BNL- 63712 INFORMAL REPORT

THERMOPLASTIC ENCAPSULATION OF WASTE SURROGATES BY HIGH-SHEAR MIXING

P.R. Lageraaen P.D. Kalb B.R. Patel

DECEMBER 1995

DISTRIBUTION OF THIS DOCUMENT IS UNLIWITIED

Prepared by Environmental & Waste Technology Center Department of Advanced Technology Brookhaven National Laboratory Upton, NY 11973-5000

MASTER

Prepared for U.S. Department of Energy Strategic Environmental Research and Development Program and U.S. Environmental Protection Agency SERDP Project 387-EPA Contract No. DE-AC02-76CH00016

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ABSTRACT

Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 "Removal and Encapsulation of Heavy Metals from Ground Water," EPA SERDP#387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers.

iv

TABLE OF CONTENTS

AF	STRACT ii	i
ЕУ	ECUTIVE SUMMARY vi	i
1.	BACKGROUND	l
2.	MATERIALS DESCRIPTION 1 2.1 Waste Surrogates 1 2.2 Polymers 2	L L 2
3.	EQUIPMENT DESCRIPTION	3
4.	PROCEDURE	;
5.	RESULTS	┢
6.	CONCLUSIONS	,
7.	REFERENCE	;
AF	PENDIX A-1	

v

vi

•

•

•

EXECUTIVE SUMMARY

Brookhaven National Laboratory (BNL) has developed a robust, extrusion-based polyethylene encapsulation process applicable to a wide range of solid and aqueous low-level radioactive, hazardous and mixed wastes. However, due to the broad range of physical and chemical properties of waste materials, pretreatment of these wastes is often required to make them amenable to processing with polyethylene. As part of the scope of work identified in FY95 "Removal and Encapsulation of Heavy Metals from Ground Water," EPA SERDP#387, that specifies a review of potential thermoplastic processing techniques, and in order to investigate possible pretreatment alternatives, BNL conducted a vendor test of the Draiswerke Gelimat (thermokinetic) mixer on April 25, 1995 at their test facility in Mahwah, NJ. The Gelimat is a batch operated, high-shear, high-intensity fluxing mixer that is often used for mixing various materials and specifically in the plastics industry for compounding additives such as stabilizers and/or colorants with polymers.

Test objectives were to gauge the success of this process for mixing different waste materials with thermoplastics and to produce a molten product that can either be discharged directly into a waste container or can be fed to an extruder. In the latter case, the extruder would serve to further mix the materials, act as a melt pump for processing the materials through a die, and to create a continuous encapsulation process. For this test, a series of surrogate wastes including mixed incinerator ash, hearth ash, nitrate salts, sawdust and wood chips were mixed with pelletized virgin and recycled low-density polyethylene (LDPE), recycled flake high-density polyethylene (HDPE), recycled flake poly(ethylene terephthalate) (PET), or a combination of these polymers.

1. BACKGROUND

The BNL polyethylene encapsulation process utilizes a versatile, single-screw plastics extruder to melt and homogeneously mix waste materials with polyethylene. The molten mixture is then pumped through a die into a waste form container. Due to the inherent thermoplastic properties of polyethylene, cooling of the melt results in a solid monolithic waste form in which waste contaminants have been completely surrounded by a polymer matrix, i.e., microencapsulated. This process has been shown to be applicable to a wide range of waste types including aqueous evaporator concentrates (nitrates, sulfates, borates, chlorides, etc.), sludges, incinerator fly and bottom ash, contaminated soils, molten salt oxidation salt residuals, and ion exchange resins. However, many wastes require pretreatment to make them amenable to extrusion. This often includes drying for volume reduction and to remove residual moisture, and grinding to reduce particle size. Even with pretreatment, some waste materials are difficult to process with highly viscous molten polymers due to particle size, particle size distribution and/or density. For these materials, alternate processing techniques to extrusion or alternate processes that can be used in conjunction with extrusion are desired.

The use of extrusion for waste encapsulation is similar to routine compounding applications established in the plastics industry. The mixing or compounding of materials with polymers can be accomplished using extrusion, continuous mixing, and/or batch mixing. Each of these are proven technologies with merits for particular processing applications[1]. A high-intensity batch mixer was tested to assess its ability to mix various waste surrogates with several types of virgin and recycled thermoplastics. Test results will indicate if thermokinetic mixers may have application in conjunction with the BNL polyethylene encapsulation process or as a stand-alone waste encapsulation technique. When coupled with extrusion processing, the batch mixer would premix difficult to process waste materials with the thermoplastics, then discharge the molten plug into the extruder feed throat which would, in turn, further homogenize the mixture and continuously pump the material through a die.

High-intensity mixers operate with a powerful drive that is magnetically clutched to a single rotor mounted with staggered blades. The rotor revolves at high speeds (tip speeds up to 45 meters/sec) and produces a fast-paced mixing action resulting in thermokinetic heating of the batch without the use of an external heat source. Material impingement against the blades and the chamber wall provides the necessary mixing and dispersion of ingredients.

