 

for Molecular Conformation 

Figure 7: The Cglop system structure 

22 