2. MATERIALS DESCRIPTION

2.1 Waste Surrogates

The wastes tested included surrogates of natural xanthate sorbents, hearth ash, nitrate salts and mixed incinerator ash obtained from the American Re-Fuel Incinerator located in Hempstead, NY. Sawdust and wood chips were used as the surrogates for xanthates which are natural sorbents currently being studied for the removal of heavy metals from groundwater. Hearth ash, retrieved from a household wood burning stove, is a surrogate for radioactively contaminated hearth ash resulting from the burning of wood contaminated by the Chernobyl nuclear accident. The nitrate salt surrogate was prepared at BNL and represents a high volume aqueous mixed waste generated at DOE's Rocky Flats Plant, Golden, CO. Nitrate salt surrogate composition data is shown in Table 1. The salt surrogate was previously formulated as an aqueous solution containing 35 weight percent solids and was dried in a rotary vacuum dryer to less than one percent moisture. The dried product was passed through a grinder to achieve a particle size distribution ranging from 250 to 2400 μ m.

Compound	Formula	Target Composition
Sodium nitrate	NaNO ₃	37.3
Potassium chloride	KCl	31.6
Sodium sulfate	Na ₂ SO ₄	17.7
Calcium carbonate	CaCO ₃	6.2
Sodium fluoride	NaF	5.2
Magnesium chloride	MgCl ₂	2.0

Table I.	Composition of	nitrate	salt	surrogate	used	during	thermokinetic	mixer
	feasibility test							

2.2 Polymers

A number of thermoplastics, including both virgin and recycled resins, were obtained for this vendor test. The BNL encapsulation process has, to-date, focused on using an injection molding grade of virgin LDPE for waste solidification. However, a new initiative is focusing on determining the feasibility of using various grades of recycled resin for waste encapsulation. It is important to note that because of the broad range of rheological properties which vary with type and grade of plastic, substituting different polymers will impact encapsulation processing conditions. This is further complicated when considering recycled resins which are often heterogeneous, comprise a mixture of different resin grades, and contain additives such as colorants, fillers and/or stabilizers. Additives used to achieve particular characteristics for new plastic products will affect melt flow properties during reprocessing. Since processing parameters are dependent upon both the polymer and waste properties, it is necessary to conduct treatability studies to optimize processing conditions for different polymer and waste material combinations. The recycled resins used during this vendor test were provided by plastic recyclers, as shown in Appendix A-1. The recycled LDPE was pelletized and co-mingled with a lesser quantity of linear low-density polyethylene (LLDPE). The actual mass fraction of LDPE and LLDPE was not known. The recycled PET was flaked and clear in color. The recycled HDPE was flaked detergent bottles in many colors, primarily different shades of blue and red.

3. EQUIPMENT DESCRIPTION

The Gelimat high-speed mixer tested is a one liter vessel consisting of a horizontal chamber with a central rotating shaft and staggered mixing blades at various angles. The shaft is driven by a magnetically clutched 30 hp motor that allows for nearly instantaneous engagement/disengagement. Although the mixer motor runs continuously, the rotor is protected with a safety interlock that ensures the charge and discharge ports are closed. Engaging and disengaging the rotor is accomplished by a remote control panel. The high speeds of the rotor (tip speed up to 45 m/sec) produce a fast-paced mixing action, short batch cycles, and kinetic heating of the batch materials. External heaters are not required, as the intense shearing converts mechanical energy into frictional heat in a thermokinetic heating process. Mixing and dispersion occurs as particles impact with the vessel walls, the rotor blades or with each other. This laboratory unit processed 150-250 gram batches in 20-40 seconds depending on the material properties.

4. PROCEDURE

Appropriate quantities of polymer and waste materials were pre-weighed to the desired waste loading, combined together and added to the mixing vessel through a top mounted charge port. For each run, the residence time and temperature were recorded. The temperature was monitored with a thermocouple that was mounted on the inside wall surface. The residence time was recorded by the operator who stopped and discharged each batch based on the sound emanating from the mixer and on previous experience with similar materials. A characteristic sound was heard when fluxing of the materials occurred. The processing time could also be determined by monitoring the wall temperature inside the mixer. The temperature initially remained at a constant value during the beginning of each cycle but then rapidly increased as the polymer melted and mixed with the waste material. When the temperature exceeded the polymer's melting point, the rotating shaft was disengaged and the molten materials were discharged onto a steel tray. The molten plug was then scooped into a 12.7 cm x 12.7 cm x 5.1 cm (5 in x 5 in x 2 in) mold and placed under a pneumatic compression press set to 95 psi. The product samples were maintained under compression for a short time (1-2 minutes), then released from the mold and allowed to cool in a water bath. Batch sizes ranged from 160 - 200 grams and produced mold samples with approximate dimensions of 12.7 cm x 12.7 cm x 2.0 cm (5 in x 5 in x 0.75 in).

5. RESULTS

A summary of the process data recorded during the vendor test is shown in Table 2. The experiments were sequenced by varying the type of binder and the waste-to-binder material ratio for each of the waste surrogates. A pure batch of polymer was processed between new waste/binder combinations in order to ensure that the mixing vessel was clean. Batch times ranged between 14-159 seconds and averaged 31 seconds for all runs conducted.

Sawdust was mixed with either virgin low-density polyethylene (VLDPE), recycled lowdensity polyethylene (RLDPE), recycled high-density polyethylene (RHDPE) or recycled poly(ethylene terephthalate) (RPET) for Batches 1-17. Surrogate waste loadings of 40, 50, 60, 65 and 70 weight percent sawdust with VLDPE were achieved. Higher sawdust loadings resulted in processing difficulties. Product from batches containing ≥ 60 wt% sawdust was flakey and the sawdust did not appear to be completely encapsulated. By comparison, a maximum waste loading of 50 wt% was achieved using a single-screw extruder at BNL. The low density of sawdust, approximately half the density of polyethylene, resulted in much larger volumes of sawdust than polyethylene on a weight basis. At higher loadings, the extruder was limited by insufficient polyethylene to convey the sawdust through the barrel. The kinetic mixer, on the other hand, was able to process higher loadings compared to extrusion but was ultimately limited by the ability of polyethylene to effectively wet and encapsulate the larger volume of sawdust.

Sawdust and wood chips are surrogates for xanthates which are currently being investigated under the EPA SERDP#387 as a sorbent material to remove heavy metals from ground water. Thermoplastic encapsulation is being investigated for solidification of these sorbents to minimize leaching of contaminants and provide long term stability under disposal conditions. The xanthates will be used as a column packing material through which contaminated water will be passed. As a result, sorbents contain a high degree of moisture that must be removed for successful extrusion processing. Experimental Batches 7 and 8 were conducted to ascertain the mixer's ability to tolerate waste streams with a high moisture content. All the water added for these batches was sorbed by the sawdust. Batch 7 contained 10% water (based only on the weight of sawdust, not the total batch weight) added to a 200 gram batch containing 60wt% sawdust/40 wt% VLDPE. Thirty percent water was added to a 200 gram batch containing 50wt% sawdust/50wt% VLDPE in Batch 8. The added water did not affect processing and in both trials produced a well-mixed final sample similar in appearance to previous dry samples at the same waste loading. Steam evolved during the processing cycle was vented through a pressure relief valve.

Two Batches (10 and 11) were processed with sawdust and RLDPE at a 50 wt% loading, chosen based on the success of processing sawdust with VLDPE at this waste loading. The product sample from Batch 10 did not appear to be well mixed and homogeneous. As a result, the blade speed was increased from 4800 to 6000 rpm for Batch 11 in an effort to achieve improved mixing. No observable improvements were found as both samples consisted of clearly visible areas of high polymer concentration. The RLDPE did not mix as well with the sawdust as the VLDPE, probably due to a higher melt viscosity (lower melt index) of the recycled material

RUN	POLYMER	WT%	WASTE	WT%	%WATER	BATCH WT. (g)	CYCLE (sec)	TEMP. (C)	RPM'S
1	VLDPE [®]	100	NA	NA	NA	180	17.3	134	4800
2	VLDPE	60	sawdust	40	NA	160	30.6	195	4800
3	VLDPE	50	sawdust	50	NA	160	35.4	215	4800
3a	VLDPE	50	sawdust	50	NA	160	34.8	210	4800
4	VLDPE	40	sawdust	60	NA	160	38.1	229	4800
5	VLDPE	30	sawdust	70	NA	160	43.3	211	4800
6	VLDPE	35	sawdust	65	NA	160	39.1	235	4800
7	VLDPE	40	sawdust	60	10	200	54.7	160	4800
8	VLDPE	50	sawdust	50	30	200	49.5	248	4800
9	RLDPE®	100	NA	NA	NA	160	36.0	256	4800
10	RLDPE	50	sawdust	50	NA	200	80.0	230	4800
11	RLDPE	50	sawdust	50	NA	200	30.0	284	6000
12	RHDPE3	100	NA	NA	NA	160	18.6	2??	6000
13	RHDPE	60	sawdust	40	NA	200	32.8	271	4800
14	RHDPE	60	sawdust	40	NA	200	26.2	280	5400
15	RPET	100	NA	NA	NA	160	22.7	239	5400
16	RPET	100	NA	NA	NA	160	14.0	308	5400
17	RPET	60	sawdust	40	NA	200	31.8	296	5400
18	VLDPE	100	NA	NA	NA	160	16.4	205	5400
19	VLDPE	60	wood chips	40	NA	200	21.7	162	5400
20	VLDPE	50	wood chips	50	NA	200	29.5	227	5400
21	VLDPE	40	wood chips	60	NA	200	31.5	259	5400
22	RHDPE	100	NA	NA	NA	160	25.7	337	5400
23	RHDPE	60	wood chips	40	NA	200	44.5	294	5400
24	VLDPE	100	NA	NA	NA	160	17.6	184	5400
25	VLDPE	50	hearth ash	50	NA	200	14.0	220	5400
26	VLDPE	40	hearth ash	60	NA	200	14.1	212	5400
27	VLDPE	30	hearth ash	70	NA	200	18.3	234	5400
28	VLDPE	15	hearth ash	70	NA	200	22.7	373	5400
	RHDPE	15							
29	RLDPE	20	hearth ash	60	NA	200	18.3	286	5400
	RHDPE	20							
30	VLDPE	40	incinerator ash	60	NA	200	16.2	232	5400
31	VLDPE	30	incinerator ash	70	NA	200	17.2	238	5400
32	VLDPE	20	incinerator ash	60	NA	200	15.3	259	5400
	RLDPE	20							
33	VLDPE	20	incinerator ash	60	NA	200	22.0	374	5400
	RHDPE	20	-						
34	VLDPE	100	NA	NA	NA	160	15.9	171	5400
35	VLDPE	100	NA	NA	NA	160	14.0	153	5400
36	VLDPE	40	nitrate salt	60	NA	200	11.1	173	5400
37	VLDPE	40	nitrate salt	60	42	200	159.0	252	5400

 Table 2. Summary of experiments conducted during Gelimat vendor test

•

(DVLDPE: virgin low-density polyethylene;(BRHDPE: recycled high-density polyethylene;

@RLDPE: recycled low-density polyethylene **@RPET:** recycled poly(ethylene terephthalate)

than that of the virgin polyethylene. The actual melt flow index (MFI) for RLDPE was not given by the supplier.

Batches 13 and 14 were processed with 40wt% sawdust/60wt% RHDPE at 4800 rpm and 5400 rpm, respectively. The mold samples were not homogeneously mixed, similar to the results for sawdust with RLDPE. Areas with high concentrations of polymer were clearly visible. The MFI for RHDPE, provided by the supplier, was 0.55 g/10 min. This is significantly lower than the MFI for the virgin polyethylene (i.e., is a more viscous melt) and explains why the RHDPE can not "wet" the sawdust as well as the VLDPE. A higher rotor speed or using a combination of RHDPE with a lower melt viscosity polymer may yield better results.

Processing RPET with 40 wt% sawdust (Batch 17) was not successful due to PET's higher melt temperature of approximately 220-250°C. Attaining this temperature during the batch experiment caused the sawdust to burn. This was observed on the inside of the mold sample after cutting the sample in half. The interior contained numerous voids, had a burnt odor and was similar in texture to a blackened styrofoam material.

Wood chips were successfully processed with VLDPE at waste loadings of 40, 50, and 60 wt% (Batches 19-21). Samples containing 60 wt% wood chips appeared to be more thoroughly and homogeneously encapsulated than the samples produced with 60 wt% sawdust. The wood chips were approximately the size of toothpicks but also contained some thicker, and longer pieces (up to 10 cm). The rotor blades were able to effectively shred the chips into smaller uniform lengths (approximately 1 cm), which can be easily seen in the final samples. Successful extrusion processing would require pretreating the wood chips to reduce the particle size. The kinetic mixer can tolerate a broader particle size range due to the high intensity mixing.

A waste loading of 40 wt% wood chips with RHDPE (Batch 23) did not produce a well mixed product. The results are similar to those obtained for mixtures of RHDPE and RLDPE with sawdust. The final sample reveals areas with high concentrations of wood chips and polymer. The performance of the recycled resins with sawdust and wood chips is dependent on the high melt viscosity of these resins under shear in the mixer.

Hearth ash was successfully mixed with VLDPE at waste loadings of 50, 60 and 70 wt% (Batches 25-27). Although the molten product was completely black, all samples appeared to be homogeneous, even at 70 wt%. Various blends of recycled resins as well as combinations of recycled resins with virgin polyethylene were mixed with hearth ash. A combination of 70 wt% hearth ash, 15 wt% VLDPE and 15 wt% RHDPE produced a well mixed product (Batch 28). The sample warped following removal from the mold, possibly due to the excessive temperature (373 °C) attained during this run. A combination of 60 wt% hearth ash, 20 wt% RLDPE and 20 wt% RHDPE (Batch 29), also produced a well mixed product. Overall, the hearth ash was successfully mixed and encapsulated with VLDPE, and mixtures of VLDPE/RHDPE and RLDPE/RHDPE.

Similar to the results for hearth ash, mixed incinerator ash was successfully processed at waste loadings of 60 and 70 wt% with VLDPE, at 60 wt% with 20wt% VLDPE/20wt% RLDPE, and at 60 wt% with 20wt% VLDPE/20wt% RHDPE (Batches 30-33). All product samples molded readily and appeared well mixed. The incinerator ash was sieved at BNL prior to the vendor test for all particles greater than 2.380 mm primarily to remove nails, staples and other large fragments. This ash has been successfully processed at BNL by extrusion at waste loadings up to 70 wt%.

For Batches 36 and 37, the nitrate salt surrogate was mixed with VLDPE at a waste loading of 60 wt%. The salt was evenly distributed and appeared well mixed in the final mold sample. This surrogate has also been successfully processed by extrusion at this loading. Although starting with the same surrogate, the particles in the mold sample following processing in the kinetic mixer appear smaller than those in final waste forms generated by extrusion. As with the wood chips, the mixer apparently reduces the particle size of the waste material during mixing. For Batch 37, the salt surrogate was dissolved by adding 42% water to the mixture of 40 wt% VLDPE and 60 wt% nitrate salt. This test was not successful because the mixer was not leak proof, resulting in the majority of the surrogate waste solution dripping through the bottom discharge port. Since the mixer is not leak tight, it can only tolerate a high moisture content when sorbed by the waste materials. "Free" or aqueous liquids will leak from the vessel. However, the vendor representative indicated that the discharge port could be designed to be leak tight.

6. CONCLUSIONS

A high-shear, high-intensity (thermokinetic) mixer was tested and successfully processed a number of waste surrogates with virgin polyethylene, mixtures of virgin polyethylene with recycled high- and low-density polyethylene, and mixtures of recycled high- and low-density polyethylene. The mixer was able to encapsulate sawdust and wood chips with virgin polyethylene and produce a homogeneous product at a waste loading up to 60 wt%. Above this loading, the product became flakey and was not sufficiently encapsulated by the polyethylene. The low density of the wood surrogates limited the maximum attainable waste loading. The hearth and incinerator ashes were successfully processed at loadings up to 70 wt% with virgin polyethylene and 60 wt% with mixtures of virgin and recycled resins. Processing results with recycled polymers alone were not as effective as either recycled-virgin blends or virgin polymers alone. This was most likely due to the higher melt viscosity of the recycled resins, which impedes its ability to "wet" and effectively microencapsulate the waste materials.

Thermokinetic mixers have been proven to encapsulate waste surrogates with polyethylene on a batch basis. Compared with single-screw extrusion, thermokinetic mixing has certain advantages such as being able to process a broader particle size distribution including larger and finer particles and the ability to process wet materials. This would reduce the demand for waste pretreatment but not necessarily eliminate it. For example, pretreatment of the nitrate salt surrogate requires drying to less than two percent moisture and size reduction prior to encapsulation processing by extrusion. Experiments with the thermokinetic mixer show that it can tolerate larger particles than extrusion but may be limited with aqueous wastes. Pretreatment of the nitrate salt surrogate to make it amenable to processing with the high-intensity mixer may only require drying to approximately 20 percent moisture (i.e., a sludge) and limited size reduction. This would reduce the energy costs associated with waste pretreatment.

Two drawbacks of the high-intensity mixer are its batch operation and less precise control over melt and mixing parameters. Coupling of the mixer with a single-screw extruder may minimize limitations associated with each technique and enhance overall process capabilities. The thermokinetic processor can serve as an in-line pre-mixer for the extruder, in which the well-mixed molten product can be fed directly to the extruder feed throat. The extruder would serve to further homogenize the materials, act as a melt pump for processing the materials through a die and create a continuous encapsulation process.

7. REFERENCE

1. Patel, B.R., P.R. Lageraaen, and P.D. Kalb, "Review of Potential Processing Techniques for the Encapsulation of Sorbents in Thermoplastic Polymers," prepared for US DOE and US EPA Strategic Environmental Research and Development Program #387, Brookhaven National Laboratory, BNL-62200, August 1995.

Appendix A-1. Suppliers of recycled resin used during vendor test

Supplier	Resin Type	Resin Form
Mobil Chemical 500 East Superior Jacksonville, IL 62650	LDPE/LLDPE	pellet
Clearvue Resource Management Clearvue Polymers, Inc. Edson Street Industrial Park Box 8 Amsterdam, NY 12010	HDPE	flake
WTE Recycling 136 Fuller Road Albany, NY 12205	PET	flake

.

Appendix A-2. Laboratory Data Sheets from Vendor Test of Draiswerke Gelimat Kinetic Mixer

.

Laboratory Test of Draiswerke Gelimat Kinetic Mixer Allyconary July 25, 1995

 \bigcirc

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
VLDPE	100	1803	NA		-			17.3 sec	134°C	4800

Comments: RUN VLDRE TO CLEAN MACHINE

Too much material to press into our small 2" square indel.

Ð Polymer % Weight Waste % Weight % Water | Weight | Residence Time | Temperature **RPM's** KOPE 369 30.6 see 195°C 60 SAWOUST 40 649 4800 Comments: 160g Total, temp. in mixer stays const. at approx. 30% to most of the time, then in the lost few seconds it shouts up reprilly. Dowit his , operator, runs the machine and stops a run based on the neise it makes

3										
Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLOPE	50	8 ⁰ 2	5pw0157	50%	50 y		-	35.4 sic	215°	4800

Comments: 1603 total mix

melt temp. 180°C : temp ob molten plug discharged from mixen taken w/ thermocouple

Laboratory Test of Draiswerke Gelimat Kinetic Mixer Paul Ingroan

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's							
ILDPE	40	649	SAWDUS T	60	16 3		-	38.1 · sec	229°C	4800							
Comments:	a We		<u> </u>		1	<u> </u>	l		<u> </u>								
	- marke	¥£.5					1		* 0	,							
	moiten	dwg = 195 0	" use Danis.	moiten plug = 195°C use Dicisiverke 5×5 mold. This wold w/ approx. 2003 6 material make													
	moiten a mi	plug = 195%	" use Drows	vulke	5×5 mold.	This mole	t wepp	пок. 2003 °С	makina	roike							
	a mi a mi	plug = 195% old sample	that is 5'	vuke :	5×5 molds $\approx 0.5^{11}$ thick	the mok	t w cpp mold	гох. 2003 °С samp6 didn :	t and out	norke							
30-1	a mi compt	plug = 195°C old sample lete, one ob	that is 5' He corners	suke x5 ¹¹ x : was :	$5 \times 5 \mod 0$ ≈ 0.5 "thick $f \log key$,	this mok k. this	t w cpp nold	rox. 2003 °C samplo didn s	t and out	roike							
30 Polymer	moiten a mi cempt	plug = 195 °C old Sanyole lete, one ob Weight	Hat is S' He corners Waste	x5" x : ners	5×5 mold. ≈ 0,5 " thick flakery , Weight	This mole k. This % Water	nold Weight	ex. کوی در دهمه او دهمه Residence Time	Temperature	ro.ke RPM's							
30 Polymer IL OPE	moiten a mi compt <u>%</u> 50	plug = 195% old Sanple Pete, one ob Weight 80	" use Draws Hat is 5" He corners Waste Sawdust	sula x5'' x : was % 50	5×5 mold + ≈ 0,5 " thick flakery , Weight 800	This mok k. This % Water	t w cpp nold Weight	rox. 2003 °C sangolo didn s Residence Time 34.8 suc	Temperature	RPM's							

Ramis 1.75 "diameter

<u>6</u>		•					1	•		
Polymer	<u>%</u>	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLDPE	30	157 483	Sawdust	0	1123	-	-	43.3 sie	211	4800
Comments	: Samp	le is flaking,	mod moule a po	en sample	opter molding	, mold	sample	has broken	and flake	7

anners

			1]								
	RPM's	5		•		RPM's	<i>bibo</i>	3				RPM's	vår	(cm)		
	Temperature	235'e		in concers		Temperature	100 00	Sug 174.7				Temperature	dubic	A time the		
	Residence Time	33.1 Bee		t has bruk		Residence Time	54.7 see	bein in a		comers.		Residence Time	49.5 see	n mold. Stein a		
•	Weight	(fakey		Weight	وكما	uld have	7	020 020		Weight	ړن٤	placing		
	% Water	(s' gotu		% Water	201	ats ndmas	-	· vixed.		% Water	30 %	wig below	e.	gense
	Weight (g)	5 HOI	te 33500	. mil sa		Weight	120 ⁵	ch)	1 12	to thekey for		Weight	5001	ico still eve	neld sanp	view best
	%	65 %	4. 200	well		%	0.7	whist a		enel Ne		%	5ç	stern u	ってい	ust me
	Waste	Rundust	~ 99 VE Her Sh	cens out very		Waste	SAWOUST	o muisture (eb sa	03H 251	not applete		Waste	Skuijusī	t up to gubic,	hargh). Very	- / SO 25 Secura
	Weight (g)	563	ohed temp	from didn't		Weight	ହିଦ୍ୟ	441 + 10°	ų	s, signer		Weight	وكالما	والم کر ۲۵۱ م	er linet inuch t	50 % NLOPE
	%	Se	1 5001	west		%	0,	3003	•	med		%	ß	teri	X.C.	
Ì	Polymer	ふらいと	Comments:		\mathbf{E}	Polymer	1LOPE	Comments:			લિ	Polymer	VLDPE	Comments:		

Laboratory Test of Draiswerke Gelimat Kinetic Mixer July 25, 1995 APril-

•

Laboratory Test of Draiswerke Gelimat Kinetic Mixer July 25, 1995 APRIL

(f) Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
RLOPE	100	160 g	-	-		-		36.0 sie	256°C	4800
Comments	140							<u> </u>		

160 y total. Temp. 1024 → 2560c.

Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
RLOPE	50	100 3	Sundust	50	100%	_	-	1:20 500	230°C	4800
Comments	Sunp	le appears	nd day, it dia	n't sce	in to mix	as well.	we'r	el try another	wn	
,	+ Polym	u + srudus	st are not u	vell-m	ixed in mol	d sample	w ke	homesened 5	•	

(I)

Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
R-OPE	1000 fe 50	1000	saw tust	- 50%	1039	_	_	30 see	284 C	6000

Comments: Temp.

Scaple must have burned. Smake poured from mixen. We could small the burnt sawdust. The motion sample flowed very well under compression that it formed flots on the bottom of the model.

+ Polymen + sandust are not well-mixed in mold sample.

	RPM's	1000 1000			RPM's	COBY
	Temperature	U t	, t		Temperature	3. 128
	Residence Time	18. ie see	smelled like		Residence Time	3.2. E car
	Weight		Suue		Weight	١
	% Water	(€ (¿. d.r.		% Water	١
e B	Weight (g)	l	unitual s		Weight	80.5
tic Mixe	8	1	active f		%	Q/ ₁
e Gelimat Kine	Waste	1	came from m		Waste	tenter
of Draiswerk	Weight (g)	iacre	to that , smalle		Weight	5081
y Test 95	%	001	5001		%	09
Laborator July 25, 199 MPeu	(2) Polvmer	RHOPE	Comments:	Ē	Polymer	АНОРЕ

% Water | Weight | Residence Time | Temperature | RPM's 5400 280°C dont suc ۱ Į Weight 5 ag 8 50 Waste Sunduct Weight 2021 0a) 8 Polymer RHDPE Ð

+ Polymer + secondwast not well mixed in mold any le

Sinke cone from machine, same up before?

Comments: 2003 bla . Tenp. - 1034 > 271 2

Comments: 2003 total. Temp: 1032 - 080 2 , Sample appeared the try prior to trating

* Bymun + sandwet not well mixed in mold sample

Laboratory Test of Draiswerke Gelimat Kinetic Mixer 🥂 July 25, 1995 APRIC

G

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
RPET	001	6091	-	١	J		l	33.7 Sie	239 °C	5400
Comments.	11.0.	ł	19 1 6 6							

1009 Tenp: 11000 -> 035 C

- Product looks matter, milky white . Should be sun a little longer, compression sample has

the team it. Motor is now noisery then on other runs. Makunt sunk in water bunkert

Polymer	8	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
R-ET	001	100g	ļ	1	١	1	ł	14 Sce	50G °	Stou
Comments	. 1603.	Trup: 104	-> Tup. str.	tes ince	anna Liza	diztely.				

lichuet surk in write bucket.

RPM's	5400
Temperature	286°C
Residence Time	31.8 sec
Weight	L
% Water	١
Weight	BOs
%	04
Waste	Sundurot
Weight	1803
%	60
Polymer	R-PET

comments: 2003 sample. , Product was smalley, code quickly. Rochert scinple thated in coording water buckets Check sample, look for voids on inside.

* Atta withing noil sample in half, He intain is bill ob voids , lake the the more andy Ban. Similar to barn. It also smalls burnt

Ē										
Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
V-LORE	100	1609	-	-	-	_	-	Ko.4 Sea	dosic	5400
Commente	•									

Comments: Total wt. 160 .

® . % Weight Residence Time **RPM's** Weight Waste Weight % Water Temperature Polymer % wood chips. 21.7 sec 142°C 5400 V-LOPE 1200 40 Berg _ 60 -Comments: Tobe. wt. 2003. Product looks well nixed. Word chips seem to be very well broken up,

+ moid sample woks very good

Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLDPE	50	1003	Word Chips	જુ	1005	-	-	29.5 sec	227%	5400

Comments: Total. J. 2003. PRoduct locks will mixed

* moid sample hours very good

B
ixer
tic M
Kine
mat
Geli
erke
aisw
est (
ory T 995
oratc 25, 1 L
April

L		
T	I emperature	353°C
Decidence Time	Residence Line	31.5 42
14-1-141	weight	I
el Motor	19 MAIGI	J
(Maiaht (a)	Meight (g)	1203
9	%	ود
Mada	Masic	weed chups
Woinht (n)	Meighir (y)	203
9	٩	04
C) Dolimor	L'UIJIIIEI	ALD PE

RPM's

5400

Comments: 2003 total; Tomp: 105" c -> 359° c

I poil sample locks very good. The mixed withed better when using and woodeh pos then with as & samplest.

	<u> </u>	r	٦
	RPM's	3400	
	Temperature	337°C	2000
	Residence Time	85.7 suc	leed when duters
	Weight	1	1. Sme
	% Water	-1	s Smoker
	Weight	8	hanged was
	%	I	+ disc
:	Waste	ł	miker, produce
	Weight	2001	totel, clean
	%	001	iteog
ED	Polymer	R- HDRE	Comments:

	[
	RPM's	5400
ŧ	Temperature	¢94°C
	Residence Time	44.5 Sec
	Weight	I
	% Water)
	Weight	500
	%	ан
	Waste	wood Oups
	Weight	Earl
	%	0N
63)	Polymer	K-HBPE

Comments: 3003 total, not nersy. material and not wate much noise is it was thising.

leductures snokey, ado had detagent small.

I rold sample is not well-mixed. Areas of high concertiations of Sanchust are clearly visible . 1

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
VLDPE	100	160 5		-		-	-	17.6 sec	184%	5400
Comments	1600	total, cl	con mixer ten	next	run.	L	L	**************************************	<u> </u>	······

(25) Polymer % Weight Waste % Weight % Water Weight Residence Time Temperature **RPM's** Hearth Ash VLOPE 50 1009 14.0 see 2200 5400 50 100g -----Comments: 2009 total, Temp. 106 2 - 220 prod. Sample Sunkin Hze bucket

* moil sample looks good

ØG										
Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VILDPE	40	803	Hearth Ash	60	120g	ſ	-	14,1 see	21200	5400

Comments: 2003 total, Temp: 106 - 21200 . Fred. sunk in H20 bucket

+ mold sample woks good.

Laboratory Test of Draiswerke Gelimat Kinetic Mixer *R* July 25, 1995 AMail

Weight (g) % Water | Weight | Residence Time | Temperature | RPM's 548 Comments: Jog 10/0, 106% -> 334. Suple suck in Here buket. No prodems precessing. Jeyeb 18.3 500 I L Hearth Ash 70 1409 * Waste Con probably go higher. Weight (g) 150m % ઝ Polymer NUDRE F

t mode sample is not emplote. One concerts missing, although the sample looks well mixed

	RPM'S	SHOO	
	Temperature	373%	
	Residence Time	33.7 500	
	Weight	١	
	% Water	1	S ASA
	Weight	5041	10PE / 70 %
	%	22	5% 81
	Waste	HUMRTH ASH	1/2007 7.5.
	Weight	555	total , ,
	%	12:2	2003
B	Polymer	VLDPE RHOPE	Comments:

fred. was sneekey.

trid sample is wary and her bimpy surface. It worked but didn't make as publict mild sample.

	r—	<u></u>
	RPM's	5400
	Temperature	38620
	Residence Time	18.3
	Weight	1
	% Water	1
	Weight	5001
	%	(nO
	Waste	Hewith Ash
	Weight	40 ع 40 ع
	%	30 30
EC)	Polymer	LUDPE LUDPE

Comments: 300_3 herel, $106^{\circ}c \rightarrow 386^{\circ}c$

t mild sample looks pretty good, materials seen to be well -mixed.

(3.)

			and the second								
Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's	
VLDPE	40	80)9	Incinerator Ash	la:	و ^{ت21}	_		16.2 sez	233°C.	5700	
A											

Comments: 200g total, 107 " > 232, Prod. is well - mixed

+ mold sample backs great. Materials are well mixed.

Ei)										
Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLDPE-	30	60g	INCINERATOR Asti	70	1405		_	17.2 see	238°C	5400

Comments:

106-238°C prod. 13 well-mixed

+ meld sample looks good + well mixed. Atthough, one corner is missing

32)										
Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
R-LOPE	20	400	INCINO.	(0)	12020	_	-	15-7	255%	5400
V-LOPE	90	403	ASH .		1205			J. > fle		510

Comments: 107 -> 259°C 2003 toind

I mold sample books great, well-mixed. This worked very well.

Laboratory Test of Draiswerke Gelimat Ki July 25, 1995

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
R-HOPE	20	40	IN NORATUR	(10	17170		-	27.0 50	374°C	~
V-LOPE	20	40	ASH		1209			and she		2400
O to		· · · · ·							······	

Comments: 2003 total.

+ mold sample appears well - nixed but is bent + curry. This may have been caused by romaving 26 it from the compression molder too soon on by add cooling behaviors of mixtures of HOPE + LOPE.

	-
(2)	•
1.31	
6	Ľ

(22)

Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLOPE	100°6	leo g	1	-	-	. 1		15.9 sec	171 °C	5400

Comments: clean mixer 107-> 171°C

port is slightly dark.

35)										
Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
VLOPE	100	160 3	-	~	-	_	-		153°C	5400

Comments: Chan mixty again. Prod. sample disposed.

Polymer	%	Weight (g)	Waste	%	Weight (g)	% Water	Weight	Residence Time	Temperature	RPM's
NOPE	40	809	Nitrete Sult	60	120 9	_	-	11.1 sie	/73 °C	5400
Comments:	Ven	1 guirt w	bontainer labell	-so ~p	le dispos	 erd	1	L	I	
,	Sed	t taken fr	on botch #7	T -D (1-2)	Courses	at la	. Fr	autor of the	n AV -	<i>ا</i> رد ن
+	not s	ingle seems	well mixed.		parison up	Late =	s arem	extrusion w/	the board	, the
37	heux n	now le cn t	the sunface lay	w 40.10	ning any ex,	posed sol	- 1 - C	torusion sing c	suns i	
3 Polymer	heux n	Weight	Waste	~ co.il	ning any ex, Weight	posed sol	≁, Weight	Residence Time	Temperature	RPM's
Bolymer ILDPE	heux n heux n 40	Weight	Waste Nitrate Sent	60	Weight	90'sed sol % Water 43 %	خ. Weight د∞ع	Residence Time	Temperature	RPM's 540
Bolymer Polymer NLDPE Comments:	heure n Heure n 40 wet	Weight Bug nitrate sur	Waste Nitrate sult nojete, water	dippin	Weight 1203 g cart but	Water 42 °C	خ. Weight د∞ع	Residence Time Imin 33 sec.	Temperature	RPM's 540
Bolymer NLOPE Comments:	heur n Heur n 40 wet 10B°C	Weight BUg nitrate sur	Waste Notate sent	60 Ko Ko Ko Ko Ko Ko Ko Ko Ko Ko	Weight 1203 g cart but	60°sed sol % Water 43 %	لي Weight ج∂ع	Residence Time amin 33 sec.	Temperature	RPM's ১৭০৩
Bolymer	1:45	Weight BUg nitrate sur Sie increase	Waste Waste Nature Sent Notate Sent Nogete, water	dippin Corport	Weight 1203 g cart but	60°sed sol % Water 43 %	لي Weight S⊘ع	Residence Time Imin 33 Sec.	Temperature	RPM's ১৭০৩

Polymer	%	Weight	Waste	%	Weight	% Water	Weight	Residence Time	Temperature	RPM's
							Ì			
								· ·		

Comments: