ENGINEERING CHANGE NOTICE

1. ECN NO 618789

Pag# 1 of _____

2. ECK Gardeory (mark one) Supplemental Direct Revision Di Change ECM T. M. Brown, R2-12, 373-4437 [] ves [X] No D2/13/97 6. Project Titist/No.Aveck Order No. T. M. Brown, R2-12, 373-4437 [] ves [X] No D2/13/97 6. Project Titist/No.Aveck Order No. T. Bidg./Sys./Fac. No. B. Approval Designator N/A Temporary Cancel/Void D Undarant of the Hanford 200 West Area D. Document Numbers Changed by this ECW (includes sheet no. and rev.) WHC-SD-WHC-RE-352, Rev. Ob N/A N/A Design Authority/Cog. Engineer Signature & Date N/A Design Authority/Cog. Engineer Signature & Date Divert Revis/No. Design Authority/Cog. Engineer Signature & Date Divert Revis/No. Design Authority/Cog. Engineer Signature & Date Divert Revis/No. Design Authority/Cog. Engineer Signature & Date Design Authority/Cog. Engineer Di Design Authority/Cog. Engineer Signature & Date Design Authority/Cog. Engineer Signature & Date Design Authority/Cog. Engineer Di Design Authority/Cog. E							
absorber 6. Project Title/No./Work Order No. 7. Bidg./Sys./Fac. No. 8. Approval Designator Charge Edit 0 Historical Tank Content 2750/200E N/A Supersedure 0 B. Approval Designator N/A Supersedure 0 Witc-SD-WM-ER-352, Rev. Ob N/A N/A 12a. Modification Work 12b. Work Package 12c. Modification Work Complete 10. Related ECN No(s). 11. Related PO No. 12a. Modification Work 12b. Work Package 12c. Modification Work Complete N/A N/A 12a. Modification Work 12b. Work Package 12c. Modification Work Complete N/A N/A 12a. Modification Work 12b. Work Package 12c. Modification Work Complete N/A N/A 12b. Work (Rike. 12b) N/A N/A N/A N/A N/A 12b. Work (Rike. 12b) N/A N/A N/A N/A 12c. Restriction of Change 13b. Design Baseline Document? 17 restriction and the individual tank sections were replaced by 3 tables: 10 the individual table of 31 be chemical analytes and 46 radionuclides 13re stiple solids Composite Inventory Estimate table of 31 be chemical analytes and 46 radionuclides 11 restate Mixing				4. USQ Required?		5. Date	
Change EEU Standby Standby Earder Void If Historical Tank Content Estimate for the Southwest Quadrant of the Hanford 200 West Area 2750/200E N/A 12a. Modification Kork P. Document Numbers Changed by this ECU (include sheet no. and rev.) 10. Related ECU No(s). 11. Related PO No. 12a. Modification Kork 12b. Merk Package NHC-SD-MHC-R-352, Rev. 0b N/A N/A N/A 12a. Modification Kork 12b. Merk Package NHC-SD-MHC-R-352, Rev. 0b N/A N/A N/A [X] No cut Biks, 12b, N/A N/A N/A N/A N/A Design Authority/Cog. Engineer Signature & Date Signature & Abate [X] No cut Biks, 12b, N/A N/A N/A Design Authority/Cog. Engineer Signature & Date [X] No [X] No cut Biks, 12b, N/A 12b. Merk Package N/A 12b. Merk Package N/A 12c. Medification Merk Complete N/A Design Authority/Cog. Engineer Signature & Date [X] No [X] No cut Biks, 12b, N/A 12b. Merk Package N/A 12b. Merk Package N/A 12c. Medification Merk Complete N/A Design Authority/Cog. Engineer Signature & Date [X] No [X] No cut Biks, 12b, N/A 12b. Merk Package N/A 12c. Medification Merk Complete N/A				[] Yes [X] No		02/13/97	
Temporary Supervedure Concet/Void II Historical Tank Content Estimate for the Southwest 2750/200E N/A Image: Concet/Void II Estimate for the Southwest Quadrant of the Hanford 200 West Area 10. Related ECN No(s). 11. Related PO NO. Image: Concet/Void P. Document Numbers Changed by this ECN (Intentes abargeres). 10. Related ECN No(s). 11. Related PO NO. Iza. Modification Work (Intentes abargeres). N/A N/A N/A N/A Iza. Modification Work (Intentes abargeres). N/A N/A N/A Iza. Rescription of Change Iza. Modification of the anarative description of the tank farm section and the individual tank sections were replaced by summary tables. Iza. Testing tables: Iza. Testing tables: Iza. I Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Iza. National Laboratory has been replaced by summary Estinget abarged and on a separate page.	Direct Revision [X]	6. Project Title/No./Work Order No.		7. Bldg./\$ys./Fac. No.		8. Approval Designator	
Supersidure Cancel/Void [] Listinduce for the Hanford 200 West Area 9. Document Humbers Changed by this ECN (Includes sheet no. and rev.) 10. Related ECN No(6.) 11. Related PO No. 12a. Modification Nork 12b. Work Package NHC -SD-WM-ER-352, Rev. 0b N/A N/A 12b. Modification Nork 12b. Work Package N/A [] Yes (fill out Bik. 12b. Nor (MA Biks, 12b, 12c, 12d) N/A N/A N/A N/A [] Yes (fill out Bik. 12b. Desrip floating bocument N/A N/A N/A N/A [] Yes (fill out Bik. 12b restription of Change 13b. Desription of Change 13b. Desription of Change 13b. Work Package Signature & Date 12b. Control (Mange - or Standay EDN only) 13a. Description of Change 13b. Desription of Change 13b. Control (Mange - or Standay EDN only) N/A 1. Performed a complete rewrite and reformat of all pages of the HTCE document. 2. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by stimatry tables: 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: 3. The single solids composite inventory EStimate table 5. The Tank Layer Model Solids Composite Inventory EStimate	Temporary []			2750,	200E	N/A	
Image: Second	Supersedure []						
9. Document Numbers Changed by this ECN (includes sheet no. and (rev.) WHC-SD-WM-ER-352, Rev. 0b 10. Related ECN No(s). 11. Related PO No. N/A 12a. Modification Work (12b) (12	Cancel/Void []						
WHC-SD-WM-ER-352, Rev. 0b N/A N/A 12a. Modification Work 12b. Work Package 12c. Modification Work Complete 12d. Restored to Original Condition (Temp. or Standby Eck only) [] Yes (fill out Bik. 12b, 12b, 12b, 12b, 12b, 12b, 12b, 12b,		9. Document Numbers Changed by this ECN		10. Related	ECN No(s).	11. Related PO No.	
12a. Modification Work 12b. Work Package N/A 12c. Modification Work Complete 12d. Restored to Original Condition (Temp. or Standby ECH only) [1] Yes (fill out Bik. 12b, 12b. N/A N/A N/A 12b. No [X] No (MA Biks. 12b, 12c, 12d) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. or Standby ECH only) [X] No (MA Biks. 12b, 12c, 12d) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. or Standby ECH only) [X] No (MA Biks. 12b, 12c, 12d) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. or Standby ECH only) [X] No (MA Biks. 12b, 12c, 12d) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. or Standby ECH only) [X] No (MA Date) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. or Standby ECH only) [X] No (MA Date) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. Original Condition (Temp. or Standby ECH only) [X] No (MA Date) Design Authority/Cog. Engineer Signature & Date 12d. Restored to Original Condition (Temp. Origin (Temp. Original Condition (Temp. Origina				N/A		N/A	
[] Yes (fill out Bik. 12b) N/A N/A N/A [X] No (MA Biks. 12b, 12c, 12d) N/A Design Authority/Cog. Engineer Signature & Date N/A 13a. Description of Change 13b. Design Baseline Document? [] Yes [X] No 1. Performed a complete rewrite and reformat of all pages of the HTCE document. 2. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by summary tables. 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: • Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides • Tank Layer Model Solids Composite Inventory Estimate table • Supernatant Mixing Model table. 4. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM- ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Desctivation [] 14b. Justification Details Date Stimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN	12a. Modification Work		12c. Modification Work		12d. Restor	ed to Original Condi-	
[X] No CMA BLKS. 12b, 12c, 12d) Design Authority/Cog. Engineer Signature & Date Design Authority/Cog. Engineer Signature & Date 13a. Description of Change 13b. Design Baseline Document? [] Yes [X] No 1. Performed a complete rewrite and reformat of all pages of the HTCE document. 2. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by summary tables. 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: • Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides • Tank Layer Model Solids Composite Inventory Estimate table • Supernatant Mixing Model table. 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM- ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet.			N/A			or standby ECN only)	
 13a. Description of Change 13b. Design Baseline Document? [] Yes [X] No 1. Performed a complete rewrite and reformat of all pages of the HTCE document. 2. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by summary tables. 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Tank Layer Model Solids Composite Inventory Estimate table Supernatant Mixing Model table. 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0 bto HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 16. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 17. Distribution (include name, MSIN, and no. of copies) 28. August Particular Particula	[X] No (NA Blks. 12b,						
 Performed a complete rewrite and reformat of all pages of the HTCE document. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by summary tables. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Tank Layer Model Solids Composite Inventory Estimate table Supernatant Mixing Model table. The Tank Layer Model graph is enlarged and on a separate page. The Tank Riser Location and Tank Cross Section sketches are enlarged. The glossary and reference sections are placed in Appendix A and B, respectively. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 Ita. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] Ita. Justification information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 	13a. Description of Change	· · · · · · · · · · · · · · · · · · ·			-		
 tank sections were replaced by summary tables. 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Tank Layer Model Solids Composite Inventory Estimate table Supernatant Mixing Model table. 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 16. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet.	1. Performed a comp	olete rewrite an	d reformat of all	pages of ⁻	the HTCE o	document.	
 3. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Tank Layer Model Solids Composite Inventory Estimate table Supernatant Mixing Model table. 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (merk one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet.				nk farm s	ection and	d the individual	
Laboratory has been replaced by 3 tables: • Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides • Tank Layer Model Solids Composite Inventory Estimate table • Supernatant Mixing Model table. 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet.				dod by Lo		National	
 Total Inventory Estimate table of 33 the chemical analytes and 46 radionuclides Tank Layer Model Solids Composite Inventory Estimate table Supernatant Mixing Model table. The Tank Layer Model graph is enlarged and on a separate page. The Tank Layer Model graph is enlarged and on a separate page. The Tank Riser Location and Tank Cross Section sketches are enlarged. The glossary and reference sections are placed in Appendix A and B, respectively. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 				ded by LU.		Nacional	
 Supernatant Mixing Model table. The Tank Layer Model graph is enlarged and on a separate page. The Tank Riser Location and Tank Cross Section sketches are enlarged. The Jossary and reference sections are placed in Appendix A and B, respectively. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. Ob to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Detaits To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 	 Total Inventor 	y Estimate tabl	e of 33 the chemic	al analyte	es and 46	radionuclides	
 4. The Tank Layer Model graph is enlarged and on a separate page. 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. Ob to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 				imate tab	le		
 5. The Tank Riser Location and Tank Cross Section sketches are enlarged. 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. Ob to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 						Í	
 6. The glossary and reference sections are placed in Appendix A and B, respectively. 7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. Ob to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification betails To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. 							
7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. 0b to HNF-SD-WM-ER-352, Rev. 1 14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) RELEASE STAMP Implemented for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) Implemented for the inventory estimates. Implemented for the inventory estimates.							
14a. Justification (mark one) Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) RELEASE STAMP See attached distribution sheet. Image: Comparison of the inventor of the	7. The document prefix number has changed from WHC-SD-WM-ER-352, Rev. Ob to HNF-SD-WM-						
Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. Const. Error/Omission [] Facility Design Error/Omission [] RELEASE STAMP On the inventory estimates. Const. Error/Omission [] Const. Erro							
Criteria Change [] Design Improvement [X] Environmental [] Facility Deactivation [] As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. Const. Error/Omission [] Facility Design Error/Omission [] RELEASE STAMP On the inventory estimates. Const. Error/Omission [] Const. Erro	1/a Justification (mark a				,		
As-Found [] Facilitate Const [] Const. Error/Omission [] Design Error/Omission [] 14b. Justification Details To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. RELEASE STAMP OACE (MANJORD (D) MANJORD (D) (D)			[X] Environmental	۲1	Facili	ty Deactivation	
To update historical tank content estimate documents with more recent tank waste characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates.							
characterization information and expanded radionuclides and updated chemical analyte information for the inventory estimates.							
<pre>information for the inventory estimates. 15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet. CATE RELEASE STAMP CATE RELEA</pre>							
15. Distribution (include name, MSIN, and no. of copies) See attached distribution sheet.							
See attached distribution sheet.	information for the inventory estimates.						
See attached distribution sheet.						ļ	
See attached distribution sheet.							
GATEL CROTHAN ID: CRATHAN REMAINS			f copies)		N N S	RELEASE STAMP	
	See attached distri	bution sheet.			1. 1.		
					1. Dam		
4 hours					1.		
MAN 0 6 1997					10 CTA 2	L Killine on with	
Maa 0 6 1997						- The last	
					H MAa	0 6 1997	

A-7900-013-2 (05/96) GEF095

	Schedule Impact (days)		NOIT: D	CONSTRUCO Annal Construction	נו ג אפבאואפ יי	17. Cost Impact 1001 Additional	16. Design Verification Required
	•ал [] солешеце []	nədi Mart	\$[] ¢[]	SEULVES	\$ [] ¢ []	senives	on [X] səx []
(documents (other than the		eview: Indicate fected by the ch	
[]			[]	sisylenA seetS/sin	taie2	[]	aa/aas
1 []		lesH	[]	hoqaЯ ngizaG\s	Stree	[] ,	Functional Design Criteris
[]	gnitsiJ tinU elqitluM se	neq2	[]	face Control Drawing	nətri	[]	Operating Specification
[[]			[]	erubecore notes		[]	Criticality Specification
[[]			[]	erubecorg noisell		[] ,	Conceptual Design Repor
[[]	IE Coded Item		[]	tenance Procedure		[]	Equipment Spec.
1 []			[]	ering Procedure	-	[]	Const. Spec.
[]			[]	noitourtenl grite	-	[]	Procurement Spec.
1 []	tric Circuit Schedule		ij	ating Procedure		Ē	Vendor Information
[]	Procedure	-	[]	triamaniupaR ytate2 lenoite		[]	IsunsM MO
l ii			ij	Drawing		ii .	HA2/HA23
1 ü			Ü	Arrangement Drawing	-	Ĩ	fimit from the states from the states from the states of t
l ii	noitisiupeA easit		Ĩ	noificationad2 lenateM leitn	-	[]	simes the more free free free free free free free f
l ii	er File	ווכאו	ŭ	Proc. Samp. Schedule		r 1	Environmental Impact Sta
l îi		V/N	ŭ	nsia nationali and Beauset		ŭ	Environmental Report
		∀/N	[]	teupeñ fremtsujbA vroir		[]	Environmental Permit
				tisted below will not be the notified of other aff			20. Other Affected t fant effected
	noisivest nadmuN insmus			Document Number/Revision		noisiv9A\19dn	
							∀/N

	Signature or a Control Number that tracks the Approval Signature
	DEPARTMENT OF ENERGY
	Project Mgr C. H. Brevick Marude ogogyan
	0ther
.noiron.	Environ.
Safety	u6i290
AD	Cafety
Cog. Mgr. J. W. Cammann J. Commann 314/92	40
CO3. ED3. 1. W. Cammann John Brown 3/4/77	
Design Authority A C	Design Agent J. L. Strong Che quoised
Signature Date	Design Agent J. L. Stroup gazdene 3 4-9-9
sisvonqqA .rs	

Historical Tank Content Estimate for the Southwest Quadrant of the Hanford 200 West Area

C. H. Brevick, J. L. Stroup, J. W. Funk Fluor Daniel Northwest Inc., Richland, WA 99352 U.S. Department of Energy Contract DE-AC06-96RL13200

 EDT/ECN:
 618789
 UC:
 2070

 Org Code:
 408
 Charge Code:
 E18675

 B&R Code:
 EW3120074
 Total Pages:
 237 5.27

Key Words: Southwest quadrant, Historical Tank Content Estimate, tank farms, tank level, tank temperature, tank farm aerial photos, in-tank montages, TLM, SMM, inventory estimates, riser locations

Abstract: The Historical Tank Content Estimate for the Quadrant provides historical information on a tank-by- tank basis of the radioactive mixed wastes stored in the underground single-shell tanks for the Hanford 200 West Area. This report summarized historical information such as waste history, level history, temperature history, riser configuration, tank integrity, and inventory estimates on a tankby-tank basis. Tank farm aerial photographs and interior tank montages are also provided for each tank. A description of the development of data for the document of the inventory estimates provided by Los Alamos National Laboratory are also given in this report.

TRADEMARK DISCLAIMER. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.

Printed in the United States of America. To obtain copies of this document, contact: Document Control Services, P.O. Box 950, Mailstop H6-08, Richland WA 99352, Phone (509) 372-2420; Fax (509) 376-4989.

Rélease Approva

Approved for Public Release

Page 1

(2) Title Historical Tank Content Estimate for the Northwest Quadrant of the Hanford 200 West Area

CHANGE CONTROL RECORD							
(3) Revision	(4) Description of Change - Replace, Add, and Delete Pages	Authorized for Release					
ļ		(5) Cog. Engr.	(6) Cog. Mgr. Date				
0	⁽⁷⁾ Initial issue, EDT 136992		C. S. Haller 6/30/94				
Oa	 Mark out inventory estimates on pages 41, 46, 51, 56, 61, 66, 71, 76, 81, 86, 91, 96, 101, 106, 111, 116, 126, 131, 136, 141, 146, 151, 156, 161, 166, 171, 176, 181, 186, 191, 196, 201, 206, 211, 221, 226, 231, 236, 241, and 246. 	B. Carpenter	S. J. Eberlein 02/16/95				
	 Add pages 41a, 41b, 41c, 41d, 41e, 46a, 46b, 46c, 46d, 46e, 51a, 51b, 51c, 51d, 51e, 56a, 56b, 56c, 56d, 56e, 61a, 61b, 61c, 61d, 61e, 66a, 66b, 66c, 66d, 66e, 71a, 71b, 71c, 71d, 71e, 76a, 76b, 76c, 76d, 76e, 81a, 81b, 81c, 81d, 81e, 86a, 86b, 86c, 86d, 86e, 91a, 91b, 91c, 91d, 91e, 96a, 96b, 96c, 96d, 96e, 101a, 101b, 101c, 101d, 101e, 106a, 106b, 106c, 106d, 106e, 111a, 111b, 111c, 111d, 111e, 116a, 116b, 116c, 116d, 116e, 126a, 126b, 126c, 126d, 126e, 131a, 131b, 131c, 131d, 131e, 136a, 136b, 136c, 136d, 136e, 141a, 141b, 141c, 141d, 141e, 146a, 146b, 146c, 146d, 136e, 171a, 151b, 151c, 151d, 151e, 156a, 156b, 156c, 156d, 156e, 161a, 161b, 161c, 161d, 161e, 166a, 166b, 166c, 166d, 166e, 171a, 171b, 171c, 171d, 171e, 176a, 177b, 176b, 176c, 176d, 176e, 181a, 181b, 181c, 181d, 181e, 186a, 186b, 186c, 186d, 186e, 191a, 191b, 191c, 191d, 191e, 106a, 201e, 206a, 206b, 206c, 206d, 206e, 211a, 211b, 211c, 211d, 211e, 221a, 221b, 221c, 221d, 221e, 226a, 226b, 226c, 226d, 236e, 241a, 241b, 241c, 241d, 241e, 246a, 246b, 246c, 246d, 246e Add pages A-1 and A-2 as Appendix A 						
1 RS	 Incorporates ECM 62/4856 Preformed a complete rewrite and reformat of all pages of the HTCE document. Almost all of the narrative description of the tank farm section and the individual tank sections were replaced by summary tables. The single solids composite inventory table provided by Los Alamos National Laboratory has been replaced by 3 tables: Total Inventory Estimate Table of 33 chemical analytes and 46 radionuclides Tatal Inventory Estimate Table. The Tank Layer Model Solids Composite Inventory Estimate Table Supernatant Mixing Model table. The Tank Riser Location and Tank Cross Section sketches are enlarged. The document prefix number has changed from WHC-SD-WM-ER- 352, Rev. 0a to HMF-SD-WH-RR-352, Rev. 1 	T. M. Brown Ind Brown	J. W. Cammann 99/27/96 HUCammann 3/4/97				
	Incorporates ECN NO. 648789						

HISTORICAL TANK CONTENT ESTIMATE FOR THE SOUTHWEST QUADRANT OF THE HANFORD 200 WEST AREA

Prepared for

Lockheed Martin Hanford Corporation

January 1997

Prepared by

K. L. Ewer J. W. Funk R. G. Hale G. A. Lisle C. V. Salois M. R. Umphrey

Fluor Daniel Northwest, Inc. Richland, Washington

HISTORICAL TANK CONTENT ESTIMATE FOR THE SOUTHWEST QUADRANT OF THE HANFORD 200 WEST AREA

WORK ORDER E18675

APPROVED:

Fluor Daniel Northwest, Inc.

Technical Documents

Lead Engineer

Design A

menil Project Manager

Lockheed Martin Hanford Corporation

<u>YU Commonn</u> Pechnical Lead, TWRS DQO, Models and Inventory

314

ACKNOWLEDGMENTS

A project of the this magnitude would not be possible without the help of a significant number of persons and organizations. Fluor Daniel Northwest, Inc., would like to acknowledge the contributions made by our Los Alamos National Laboratory counterparts: Stephen F. Agnew, Kenneth A. Jurgensen, Robert A. Corbin, Tomasita B. Duran, Bonnie L. Young, Theodore P. Ortiz, John FitzPatrick, and James Boyer. Also, Todd Brown, Brett Simpson and Jerry Cammann of Lockheed Martin Hanford Corporation are recognized for their contributions.

INFORMATION FEEDBACK CARD

HISTORICAL TANK CONTENT ESTIMATE FOR THE SOUTHWEST QUADRANT OF THE HANFORD 200 WEST AREA

COMMENTS AND CONTRIBUTIONS

The reader is requested to use this card to comment on this document, report any discrepancies, or contribute new information to improve the accuracy and content of the document. Please use the space provided, add additional pages if necessary, and return the comments to the person noted at the address listed below.

Send Comments to: Mr. Jerry W. Cammann Lockheed Martin Hanford Corporation TWRS DQO, Models and Inventory P.O. Box 1970, MSIN R2-12 Richland, WA 99352

TRADEMARKS

Microsoft Excel is a registered trademark of Microsoft Corporation.

ENRAF is a registered trademark of Delft Instruments.

AutoCAD is a registered trademark of Autodesk, Inc.

INTRODUCTION

·

1.0 Introduction

1.0.1 Purpose

The purpose of this historical characterization document is to present the synthesized summaries of the historical records concerning the physical characteristics, and the radiological, and chemical composition of mixed wastes stored in underground single-shell tanks and the physical conditions of these tanks. The single-shell tanks are located on the United States Department of Energy's Hanford Site, approximately 25 miles northwest of Richland, Washington. The document will be used to assist in characterizing the wastes. Los Alamos National Laboratory (LANL) developed computer models that used the historical data to attempt to characterize the wastes and to generate estimates of each tank's inventory. A historical review of the tanks may reveal anomalies or unusual contents that could be critical to characterization and post characterization activities.

This document was developed by reviewing the operating plant process histories, waste transfer data, and available physical and chemical data from numerous resources. These resources were generated by numerous contractors from 1945 to the present.

Waste characterization, the process of describing the character or quality of a waste, is required by Federal law (Resource Conservation and Recovery Act [RCRA]) and state law (Washington Administrative Code [WAC] 173-303, Dangerous Waste Regulations). Characterizing the waste is necessary to determine methods to safely retrieve, transport, and/or treat the wastes.

This document is not intended for use as a total design basis document. Further investigations of the information may be required before using this data for design purposes or safety analysis.

1.0.2 Scope

The scope of this document is to provide a summary of the supporting documents (Brevick et al., 1997a, b, c) for the Southwest Quadrant (SW). The SW Quadrant covers three single-shell tank farms. These three tank farms, S, SX, and U, are located in the 200 West Area and are shown on the map in Figure 1. This summary includes waste transfer and level data, tank physical information, and surveillance data of the tanks and wastes for the SW Quadrant. The inventory estimates of waste types and volumes generated by the computer modeling programs developed by LANL are also included. A flow diagram showing the relationships between the sources of data, the HTCE, and the supporting documents is in Figure 2. The HTCE document also includes information on the safety issues affecting the tanks and the plants and processes that produced the waste in the underground waste storage tanks. For further explanation and development of the information, see the supporting documents.

1.0.3 Approach

This document was compiled from work performed by Fluor Daniel Northwest, Inc. (FDNW), LANL, and Lockheed Martin Hanford Corporation (LHMC), as well as work performed by

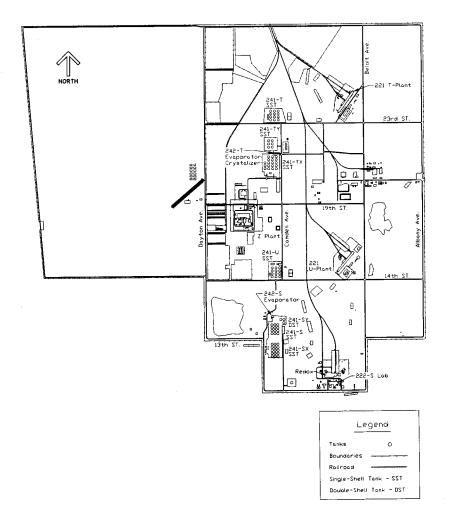


Figure 1. 200 West Area.

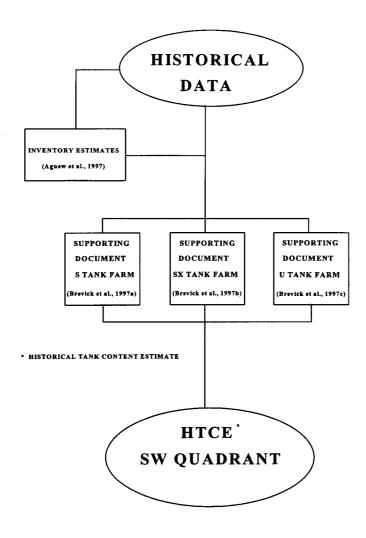


Figure 2. HTCE and Supporting Document Flow Diagram.

Westinghouse Hanford Company. FDNW reviewed the historical records of the tanks and incorporated the inventory estimates and models of waste layers in the tanks being developed by LANL into this document.

1.1 Safety Issues

The safety issues that affect the tanks can be divided into two groups: watch list and non-watch list. The watch lists are listings of tanks believed to pose potential safety hazards to workers, the environment, and the public. Non-watch list issues are of concern because of their possible effect on workers and the environment. Occurrences are unusual events on the Hanford Site that sometimes are related to safety issues.

1.1.1 Watch List Safety Issues

Watch list safety issues for these tanks were identified as "issues/situations that contain most of the necessary conditions that could lead to worker (onsite) or offsite radiation exposure through an uncontrolled release of fission products" under Public Law 101-510, Section 3137, of the National Defense Authorization Act of Fiscal Year 1991 (i.e., the Wyden Amendment). As of June 30, 1996, 44 single-shell tanks and 6 double-shell tanks are on watch lists (Hanlon, 1996i). See the Approach for Tank Safety Characterization of Hanford Site Waste(Eberlein et al., 1995) for more information on the watch list issues.

1.1.2 Non-Watch List Safety Issues

Non-watch list issues include safety hazards such as leaking tanks. Tank leaks are a safety hazard because of their potential to release chemicals and radioactive liquids into the ground. Corrosion is the main cause of tank leaks. Three other safety issues that do not require a watch list and continual monitoring under the Wyden Amendment include criticality, tank bumps, and toxic vapor releases. The following sections provide a general description of the different non-watch list safety issues. See the *Hanford Site Tank Farm Facilities Interim Safety Basis*(Leach and Stahl, 1993) for more information.

Corrosion

Corrosion is the most probable degradation mechanism of the steel tank liners resulting from contact with liquid, liquid-vapor, vapor, and solid phases of the wastes. The corrosion mechanisms that reduce the thickness of the carbon steel liners can be divided into two categories: localized and general or uniform. Localized corrosion occurs on a localized area of the liner surface. Some of the localized corrosion mechanisms include pitting corrosion, stress corrosion cracking, and crevice corrosion. General or uniform corrosion occurs over the entire liner surface. Corrosion of the steel tank liners may involve more than one of these mentioned mechanisms. Corrosion is a safety issue because it has the potential to degrade the tank liner to the point of causing a leak or, more seriously, structural failure of the tank. Either condition could release contamination to the environment.

Criticality

Criticality is a self-sustained, nuclear chain reaction that can occur when a sufficient mass of fissile material is present in the proper configuration along with a neutron source to start the nuclear

reaction. Criticality in the tank farms has been declared an unreviewed safety question, even though the *Hanford Site Tank Farm Facilities Interim Safety Basis* (Leach and Stahl, 1993) indicates that a "nuclear criticality accident in the tank farms is probably not an imminent risk." The unreviewed safety question on criticality in the tank farms remains because the inventory of fissile material and its distribution within the tanks cannot be confirmed as being within the approved safety envelope defined in the current safety analysis reports. Criticality is a safety issue because of the potential to release contamination to the environment.

Tank Bumps

A tank bump is the sudden pressurization of the tank. This phenomenon occurs when solids overheat in the lower portion of the tank followed by uncontrolled mixing of these solids. The stirred hot solids rapidly transfer heat to the liquid in the tank, some of which quickly vaporizes. The rapid vapor generation causes a sudden internal tank pressurization that causes a bump. Uncontrolled mixing of heated solids can occur when an airlift circulator fails allowing the solids to heat up followed by rapid startup of the airlift circulator which causes rapid mixing. Uncontrolled mixing can also occur when a natural "rollover" of waste occurs in the tank. Tank bumps are a safety issue because of their potential to release contamination to the environment.

Toxic Vapor Releases

Toxic vapor releases are a recently analyzed safety concern at the Hanford Site. The entire issue of toxic gas releases at the tank farms is being investigated (Leach and Stahl, 1993).

1.1.3 Occurrences

Over the years, unusual events (occurrences) have occurred at several tanks in the SW Quadrant tank farms. An occurrence is an event that falls outside the normal operating, maintenance and/or construction procedures of the tank farm. Occurrences have been documented by various reporting methods including unusual occurrences reports, off-normal reports, event fact sheets, and occurrence reports. Before it was included in the supporting document, the occurrence documentation that could be located was evaluated for its significance in determining the waste content of the tanks. The types of significant occurrences included in the supporting documents are occurrences written about surface level changes, temperature changes, and radioactivity changes (activity in the drywells). This document does not contain information from the reports. For more information on courrences, refer to the Occurrences Section for the specific tank in the supporting documents.

1.2 Waste Generating Plants and Processes

1.2.1 Plants Processes

Brief descriptions and histories of the plants and processes that generated waste now contained in the single-shell and double-shell tanks are presented in alphabetical order. Typically, the name of the plant and the process are synonymous. The dates and events described in the following brief histories are presented on time lines in Figures 3 and 4. Although not all of the processes listed below contributed waste directly to tanks in the Southwest Quadrant, the waste they generated could have been transferred indirectly from tank to tank.

A Plant (PUREX)

The Plutonium Uranium Extraction (PUREX) plant (i.e., A Plant) began operating in January 1956 (Gerber, 1993a). "The PUREX process is an advanced solvent extraction process that uses a tributyl phosphate in kerosene solvent for recovering uranium and plutonium from nitric acid solutions of irradiated uranium. Nitric acid is used instead of metallic nitrates to promote the extraction of uranium and plutonium from aqueous phase to an organic phase." (Wilson and Reep, 1991, p. B-4). Two campaigns of the Thorex process were conducted in 1966 and 1971 (Jungfleisch, 1984). The Thorex process recovered ²³³U from thorium irradiated in the Hanford Site reactors (Wilson and Reep, 1991). PUREX reprocessed aluminum-clad fuel elements and zirconium alloy-clad fuel elements, and provided plutonium for research reactor development, safety programs, and defense. Also, PUREX recovered slightly enriched uranium to be recycled as fuel in reactors generating electricity and plutonium (Rockwell, 1985). PUREX was put on standby in 1972 (Gerber, 1993a).

The PUREX plant was restarted in November 1983 but was shut down in December 1988 (see Figure 3). The plant was shut down due to the lack of steam pressure needed to operate the support backup safety equipment. There was a brief stabilization run in early 1990. In October 1990, PUREX was placed on standby by Secretary of Energy James Watkins. DOE issued the final closure order in December 1992 (Gerber, 1993b).

B Plant

B Plant used the bismuth phosphate process at first, and later changed its processing capabilities to strontium and cesium fractionation. The bismuth phosphate process "separated plutonium from uranium and the bulk of fission products in irradiated fuel by co-precipitation with bismuth phosphate from a uranium nitrate solution. The plutonium was then separated from fission products by successive precipitation cycles using bismuth phosphate and lanthanum fluoride. The plutonium was isolated as a peroxide and, after dissolving in nitric acid, was concentrated as plutonium nitrate. The waste containing the uranium from which the plutonium had been separated, was made alkaline (neutralized) and stored in underground single-shell tanks. Other acid waste (which included most of the fission products) generated by this process was neutralized and stored in other single-shell tanks" (Wilson and Reep, 1991, p. B-3). "Some of the strontium and cesium fission products were removed (fractionated) from the waste and separately isolated to reduce the heat generation in the tanks. B Plant ... was modified in 1968 to permit removal of these fission products by a combination of precipitation, solvent extraction, and ion-exchange steps. The residual acid waste from the processing was neutralized and stored in single-shell tanks" (Wilson and Reep, 1991, pp. B-4 and B-5).

B Plant began its first batch run on April 13, 1945 (Anderson, 1990), and was shutdown in 1952 (Gerber, 1993b) (see Figure 3). Shortly after the renovations to B Plant were completed in December 1955, the 4X Program was abandoned. The 4X Program "planned to utilize the capabilities of all four Hanford processing plants (B, T, REDOX, and PUREX)" (Gerber, 1993b, p. 12); however, the large production and economic efficiency of the PUREX plant caused the 4X Program to be abandoned (Gerber, 1993b). B Plant restarted in 1968 to recover cesium and strontium from stored liquid waste. Cesium and strontium recovery was completed in September 1983 and February 1985, respectively (Rockwell, 1985).

■ 225-B (WESF)

The Waste Encapsulation and Storage Facility (WESF) converted solutions of cesium and strontium nitrates recovered in B Plant to strontium fluoride and cesium chloride solids that are doubly encapsulated in metal (Ballinger and Hall, 1991). "Strontium and cesium capsules have been used in applications of fission byproducts for gamma and heat sources" (Wilson and Reep, 1991, p. B-5).

WESF was constructed in 1974 (see Figure 3). The process optimization for cesium and strontium was completed in 1978 and 1981, respectively (Rockwell, 1985). The cesium processing ended in 1983 and strontium encapsulation in 1985. The capsule return program started in 1988 and ended in 1995 (Gerber, 1996).

C Plant (Strontium Semiworks)

The Strontium or Hot Semiworks Facility (i.e., C Plant) began operating in 1952 as a hot pilot plant for the REDOX process (see Figure 3). In 1954, the plant was converted to a pilot plant for the PUREX process and continued operating until 1956 (Ballinger and Hall, 1991). "The process building (201-C) contains three hot cells equipped only for contact maintenance and is supported by an aqueous makeup and control building (271-C) and a solvent handling building (276-C). The facility also includes a fiberglass exhaust filter and a 200-ft stack." (PNL, 1991, Vol. 1, p. 3.6). In 1960, the plant was reactivated as a pilot plant used to recover ⁹⁰Sr, ¹⁴⁷Pm, and ¹⁴⁴Cs from PUREX waste. The plant was shut down in 1967 and the building and the site have been decontaminated and decommissioned (PNL, 1991).

S Plant (REDOX)

The Reduction and Oxidation extraction (REDOX) plant (i.e., S Plant) began processing on January 9, 1952 (Anderson, 1990) (see Figure 3). "The REDOX extraction process was a second-generation recovery process and the first process to recover both plutonium and uranium. It used a continuous solvent extraction process to extract plutonium and uranium from dissolved fuel into a methyl isobutyl ketone (hexone) solvent. The slightly acidic wastestream contained the fission products and large quantities of aluminum nitrate that were used to promote the extraction of plutonium and uranium. This waste was neutralized and stored in single-shell tanks. The volume of high-level waste from this process was much smaller than that from the bismuth phosphate process, but larger than that from the PUREX process" (Wilson and Reep, 1991, pp. B-3 and B-4). REDOX operated until 1967 (Rockwell, 1985).

T Plant

T Plant was the first full-scale separations plant at the Hanford Site. T Plant used the bismuth phosphate process to separate plutonium from uranium and the bulk of fission products in irradiated fuel (B Plant used the same process). "The waste containing the uranium from which the plutonium had been separated was made alkaline (neutralized) and stored in underground single-shell tanks. Other acid waste (which included most of the fission products) generated by this process was neutralized and stored in other single-shell tanks" (Wilson and Reep, 1991, p. B-3).

T Plant began operating in 1944 (Rockwell, 1985) as a separations plant and continued until March 1956 (Gerber, 1994) (see Figure 4). T Plant's mission was changed in 1957 to the repair and high-level decontamination of equipment (Rockwell, 1985). T Plant was converted to a "central decontamination facility for the site. As such, failed and contaminated equipment was assessed and

either repaired or discarded there for over three decades" (Gerber, 1994, p. 1). Early decontamination operations used steam, sand, chemicals, and detergents. "Smaller equipment pieces were immersed in decontamination solutions in 'thimble tanks,' and larger pieces were flushed with water, chemical solutions, sand-blasted, steam-blasted, high-pressure sprayed (using pressures up to 10,000 pounds per square inch), and/or scrubbed with detergents. During the initial years, a strong nitric acid flush (approximately 60%) usually began the decontamination process, followed by a caustic wash with sodium hydroxide combined with sodium phosphate, boric acid, versene, sodium dichromate, sodium tartrate, or sodium citrate. However, it was learned that versene and tartrate, in particular, adversely affected the ability of soil cribs to absorb the rinsate materials. High-pressure sprays often used 1,1,1 trichloroethane or perchloroethylene, and detergents generally were chloride-based. By the mid-1960s, commercially prepared and trademarked chemical mixtures had replaced most of the simpler chemicals used in the early years. Many commercial products were based on oxalic acid, phosphates, nitric acid-ferrous ammonium sulfate combinations, potassium permanganate, and sodium bisulfate, with some unknown additives" (Gerber, 1994, pp. 40–42). The facility was modified in 1978 to store pressurized water reactor (PWR) core II fuel assemblies (Rockwell, 1985).

U Plant

U Plant (221-U) was built as one of three original bismuth phosphate process facilities, but it was not used for that purpose. U Plant was modified extensively and used for the uranium recovery process, operating from 1952 to 1958 (see Figure 4). Uranium in waste from the bismuth phosphate process initially was stored in the single-shell tanks. Later, the waste was sluiced, dissolved in nitric acid, and processed through a solvent extraction process using tributyl phosphate in kerosene to recover the uranium. The process was similar to that used later in the plutonium-uranium extraction (PUREX) process except that plutonium was not recovered. The acid waste from the uranium recovery process was made alkaline and returned to single-shell tanks. The tributyl phosphate was treated with potassium ferrocyanide as a cesium and strontium scavenger. The recovery process resulted in an increase in nonradioactive salts and a small increase in waste volume (Wilson and Reep, 1991).

224-U (UO₃, Uranium Trioxide Plant)

The 224-U Building was converted to a uranium trioxide (UO₃) plant that began operating in 1952 (see Figure 4). The UO₃ plant was capable of handling the uranyl nitrate hexahydrate (UNH) stream from REDOX, U Plant, and PUREX. "The basic UO₃ process, calcining, consisted of concentrating and then heating liquid UNH until it converted to a stable, orange-yellow powder. The nitric acid in the UNH solution could be recovered in the same process. The UO₃ powder was the base material needed for the manufacture of uranium hexafluoride (UF₆), the primary feed material for the United States' gaseous diffusion plants. Because the largest of these plants was located in Ohio and Tennessee, it was considered safer to ship the material across the country in powder rather than in liquid form" (Gerber, 1993b, pp. 33–34). The UO₃ plant was shut down in 1972, but restarted in 1984. Since 1984, there have been 17 campaigns at the plant averaging 8 days each. Final deactivation of the plant was ordered in 1992. In April 1993, the UO₃ plant resumed operations to convert 200,000 gallons of remaining UNH to UO₃ powder. A final deactivation plan was written in the summer of 1993 (Gerber, 1993b).

Z Plant (PFP, Plutonium Finishing Plant)

The Plutonium Finishing Plant (PFP) or Z Plant, previously called Plutonium Recovery and Finishing Operations, processed plutonium and prepared plutonium products. "Waste from this plant In July 1949, PFP began operations with a glovebox line (see Figure 4). The remote mechanical A line replaced the glovebox line in May 1953. Installment of the Recuplex Facility at PFP was completed in April 1955. The remote mechanical C line was installed in July 1960. In September 1961, the 232-Z Building had an incinerator and leaching equipment installed. In June 1964, the Plutonium Reclamation Facility (PRF) replaced the functions of the Recuplex Facility. Fabrication of plutonium metal nuclear weapon components ceased at the PFP in December 1965. In April 1973, the 232-Z Incinerator was shut down and the remote mechanical C line was placed on standby. The PRF was placed on standby in February 1979, and the remote mechanical A line was shutdown in December 1979. In January 1984, the PRF was restarted for a series of campaigns. The remote mechanical C line was restarted in June 1985 for a series of campaigns. In September 1986, operations at PFP were halted for nine months. This partial listing of the process history in the PFP is from Duncan et al. (1993).

1.2.2 Waste Management Operations

This section describes the different methods used to concentrate waste in the 200 Areas. Evaporating, and in-tank solidification are methods used to reduce the volumes of supernate. Brief descriptions and histories of the operations are presented in alphabetical order. The events and dates described in the brief histories are presented on a time line (Figure 5).

242-A Evaporator-Crystallizer

"The program objective was to reduce the volume of tanked waste liquors through the boiloff of water. This was accomplished by boiling the liquor in an enclosed vessel at reduced pressure. The evaporation was carried out until a slurry containing about 30 wt% solids was formed. The slurry was returned to underground waste tanks for cooling, crystallization, and settling. The principal products of waste solidification have been large volumes of sodium nitrate salt cakes and waste liquors that are rich in sodium hydroxide and sodium aluminate" (Wilson and Reep, 1991, p. B-5).

The 242-A Evaporator-Crystallizer began operating on March 18, 1977 (Anderson, 1990) (see Figure 5). In 1981, the evaporator was shut down for ten months to tie AW Tank Farm into the process (Rockwell, 1985). The evaporator was shut down in 1989 because of regulatory issues, but was restarted in 1994 after extensive modifications (Gerber, 1996).

242-B Evaporator

"The first type of waste solidification facility, the 242-B and 242-T Concentrators, was originally used for concentration of bismuth phosphate process waste. In 1951, they began to concentrate cladding/first cycle waste. These concentrators were steam-heated pot evaporators operated outside the waste tanks and at atmospheric pressure. The liquors were partially boiled down and cycled to underground waste storage tanks" (Jungfleisch, 1984, p. 1-5). This evaporator ran for approximately four years (Anderson, 1990) (see Figure 5).

■ 242-S Evaporator-Crystallizer

The 242-S Evaporator-Crystallizer was designed to boil off water from the waste in an enclosed vessel at reduced pressure, similar to the 242-A Evaporator-Crystallizer. "The evaporation was carried out until a slurry containing about 30 wt% solids was formed. The slurry was returned to underground waste tanks for cooling, crystallization, and settling. The principal products of waste solidification have been large volumes of sodium nitrate salt cakes and waste liquors that are rich in sodium hydroxide and sodium aluminate" (Wilson and Reep, 1991, p. B-5). The evaporator began operating on November 1, 1973 (Anderson, 1990) and was shut down in 1981 (Gerber, 1996) (see Figure 5).

242-T Evaporator

The 242-T Evaporator, like the 242-B Evaporator, began operating in 1951 (Gerber, 1992) to reclaim nonboiling waste storage capacity in existing tanks (see Figure 5). The evaporator was shut down in the summer of 1955 and modified for tributyl phosphate scavenging (Godfrey, 1965), although scavenging was never performed in this evaporator. The evaporator was restarted on December 3, 1965, and operated until April 15, 1976 (Anderson, 1990).

In-Tank Solidification

The in-tank solidification systems immobilized high level wastes, that were not self-boiling, by concentrating the waste directly inside the tanks to form radionuclide-bearing salt cakes (Shefcik, 1964). The first in-tank solidification unit (ITS-1) and the second in-tank solidification unit (ITS-2) operated in tanks in the BY Tank Farm (Caudill, 1965 and 1967). "...[O]ne used a hot air sparge (ITS-1) and the other used an immersed electrical heater (ITS-2). The ITS-1 operations were conducted in individual tanks. The ITS-2 concentrations were performed by heating the contents of one tank and moving the heated liquor through a series of other tanks" (Wilson and Reep, 1991, p. B-5).

ITS units 1 and 2 began operating on March 19, 1965, and February 17, 1968, respectively (see Figure 5). ITS-1 was converted to a cooler for ITS-2 on August 24, 1971. Both units were shut down on June 30, 1974 (Anderson, 1990).

1.2.3 Miscellaneous Waste Sources and Equipment

Wastes from various other sources on the Hanford Site have been added to the tanks. Some wastes are from the 300 Area, the 100 Area production reactors, various laboratories, and catch tanks.

Critical Mass Laboratories

The critical mass laboratories were used to study the physics of plutonium solutions and solids to avoid accidently creating a criticality or self-sustained nuclear reaction. The first facility began operating in the 120 Building near 100 F in April 1950 and closed in December 1951. The second

facility, the 209-E Building, was located next to the Strontium Semiworks and began operating in July 1961 (Ballinger and Hall, 1991). The plutonium used in the lab was reprocessed in PUREX.

244-AR, -BXR, and -CR Process Vauits

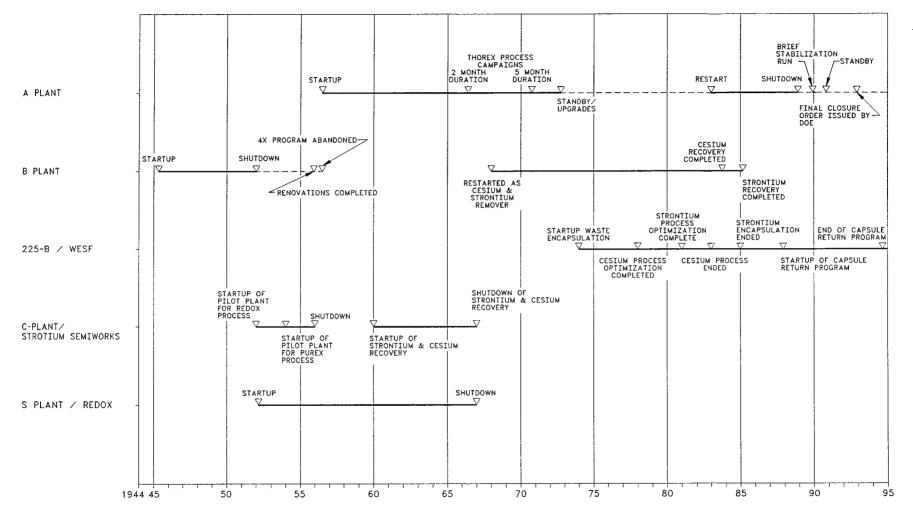
Three of the process vaults are the 244-AR Vault, the 244-BXR Vault, and the 244-CR Vault. These vaults were composed of several process vessels or tanks used to prepare waste for treatment or storage. Specific wastes from tanks can be pumped temporarily to the vaults and later sent directly to desired tanks or processing facilities.

The AR Vault, located north and west of the A Tank Farm, was constructed in 1966. The vault facilities include a canyon building with process cells containing tanks. The AR Vault has been on standby since 1978 (Leach and Stahl, 1993).

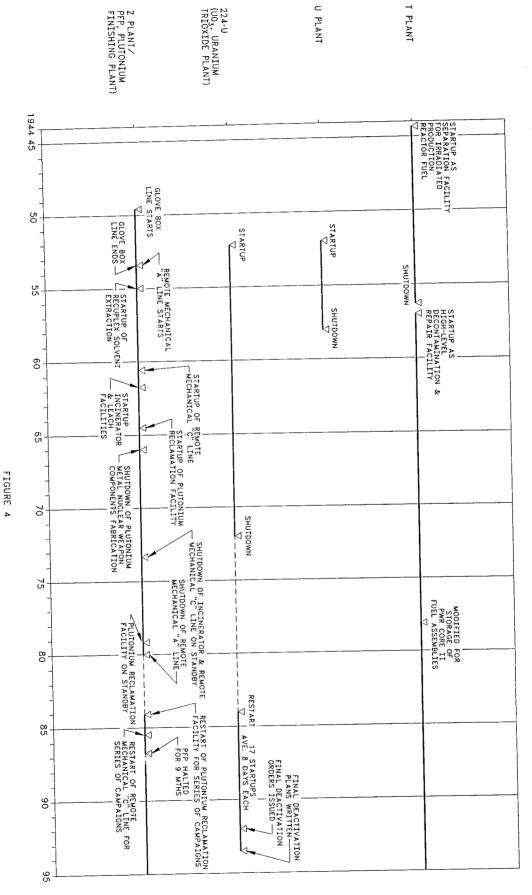
The 244-BXR Vault, located south of the BX Tank Farm, began operating in 1952 (Rodenhizer, 1987) and became inactive in 1956. The waste in the vault was difficult to handle, so the vault was jetted with high-pressure steam in 1976. The 244-BXR Vault was used to process sludge in the recovery of uranium from bismuth phosphate metal waste in the tanks (Rodenhizer, 1987).

The 244-CR Vault, constructed in 1952, is located south of the C Tank Farm (Leach and Stahl, 1993). Salt-well waste from the C Tank Farm is interimly stored in the CR Vault. The 244-CR Vault was used to process sludge in the recovery of uranium from bismuth phosphate metal waste in the tanks (Rodenhizer, 1987).

204-AR and 204-S Railroad Car Facilities


The 204-AR rail car unloading facility built in 1981 (Leach and Stahl, 1993), replaced the 204-S rail car unloading facility. The facilities were built for pumping liquid radioactive waste from tank cars and sending the waste to 200 East Area tank farms (Leach and Stahl, 1993).

1.2.4 Time Lines


Time lines presented on the following pages represent many of the events that occurred during the history of the major plants and waste management operations on the Hanford Site. These are the same events as those described in the description of each facility. The plants, associated processes, and methods for managing waste are the main sources of the wastes stored in the tanks. Abbreviations are defined in the preceding text and in the glossary in Appendix A.

One time line represents the history of each of the tank farms in the Southwest Quadrant of the 200 West Area (Figure 6). The events represented include the dates of construction, the individual tank's entry into service and removal from service, and the deactivation of each tank farm.

PLANTS / PROCESS - TIME LINE

- 12 -

PLANTS / PROCESS - TIME LINE

HNF-SD-WM-ER-352, Rev. 1

- 13 -

WASTE MANAGEMENT - TIME LINE

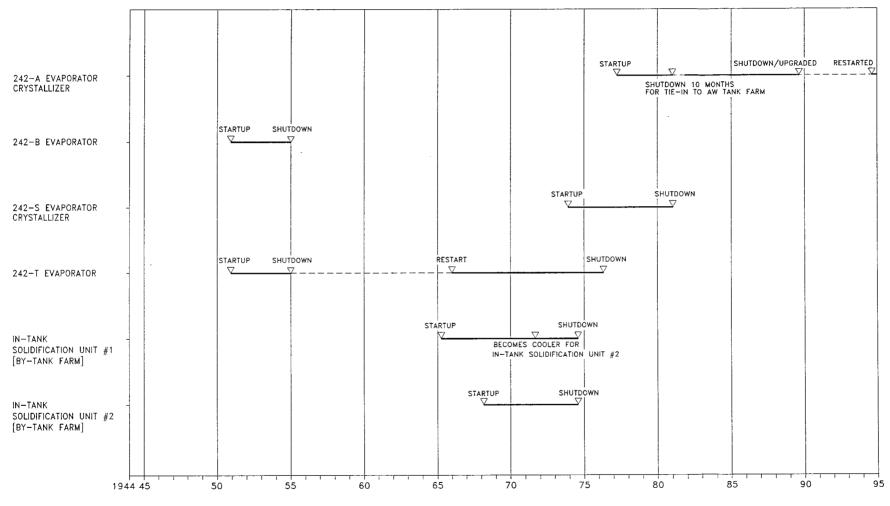
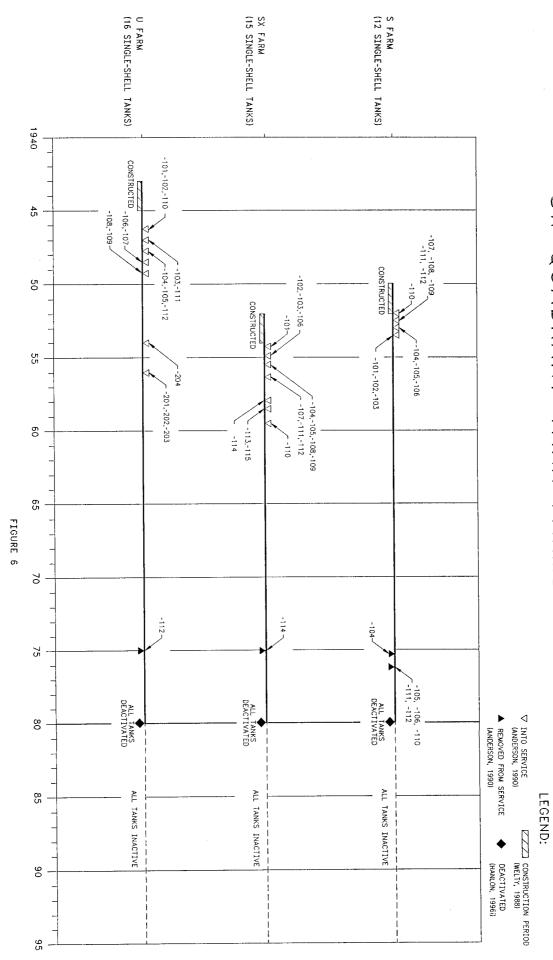



FIGURE 5

- 14 -

SW QUADRANT TANK FARMS I TMELINE

-15-

1.3 Tank and Tank Farm Summary Tables: Source and Development

The summary tables for each tank farm and each tank in the SW Quadrant comprise information from the supporting documents and the *Waste Tank Summary Report for Month Ending June 30, 1996* (Hanlon, 1996i).

The information on the Tank Farm Summary tables includes the Tank Farm Description, Integrity, Tank Volumes, and Watch Lists sections selected from the supporting documents. The Waste Volume Section information was taken from the *Waste Tank Summary Report for Month Ending June 30, 1996* (Hanlon, 1996i).

The information on the Tank Summary tables includes the Tank History, Tentatively Available Risers, Tank temperature, Tank Description, Interior Photographs and Waste Surface Level sections selected from the supporting documents. The Waste Volume section information was taken from the *Waste Tank Summary Report for Month Ending June 30, 1996* (Hanlon, 1996i).

The "-" in the tank summary tables indicates the information is unknown, not applicable, and/or not available in the supporting documents.

The risers referred to in the Tentatively Available Riser section are risers that are available for interior tank waste sampling (Lipnicki, 1996). For more information, see the supporting documents.

The temperature and waste surface level data presented in the Tank Summary tables are from a continually updated database. Therefore, there are limits on the temperature and waste surface level data presented in the tables. All other information on the Tank Summary tables is from referenced documents.

The temperature data were queried from the Surveillance Analysis Computer System (SACS) database. The temperature data were queried for the period from January 1, 1950, through October 2, 1996. The end date for the queries varies for each tank farm (see supporting documents for further information). Temperature data prior to 1975 were not located. The temperature information presented is for data from 1975 through the date of the query for the specific tank. For a graphical representation of the data, further explanation about the development of the data, and the references, see the supporting documents.

The waste surface level data also were queried from the Surveillance Analysis Computer System (SACS) database. The waste surface level data were queried for the period from January 1, 1991, through October 14, 1996. The end date for the queries varies for each tank farm (see supporting documents for further information). The waste surface level information presented is for data from January 1, 1991 through the date of the query for the specific tank. The waste surface level device indicated on the Tank Summary tables is the most recent device being used based on the queried data. The maximum and minimum waste surface levels indicated on the Tank Summary tables do not always correlate to the most recent device indicated on the Tank Summary tables. For a graphical representation of the data, further explanation about the development of the data, and the references, see the supporting documents.

For further information on the development of the data and more specific references on the Farm Summary tables and Tank Summary tables see the supporting documents.

1.4 Waste and Level History: Source and Development

The Waste and Level Histories combine the level history of the tank and the wastes added to the tank through out history. The Waste and Level Histories were incorporated from the Supporting Document for each tank. The supporting data were not included in this document. For the supporting data, further information on the development of the Waste and Level History sketches, and the references, see the supporting documents.

1.5 Riser Configuration: Source and Development

The riser configurations were incorporated directly from the supporting documents for each particular farm. The riser configurations were developed from numerous drawings and documents. For further information on the sizes of the risers, uses of the risers, references and the development of the riser configurations, see the supporting documents.

1.6 Tank Layer Model: Source and Development

The Tank Layer Model(TLM) graphs present the estimated waste types from the *Hanford Tank* Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997). The Tank Layer Model graphs were reformatted into individual tank graphs from Agnew's document to better illustrate what waste types Agnew has estimated. For further information on the TLM, see the supporting documents and Agnew's document.

1.7 Inventory Estimates: Source and Development

The Inventory Estimates present the estimated waste contents of the tanks from the Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997). The inventory estimates predict the physical characteristics and the chemical, and radiological constituents of the supernatant, the solids and the total volume for each tank. The inventory estimates for each tank include a Supernatant Mixing Model (SMM) Composite Inventory Estimate, a Tank Layer Model (TLM) Solids Composite Inventory Estimate and a Total Inventory Estimate. The SMM Composite Inventory Estimate is based on the output of the Supernatant Mixing Model and the TLM Solids Composite Inventory Estimate is based on the output of the Tank Layer Model. The Total Inventory Estimate is a combination of the SMM Composite Inventory Estimate. The Inventory Estimate is neventory Estimates are incorporated directly from the supporting document which were incorporated directly from Agnew's document.

1.8 Tank Farm Photographs and Tank Montages: Source and Development

The tank farm photographs and tank montages were incorporated directly from the supporting documents for each particular farm. The tank farm photographs and interior tank montages were

reviewed in January 1996 to determine the clearest and most recent representation. For further information on the tank farm photograph and the interior tank montages, see the supporting documents.

S TANK FARM

2.0 241-S Tank Farm

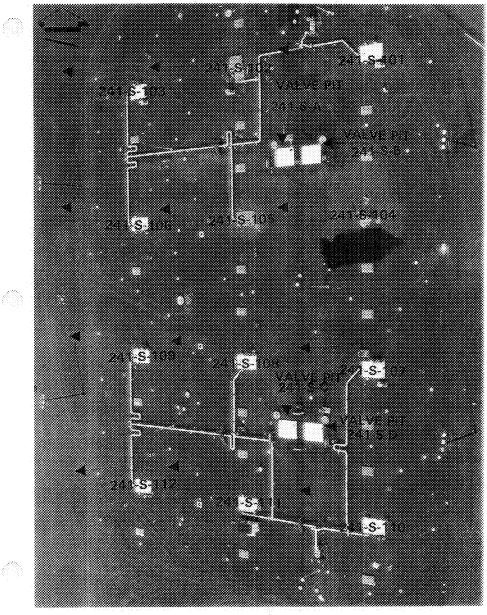
The S Tank Farm is located in the 200 West Area west of Beliot Avenue and north of 13th Street. The farm contains twelve 100 series, dish bottom design, single-shell tanks built in 1950 and 1951. The 100 series tanks are 75 feet in diameter with an operating capacity of 758,000 gallons. The tanks were designed to store non-boiling waste at a fluid temperature of 220°F. The twelve tanks were constructed at different elevations with connecting overflow lines that allowed waste to cascade from tank to tank. The tank farm has four cascades of three tanks each. For more information on the design, construction, and waste contents of the tanks, refer to the S Tank Farm Supporting Document, HNF-SD-WM-ER-323, Rev. 1 (Brevick et al., 1997a).

The S Tank Farm tanks were built to store wastes from S Plant (the Reduction and Oxidation extraction plant [REDOX]). All the tanks were used to store the evaporator bottoms waste from the evaporator operations. Tank 241-S-102 was also used as a feed tank for the 242-S Evaporator (Agnew et al., 1997). The primary additions to the tanks were REDOX high-level waste (R1), REDOX cladding waste (CWR1, CWR2), water (WTR), REDOX saltcake (RsltCk) and partial nuetralization feed (NIT). (Agnew et al., 1995).

In 1953, surface condensers were installed to concentrate the waste in the first two cascades. The vapor condensate from the surface condensers was disposed of to the cribs (Leach and Stahl, 1993). Two of those cribs where the vapor condensate was disposed were 216-S-3 and 216-S-4 (Brevick et al., 1996). Tank 241-S-103 served as the emergency dump tank to the 242-S Evaporator and as a receiver for the 242-S cell sump drainage (Leach and Stahl, 1993).

The following table presents a summary of the 241-S Tank Farm. Refer to the glossary for waste type terminology.

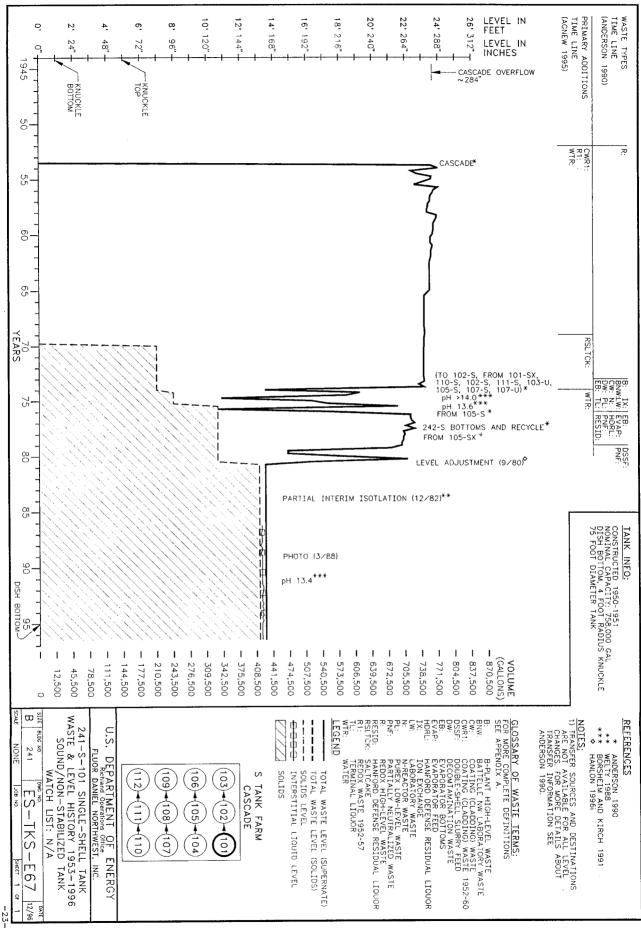
TANK FARM DESCRIPTION		WASTE VOLUME (HANLON 1996i)		
Shell Type	Single	Total Waste Volume	5,510,000 gal	
Number of Tanks	12	Waste Type	DSSF, NCPLX	
Construction Date	1950 - 1951	Drainable Interstitial Liquids 1,327,000 gal		
INT	EGRITY	Pumpable Liquids	1,323,000 gal	
Sound	101, 102, 103,105	Saltcake	4,286,000 gal	
	106, 107, 108, 109	Sludge	1,166,000 gal	
	110, 111, 112	Supernatant	58,000 gal	
Assumed Leaker	104	WATCH LISTS		
TANK	VOLUMES	Hydrogen	102,111,112	
		Organic	102,111	
12 @ 7	58,000 gal	High Heat	none	
		Ferrocyanide	none	


241-S TANK FARM SUMMARY

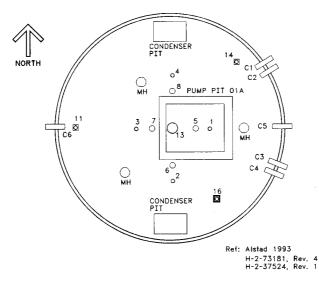
The historical characterization and waste inventory information for each tank is assembled into a set of tables, sketches, graphs, and interior tank montage. The set consists of the following for each tank in S Tank Farm:

- Tank Summary table
- Waste and Level History sketch
- Riser Configuration sketch
- Tank Layer Model Estimate graph
- Total Inventory Estimate tables
- TLM Solids Composite Inventory Estimate tables
- SMM Composite Inventory Estimate tables
- Interior tank montage

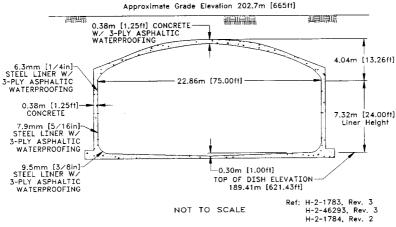
The supporting document for S Tank Farm provides backup data and further explanation of the above tables, sketches, and graphs.

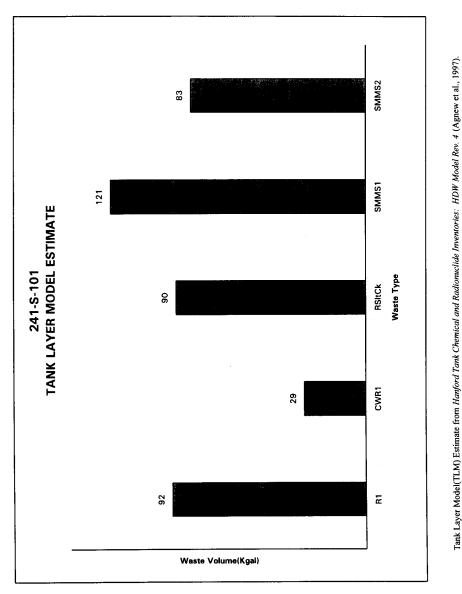


-21-


TANK 241-S-101 SUMMARY

TANK HIS	TORY	TANK DE	TANK DESCRIPTION		
Entered Service	3rd qtr 1953	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	-	Nominal Capacity	758,000 gal		
Watch Lists	none	Cascade Tank	to 241-S-102		
Integrity	Sound	Total Risers	12		
Assumed Leaker	-	WASTE VOLUM	E (HANLON 1996i)		
Interim Stabilization (IS)	•	Total Waste Volume	427,000 gal		
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX		
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	84,000 gal		
TENTATIVELY AVA	ILABLE RISERS	Pumpable Liquids	127,000 gal		
Riser Number(s)	Size	Saltcake	171,000 gal		
4,11,16	4 in	Sludge	244,000 gal		
6	12 in	Supernatant	12,000 gal		
TANK TEMPE	ERATURE	INTERIOR PI	INTERIOR PHOTOGRAPHS		
Average Tank Temperature	110°F	Date	March 18, 1988		
Maximum Temperature	136.8°F	Montage Number	94041033-40CN		
Date	Feb 6, 1989	Photo Set Number	8801412		
Elevation from tank bottom	0.48 ft	WASTE SURFACE LEVEL			
Riser Number	14	Devices	Manual ENRAF		
Minimum Temperature	82.8°F	Max Level	162.4 in		
Date	July 25, 1994	Date	Aug 31, 1992 - Sept 23, 1992*		
Elevation from tank bottom	24.44 ft	Min Level	160.82 in		
Riser Number	14	Date	March 27 and 28, 1992		


* Numerous dates in this time span.



241-S-101

TANK RISER LOCATION

-25-

		Sing	le-Shell Tan	k 241-S-101						
				Inventory Esti	mate*					
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total TLM Waste	1.39E+06 (kg)	(211 kgal)	_				***			
Heat Load	3.39 (kW)	(1.16E+04 BTU/hr)	_	2.77	3.13	3.56	3.64			
Bulk Density	1.74 (g/cc)			1.62	1.64	1.89	1.9			
Void Fraction	0.658			0.450	0.519	0.746	0.748			
Water wt%	29.9			17.4	21.4	36.4	38.2			
TOC wt% C (wet	2.21E-03			1.97E-03	2.03E-03	2 38E-03	2.57E-03			
Chemical Constituents	mole/L	ppm	ke	-95 CI (mole/L)	-67 CI (mole/L)	+67 CI (mole/L)	+95 Cl (mole/L)			
Na+	10.4	1.37E+05	1.90E+05	815	837	13.2	14.8			
Al3+	6.03	9.36E+04	1.30E+05	5.20	544	6.67	7.32			
Fe3+ (total Fe)	0.472	1.51E+04	2.10E+04	0 464	0.468	0.476	0.480			
Cr3+	0.378	1.13E+04	1.57E+04	0.232	0.302	0.478	0.480			
Bi3+	2.93E-06	0.352	0.489	2.48E-06	2.70E-06	3.23E-06	3.55E-06			
La3+	7.228-12	5.76E-07	8.01E-07	6.33E-12	6.83E-12	7.98E-12	8.77E-12			
Hg2+	5.61E-04	64.7	89.9	5.53E-04	5.58E-04	5.64E-04	5.65E-04			
Zr (as ZrO(OH)2)	2.93E-07	1.53E-02	2.13E-02	2.69E-07	2.80E-07	3.07E-07	3.31E-07			
Pb2+	1.62E-02	1.93E+03	2.69E+03	1.49E-02	1.57E-02	1.68E-02	1.74E-01			
Ni2+	2.87E-02	968	1 34E+03	1.45E-02	2.60E-02	3.07E-02	3.03E-02			
Sr2+		0	0	1.255-02	2.005-02	0.072-02	3.055-02			
Mn4+	2.13E-05	0.674	0.936	L.52E-05	L82E-05	2.45E-05	2.76E-0			
Ca2+	0.145	3.35E+03	4.65E+03	0.113	0.129	0.162	0.178			
K+	1.88E-02	422	586	L.44E-02	1.62E-02	2.05E-02	2.13E-02			
OH-	24.9	2.43E+05	3.38E+05	21.0	22.3	27.6	30.3			
NO3-	4.62	1.65E+05	2.29E+05	21.0	235	8.19	10.1			
NO2-	1.57	4.14E+04	5.75E+04	0.987	1.19	1.87	1.87			
CO32-	0.147	5.08E+03	7.06E+03	0,115	0.131	0.164	0.180			
PO43-	1.90E-04	10.4	14.4	1.76E-04	1.84E-04	1.97E-04	2.15E-04			
\$042-	2.29E-02	1.27E+03	1.76E+03	1.89E-02	2.05E-02	2.45E-02	2.61E-0			
Si (as SiO32-)	6.17E-02	997	1.38E+03	4.14E-02	5.40E-02	7.02E-02	8.31E-02			
F-	1.51E-04	1.65	2.29	1.29E-04	1.42E-04	1.66E-04	1.79E-04			
CI-	8.04E-02	1.64E+03	2.28E+03	5.41E-02	6.70E-02	8.84E-02	0.120			
C6H5O73-	1.56E-04	17.0	23.6	1.51E-04	1.54E-04	1.63E-04	1.77E-0			
EDTA4	6.08E-06	1.01	1.40	4.28E-06	5.26E-06	7.16E-06	8.24E-0			
HEDTA3-	5.05E-06	0.796	1.11	1.62E-06	3.47E-06	6.74E-06	8.39E-0			
glycolate-	2.20E-04	9.51	13.2	1.20E-04	1.74E-04	2.74E-04	3.26E-0-			
acetate-	2.29E-05	0.776	1.08	2.22E-05	2.25E-05	2.43E-05	2.60E-0			
oxalate2-	9.46E-12	4.78E-07	6.65E-07	8.38E-12	8.90E-12	1.04E-11	1.14E-1			
DBP	1.39E-04	16.7	23.3	1.29E-04	1.35E-04	1.50E-04	1.62E-0-			
butanol	1.39E-04	5.90	8.20	1.29E-04	1.35E-04	1.50E-04	1.62E-0			
NH3	0.127	1.24E+03	1.72E+03	4.40E-02	5.57E-02	0.133	0.13			
Fe(CN)64-		0	0	0	0	0				

Physical Properties Total SMM Wast Heat Load		SMMC	omposite In	marker - Evel								
Properties Total SMM Wast Heat Load				ventory Estimation	ate							
Total SMM Wast Heat Load			A 1998 13	State da	en traño		tin uniter					
Heat Load				-95 CI	~67 CI	+67 CI	+95 CI					
	1.26E+06 (kg)	(216 kgal)			_	-						
	1.51 (kW)	(5.17E+03 BTU/hr)		1.42	1.47	1.56	1.60					
Bulk Density*	1.54 (g/cc)	- 1		1.49	1.51	1.55	1.57					
Water wt%	38.2			35.5	36.7	39.7	41.6					
TOC wt% C (wet	0.692			0.466	0.577	0.808	0.921					
Chemical				-95 Cl	-67 CI	+67 CI	+95 CI					
Constituents	mole/L	ppen	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)					
Na+	12.5	1.88E+05	2.36E+05	11.4	12.0	13.0	13.5					
Al3+	1.49	2.62E+04	3.29E+04	1.38	1.44	1.56	1.60					
Fe3+ (total Fe)	9.64E-03	351	440	7.79E-03	8 70E-03	1.06E-02	1.15E-02					
Cr3+	0.133	4.52E+03	5.67E+03	0.111	0.123	0.137	0.141					
Bi3+	1.09E-03	148	186	9.94E-04	1.04E-03	1.14E-03	1.18E-03					
La3+	3.30E-05	2.99	3.75	2.39E-05	2.83E-05	3.77E-05	4.22E-05					
Hg2+	7.80E-06	1.02	1.28	7.30E-06	7.58E-06	7.92E-06	8.03E-06					
Zr (as ZrO(OH)2)	2.00E-04	11.9	14.9	1.83E-04	1.89E-04	2.07E-04	2.17E-04					
Pb2+	8.81E-04	119	149	7.15E-04	7.97E-04	9.66E-04	1.05E-03					
Ni2+	5.65E-03	216	271	5.40E-03	5.52E-03	5.72E-03	5.79E-03					
Sr2+	0	0	0	3.402-03	3.522-03	3.728-03	3.798-03					
Mn4+	3.44E-03	123	154	2.55E-03	2.98E-03	3.89E-03	4.32E-03					
Ca2+	2.96E-02	772	970	2.69E-02	2.96E-03	3.09E-02	4.32E-03 3.22E-02					
K+	5.75E-02	1.47E+03	L84E+03	5.21E-02	5.47E-02	6.05E-02	6.33E-02					
OH-	9.00	9.97E+04	1.25E+05	8.32	8.64	9.37	9.57					
NO3-	4.33	1.75E+05	2.20E+05	4.03	4.21	9.3/ 4.40	4.45					
NO2-	2.20	6.59E+04	8.27E+04	4.03	4.21	2.40	2.58					
CO32-	0.379	1.48E+04	1.86E+04	0.343	0.361	0.403	0.410					
PO43-	7 74E-02	4.79E+03	6.01E+03	6.73E-02	7.08E-02	7.92E-02	8.09E-02					
SC42-	0.213	1.34E+04	1.68E+04	0.735-02	0.188	0.240	0.263					
Si (ns SiO32-)	6.88E-02	1.26E+03	1.58E+03	5.6)E-02	6.23E-02	7.53E-02	8.15E-02					
F-	5.34E-02	661	830	4.52E-02	4.86E-02	5.75E-02	6.07E-02					
сі.	0.215	4.97E+03	6.24E+03	0.194	0.204	0.225	0.072-02					
C6H5O73-	2.57E-02	3.17E+03	3.98E+03	2.37E-02	2.47E-02	2.68E-02	2.78E-02					
EDTA4-	1.26E-02	2.37E+03	2.97E+03	4.01E-02	8.22E-03	1.71E-02	2.14E-02					
HEDTA3-	2.33E-02	4.15E+03	5.22E+03	6.06E-03	1.45E-02	3.21E-02	4.08E-02					
	7 (87 80											
glycolate-	7.68E-02	3.75E+03	4.71E+03	4.99E-02	6.30E-02	9.06E-02	0.104					
scetate-	6.32E-03	243	305	5.16E-03	5.73E-03	6.91E-03	7.47E-03					
oxalate2-	4.32E-05	2.48	3.11	3.83E-05	4.07E-05	4.58E-05	4.82E-05					
DBP	1.72E-02	2.35E+03	2.95E+03	1.40E-02	1.56E-02	1.87E-02	2.02E-02					
butanol	1.72E-02	829	1.04E+03	1.40E-02	1.56E-02	1.87E-02	2.02E-02					
NH3 F#(CN)64-	7.38E-02	B17	1.03E+03	5.94E-02	6.51E-02	8.48E-02	9.77E-02					

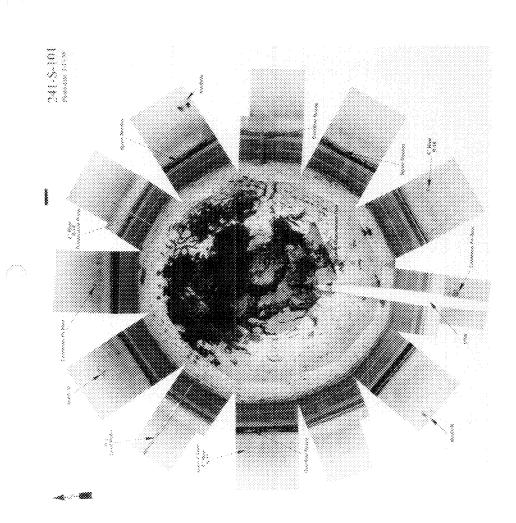
*Density is calculated based on Ns, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HNF-SD-WM-ER-352, Rev. 1

		Sin	gle-Shell Tan	k 241-S-101							
			otal Inventory								
Physical	an a china ann an			1	121111						
Properties				-95 CI	-67 CT	+67 CI	+95 CI				
Total Waste	2.64E+06 (kg)	(427 kgal)		_							
Heat Load	4.90 (kW)	(1.67E+04 BTU/hr)	_	4.24	4.62	5,10	5.14				
Bulk Density†	1.64 (g/cc)		_	1.57	1.58	1.72	1.74				
				1.5		1.74	1.74				
Water wt%†	33.8	_		27.0	28.8	37.6	38.4				
TOC wt% C (wet	0.330			0.222	0.275	0.385	0.436				
1.000	ann a cealaite	/	N P parect			0.505	0.435				
Chemical				-95 CI	-67 CI	+67 CI	+95 CI				
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)				
Na+	11.5	1.61E+05	4.26E+05	10,1	10.3	13.0	13.5				
A13+	3.74	6.16E+04	1.63E+05	3.31	3.45	4.05	4.37				
Fe3+ (total Fe)	0.238	8.12E+03	2.15E+04	0.234	0.236	0.240	0.242				
Cr3+	0.254	B.08E+03	2.14E+04	0.182	0.230	0.348	0.458				
Bi3+	5.53E-04	70.6	187	5.05E-04	5.28E-04	5.77E-04	6.01E-04				
La3+	1.67E-05	1.42	3,75	1.21E-05	1.43E-05	1.91E-05	2.13E-05				
Hg2+	2.81E-04	34.5	91.2	2.77E-04	2.80E-04	2.82E-04	2.83E-04				
Zr (as ZrO(OH)2)	1.01E-04	5.65	14.9	9.26E-05	9.57E-05	1.05E-04	1.10E-04				
Pb2+	8.47E-03	1.07E+03	2.84E+03	7.82E-03	8.20E-03	8.74E-03	9.00E-03				
Ni2+	1.70E-02	611	1.62E+03	1.40E-02	1.57E-02	1.80E-02	1.78E-02				
Sr2+	0	0	0	0	1.572-02	1.800-02	1.782-02				
Vin4+	1.75E-03	58.7	155	1.30E-03	1.52E-03	1.98E-03	2.20E-03				
Ca2+	8.67E-02	2.12E+03	5.62E+03	7.15E-02	7.90E-02	9.45E-02	0.102				
K+	3.84E-02	917	2.43E+03	3.56E-02	3.69E-02	3.99E-02	4.13E-02				
он-	16.8	1.75E+05	4.63E+05	14.8	15.5	18.2	4.132-04				
VO3-	4.48	1.70E+05	4.49E+05	3.30	3.34	6.22	7.11				
NO2-	1.89	5.30E+04	1.40E+05	1.56	1.71	2.05	2.08				
2032-	0.265	9.71E+03	2.57E+04	0.246	0.255	0.277	0.280				
-043-	3.92E-02	2.28E+03	6.02E+03	3.41E-02	3.59E-02	4.01E-02	4.10E-02				
O42-	0.119	7.00E+03	1.85E+04	9.45E-02	0.106	0.133	0.144				
ši (as SiO32-)	6.53E-02	1.12E+03	2.97E+03	5.66E-02	6.15E-02	6.93E-02	7.52E-02				
	2.71E-02	315	832	2.29E-02	2.47E-02	2.92E-02	3.08E-02				
3.	0.149	3.22E+03	8.51E+03	0.129	0.139	0.154	0.170				
C6H5O73-	1.31E-02	1.51E+03	4.00E+03	1.21E-02	1.26E-02	1.36E-02	1.41E-02				
DTA4-	6.39E-03	1.12E+03	2.97E+03	2.03E-03	4.16E-02	8.63E-03	1.41E-02				
IEDTA3-	1.18E-02	1.97E+03	5.22E+03	3.07E-03	7.32E-03	1.63E-03	2.06E-02				
				3.078-03	/_32E=03	1.03E-02	2.06E-02				
lycolate-	3.90E-02	1.79E+03	4.72E+03	2.53E-02	3.20E-02	4.60E-02	5.26E-02				
cetate-	3.21E-03	116	306	2.62E-02	2.91E-02	4.60E-02 3.51E-03	3.79E-02				
malate2-	2.19E-05	1.18	3.11	1.94E-05	2.91E-03	2.31E-03	3.79E-03 2.44E-05				
DBP	8.75E-03	1.12E+03	2.97E+03	7.17E-03	2.06E-03	2.31E-05 9.54E-03	2.44E-03 1.03E-02				
autanol	8.75E-03	397	1.05E+03	7.17E-03	7.95E-03						
				7.1/12-03	7.93E-03	9.54E-03	1.03E-02				
4H3	1.00E-01	1.04E+03	2.75E+03	5.75E-02	6.41E-02						
e(CN)64-	0	1.045403	2.756743	3.75E-02	6.41E-02 0	0.106	0.112				

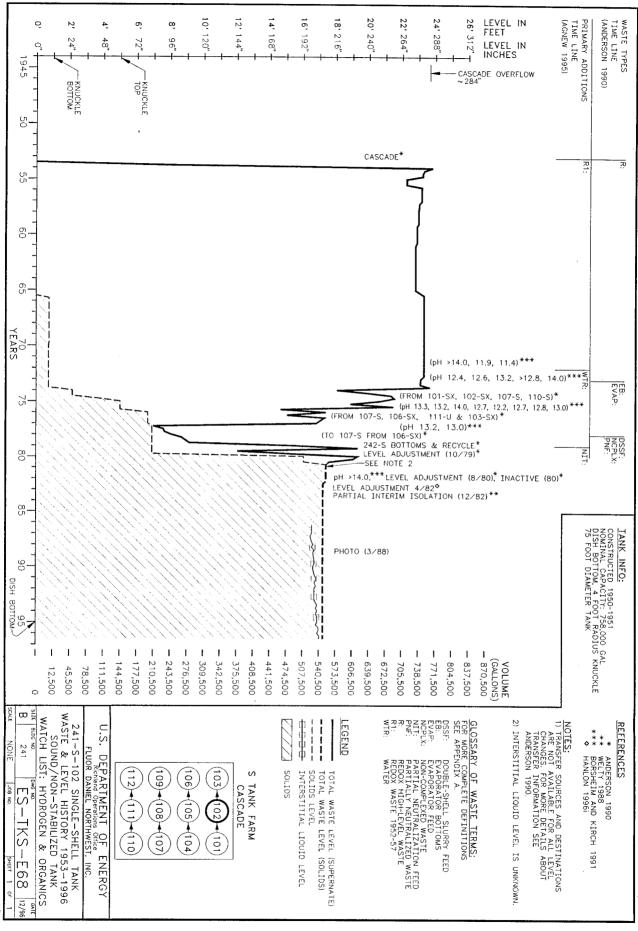
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.


			de-Shell Tan						
	TLM Solids Composite Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Total TLM Waste	1.39E+06 (kg)	(211 kgal)	_		—				
Heat Load	3.39 (kW)	(1.16E+04 BTU/hr)		2.77	3.13	3.56	3.6		
Bulk Density	1.74 (g/cc)			1.62	1.64	1.89	1.9		
Void Fraction	0.658			0.450	0.519	0.746	0.74		
Water wt%	29.9			17.4	21.4	36.4	38.		
TOC wt% C (wet	2.21E-03			1.97E-03	2.03E-03	2.38E-03	2.57E-0		
Radiological Constituents	CIL	₽CVg	Ci	-95 CI (Ci/L)	-67 CI (CI/L)	+67 CI (CVL)	+95 CI (CVL)		
H-3	1.08E-04	6.21E-02	86.2	1.29E-05	1.29E-05	1.13E-04	1.21E-0		
C-14	5.88E-06	3.38E-03	4.70	1.00E-06	1.00E-06	6.23E-06	6.53E-0		
Ni-59	9.39E-06	5.40E-03	7.50	6.48E-06	6.48E-06	9.99E-06	9.88E-0		
Ni-63	8.88E-04	0.510	709	6.05E-04	6.05E-04	9.44E-04	9.33E-0-		
Co-60	4.79E-06	2.75E-03	3.82	3.96E-07	3.96E-07	4.98E-06	5.382-0		
Se-79	3.18E-06	1.83E-03	2.54	2.13E-07	2.13E-07	3.25E-06	6.09E-00		
Sr-90	0.517	297	4.13E+05	0.401	0.467	0.556	0.56		
Y-90	0.517	297	4.13E+05	0.401	0.405	0.556	0.56		
Zr-93	1.50E-05	8.64E-03	12.0	1.00E-06	1.00E-06	1.54E-05	2.73E-0		
Nb-93m	1.22E-05	7.02E-03	9.75	8.21E-07	8.21E-07	1.25E-05	2.54E-0		
Tc-99	4.49E-05	2.58E-02	35.9	3.88E-05	4.13E-05	4.78E-05	5.11E-0		
Ru-106	1.02E-09	5.84E-07	8.11E-04	1.13E-12	1.13E-12	1.06E-09	1.15E-0		
Cd-113m	2.29E-05	1.31E-02	1B.3	3.10E-06	3.10E-06	4.70E-05	4.55E-0		
Sb-125	1.63E-05	9.35E-03	13.0	5.83E-07	5.83E-07	1.70E-05	1.84E-0.		
Sn-126	4.88E-06	2.80E-03	3.89	3.27E-07	3.27E-07	4.99E-06	9.55E-0		
1-129	8.54E-08	4.91E-05	6.82E-02	7.37E-08	7.84E-08	9.09E-08	9.71E-0		
Cs-134	9.93E-07	5.71E-04	0.793	1.21E-08	1.21E-08	1.03E-06	1.11E-0		
Cs-137	0.163	93.6	1.30E+05	0.145	0.152	0.173	0.184		
Ba-137m	0.154	88.6	1.23E+05	2.34E-02	2.34E-02	0.161	0.169		
Sm-151	1.13E-02	6.51	9.05E+03	7.59E-04	7.59E-04	1.16E-02	2.21E-02		
Eu-152	6.86E-06	3.94E-03	5.48	3.06E-06	3.08E-06	6.89E-06	6.93E-0		
Eu-154	1.15E-04	6.58E-02	91.5	9.57E-06	9.57E-06	1.19E-04	1.48E-0		
Eu-155	3.37E-04	0.194	269	1.45E-04	1.45E-04	3.38E-04	3.41E-0		
Ra-226	6.72E-10	3.86E-07	5.36E-04	2.65E-10	4.64E-10	8.79E-10	1.08E-05		
Ra-228	6.72E-09	3.86E-06	5.37E-03	4.08E-15	4.08E-15	6.78E-09	6.86E-0		
Ac-227	3.25E-09	1.87E-06	2.60E-03	1.31E-09	2.04E-09	4.46E-09	5.61E-05		
Pa-231	4.73E-09	2.72E-06	3.78E-03	3.18E-10	3.18E-10	5.31E-09	1.17E-0		
Th-229	1.62E-10	9.30E-08	1.29E-04	7.76E-13	7.76E-13	1.63E-10	1.65E-10		
Th-232	9.01E-11	5.18E-08	7.19E-05	2.63E-16	2.63E-16	1.14E-10	1.37E-10		
U-232	3.01E-08	1.73E-05	2.40E-02	1.07E-08	1.97E-08	4.29E-08	5.71E-0		
U-233	1.15E-07	6.60E-05	9.18E-02	4.06E-08	7.50E-08	1.64E-07	2.1BE-07		
U-234	2.63E-06	1.51E-03	2.10	2.32E-06	2.47E-06	2.80E-06	2.97E-0		
U-235	1.11E-07	6.36E-05	8.83E-02	9.82E-08	1.04E-07	1.17E-07	1.24E-07		
U-236	6.81E-08	3.91E-05	5.44E-02	5.59E-08	6.19E-08	7.45E-08	8.09E-08		
U-238	2.51E-06	1.44E-03	2.00	2.24E-06	2.37E-06	2.66E-06	2.81E-0		
Np-237	2.11E-07	1.21E-04	0.169	1.71E-07	1.87E-07	2.27E-07	2.40E-0		
Pu-238	7.34E-06	4.22E-03	5.86	6.53E-06	6.92E-06	7.75E-06	8.15E-0		
Pu-239	4.59E-04	0.264	367	4.01E-04	4.30E-04	4.89E-04	5.17E-0		
Pu-240	6.60E-05	3.79E-02	32.7	5.77E-05	6.18E-05	7.03E-05	7.43E-0		
Pu-241	4.15E-04	0.239	332 1.50E-03	3.66E-04	3.90E-04	4.40E-04	4.64E-0		
Pu-242	1.88E-09	1.08E-06	1.50E-03 42.6	1.65E-09	1.76E-09	1.99E-09	2 10E-0		
Am-241	5.34E-05	3.07E-02	42.0 1.30E-03	3.18E-05	4.66E-05	6.06E-05	1 12E-0		
Am-243	1.62E-09	9.33E-07	5.70E-03	7.64E-10	1.41E-09	1.78E-09	2.17E-0		
Cm-242	7.14E-08	4.10E-05	1.30E-02	6.99E-08	7.05E-08	7.20E-08	7.20E-0		
Cm-243	1.63E-09	9.39E-07	1.02E-03	1.60E-09	1.61E-09	1.65E-09	1.65E-0		
Cm-244	1.28E-09	7.34E-07	1.045-03	2.33E-10	6.51E-10	1.70E-09	1.70E-0		
				-95 CI (M					
.									
Totsis Pu	M	<u>p\$/8</u>	6.13		or g/L) 7.18E-03	or g/L)	(M or g/l		
U	7.68E-03 (g/L) 3.15E-02	431E+03	6.13 5.98E+03	6.71E-03		B.17E-03	8.65E-0 3.52E-0		
		9.316703	3.205-103	2.81E-02	2.97E-02	3.33E-02	3.32E-0		

			le-Shell Tank									
		SMM C	omposite Inv	entory Estimat	e		erer diritetet					
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI					
fotal SMM Wast	1.26E+06 (kg)	(216 kgal)		-	-	1	— .					
Heat Load	1.51 (kW)	(5.17E+03 BTU/hr)		1.42	1.47	1.56	1.6					
Bulk Density*	1.54 (g/cc)			1.49	1.51	1.55	1.5					
Water wt%†	38.2			35.5	36.7	39.7	4).					
TOC wt% C (wet	0.692			0.466	0.577	0.808	0.92					
Radiological Constituents	CVL	pCVg	Ci	-95 CI (CI/L)	-67 CI (CVL)	+67 CI (Ci/L)	+95 Cl (CVL)					
H-3	2.29E-04	0.149	187	1.15E-04	1.15E-04	2.35E-04	2.44E-0-					
C-14	3.31E-05	2.16E-02	27.1	9.45E-06	9.45E-06	3.36E-05	3.40E-0					
Ni-59	2.10E-06	1.37E-03	1.72	9.85E-07	9.85E-07	2.16E-06	2.21E-0					
Ni-63	2.06E-04	0.134	168	9.55E-05	9.55E-05	2.11E-04	2.17E-0					
Co-60	3.67E-05	2.39E-02	30.0	9.56E-06	9.56E-06	3.73E-05	3.79E-0					
Se-79	3.23E-06	2.11E-03	2.64	1.72E-06	1.72E-06	3.78E-06	4.31E-00					
Sr-90	0.107	70.0	8.79E+04	0.100	0.104	0.111	0.11					
Y-90	0.108	70.0	8.79E+04	5.52E-02	5.52E-02	0.111	0.11					
Zr-93	1.59E-05	1.03E-02	13.0 9.42	8.31E-06	8.31E-06	1.86E-05	2.12E-0					
Nb-93m	1.15E-05	7.50E-03	9.42	6.22E-06	6.22E-06	1.34E-05	1.53E-0					
Tc-99	2.36E-04	0.154	5.27E-03	1.48E-04	1.91E-04	2.81E-04	3.25E-0					
Ru-106	6.45E-09	4.20E-06 5.44E-02	5.27E-03 68.3	2.94E-09	2.94E-09	7.23E-09 1.00E-04	7.95E-0 1.16E-0					
Cd-113m	8.36E-05		129	3.82E-05	3.82E-05							
Sb-125	1.58E-04	0.103 3.18E-03	4.00	4.02E-05	4.02E-05	1.60E-04	1.63E-0					
Sn-126	4.89E-06	3.18E-03 2.96E-04	0.372	2.62E-06 2.84E-07	2.62E-06 3.68E-07	5.71E-06 5.43E-07	6.49E-0					
I-129 Cs-134	4.55E-07 2.31E-06	1.51E-03	1.89	1.66E-06	3.68E-07	2.65E-06	0.28E-0					
Cs-134 Cs-137	0.240	1.512-03	1.97E+05	0.218	0.229	0.252	2.982-0					
Ba-137m	0.227	148	1.86E+05	0.218	0.174	0.238	0.24					
Sm-1571	1.14E-02	7.41	9.31E+03	6.09E-03	6.09E-03	1.33E-02	1.51E-0					
Eu-152	3.70E-06	2.4IE-03	3.03	1.83E-06	1.83E-06	3.94E-06	4.17E-0					
Eu-152	5.91E-04	0.385	483	2.13E-04	2.13E-04	7.28E-04	7.82E-0					
Eu-155	2.18E-04	0,142	179	1.07E-04	1.07E-04	2.33E-04	2.47E-0					
Ra-226	1.36E-10	8.88E-08	1.12E-04	8.95E-11	8.95E-11	1.53E-10	1.70E-1					
Rs-228	1.26E-07	8.20E-05	0.103	5.28E-08	8.85E-08	1.69E-07	2.15E-0					
Ac-227	8.62E-10	5.62E-07	7.05E-04	5.90E-10	5.90E-10	9.61E-10	1.06E-0					
Pa-231	3.98E-09	2.59E-06	3.26E-03	2.47E-09	2.47E-09	4.53E-09	5.06E-0					
Th-229	Z.96E-09	1.93E-06	2.42E-03	1.36E-09	2.14E-09	3.91E-09	4.93E-0					
Th-232	8.44E-09	5.50E-06	6.90E-03	4.40E-09	6.38E-09	1.05E-08	1.25E-0					
U-232	6.55E-07	4.26E-04	0.535	3.62E-07	5.05E-07	8.28E-07	1.01E-0					
U-233	2.51E-06	1.63E-03	2.05	1.39E-06	1.94E-06	3.18E-06	3.88E-0					
U-234	7.62E-07	4.96E-04	0.623	7.34E-07	7.47E-07	7.78E-07	7.88E-0					
U-235	3.09E-08	2.02E-05	2.53E-02	2.97E-08	3.03E-08	3.16E-08	3.20E-0					
U-236	2.38E-08	1.55E-05	1.94E-02	2.29E-08	2.34E-08	2.42E-08	2.46E-0					
U-238	8.82E-07	5.75E-04	0.721	8.53E-07	8.67E-07	8.99E-07	9.06E-0					
Np-237	8.61E-07	5.61E-04	0.704	5.73E-07	7.13E-07	1.01E-06	1.15E-0					
Pu-238	1.32E-06	8.59E-04	1.06	9.80E-07	1.15E-06	1.49E-06	1.66E-0					
Pu-239	4.49E-05	2.93E-02	36.7 6.24	3.62E-05	4.05E-05	4.94E-05	5.36E-0					
Pu-240	7.64E-06	4.97E-03	6.24	6.02E-06	6.81E-06	8.46E-06	9.25E-0					
Pu-241	8.93E-05	5.82E-02	73.0 4.01E-04	6.62E-05	7.75E-05	1.01E-04	1.12E-0					
Pu-242	4.91E-10	3.20E-07	4.01E-04 44.5	3.53E-10 3.83E-05	4.20E-10 4.62E-05	5.61E-10 6.26E-05	6.29E-1 7.05E-0					
Am-241	5.44E-05	3.54E-02	1.55E-03	3.83E-05 1.39E-09	4.62E-05 1.63E-09	6.26E-05 2.16E-09	7.05E-0 2.42E-0					
Am-243	1.90E-09	1.23E-06 9.14E-05	0.115	1.392-09 6.34E-08	6.34E-08	2.16E-09 1.49E-07	2.42E-0 1.58E-0					
Cm-242	1.40E-07	9.14E-05 8.48E-06	1.06E-02	5.69E-09	5.69E-09	1.49E-07 1.38E-08	1.38E-0					
Cm-243 Cm-244	1.30E-08	8.48E-06 8.45E-05	0.106	5.69E-09 5.41E-08	5.69E-09	1.55E-08 1.55E-07	1.40E-0					
Cni+294	1.308-07	6.432-03										
				-95 CI (M								
Totals Pu	M 5.60E-04 (g/L)	<u>µ2/2</u>	kg 0.458	or g/L) 3.95E-04	or g/L) 4.76E-04	or g/L) 6.43E-04	(M or g/l 7.23E-0					

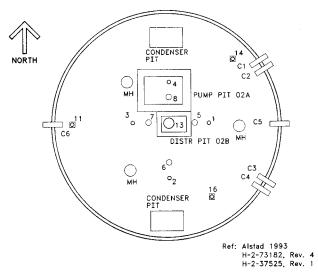
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.


				uk 241-S-101						
	Total Inventory Estimate*									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total Waste	2.64E+06 (kg)	(427 kgal)		_	ł	—	**			
Heat Load	4.90 (kW)	(1.67E+04 BTU/hr)		4.24	4.62	5.10	5.1			
Bulk Density†	1.64 (g/cc)			1.57	1.58	1.72	1.7			
Water wt%†	33.8			27.0	28.8	37.6	38.			
TOC wt% C (wet	0.330			0.222	0.275	0.385	0.43			
Radiological Constituents	CVL	µCVg	Ci	-95 CI (CI/L)	-67 CI (CVL)	+67 CI (Ci/L)	+95 CI (Cl/L)			
H-3	1.69E-04	0.103	273	9.97E-05	9.97E-05	1.72E-04	1.77E-0			
C-14	1.97E-05	1.20E-02	31.8	7.69E-06	7.69E-06	1.99E-05	2.01E-0			
Ni-59	5.70E-06	3.48E-03	9.22	4.20E-06	4.20E-06	6.00E-06	5.93E-0			
Ni-63	5.43E-04	0.332	877	3.97E-04	3.97E-04	5.70E-04	5.64E-0			
Co-60	2.09E-05	1.28E-02	33.8	7.20E-06	7.20E-06	2.12E-05	2.15E-0			
Se-79	3.21E-06	1.96E-03	5.18	L.58E-06	1.58E-06	3.48E-06	4.57E-0			
Sr-90	0.310	189	5.01E+05	0.253	0.285	0.329	0.33			
Y-90	0,310	189	5.01E+05	0.252	0.252	0.329	0.33			
Zr-93	1.55E-05	9.45E-03	25.0	7.74E-06	7.74E-06	1.68E-05	2.12E-0			
Nb-93m	1.19E-05	7.25E-03	19.2	5.68E-06	5.68E-06	1.08E-05	1.80E-0			
Tc-99	L.42E-04	8.65E-02	229	9.69E-05	1.19E-04	1.65E-04	1.87E-0			
Ru-106	3.76E-09	2.30E-06	6.08E-03	1.99E-09	1.99E-09	4.16E-09	4.52E-05			
Cd-113m	5.36E-05	3.27E-02	86.6	3.06E-05	3.06E-05	4.10E-09 6.39E-05				
Sb-125	8.78E-05	5.37E-02	142	3.06E-05 2.84E-05	3.06E-05 2.84E-05	8.92E-05	6.99E-0			
Sn-125	4.88E-06	2.98E-03	7.89	2.84E-05 2.40E-06	2.84E-05 2.40E-06		9.06E-0			
I-120	2.72E-07	1.66E-04	0.440		2.40E-06 2.28E-07	5.30E-06	7.07E-00			
Cs-134			2.69	1.86E-07		3.17E-07	3.60E-01			
	1.66E-06	1.02E-03	3.27E+05	9.74E-07	9.74E-07	1.83E-06	2.00E-00			
Cs-137	0.202	124	3.2/E+03 3.09E+05	0.191	0.196	0.210	0.219			
Ba-137m	0.191	117	3.09E+05	9.96E-02	9.96E-02	0.197	0.202			
Sm-151	1.14E-02	6.94		5.58E-03	5.58E-03	1.23E-02	1.64E-02			
Bu-152	5.26E-06	3.22E-03	8.50 575	3.30E-06	3.30E-06	5.38E-06	5.50E-06			
Bu-154	3.56E-04	0.217	3/3	1.64E-04	1.64E-04	4.25E-04	4.52E-04			
Eu-155	2.77E-04	0.169		1.78E-04	1.78E-04	2.85E-04	2.92E-04			
Ra-226	4.01E-10	2.45E-07	6.48E-04	2.10E-10	2.97E-10	4.98E-10	5.91E-10			
Ra-228	6.70E-08	4.09E-05		3.00E-08	4.81E-08	8.89E-08	1.12E-07			
Ac-227	2.04E-09	1.25E-06	3.30E-03	1.13E-09	1.43E-09	2.61E-09	3.15E-09			
Pa-231	4.35E-09	2.66E-06	7.03E-03	2.01E-09	2.01E-09	4.63E-09	7.63E-09			
Th-229	1.58E-09	9.64E-07	2.55E-03	7.66E-10	1.16E-09	2.06E-09	2.57E-09			
Th-232	4.31E-09	2.64E-06	6.97E-03	2.27E-09	3.27E-09	5.36E-09	6.36E-09			
U-232	3.46E-07	2.11E-04	0.559	1.98E-07	2.70E-07	4.34E-07	5.28E-07			
U-233	1.33E-06	8.11E-04	2.14	7.59E-07	1.04E-06	1.66E-06	2.02E-06			
U-234	1.682-06	1.03E-03	2.72	1.53E-06	1.61E-06	1.77E-06	1.85E-06			
U-235	7.03E-08	4.30E-05	0.114	6.42E-08	6.71E-08	7.37E-08	7.71E-08			
U-236	4.57E-08	2.79E-05	7.38E-02	3.97E-08	4.27E-08	4.88E-08	5.20E-08			
U-238	1.69E-06	1.03E-03	2.73	1.55E-06	1.62E-06	1.76E-06	1.84E-06			
Np-237	5.40E-07	3.30E-04	0.873	3.94E-07	4.65E-07	6.15E-07	6.88E-07			
Pu-238	4.29E-06	2.62E-03	6.94	3.91E-06	4.10E-06	4.49E-06	4.67E-00			
Pu-239	2.50E-04	0.153	404	2.22E-04	2.36E-04	2.64E-04	2.77E-04			
Pu-240	3.65E-05	2.23E-02	.59.0	3.26E-05	3.45E-05	3.85E-05	4.04E-0			
Pu-241	2.50E-04	0.153	405	2.27E-04	2.39E-04	2.62E-04	2.73E-04			
Pu-242	1.18E-09	7.18E-07	1.90E-03	1.07E-09	1.12E-09	1.23E-09	1.28E-05			
Am-241	5.39E-05	3.29E-02	87.1	4.16E-05	4.97E-05	5.81E-05	8.15E-0			
Am-243	1.76E-09	1.08E-06	2.85E-03	1.28E-09	1.62E-09	1.90E-09	2.03E-09			
Cm-242	1.06E-07	6.49E-05	0.172	6.73E-08	6.73E-08	1.11E-07	1.15E-01			
Cm-243	7.40E-09	4.52E-06	1.20E-02	3.68E-09	3.68E-09	7.81E-09	8.21E-09			
Cm-244	6.63E-08	4.05E-05	0.107	2.80E-08	2.80E-08	7.92E-08	8.75E-0			
				-95 CI (M	-67 CI (M	+67 CI (M	+95 CI			
Totala	м	##/s	ie.	or g/L)	or g/L)		(M or g/L			
Pu	4.08E-03 (g/L)	-	6.59	3.62E-03	3.84E-03	4.31E-03	4.53E-03			

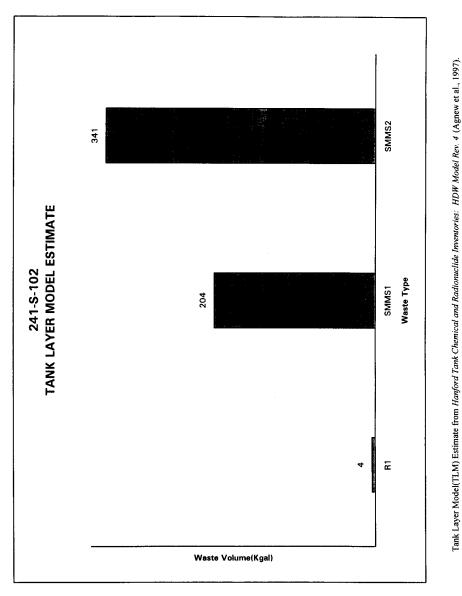
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). † Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-102 SUMMARY

TANK H	STORY	TANK DES	SCRIPTION		
Entered Service	3rd qtr 1953	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	1980	Nominal Capacity	758,000 gal		
Watch Lists	Hydrogen & Organics	Cascade Tank	to 241-S-103		
Integrity	Sound	Total Risers	12		
Assumed Leaker	-	WASTE VOLUME (HANLON 1996i)			
Interim Stabilization (IS)	_	Total Waste Volume 549,000 ga			
Partial Interim Isolation (PI)	Dec 1982	Waste Type DSSF			
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	230,000 gai		
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids	239,000 gal		
Riser Number(s)	Size	Saltcake	545,000 gal		
1, 11, 14, 16	4 in	Sludge	4,000 gal		
7	12 in	Supernatant	0 gal		
TANK TEM	PERATURE	INTERIOR PH	OTOGRAPHS		
Average Tank Temperature	102°F	Date	March 18, 1988		
Maximum Temperature	122°F	Montage Number	94041033-39CN		
Date	May 2, and June 6, 1988	Photo Set Number	8801411		
Elevation from tank bottom	2.44 ft, 4.44 ft, 6.44 ft	WASTE SURFACE LEVEL			
Riser Number	3	Devices Manual ENRA			
Minimum Temperature	71.2°F	Max Level	206.1 in		
Date	April 18, 1992	Date	June 13, 1994		
Elevation from tank bottom	24.44 ft	Min Level 202 in			
Riser Number	3	Date	Jan 21, 1991		



¢


WHC-SD-WM-ER-352, Rev.

241-S-102

TANK RISER LOCATION

Approximate Grade Elevation 202.4m [664ft] 0.38m [1.25ff] CONCRETE W/ 3-PLY ASPHALTIC WATERPROOFING 4.04m [13.26ft] 6.3mm [1/4in]-STEEL LINER W/ 3-PLY ASPHALTIC WATERPROOFING 22,86m [75,00ft] -0.38m [1.25ft]-CONCRETE 7.32m [24.00ft] Liner Height 7.9mm [5/16in] STEEL LINER W/ 3-PLY ASPHALTIC WATERPROOFING 9.5mm [3/8in] STEEL LINER W/ 0.30m [1.00ft] TOP OF DISH ELEVATION 3-PLY ASPHALTIC 189.12m [620.43ft] WATERPROOFING Ref: H-2-1783, Rev. 3 NOT TO SCALE H-2-46293, Rev. 3 H-2-1784, Rev. 2 -35-

HDW	Model	Rev.	4

		Sin	de-Shell Tan	k 241-S-102	-							
				Inventory Est	imate*							
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI					
Total TLM Waste	2.66E+04 (kg)	(4.00 kgal)										
Heat Load	9.86E-02 (kW)	(337 BTU/hr)		7.15E-02	6.74E-02	0.106	0.109					
Bulk Density	1.76 (g/cc)			1.51	1.53	2.11	2.24					
Void Fraction	0.536			6.00E-02	0.217	0.737	0.743					
Water wt%	27.0			2.64	10.0	42.6	44.2					
TOC wt% C (wet	0		_	0	0							
Chemical Constituents	mole/L	ppm	ke	-95 CI (mole/L)	-67 Cl (mole/L)	+67 CI (mole/L)	+95 Cl (mole/L)					
Ne+	8.13	1.06E+05	2.83E+03	3.05	3.56	14.7	18.2					
Al3+	6.99	1.07E+05	2.85E+03	6.58	6.74	7.15	7.11					
Fe3+ (total Fe)	1.01	3.22E+04	856	0.994	1.00	1.02	1.03					
Cr3+	6.19E-02	1.83E+03	48.7	7.08E-03	3.39E-02	0.522	1.06					
Bi3+	0	0	0	0	0	0	0					
La3+	0	0	0	0	0	0	. 0					
Hg2+	0	0	0	0	0	0	0					
Zr (as ZrO(OH)2)	0	0	0	0	0	0	0					
Pb2+	0	0	0	0	0	0						
Ni2+	5.07E-02	1.69E+03	45.0	3.66E-02	4.45E-02	5.54E-02	5.45E-02					
Sr2+	0	0	0	0	0	0	0					
Mn4+	0	0	0	0	0	0	0					
Ca2+	0.220	5.02E+03	133	0.146	0.182	0.258	0.294					
K+	1.12E-02	250	6.64	1.28E-03	5.25E-03	1.52E-02	1.52E-02					
DH-	25.6	2.48E+05	6.59E+03	23.1	24.3	26.9	28.4					
NO3-	5.29	1.87E+05	4.96E+03	6.03E-02	6.03E-02	13.5	17.9					
NO2-	1.46	3.82E+04	1.01E+03	0.132	0.595	2.15	2.15					
CO32-	0.220	7.51E+03	200	0.146	0.182	0.258	0.294					
PO43-	0	0	0	0	0	0	0					
SO42-	1.04E-02	569	15.1	1.19E-03	4.87E-03	1.41E-02	L41E-02					
Si (as SiO32-)	8.06E-03	129	3.42	9.21E-04	3.77E-03	1.09E-02	1.09E-02					
F-	0	0	0	0	0	0	0					
Cl+	5.16E-02	1.04E+03	27.7	5.91E-03	2.42E-02	7.00E-02	0.157					
C6H5O73-	0	0	0	0	0	0	0					
EDTA4-	0	0	0	0	0	0	0					
HEDTA3-	0	0	0	0	0	0	0					
glycolate-	0	0	0	0	0	0	0					
oxalate2-	0	- 0	0	0	0	0	0					
DBP	0	- 0	- 0	0	0	0	0					
butanol	0	- 0	0	0	0	0	0					
NH3	0.256	2.47E+03	65.7	6.55E-02	9.25E-02	0.270	0.284					
Fe(CN)64-	0	0	0	0	0	0	0					

		Sine	de-Shell Tan	k 241-S-102								
		SMM	Composite In	ventory Estimation	ate							
Physical												
Properties				-95 CI	-67 CI	+67 CI	+95 CI					
Total SMM Wast	2.64E+06 (kg)	(545 kgal)			—		1					
Heat Load	1.99 (kW)	(6 80E+03 BTU/hr)	••••	1.88	1.93	2.05	2.1					
Bulk Density*	1.28 (g/cc)		****	1.26	1.27	1.29	1.3					
Water wt%	61.4		_	59.5	60.4	62.5	63.1					
TOC wt% C (wet	0.413	-	_	0.274	0.342	0.484	0.55					
Chemical				-95 CI	-67 CI	+67 CI	+95 CI					
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)					
Na+	6.50	1.17E+05	3.08E+05	5.95	6.22	6.73	6.95					
Al3+	0.779	1.64E+04	4.33E+04	0.719	0.747	0.813	0.830					
Fe3+ (total Fe)	4.88E-03	213	562	3.98E-03	4.42E-03	5.34E-03	5.78E-03					
Cr3+	7.01E-02	2.85E+03	7.52E+03	5.79E-02	6.45E-02	7.23E-02	7.44E-02					
Bi3+	5.71E-04	93.3	246	5.19E-04	5.44E-04	5.97E-04	6.23E-04					
La3+	1.54E-05	1.67	4.41	1.11E-05	1.32E-05	1.76E-05	1.96E-05					
Hg2+	3.99E-06	0.626	1.65	3.72E-06	3.87E-06	4.05E-06	4.10E-06					
Zr (as ZrO(OH)2)	1.07E-04	7.66	20.2	9.79E-05	1.01E-04	1.11E-04	1.17E-04					
Pb2+	4.43E-04	71.8	189	3.61E-04	4.01E-04	4.84E-04	5.24E-04					
Ni2+	2.91E-03	133	352	2.78E-03	2.84E-03	2.94E-03	2.97E-03					
Sr2+	0	0	0	0	0	0	0					
Mn4+	1.75E-03	75.2	198	1.32E-03	1.53E-03	1.97E-03	2.18E-03					
Ca2+	1.52E-02	477	1.26E+03	1.39E-02	1.45E-02	1.59E-02	1.65E-02					
K+	2.97E-02	906	2.39E+03	2 70E-02	2.83E-02	3.11E-02	3.25E-02					
он-	4.67	6.21E+04	1.64E+05	4.30	4.47	4.88	4.95					
NO3-	2.29	1.11E+05	2.93E+05	2.12	2.22	2.33	2.34					
NO2-	1.14	4.09E+04	1.08E+05	0.952	1.04	1.23	1.32					
CO32-	0.191	8.95E+03	2.36E+04	0.173	0.180	0.204	0.206					
PO43-	3.91E-02	2.91E+03	7.66E+03	3.37E-02	3.56E-02	4.01E-02	4.10E-02					
SO42-	0.108	8.13E+03	2.14E+04	8.44E-02	9.57E-02	0.121	0.132					
Si (as SiO32-)	3.52E-02	774	2.04E+03	2.90E-02	3.20E-02	3.84E-02	4.14E-02					
F-	2.80E-02	416	1.10E+03	2.34E-02	2.53E-02	3.02E-02	3.19E-02					
CI-	0.112	3.10E+03	8.16E+03	0.101	0.106	0.117	0.121					
C6H5O73-	1.25E-02	1.85E+03	4.89E+03	1.15E-02	1.20E-02	1.30E-02	1.35E-02					
EDTA4-	6.31E-03	1.42E+03	3.75E+03	1.95E-03	4.08E-03	8.56E-03	1.08E-02					
HEDTA3-	1.18E-02	2.53E+03	6.67E+03	3.06E-03	7.32E-03	1.63E-02	2.07E-02					
glycolate-	3.83E-02	2.25E+03	5.93E+03	2.49E-02	3.15E-02	4.51E-02	5.17E-02					
scetate-	2.67E-03	123	325	2.19E-03	2.43E-03	2.92E-03	3.16E-03					
oxalate2-	2.01E-05	1.39	3.66	1.78E-05	1.90E-05	2.13E-05	2.24E-05					
DBP	8.44E-03	1.39E+03	3.66E+03	6.92E-03	7.67E-03	9.20E-03	9.93E-03					
butanol	8.44E-03	490	1.29E+03	6.92E-03	7.67E-03	9.20E-03	9.93E-03					
инз	3.84E-02	511	1.35E+03	3.14E-02	3.42E-02	4.38E-02	5.01E-02					
Fe(CN)64-			0	0	0	0	0					

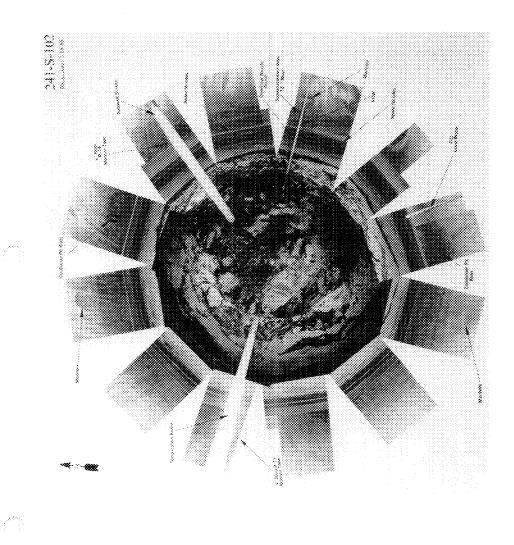
*Density is calculated based on Ns, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

OC WAYC (wid C WAYC (wid <thc (wid<="" th="" wayc=""> <thc (wid<="" th="" wayc=""></thc></thc>	(CM)64+	0	0	0	0	0	0	0
Sheet Sheet <t< td=""><td>El</td><td>4 00E-03</td><td>OES</td><td>E0+319-1</td><td>3,316.02</td><td>3.58E-02</td><td>4.53E-02</td><td>20-351.2</td></t<>	El	4 00E-03	OES	E0+319-1	3,316.02	3.58E-02	4.53E-02	20-351.2
Sheet Sheet <t< td=""><td></td><td></td><td></td><td>ļ</td><td></td><td></td><td>-</td><td></td></t<>				ļ			-	
National Matrix Matri								
Subject 121 232 211E-01 211E-00 212E-0						1		
Jake Just Just <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>								
Appendix Just (a)							and the second second	
Vistorial 112 00 108 00 128 00 <th118 00<="" th=""> <th118 00<="" th=""> 128 00</th118></th118>	-staioo/	3.80E-02	3"33E+03	£0+3£6'S	2,485-02	2128-02	4 481-05	20-361 2
Appendix	- TV 105	20-9/11	£0+306°2	£0+3/,9'9	E0-3E0.E	1'31E-03	1.62E-02	2.05E-02
Appendix 1.348-03 1.186-03 1.106-03 1.106-03 1.186-03 1.106-03 1.186-03 1.000-03 1.186-03 1.106-03 1.186-03 1.186-03 1.186-03 1.106-03 1.186-03 1.106-03 1.106-03 1.186-03 1.106-03 1.186-03 1.106-03 1.106-03 1.106-03 1.106-03 1.106-03 1.106-03 1.106-03			1		1.93E-03	4.05E-03	E0-305'8	1.07E-02
State Construct Construct <thconst< th=""> <thconst< th=""> Construct<td></td><td></td><td></td><td></td><td>1.146-02</td><td>1.19E-02</td><td>1 30E-02</td><td>1 34E-05</td></thconst<></thconst<>					1.146-02	1.19E-02	1 30E-02	1 34E-05
S. SRE 03 413 1108-03 3785-04 3785-04 3785-04 3785-04 3785-03			<u> </u>		101'0	\$01.0	9110	071.0
Vise Jasteral Jasteral <th< td=""><td></td><td></td><td></td><td></td><td>20-365-2</td><td>20-925-2</td><td>20-300 E</td><td>20-31/1°E</td></th<>					20-365-2	20-925-2	20-300 E	20-31/1°E
Optimized 010 8066-00 7.18-04 8.28-03 9.218-03 0.130 0.130 0.131 Varge field 3.18-04 3.18-04 3.18-04 3.18-04 3.18-03 3.18-03 3.08-03 3.01 3.01 Varge field 3.28-03 3.28-03 3.28-03 3.28-03 3.28-03 3.08-03 3.01 3.33 3.01 3.33 <t< td=""><td>(-75 (-75 (-75 58))</td><td></td><td></td><td></td><td>Z0-368'Z</td><td>3.196-02</td><td>3.81E-02</td><td>411E-03</td></t<>	(-75 (-75 (-75 58))				Z0-368'Z	3.196-02	3.81E-02	411E-03
Order 3.88E-03 7.68E-03 3.58.02 3.55.02 3.58.02 <t< td=""><td></td><td></td><td></td><td></td><td>8.38E-02</td><td>20-312-02</td><td>021.0</td><td>161.0</td></t<>					8.38E-02	20-312-02	021.0	161.0
Vargetical 0.99 0.10 0.11					3.358-02	3.53E-02	3 98E 02	4.07E-02
Appendix					EL1'0	181'0	0'304	907.0
Appendix 1138-03 2.328-03 2.311 2.32 2.32 Appendix					956'0	101	62.1	EE 1
Her 4.2 6.406.64 1.708-65 4.6 4.6 4.6 2.0 <					51.5	121	56.2	96'7
J. Sole (3) 301 3 (2 + 0) 3	· · · · · · · · · · · · · · · · · · ·				587	697	20.2	01'5
11 12 135 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137 136-03 137					3°69E-03	282E-02	3.105-02	3.23E-02
meth 1,2,0,0,0 3,4,1 1,3,6 1,3,6,0 1,					1 24E-03	1.60E-02	1.748-02	1 80E-03
23+ 0					1.31E-03	E0-325-1	E0-396'I	2.17E-03
3.31 31 316:01 316:01 316:00					0	0	0	0
System				T	E0-3E1.E	3 16E-03	3.29E-03	3'35E-03
(m syc)(3)(3) 1 [0]E 04 2.30 3.01<					3'28E-04	3.98E-04	481E-04	2'31E-04
Lith 378Ee4 030 192 378E0 198E0 19				Z'0Z	50-31L'6	1.01E-04	1.10E-04	1'16E-04
Disketia					90-369°E	3'84E-06	4'05E-06	90-3/.01
31: 20LECH 351 390 218E-01 290ECH 2351 390ECH 2351 390ECH 2352-01 210ECH 230ECH 2351 390ECH 230ECH					1.11E-05	1.31E-05	1'74E-05	SO-356 1
Op- system 101E03 5 % 0 0 0 0 21E03					\$15E-04	2 40E-04	\$0-3E9.24	PD-381'9
Discrete 122E-03 232 142E-03 112E-02 12E			*·		6.21E-02	20-365.9	7.28E-02	Z43E-02
Dr. 0824 (1.3)2-04 402E-04 0.944 0.33 0.836 0.834 ex 0.21 11.12-02 218-02 236 6.24 6.34 6.35 ex 0.21 11.12-02 218-02 236 6.24 6.34 6.35 counterters 0.004/7 0.004/7 0.004/7 0.004/7 0.006/7 0.004/7 0.006/7 0.014 2.34 6.34 6.34 6.34 6.35 0.74 6.35 0.74 6.35 0.74 6.34 <td></td> <td></td> <td></td> <td></td> <td>20-3E11</td> <td>20-381 1</td> <td>1'3/E-03</td> <td>1.31E-02</td>					20-3E11	20-381 1	1'3/E-03	1.31E-02
•• •	-		1		196.0	£62 0	9580	PL8.0
Constituents Tode (mill Constituents Constituents Constituent Constituent <thconstituent< th=""> <thconstituent< th=""></thconstituent<></thconstituent<>			1		96'5	¢Z'9	\$1.9	\$6'9
Cpremicel	streamblero				(Talom)	(T/stom)	(,1\alom)	(J'slom)
Octavity	and the second	0.00			13 Se-	IJ 49-	13 19 +	13 56+
vmrt aubet e11 283 600 621 633 634 vmrt aubet e11 285 600 621 633 634 634 633 634 634 634 634 634 635 635 635 635 635 635 635 635 635 635 635 635 635 637 635 637 635 637 635 637 636 636 646 <td< td=""><td>DC MIN C (Met</td><td>609'0</td><td>- 1</td><td></td><td>1/2.0</td><td>866.0</td><td>6470</td><td>L#5'0</td></td<>	DC MIN C (Met	609'0	- 1		1/2.0	866.0	6470	L#5'0
Introduction 1/2 (wind) 1/12 + 03 (L1/12 + 03		1'19		-	2.62	0'09	1'79	1 69
Introduction 1/2 (wind) 1/12 + 03 (L1/12 + 03								
en road en road ser road	ulk Density†	(so/a) 87.1			97.1	12.1		
بیملیدینه پیملیدینه پیمیردها	cat Load				L6 1	£0.2	512	2.20
plarca		2 66E+06 (kg)	(हिंदीम् ६१८५)					_
	roperties				-92 CI	ID 19-	ID 49+	ID 56+
		<u></u>	T	VIOTOSANI IRIC	Fatimate*			

values with derived from the difference of density and total datasets forces (TLM). • also with derived from the difference of density and total datasets

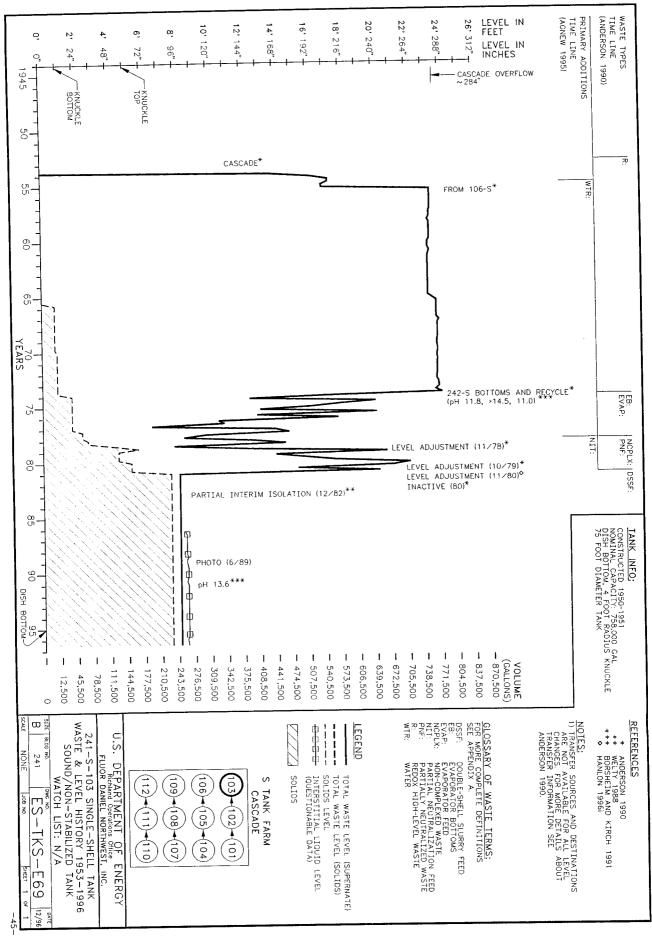
	HDW N		241-S-102	c-Shell Tank	Sing		
		nate*	nventory Estir	Composite I	TLM Solids		
	he heles hit heles		- 1910-1	901.93			Physical
+95 C	+67.CI	-67 CI	-95 CI	anga si	988.2850 SA-1		Properties
					(4.00 kgal)	2.66E+04 (kg)	Total TLM Waste
0.1	0.106	8.74E-02	7.15E-02		(337 BTU/hr)	9.86E-02 (kW)	Heat Load
2.	2.11	1.53	1.51			1.76 (g/cc)	Bulk Density
0.7	0.737	0.217	6.00E-02	_		0.536	Void Fraction
. 44	42.6	10.0	2.64			27.0	Water wt%
	0	0	0			0	TOC wt% C (wet
+95 C	+67 CI	-67 CI	-95 CI				Radiological
(CI/L)	(CVL)	(CVL)	(Ci/L)	Ci	µCVg	CVL	Constituents
4.10E-	4.10E-05	1.47E-05	3.05E-06	0.443	1.67E-02	2.92E-05	H-3
3.07E-	3.07E-06	1.06E-06	2.59E-07	3.43E-02	1.29E-03	2.26E-06	C-14
1.60E-	1.62E-05	1.31E-05	1.07E-05	0.225	8.46E-03	1.49E-05	Ni-59
1.49E-	1.52E-03	1.22E-03	1.00E-03	21.0	0.790	1.39E-03	Ni-63
1.21E-	1.21E-06	4.18E-07	1.02E-07	1.35E-02	5.09E-04	8.94E-07	Co-60
7.15E-	6.51E-07	2.25E-07	5.50E-08	7.27E-03	2.74E-04	4.81E-07	Se-79
l.	1.02	0.812	0.662	1.40E+04	529	0.928	Sr-90
1.	1.02	0.812	0.662	1.41E+04	529	0.929	Y-90
3.03E-	3.08E-06	1.06E-06	2.59E-07	3.43E-02	1.29E-03	2.27E-06	Zr-93
3.21E-	2.51E-06	8.68E-07	2.12E-07	2.81E-02	1.06E-03	1.85E-06	Nb-93m
2.15E-	2.15E-05	7.42E-06	1.81E-06	0.240	9.02E-03	1.58E-05	Tc-99
3.38E-	3.38E-12	1.17E-12	2.86E-13	3.78E-08	1.42E-09	2.50E-12	Ru-106
9.48E-	9.48E-06	3.27E-06	8.00E-07	0.106	3.98E-03	6.99E-06	Cd-113m
1.78E-	1.78E-06	6.14E-07	1.50E-07	1.99E-02	7.47E-04	1.31E-06	Sb-125
1.14E-	1.00E-06	3.46E-07	8.45E-08	1.12E-02	4.21E-04	7.39E-07	Sn-126
4.13E-	4.13E-08	1.42E-08	3.48E-09	4.61E-04	1.73E-05	3.04E-08	-129
3.52E-	3.52E-08	1.52E-08	7.19E-09	4.11E-04	1.55E-05	2.72E-08	Cs-134
7.26E-	7.26E-02	3.13E-02	1.48E-02	848	31.9	5.60E-02	Cs-137
6.87E-	6.87E-02	2.96E-02	1.40E-02	802	30.2	5.30E-02	Ba-137m
2.64E-	2.33E-03	8.03E-04	1.96E-04	26.0	0.976	1.71E-03	Sm-151
7.06E-	7.06E-06	6.91E-06	6.85E-06	0.106	3.98E-03	7.00E-06	Eu-152
2.93E-	2.93E-05	1.01E-05	2.47E-06	0.327	1.23E-02	2.16E-05	Eu-154
3.33E-	3.33E-04	3.26E-04	3.23E-04	5.00	0.188	3.30E-04	Eu-155
2.01E-	1.56E-09	6.04E-10	1.48E-10	1.63E-05	6.15E-07	1.08E-09	Rs-226
9.34E-	9.34E-15	9.15E-15	9.07E-15	1.40E-10	5.28E-12	9.26E-15	Ra-228
1.02E-	7.52E-09	2.00E-09	3.06E-10	7.20E-05	2.71E-06	4.76E-09	Ac-227
1.68E-	2.04E-09	3.36E-10	8.21E-11	1.09E-05	4.09E-07	7.18E-10	Pa-231
1.78E	1.78E-12	1.75E-12	1.73E-12	2.67E-08	1.01E-09	1.77E-12	Th-229
8.01E-	8.01E-16	2.77E-16	6.76E-17	8.94E-12	3.36E-13	5.91E-16	Th-232
7.10E-	7.10E-12	2.45E-12	5.99E-13	7.92E-08	2.98E-09	5.24E-12	U-232
2.71E-	2.71E-13	9.34E-14	2.28E-14	3.02E-09	1.14E-10	2.00E-13	U-233
1.62E-	1.62E-07	5.58E-08	1.36E-08	1.80E-03	6.78E-05	1.19E-07	U-234
6.95E-	6.95E-09	2.40E-09	5.86E-10	7.76E-05	2.92E-06	5.13E-09	U-235
2.56E-	2.56E-09	8.82E-10	2.16E-10	2.85E-05	1.07E-06	1.88E-09	U-236
1.65E-	1.65E-07	5.69E-08	1.39E-06	1.84E-03	6.92E-05	1.22E-07	U-238
1.39E-	L.39E-07	4.81E-08	1.18E-08	1.56E-03	5.86E-05	1.03E-07	Np-237
8.48E-	7.57E-06	5.66E-06	4.75E-06	0.100	3.77E-03	6.61E-06	Pu-238
6.05E-	5.40E-04	4.04E-04	3.39E-04	7.14	0.269	4.72E-04	Pu-239
8.66E-	7.73E-05	5.78E-05	4.85E-05	1.02	3.85E-02	6.76E-05	Pu-240
5.09E-	4.55E-04	3.40E-04	2.85E-04	6.01	0.226	3.97E-04	Pu-241
2.34E-	2.08E-09	1.56E-09	1.31E-09	2.76E-05	1.04E-06	1.82E-09	Pu-242
1.43E-	1.10E-05	3.79E-06	9.26E-07	0.122	4.61E-03	8.09E-06	Am-241
1.34E-	1.03E-10	3.54E-11	8.66E-12	1.15E-06	4.31E-08	7.57E-11	Am-243
1.62E-	1.62E-07	1.59E-07	1.58E-07	2.44E-03	9.16E-05	1.61E-07	Cm-242
3.72E-	3.72E-09	3.64E-09	3.61E-09	5.58E-05	2.10E-06	3.69E-09	Cm-243
3.67E-	3.67E-09	1.27E-09	3.09E-10	4.09E-05	1.54E-06	2.70E-09	Cm-244
+95 C	+67 CI (M	-67 CI M	-95 CI (M				
(M or g		or g/L)	or g/L)	ke	#8/S	м	Totala
	9.03E-03	6.76E-03	5.67E-03				
1.01E				0.119		7.89E-03 (g/L)	Pu

Total BAM West 2.84-96 (gg) (5.85 μp) -			Sing	de-Shell Tan	k 241-S-102				
Physical Disal SMM West 2.64E-06 (2g) (535 kgl)						te			
Properties -95 CI -67 CI +67 CI +95 Icial SIMM West 2.66E+06 (pg) (5.85 kgd) - <th>Physical</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>0.002</th>	Physical							0.002	
Total SMM West 256-06 (pg) (35 tpp) 188 133 203 Bulk Density* 1.24 (pol) 126 127 1.29 128 123 123 123 123 123 123 123 123 124 0.44 <t< th=""><th></th><th></th><th></th><th></th><th>-95 CI</th><th>-67 CI</th><th>+67 CI</th><th>+95 CI</th></t<>					-95 CI	-67 CI	+67 CI	+95 CI	
iset Load 199 (p.9) (6.80E+C3 BTUhr) 136 131 205 Bulk Density* 1.24 (gree) 126 1.27 1.29 Water wt%4 61.4 99.5 60.4 62.5 Constituents CVL 0.274 0.342 0.444 64.4 Constituents CVL 0.274 0.542 0.344 0.444 Constituents CVL 0.274 0.592.6 1.262.41 1.25 Constituents CVL pCVg C1 (CVL)		2.64E+06 (kg)	(545 km)	_		_			
Bulk Density* 1.26 (gros) 1.26 1.27 1.29 Water wt%1 61.4 99.3 66.4 62.5 CCC wt% C (wet 0.413 0.274 0.542 0.484 62.5 Constituents CV/L pCVg C1 (CVL) (C	Heat Load			-	1.88	1.93	2.05	2.11	
Water wt%t 61.4 59.5 60.4 62.5 Redislogical Constituents C1/L 0.724 0.342 0.84 0.84 Redislogical Constituents C1/L 0.724 0.342 0.84 0.84 1.055-04 1.125-04 1.025-04 1.125-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.025-04 1.105-04 1.105-04 1.105-04 1.105-04 1.105-04 1.105-04 1.105-04 1.105-04 1.105-05 1.075-04 1.105 1.075-04 1.105 1.075-04 1.105 1.075-04 1.105 1.075-04 1.105 1.075-04 1.105 1.075-04 1.105-05 2.915-07 2.125-07 1.915-06 2.915-07 2.915-07 2.915-07 2.915-07 2.915-07 2.915-07 3.915-06 1.915-06 3.915-07 1.915-06 3.915-07 1.915-06 3.915-07 1.915-06 3.915-07 3.915-07								1.30	
TDC with C (with 0.413 0.274 0.321 0.484 0 Radiological Constituents C/L 0.274 0.321 0.484 0 Radiological Constituents C/L 0.274 0.321 0.484 0 Radiological Constituents C/L 0.274 0.322 0.484 0 Radiological Constituents C/L 0.274 0.562 0.172-04 1.072-04 </td <td>······</td> <td></td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td>1.50</td>	······				1.00			1.50	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Water wt%†	614			50 5	60.4	67.5	63.7	
Rediological -95 CT -67 CI +67 CI +99 CU H-3 1.17E-04 9.468-2 241 6.17E-05 6.17E-05 1.20E-04								0.553	
Constituents CU μ CM2 Cl (CML)	TOC WING C (WEI	0.413			0.2/4	0.342	U.484	0.555	
Constituents CU μ CM2 Cl (CML)					AF (11	<i>(</i> 1 <i>(</i> 1)			
H3 1.17E-04 9.14E-02 241 6.17E-05 1.20E-04 1.20E C-14 1.66E-05 1.30E-07 342 5.05E-06 1.82E-05 1.70E-06 N:59 1.07E-06 8.84E-04 2.16 5.09E-05 1.07E-04 1.10E-05 N:63 1.05E-06 1.82E-05 1.43E-02 3.76 5.04E-06 1.07E-04 1.10E-05 S:70 1.62E-05 1.43E-02 3.76 5.04E-06 1.07E-04 1.10E-05 1.17E-05 S:70 5.46E-02 4.27 1.13E+05 5.09E-07 5.37E-00 5.64E-02 5.87 S:70 5.46E-02 4.27 1.13E+05 5.09E-07 5.37E-00 5.64E-02 5.87 S:70 5.46E-02 4.27 1.13E+05 5.09E-05 3.48E-06 1.01 N>-53m 5.87E-06 4.40E-00 1.21 3.30E-06			 .	-				2.0.T. 20T.	
C-14 Linese Linese <thlinese< th=""> <thlinese< th=""> <thlinese< th=""></thlinese<></thlinese<></thlinese<>									
1.000000 1.0000000 1.00000000 1.000000000000000000000000000000000000								1.24E-04	
NSG LINE 50 LINE 50 <thline 50<="" th=""> <thline 50<="" th=""> <thline< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.70E-05</td></thline<></thline></thline>								1.70E-05	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Ni-59	1.07E-06	8.36E-04		5.26E-07		1.10E-06	1.12E-06	
Score Interest Total State Total State <thtotal state<="" th=""> <thtota< td=""><td>Ni-63</td><td>1.05E-04</td><td>8.18E-02</td><td></td><td>5.09E-05</td><td>5.09E-05</td><td>1.07E-04</td><td>1.10E-04</td></thtota<></thtotal>	Ni-63	1.05E-04	8.18E-02		5.09E-05	5.09E-05	1.07E-04	1.10E-04	
Sr.20 1.022.0 1.132-05 <th< td=""><td>Co-60</td><td>1.82E-05</td><td>1.43E-02</td><td>37.6</td><td>5.04E-06</td><td>5.04E-06</td><td>1.86E-05</td><td>1.89E-05</td></th<>	Co-60	1.82E-05	1.43E-02	37.6	5.04E-06	5.04E-06	1.86E-05	1.89E-05	
17:00 3.462.20 4.7.0 1136-65 2016-02 2016-02 3.662.20 3.2 27:93 8.662.64 6.336.60 167 4.416.06 3.050.05 <t< td=""><td>Se-79</td><td>1.65E-06</td><td>1.29E-03</td><td>3.40</td><td>9.12E-07</td><td>9.12E-07</td><td>1.91E-06</td><td>2.17E-06</td></t<>	Se-79	1.65E-06	1.29E-03	3.40	9.12E-07	9.12E-07	1.91E-06	2.17E-06	
1:50 5.46E-62 42.7 1.13E+05 2.91E-62 2.91E-62 5.64E-62 5.82 Kr-93 KREp.66 6.33E-63 167 4.41E-66 4.41E-66 6.41E-66 5.64E-62 1.07 Kr-93m STE-66 4.60E-03 121 3.30E-63 3.66E-66 5.81E-66 7.07 Tr-99 1.18E-64 9.24E-67 2.44 7.51E-05 9.64E-05 1.66E-64 3.66E-66 3.30E-64 1.68 Su-106 3.22E-69 2.53E-66 6.64E-03 1.51E-60 1.51E-60 7.66E-65 8.00 Sh-125 7.81E-65 6.11E-62 1.41 1.30E-66 1.30E-60 3.00E-63 8.00 Sh-125 7.81E-65 6.41E-64 2.48 8.72E-67 9.86E-07 1.312 5.14 1.30E-66 1.46E-07 1.45E-67 3.27E-63 5.35E-66 1.55E-66 1.55E-66 1.55E-67 5.95E-66 1.55E-67 5.95E-66 1.312 0.32E-63 5.35E-66 1.46E-67 9.15E-67 9.15E-67 9.15E-67		5.46E-02	42.7	1.13E+05	5.09E-02		5.64E-02	5.82E-02	
2-33 8.88E.26 6.33E33 16.7 4.41E46 4.41E46 9.41E26 107 NS-93m S.BFE.66 4.60E-00 121 3.30E-66 3.20E-66 3.20E-67 3.20E-66 3.20E-67 3.20E-66 3.20E-67		5.46E-02	42.7	1.13E+05		2.91E-07		5.82E-02	
Sign Sign <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.07E-05</td></th<>								1.07E-05	
Communication Communic								7.70E-06	
Construct Construct <thconstruct< th=""> <thconstruct< th=""> <thc< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thc<></thconstruct<></thconstruct<>									
Carling Carling <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.62E-04</td></t<>								1.62E-04	
Statu Statu <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3.95E-09</td></th<>								3.95E-09	
Display Juncol Juncol <thjuncol< th=""> <thjuncol<< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.80E-05</td></thjuncol<<></thjuncol<>								5.80E-05	
120 120 <th 120<="" t<="" td=""><td>Sb-125</td><td>7.81E-05</td><td>6.11E-02</td><td></td><td>2.10E-05</td><td>2.10E-05</td><td></td><td>8.09E-05</td></th>	<td>Sb-125</td> <td>7.81E-05</td> <td>6.11E-02</td> <td></td> <td>2.10E-05</td> <td>2.10E-05</td> <td></td> <td>8.09E-05</td>	Sb-125	7.81E-05	6.11E-02		2.10E-05	2.10E-05		8.09E-05
1.202.01 1.202.01	Sn-126	2.49E-06	1.95E-03		1.39E-06	1.39E-06	2.89E-06	3.27E-06	
2-15 1-20-50 2-15 2-16 3-25 2-17 3-25 2-17 2-4 2-12 3-11 2-44 2-17 2-45 2-25 3-25 2-16 3-25 2-11 2-17 2-41 2-17 <	-129	2.28E-07	1.78E-04		1.44E-07	1.85E-07	2.70E-07	3.12E-07	
Be 137m 0.121 944 2.46E455 9.19E-02 0.126 0.136 Sm 151 1.56E-05 4.54 1.26E+05 3.22E-03 3.22E-03 3.22E-03 7.63 Su 152 1.86E-06 1.46E-01 3.344 9.51E-07 9.51E-01 1.98E-06 7.63 Su 155 1.10E-04 6.0E-02 2.27 5.56E-05 1.71E-04 1.28 Su 155 1.10E-04 6.0E-02 2.27 5.56E-05 1.71E-04 1.28 Su 256 7.05E-11 5.56E-05 1.71E-04 1.28 1.28 1.28 Su 257 4.47E-10 3.0E-04 4.95E-05 1.111 2.63E-08 1.099 1.05E-00 1.30E-10 3.0E-10 3.0E-10 2.0E-09 2.92 1.97E-09 2.48 Su 252 4.212 4.21E-09 3.0E-04 3.0E-01 3.0E-04 2.92 2.48 1.072 3.0E-07 4.92 4.24 3.0E-07 4.92 4.24 3.0E-07 4.92 4.24 3.0E-07 <td< td=""><td>C#-134</td><td>1.20E-06</td><td>9.41E-04</td><td>2.48</td><td>8.72E-07</td><td>9.86E-07</td><td>1.37E-06</td><td>1.54E-06</td></td<>	C#-134	1.20E-06	9.41E-04	2.48	8.72E-07	9.86E-07	1.37E-06	1.54E-06	
Ba-137m 0.121 94.4 2.49E+05 9.19E-02 9.19E-02 0.126 1 Sm-151 5.50E-03 4.54 1.20E+04 3.22E+03 3.22E+03 6.78E-07 7.63 Su-152 1.86E-06 1.46E-01 3.34 9.51E-07 9.51E-07 9.51E-07 9.51E-07 9.51E-07 9.51E-07 9.51E-07 9.51E-07 9.51E-04 3.86E-04 3.88 9.55 1.10E-04 8.60E-02 227 5.55E-05 5.55E-05 1.17E-04 1.25E 3.55E-03 1.17E-04 1.25E 4.55E-01 1.78E-04 1.25E 4.55E-01 1.98E-06 1.08E-04 4.55E-01 1.55E-03 1.17E-04 1.25E 4.55E-01 5.55E-02 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03 1.55E-03	Cs-137	0.128	99.8	2.63E+05	0,116	0,121	0.134	0.139	
Sm-151 580E-03 4.54 1.20E+04 3.22E-03 3.22E-03 6.73E-03 7.63 Su-152 1.86E-06 1.46E-03 3.44 9.51E-07 9.55E-04 1.22E 1.22E 1.10E-04 8.60E-02 2.27 5.55E-05 1.55E-06 1.47E-01 4.75E-11 4.75E-11 4.75E-11 7.85E-06 1.66E-06 3.01E-10 3.0			94.4	2.49E+05	9 19E-02	9 19E-02	0 126	0.132	
Bar 132 JABE 26 1.46E-01 3.84 9.31E-07 1.98E-06 2.10 Su 154 2.96E-04 0.212 011 1.12E-04 1.12E-04 3.12E-07 1.98E-06 2.10 Su 154 2.96E-04 0.012 277 5.56E-05 5.56E-05 1.17E-04 1.22 Su 255 1.10E-04 5.50E-06 1.47E-04 4.75E-11 4.87E-01 4.87E-01 4.87E-01 4.475E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-01 4.97E-00 2.97E-09 2.				1.20E+04				7.63E-03	
Date 2 Date 3 Date 3 <thdate 3<="" th=""> <thdate 3<="" th=""> <thdate 3<="" td="" th<=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2.10E-06</td></thdate></thdate></thdate>								2.10E-06	
Barl 1.9 L. 2000 A D. 21 a D. 11200 A <th 11200="" a<="" d.="" t<="" td=""><td></td><td></td><td></td><td>611</td><td></td><td></td><td></td><td>3.89E-04</td></th>	<td></td> <td></td> <td></td> <td>611</td> <td></td> <td></td> <td></td> <td>3.89E-04</td>				611				3.89E-04
Bir 1.33 1.106-V4 2.802-02 1.45E-04 1.45E-04 1.75E-11 1.85E-11 8.65 Ra-226 7.05E-01 1.75E-04 1.45E-04 4.75E-11 4.75E-11 1.85E-11 8.65 Ra-228 6.33E-06 4.95E-05 0.131 2.03E-06 4.44E-06 8.72E-08 1.09E-06 Ac-227 4.47E-10 3.46E-07 9.13E-04 3.10E-10 3.10E-10 4.90E-10 5.36 Pa-231 2.03E-06 1.95E-06 4.19E-03 1.30E-06 1.30E-06 9.20E-09 2.30E Th-232 4.21E-09 3.30E-06 8.67E-03 5.74E-10 1.37E-09 3.26E-06 6.74E-10 1.233 1.36E-06 9.98E-04 0.680 1.81E-07 2.54E-07 4.07E-07 5.338E-07 1.233 1.36E-06 9.98E-04 0.800 1.81E-07 3.33E-07 4.00E-07 4.00E-07 1.233 1.36E-06 9.98E-04 0.807 3.76E-07 7.3382-07 4.00E-07 4.00E 1.233 1.36E-06 1.98E-04 1.37 1.98E-04 1.35E-06 1.58E-04 1.69E-08 1.42E-07 1.233 1.36E-06 1.98E-04 0.807 3.76E-07 3.33E-07 4.00E-07 4.0								1.25E-04	
CALLO JALELTI JALETI JALETIC JALETIC JALETIC JALETIC JALETIC JALETIC JALETIC JALETIC JALETIC <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Az.227 4.422-10 5.66.27 9.13E-44 3.10E-10 3.95E-10 4.99E-10 5.35 Pe.231 2.035.00 1.95E-66 4.19E-03 1.00E-00 3.10E-10 3.00E-10 5.36 Pe.231 2.035.00 1.95E-66 4.19E-03 1.00E-00 3.10E-10 3.00E-10 5.36 Pe.232 1.95E-06 1.14E-66 3.07E-03 2.74E-10 1.07E-09 2.24 Th-232 4.21E-09 3.30E-66 8.69E-03 2.16E-00 3.17E-00 5.26E-00 6.28 U-233 1.66E-06 9.97E-04 2.46E-07 7.37E-07 7.36E-07 7.32E-07 1.60E-06 1.90E U-233 1.39E-06 1.24E-05 2.32E-07 3.33E-07 4.60E-07 6.07E 4.07E-07 4.02E-07 4.								8.65E-11	
Construction Construction<								1.09E-07	
L32 L362-00 L162-06 L372-03 L362-00 L362-04 L362-04 L362-04 L362-04 L372-04 L372-07 L372-07 <thl372-07< th=""> <thl372-07< th=""> <thl372-< td=""><td>Ac-227</td><td>4.42E-10</td><td>3.46E-07</td><td></td><td>3.10E-10</td><td></td><td></td><td>5.36E-10</td></thl372-<></thl372-07<></thl372-07<>	Ac-227	4.42E-10	3.46E-07		3.10E-10			5.36E-10	
1.12.20 1.12.20 1.302.60 8.469E-33 2.16E-04 3.17E-09 3.28E-60 6.20 1.12.32 3.30E-07 2.98E-04 0.600 1.81E-07 2.54E-07 4.17E-07 5.12E-07 5.26E-09 6.20 1.233 1.30E-06 9.99E-04 2.81 6.95E-07 9.77E-07 1.60E-06 1.99E 1.233 1.39E-06 1.24E-05 3.28E-07 3.35E-07 4.00E-07 4.00E 1.233 1.99E-06 1.24E-05 3.28E-04 1.55E-06 1.55E-06 1.69E-06 1.69E 1.235 1.99E-06 1.24E-05 3.28E-07 3.55E-06 1.55E-06 1.55E-06 1.55E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-06 1.69E-07 5.06E-07 5.76E-07	Pa-231	2.03E-09	1.59E-06		1.30E-09	1.30E-09	2.30E-09	2.55E-09	
1112.2 2116.07 2166.07 2166.07 2166.07 2166.07 2166.07 2166.07 2166.07 2166.07 2166.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07 2166.07 116.07	Th-229	1.49E-09	1.16E-06		6.74E-10	1.07E-09	1.97E-09	2.48E-09	
1233 1265-06 139E-04 241 659E-07 9.78E-07 1.60E-66 1.90 1233 1265-06 9.80E-04 2.87 3.76E-07 3.35E-07 4.60E-66 1.90 1234 3.91E-07 3.06E-04 2.87E-07 3.35E-07 3.35E-07 4.60E-06 1.60E-06 1.24E-05 3.25E-07 3.25E-07 4.96E-07 3.25E-07 4.96E-07 3.25E-07 4.60E-07 3.55E-07 3.65E-07 4.60E-07 5.57E-07 4.60E-07 5.57E-07 4.76E-07 4.60E-07 5.57E-07 4.76E-07 5.57E-07 4.76E-07 5.57E-07 7.47E-07 8.27 19-235 6.53E-07 5.19E-04 1.37E-04 1.86E-05 2.06E-05 2.06E-05 2.07 4.60E-05 2.02E-03 3.35E-05 3.06E-05 2.02E-05 2.07 4.02E-05 2.07 4.02E-05 2.05E-05 2.02E-05 2.02E-05	ГЪ-232	4.21E-09	3.30E-06	8.69E-03	2.16E-09	3.17E-09	5.26E-09	6.26E-09	
1233 1.36E-06 9.89E-04 241 6.99E-07 9.79E-07 1.46E-06 1.94 1/234 3.91E-07 3.06E-04 0.807 3.76E-07 3.35E-07 4.00E-07 4.00E-07 1/235 1.95E-06 1.24E-03 3.28E-07 1.95E-06 1.62E-08 1.65E-08 1.62E-08 1.62E-07 3.62E-07	1-232	3.30E-07	2.58E-04	0.680	1.81E-07	2.54E-07	4.17E-07	5.11E-07	
U234 3.91E-07 3.06E-04 0.077 3.76E-07 3.33E-07 4.00E-07 4.00E U-235 1.99E-06 1.242-05 3.28E-02 1.52E-06 1.55E-06 1.64E-06 1.64E U-236 1.282-06 1.55E-06 1.55E-06 1.55E-06 1.55E-06 1.64E-06 1.64E U-236 1.282-06 1.55E-06 1.55E-06 1.282E-06 1.282E-06 1.282E-06 1.282E-06 1.282E-06 1.282E-06 1.282E-07 4.09E-07 5.06E-07 5.76E Vp-238 6.65E-07 5.19E-04 1.07 4.98E-07 3.05E-05 5.06E-07 5.76E Vp-239 2.28E-05 1.78E-02 7.706 3.05E-05 3.05E-05 5.06E-02 2.70 Vp-240 3.05E-05 3.05E-05 3.05E-05 3.05E-05 3.05E-05 <td< td=""><td></td><td></td><td></td><td>2.61</td><td></td><td></td><td></td><td>1.96E-06</td></td<>				2.61				1.96E-06	
JULIC JULIC <t< td=""><td></td><td></td><td></td><td>0.807</td><td></td><td></td><td></td><td>4.04E-07</td></t<>				0.807				4.04E-07	
Lizzo Jizzo Jizzo <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.64E-08</td></th<>								1.64E-08	
0.200 1.11.242 3.00E.04 0.712 1.12.242 1								1.26E-08	
Superior								1.26E-08	
Dig Dig <thdig< th=""> <thdig< th=""> <thdig< th=""></thdig<></thdig<></thdig<>					1.040 01				
0.2.50 0.002.01 0.102.01 0.002.01 0.102.01 0.002.01 0.102.01 0.002.01 0.102.01 <								5.76E-0	
U2.20 Late Col Late Col <thlate col<="" th=""> Late Col <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8 28E-0</td></th<></thlate>								8 28E-0	
U240 3.000-00 3.000-00 3.000-00 9.0100 3.000-00 5.0000 7.00000								2 70E-0	
Nu-242 2.466-10 1.972-07 5.07E-04 1.79E-10 2.11E-10 2.80E-10 3.11 Am-241 2.78E-05 2.17E-20 573 2.00E-05 3.81E-05 3.81E-05 3.92 Am-243 9.55E-10 7.48E-07 1.97E-07 7.10E-10 8.27E-10 1.096-09 1.21 Cm-242 7.01E-06 5.69E-05 0.145 3.27E-04 3.77E-04 7.47E-06 7.91 Cm-243 6.49E-09 5.09E-05 0.145 3.27E-04 3.77E-04 7.47E-06 7.93 Cm-243 6.49E-06 5.09E-05 0.133 2.78E-08 2.97E-08 2.97E-08 7.97E-08 7.97E-08 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4.64E-00</td></t<>								4.64E-00	
Mm-241 2.000-05 2.17E-02 57.3 2.000-05 2.38E-05 3.18E-05 3.58 Am-243 9.55E-10 7.48E-07 1.97E-03 7.10E-10 1.07E-08 1.27E-10 1.090-05 1.21E-05 3.58 Cm-242 7.10E-00 5.96E-06 0.145 3.27E-06 3.27E-06 7.71E-08 7.72 Cm-243 6.49E-09 5.98E-06 1.34E-07 2.97E-08 3.27E-06 9.27E-08 7.77E-08 7.71E-08 7.71E-08 7.71E-08 7.71E-08 7.71E-08 5.72 2.97E-09 2.97E-09 6.90E-09 7.33 Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.78E-08 7.71E-08 E.57 Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.78E-08 7.71E-08 E.57 Totals M μg/g or g/L or g/L 0.97 0.97L	Pu-241	4.48E-05	3.50E-02		3.35E-05	3.90E-05	5.05E-05	5.60E-0	
Am-241 2.78E-05 2.17E-02 57.3 2.00E-05 2.38E-05 3.18E-05 3.54 Am-243 9.55E-10 7.48E-07 1.97E-03 7.10E-10 8.27E-10 1.09E-05 1.19 Cm-242 7.10E-00 5.49E-05 0.145 3.27E-08 3.27E-08 1.27E-08 7.10E-10 8.57E-10 1.09E-06 1.21 Cm-242 7.10E-00 5.09E-06 0.145 3.27E-08 3.27E-08 7.17E-08 7.97 Cm-243 6.49E-00 5.08E-06 1.34E-02 2.92E-09 2.92E-09 5.90E-09 7.33 Cm-244 6.46E-06 5.06E-05 0.133 2.78E-08 7.71E-08 8.57 Cm-244 6.46E-06 5.06E-05 0.133 2.78E-08 7.71E-08 8.57 Totals M psfg or pf1, or pf1, or pf1, or pf1, 0.72L 0.	Pu-242	2.46E-10	1.92E-07	5.07E-04	1.79E-10	2.11E-10	2.80E-10	3.13E-10	
Am-243 9.55E-10 7.48E-07 1.97E-03 7.10E-10 8.27E-10 1.09E-09 1.21 Cm-242 7.01E-06 5.46E-05 0.145 3.27E-08 3.27E-08 3.27E-08 7.47E-08 7.97 Cm-243 6.46E-09 5.06E-05 0.145 3.27E-08 2.92E-09 6.90E-09 7.3X Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.77E-08 8.57 Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.77E-08 8.57 Totals M ps/s crg/l, or g/L, or g/L) or g/L) or g/L) (M +67 CI (M +57 CI (57.3	2.00E-05	2.38E-05	3.18E-05	3.56E-0	
Cm-242 7.01E-08 5.49E-05 0.145 3.27E-08 3.27E-08 7.47E-08 7.97 Cm-243 6.49E-09 5.08E-06 1.34E-02 2.97E-09 2.97E-06 5.90E-09 7.33 Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.78E-08 7.71E-08 8.53 Cm-244 6.46E-08 5.06E-05 0.133 2.78E-08 2.78E-08 7.71E-08 8.53 Totals M ps/g or g/L or g/L or g/L or g/L or g/L 0.475 12.52E-04 2.52E-04 2.52E-04 2.52E-04 3.52E-04 3.5				1.97E-03	7.10E-10			1.21E-0	
Miles Miles <th< td=""><td></td><td></td><td></td><td>0.145</td><td></td><td></td><td></td><td>7.92E-0</td></th<>				0.145				7.92E-0	
Million Million Difference Differenc <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.30E-0</td>								7.30E-0	
M μg/g kg or g/L or g/L or g/L or g/L 0.587 Pu 285E-04 (g/L) 0.587 2058-04 248E-04 3.25E-04 3.55E-04 3.25E-04 3.55E-04 3.25E-04 3.55E-04 3.25E-04 3.55E-04								8.50E-0	
M µg/g kg or g/L) or g/L) Or g/L) (M or 2.45E-04 (g/L) Pu 2.85E-04 (g/L) 0.987 2.05E-04 3.25E-04 3.65	Cm-244	0.405-05	3.008-03	-,135 	L 4./8E-US	2. /DE-US	1.11E-08	0.702-08	
M µg/g kg or g/L) or g/L) Or g/L) (M or 2.45E-04 (g/L) Pu 2.85E-04 (g/L) 0.987 2.05E-04 3.25E-04 3.65						a a		+95 CI	
Pu 2.85E-04 (g/L) 0.587 2.05E-04 2.44E-04 3.25E-04 3.64	전 같은 것 같은 것								
2.632-04 (0/2)		and a second	P\$/1					(M or g/l	
U [4.49E-03 836 2.20E+03 4.29E-03 4.38E-03 4.61E-03 4.6								3.64E-0-	
	υ	4.49E-03	836	2.20E+03	4.29E-03	4.38E-03	4.61E-03	4.64E-03	

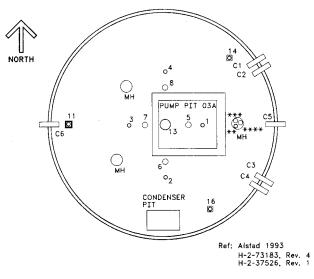

*Density is calculated based on Na, OH-, and AlO2-.

†Water wt% derived from the difference of density and total dissolved species.

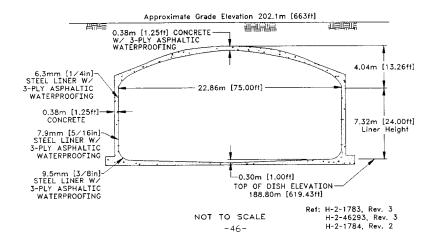
		Sing	le-Shell Tan	k 241-S-102			
		To	tal Inventory	Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	2.66E+06 (kg)	(549 kgal)	-	_			
Heat Load	2.09 (kW)	(7.13E+03 BTU/hr)	-	1.97	2.03	2.15	2.2
Bulk Density†	1.28 (g/cc)			1.26	1.27	1.29	1.3
Water wt%†	61.1		_	59.2	60.0	62.1	63
TOC wt% C (wet	0.409			0.271	0.338	0.479	0.54
Rediological Constituents	CVL	рСVg	CI	-95 CI (CI/L)	-67 CI (CVL)	+67 CI (CVL)	+95 CI (CI/L)
H-3	1.16E-04	9.07E-02	241	6.15E-05	6.15E-05	1.20E-04	1.24E-0
C-14	1.65E-05	1.29E-02	34.2	5.03E-06	5.03E-06	1.67E-05	1.69E-0
Ni-59	1.17E-06	9.12E-04	2.43	6.30E-07	6.30E-07	1.20E-06	1.22E-0
Ni-63	1.14E-04	8.89E-02	237	6.07E-05	6.07E-05	1.17E-04	1.19E-0
Co-60	1.81E-05	1.41E-02	37.6	5.01E-06	5.01E-06	1.84E-05	1.87E-0
Se-79	1.64E-06	1.28E-03	3.41	9.08E-07	9.08E-07	1.90E-06	2.16E-0
Sr-90	6.09E-02	47.5	1.27E+05	5.73E-02	5.91E-02	6.27E-02	6.45E-0
Y-90	6.09E-02	47.5	1.27E+05	3.57E-02	3.57E-02	6.28E-02	6.45E-0
Zr-93	8.04E-06	6.28E-03	16.7	4.39E-06	4.39E-06	9.36E-06	1.06E-0
Nb-93m	5.85E-06	4.56E-03	12.1	3.29E-06	3.29E-06	6.77E-06	7.66E-0
Tc-99	1.17E-04	9.16E-02	244 6.64E-03	7.47E-05	9.55E-05	1.39E-04	1.61E-0
Ru-106	3.20E-09	2.49E-06	0.04E-03 87,4	1.50E-09	1.50E-09	3.57E-09	3.92E-0
Cd-113m	4.21E-05	3.28E-02	8/.4	2.02E-05	2.02E-05	5.00E-05	5.76E-0
Sb-125	7.76E-05	6.05E-02	5.15	2.09E-05	2.09E-05	7.90E-05	8.04E-0
Sn-126	2.48E-06	1.93E-03	0,470	1.38E-06	1.38E-06	2.87E-06	3.25E-0
1-129	2.26E-07	1.77E-04 9.32E-04	2.48	1.44E-07	1.84E-07 9.79E-07	2.69E-07	3.10E-0
Cs-134 Cs-137	1.19E-06 0.127	9.32E-04 99.1	2.64E+05	8.66E-07 0.115	9.79E-07 0.121	1.36E-06 0.133	1.53E-0 0.13
Cs-137 Be-137m	0.127	93.8	2.50E+05	9.16E-02	9.16E-02	0.133	0.13
Sm-157m Sm-151	5.77E-03	4.50	1.20E+04	3.21E-03	3.21E-03	6.70E-03	7.58E-0
Eu-152	1.90E-06	1.48E-03	3.95	9.95E-07	9.95E-07	2.02E-06	2.14E-0
Eu-154	2.94E-04	0.229	611	1.116-04	1.11E-04	3.60E-04	3.86E-0
Eu-155	1.11E-04	8.70E-02	232	5.76E-05	5.76E-05	1.19E-04	1.26E-0
Ra-226	7.76E-11	6.06E-08	1.61E-04	5.50E-11	5.50E-11	8.58E-11	9.37E-1
Ra-228	6.28E-08	4.90E-05	0.131	2.61E-08	4.41E-08	8.46E-08	1.08E-0
Ac-227	4.74E-10	3.70E-07	9.85E-04	3.42E-10	3.42E-10	5.21E-10	5.67E-1
Pa-231	2.02E-09	1.58E-06	4.20E-03	1.29E-09	1.29E-09	2.29E-09	2.54E-0
Th-229	1.48E-09	1.15E-06	3.07E-03	6.69E-10	1.06E-09	1.95E-09	2.46E-0
Th-232	4.18E-09	3.26E-06	8.69E-03	2.15E-09	3.14E-09	5.22E-09	6.21E-0
U-232	3.27E-07	2.55E-04	0.690	1.80E-07	2.52E-07	4.14E-07	5.07E-0
U-233	1.25E-06	9.79E-04	2.61	6.91E-07	9.66E-07	1.59E-06	1.94E-0
U-234	3.89E-07	3.04E-04	0.809	3.74E-07	3.8LE-07	3.98E-07	4.01E-0
U-235	1.58E-08	1.23E-05	3.29E-02	1.52E-08	1.55E-08	1.62E-08	1.63E-0
U-236	1.21E-08	9.45E-06	2.52E-02	1.17E-08	1.19E-08	1.23E-08	1.25E-0
U-238	4.45E-07	3.48E-04	0.925	4.30E-07	4.37E-07	4.54E-07	4.57E-0
Np-237	4.31E-07	3.37E-04	0.897	2.92E-07	3.60E-07	\$.03E-07	5.73E-0
Pu-238	7.06E-07	5.51B-04	1.47	5.42E-07	6.23E-07	7.90E-07	8.70E-0
Pu-239	2.61E-05	2.03E-02	8.98	2.19E-05	2.39E-05	2.82E-05	3.02E-0
Pu-240	4.32E-06	3.37E-03	8.98 98.4	3.54E-06	3.93E-06	4.72E-06	5.10E-0
Pu-241	4.73E-05	3.69E-02	5.34E-04	3.62E-05	4.16E-05	5.30E-05	5.85E-6
Pu-242	2.57E-10	2.01E-07	57.4	1.91E-10 1.99E-05	2.23E-10 2.37E-05	2.91E-10 3.16E-05	3.24E-1 3.54E-0
Am-241 Am-243	2.76E-05 9.49E-10	2.16E-02 7.41E-07	1.97E-03	1.99E-05 7.05E-10	2.37E-05 8.22E-10	3.16E-05	3.54E-
Am-243 Cm-242	9.49E-10 7.08E-08	7.41E-07 5.52E-05	0.147	3.37E-08	8.22E-10 3.37E-08	7.54E-09	7.98E-0
Cm-242 Cm-243	6.47E-09	5.05E-06	L34E-02	2.92E-09	2.92E-09	6.88E-09	7.98E-0
Cm-243 Cm-244	6.42E-08	5.01E-05	0.133	2.92E-09 2.76E-08	2.92E-09 2.76E-08	7.65E-08	8.44E-0
<u></u>				a	a. 192-98		
				-95 CI (M	-67 CI (M	+67 CI (M	+95 Cl
Totals	м	F#/S	kg	or g/L)	or g/L)	or g/L)	(M or g/l
Pu	3.40E-04 (g/L)		0.707	2.61E-04	3.00E-04	3.80E-04	4.19E-0
		830	2.21E+03				

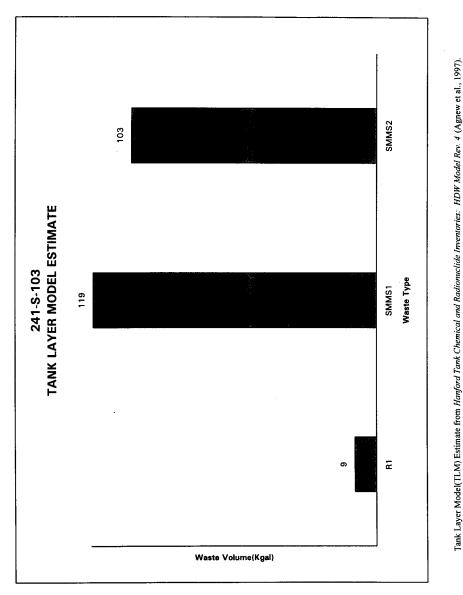

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

- 42 -


YAAMMUZ COT-2-152 XNAT

NOILAING	I VINAT	AHC	TSIH XNAT	
33 92	Diameter	5881 ap 189	Entered Service	
USIC)	Bottom Shape	÷	somoved itom Service	
160 000,887	VioneqeO lenimoli	0861	sväden	
9000	AnsT obsossO	9000	sisiji doteVi	
2}	Total Risers	punas	វរុមទីទរប	
(ISEET NOJNAH)	SMUJOY STEAM	-	jaanmed Leaker	
186 000,8%2	Total Weste Volume	,	(SI) notissitidets minetri	
3850	Waste Type	2861 380	(IT) noiteiosi mineini teitre	
IEE 000,88	ebiupiJ ishtershri eldaniar0	~	ritrusion Prevention (IP)	
leg 000,78	Pumpia sideqmuq	VBLE RISERS	TENTATIVELY AVAIL	
186 000,15S	exected	93:S	Fiser Number(s)	
jeć 000 0;	aptuiz	33j \$7	31. \$1. 11	
leg 000.7 î	Supernarant	u: 21	8'8	
SHAVBOOL	INTERIOR PHC	TANK TEMPERATURE		
6861 'i aunr	ରାମ୍ବର	83,E	werage Tank Temperature	
N092-22017076	Montage Number	3,86	enuisedmeT mumixal	
89090148	Photo Set Number	8861 Z AON	Sied	
YOE LEVEL	TRUE ETEAW	n er.o	matted Anst mort notisevel3	
RANNE leuneth bine of A	Devices		Riser Number	
ui 901	Max Level	4,4°89	ensisered meaning	
9661 °C; ARM	Site	2 ¹ 1884	Sied	
VI 9 Z01	IBVAL LEVEL	n 86.8	mottod Anst mont notsevel3	
March 7 and 8, 1991	Date	¥	Pleat Number	




WHC-SD-WM-ER-352, Rev.

241-S-103

TANK RISER LOCATION

-47-

HNF-SD-WM-ER-352, Rev. 1

		Sin	gle-Shell Tar	k 241-S-103			
		TLM Solid	s Composite	Inventory Est	imate*		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	5.98E+04 (kg)	(9.00 kgal)	_				
Heat Load	0.222 (kW)	(758 BTU/hr)		0.161	0.197	0.238	0.24
Bulk Density	1.76 (g/cc)	_		1.51	1.53	2.11	2.2
Void Fraction	0.536	_		6.00E-02	0.217	0.737	0,74
Water wt%	27.0		_	2.64	10.0	42.6	44.
TOC wt% C (wet	0		_	0	0	0	
Chemical				-95 Cl	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Ne+	8.13	1.06E+05	6.36E+03	3.05	3.56	14.7	18.
A13+	6.99	1.07E+05	6.42E+03	6.58	6.74	7.15	7.1
Fe3+ (total Fe)	1.01	3.22E+04	1.93E+03	0.994	1.00	1.02	1.0
Cr3+	6.19E-02	1.83E+03	110	7.08E-03	3.39E-02	0.522	1.0
Bi3+	0	0	0	0	0	0	
≜3 +	0	0	0	0	0	0	
Hg2+	0	0	0	0	0	0	
Zr (as ZrO(OH)2)	0	0	0	0	0	0	
Pb2+	0	0	Ô	0	0	Ö	
Ni2+	5.07E-02	1.69E+03	101	3.66E-02	4.45E-02	5.54E-02	5.45E-0
Sr2+	0	0	0	0	0	0	
Mn4+	0	0	0	0	0	0	(
Ca2+	0.220	5.02E+03	300	0.146	0.182	0.258	0.29
K+	1.12E-02	250	14.9	1.28E-03	5.25E-03	1.52E-02	1.52E-0
OH-	25.6	2.48E+05	1.48E+04	23.1	24.3	26.9	28.
NO3-	5.29	1.87E+05	1.12E+04	6.03E-02	6.03E-02	13.5	173
NO2-	1.46	3.82E+04	2.28E+03	0.132	0.595	2.15	2.1
CO32-	0.220	7.51E+03	449	0.146	0.182	0.258	0.29
PO43-	0	0	0	0	0	0	(
SO42-	1.04E-02	569	34.0	1.19E-03	4.87E-03	1.41E-02	1.41E-02
Si (as SiO32-)	8.06E-03	129	7.71	9.21E-04	3.77E-03	1.09E-02	1.09E-02
P.	0	0	0	0	0	0	(
CI+	5.16E-02	1.04E+03	62.3	5.91E-03	2.42E-02	7.00E-02	0.15
C6H5O73-	0	0	0	0	0	0	
EDTA4-	0	0	0	0	0	0	(
HEDTA3-	0	0	0		0	0	
dycolate-	0	- 0	0	0		0	
cetate-	0	0	0	0	0		
walate2-	0	0	0	0	0	0	
DBP	0	0	0	0	0		
outanol	0	0	0	0	0	0	
VH3	0.256	2.47E+03	148	(
e(CN)64-	0	2.4/2+03		6.55E-02	9.25E-02	0.270	0.28

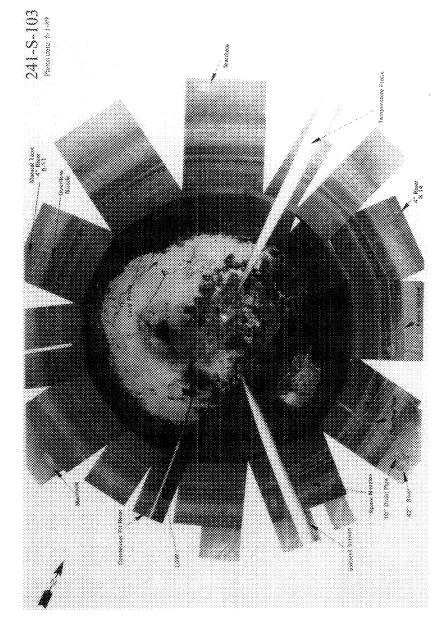
HNF-SD-WM-ER-352, Rev. 1

		Sin	gle-Shell Tan	k 241-S-103			
				ventory Estim	ate		
Physical	0.000		1.000	0.000			04
Properties	유가 가슴을 물을			-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	1.52E+06 (kg)	(239 kgal)			_		_
Heat Load	2.12 (KW)	(7.25E+03 BTU/hr)	_	1.99	2.06	2.19	2.20
Bulk Density®	1.67 (g/cc)			1.62	1.65	1.70	1.7
Water wt%	28.3			25.7			
TOC wt% C (wet	0.798			0.523	26.8 0.658	29.8	31.
	1011-011-01-01-01-01-01-01-01-01-01-01-0			0.323	0.038	0.958	1.0
Chemical				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	88.0.5.2777
Na+	15.8	2.17E+05	3.28E+05	14.5			(mole/L)
Al3+	1.86	2.99E+04	4.53E+04		15.1	16.4	16.5
Fe3+ (total Fe)	1.21E-02	403	611	1.72	1.79	1.93	1.95
Cr3+	0,165	5.12E+03	7.75E+03	9.90E-03 0.137	1.10E-02	1.32E-02	1.43E-02
Bi3+	1.52E-03	190	288		0.152	0.170	0.174
La3+	4.56E-05	3.78	5.72	1.38E-03	1.45E-03	1.59E-03	1.66E-03
Hig2+	L.03E-05	1.23	1.86	3.30E-05	3.91E-05	5.20E-05	5.82E-05
Zr (m ZrO(OH)2)	2.87E-04	15.6	23.7	9.52E-06	9.94E-06	1.04E-05	1.05E-05
Pb2+	1.12E-03	13.0	209	2.61E-04	2.70E-04	2.97E-04	3.12E-04
Ni2+	7.21E-03	253	383	9.06E-04	1.01E-03	1.22E-03	1.33E-03
Sr2+	7.215-03	233	365	6.89E-03	7.05E-03	7.29E-03	7.37E-03
Mn4+	4.31E-03		214	0	0	0	
Ca2+	3.78E-02	905	1.37E+03	3.26E-03	3.78E-03	4.85E-03	5.36E-03
K+	7.32E-02	1.71E+03	2.59E+03	3.47E-02	3.62E-02	3.94E-02	4.09E-02
OH-	1.522-02	1./1E+03	1.71E+05	6.68E-02	6.98E-02	7.67E-02	8.00E-02
NO3-	5.64	2.09E+05		10.2	10.6	11.6	11.8
NO3-	2.72	2.09E+05	3.16E+05	5.19	5.45	5.73	5.78
032-	0.482		1.13E+05 2.62E+04	2.27	2.48	2.95	3.17
-032- PO43-	0.482	1.73E+04	2.62E+04 8.70E+03	0.437	0.454	0.516	0.522
5042-	0.272	5.74E+03		8.67E-02	9.18E-02	0.104	0.106
		1.56E+04	2.36E+04	0.214	0.241	0.303	0.330
Si (as SiO32-)	8.66E-02	1.45E+03	2.20E+03	7.15E-02	7.89E-02	9.42E-02	0.102
P.	7.47E-02	847	1.28E+03	6.26E-02	6.77E-02	8.07E-02	8.54E-02
Cl-	0.273	5.77E+03	8.75E+03	0.247	0.257	0.285	0.295
C6H5O73-	3.07E-02	3.46E+03	5.24E+03	2.81E-02	2.94E-02	3.19E-02	3.32E-02
EDTA4-	1.64E-02	2.83E+03	4.28E+03	5.03E-03	1.06E-02	2.23E-02	2.80E-02
HEDTA3-	3.07E-02	5.03E+03	7.62E+03	7.92E-03	1.91E-02	4.25E-02	5.39E-02
tycolate-	9.70E-02	4.34E+03	6.58E+03	6.35E-02	7.99E-02		
cetate-	6.90E-03	243	368			0.114	0.131
xalate2-	5.97E-05	314	4.75	5.66E-03 5.29E-05	6.27E-03	7.53E-03	8.14E-03
DBP	2.09E-02	2.62E+03	3.97E+03		5.62E-05	6.31E-05	6.65E-05
outanol	2.09E-02	923	1.40E+03	1.72E-02	1.90E-02	2.27E-02	2.45E-02
	2.372-02		1105-103	1.72E-02	1.90E-02	2.27E-02	2.45E-02
NH3	9.63E-02	977	1.48E+03	7.94E-02	0.000.00		
e(CN)64	9.032-02	0		7.94E-02	8.60E-02	0.109	0.125

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

		Sin	le-Shell Tan	k 241-S-103			
		To	tal Inventory	Estimate*			
Physical	10 met een een	a eo 1940 de		11000			de Sera
Properties	ja balan bak		e e e e e e e e e e e e e e e e e e e	-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	1.58E+06 (kg)	(248 kgal)					
Heat Load	2.35 (kW)	(8.01E+03 BTU/hr)	—	2.21	2.28	2.41	2.4
Bulk Density†	1.68 (g/oc)			1.63	1.65	1.70	1.72
Water wt%†	28.3			25.7	26.8	29.7	31.5
TOC wt% C (wet	0.768	_		0.503	0.633	0.903	1.0
Chemical Constituents				-95 CI	-67 CI	+67 C1	+95 CI
Na+	mole/L 15.5	2.12E+05	kg 3.35E+05	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+ Al3+	2.04	2.12E+05 3.29E+04	5.17E+04	14.2	14.9	16.1	16.6
Fe3+ (total Fe)	4.84E-02	3.29E+04	2.54E+03	1.91	1.98	2.11	2.17
Cr3+	0.161	4.99E+03	2.54E+03	4.63E-02	4.73E-02	4.95E-02	5.05E-02
Bi3+	1.47E-03	4.992-03	7.802-403	0.143	0.152	0.172	0.171
La3+	4.39E-05	3.63	5.72	1.33E-03	1.40E-03	1.54E-03	1.60E-03
Hg2+	9.88E-06	1.18	3.72	3.18E-05	3.77E-05	5.01E-05	5.61E-05
Zr (as ZrO(OH)2)	2.76E-04	1.10	23.7	9.17E-06	9.57E-06	1.00E-05	1.02E-05
Pb2+	1.08E-03	13.0	23.7	2.52E-04	2.60E-04	2.86E-04	3.00E-04
Ni2+	8,79E-03	307	484	8.73E-04	9.73E-04	1.18E-03	1.28E-03
Sr2+	8./ 3E-03		0	8.28E-03	8.56E-03	8.96E-03	8.94E-03
Mn4+	4.15E-03	136	214	0	0	0	C
Ca2+	4.44E-02	1.06E+03	1.67E+03	3.14E-03	3.64E-03	4.67E-03	5.17E-03
K+	7.09E-02	1.65E+03	2.60E+03	4.14E-02	4.29E-02	4.60E-02	4.74E-02
OH-	11.6	1.18E+05	1.85E+05	6.48E-02	6.77E-02	7.43E-02	7.75E-02
NO3-	5.62	2.08E+05	3.27E+05	10.8	11.2	12.0	12.3
NO2-	2.67	7.33E+04	1.15E+05	5.19	5.40	5.88	5.87
CO32-	0.472	1.69E+04	2.66E+04	2.24	2.44	2.90	3.11
PO43-	9.76E-02	5.53E+03	8.70E+03	0.429	0.446	0.506	0.511
SO42-	0.262	1.50E+04	2.36E+04	8.36E-02	8.85E-02	0.100	0.103
Si (ss SiO32-)	8.37E-02	1.40E+03	2.21E+03	0.207	0.233	0.292	0.319
51 (m 51032-) F-	7.20E-02	815	1.28E+03	6.92E-02	7.63E-02	9.11E-02	9.82E-02
C1-	0 265	5.59E+03	8.81E+03	6.03E-02	6.52E-02	7.77E-02	8.23E-02
C6H5O73-	2,95E-02	3.33E+03	5.24E+03	0.240	0.249	0.276	0.286
EDTA4-	1.58E-02	2.72E+03	4.28E+03	2.71E-02	2.83E-02	3.08E-02	3.20E-02
HEDTA3-	2.96E-02	4.84E+03	7.62E+03	4.85E-03 7.63E-03	1.02E-02	2.15E-02 4.09E-02	2.70E-02
h¢DI AS	2.902-02	4,646+03	7.026+03	7.63E-03	1.84E-02	4.09E-02	5.20E-02
glycolate-	9.35E-02	4.18E+03	6.58E+03	(100	7 700 7 44	0.110	
acetate-	9.35E-02 6.65E-03	4.102703	368	6.12E-02	7.70E-02	0.110	0.126
oxalate2-	5.75E-05	3.02	4.75	5.46E-03	6.04E-03	7.26E-03	7.85E-03
DBP	2.01E-02	2.52E+03	4.73 3.97E+03	5.09E-05	5.42E-05	6.09E-05	6.41E-0
butanol	2.01E-02 2.01E-02	2.52E+03 888	3.97E+03	1.65E-02	1.83E-02	2.19E-02	2.36E-02
ULLER COL	2.010-02	000	1.406705	1.65E-02	1.83E-02	2.19E-02	2.36E-02
NH3	0.102	1.03E+03	1.63E+03	0.000.00			
				8.58E-02	9.22E-02	0.115	0.125
Fe(CN)64-	0	0 saigned by Tank Laver	0	0	0	0	

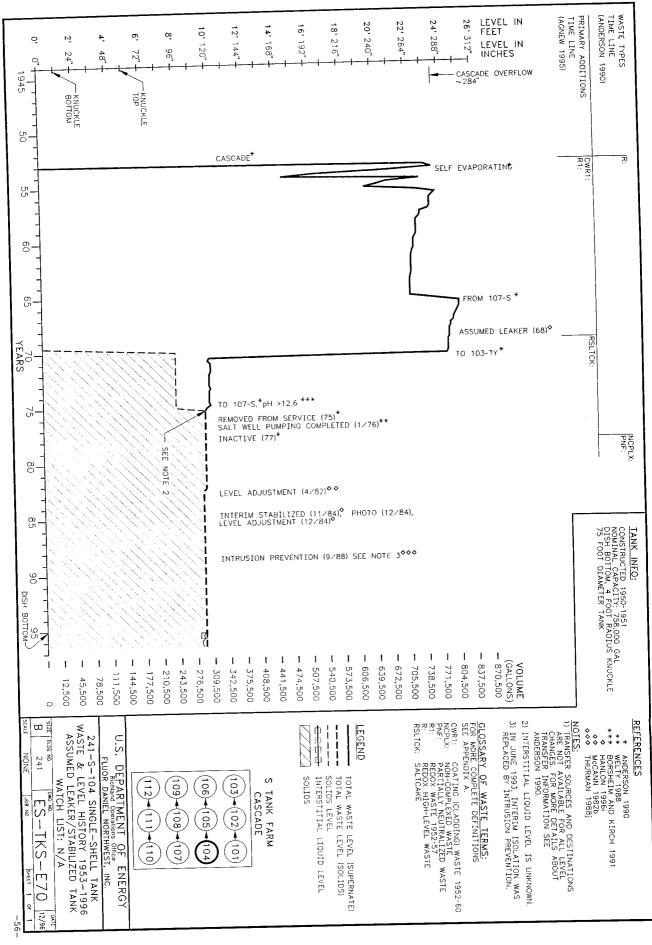
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.


		Sing	le-Shell Tan	k 241-S-103			
		TLM Solid	s Composite	Inventory Esti	mate*		
Physical Properties				-95 CI	-67 CI	+67 C1	+95 CI
Total TLM Waste	5.98E+04 (kg)	(9.00 kgal)			_		
Heat Load	0.222 (kW)	(758 BTU/hr)		0.161	0.197	0.238	0.24
Bulk Density	1.76 (g/cc)	(1.5. 51012)		1.51	1.53	2.11	2.2
Void Fraction	0.536		_	6.00E-02	0.217	0.737	0.74
Vater wt%	27.0	_		2.64	10.0	42.6	44
FOC wt% C (wet	0			0	0		
Radiological Constituents	CIL	#Ci/g	Ci	-95 CI (CI/L)	-67 CI (CVL)	+67 CI (CVL)	+95 CI (CI/L)
H-3	2.92E-05	1.67E-02	0.996	3.05E-06	1.47E-05	4.10E-05	4.10E-0
C-14	2.26E-06	1.29E-03	7.71E-02	2.59E-07	1.06E-06	3.07E-06	3.07E-0
Ni-59	1.49E-05	8.46E-03	0.506	1.07E-05	1.31E-05	1.62E-05	1.60E-0
vi-63	1.39E-03	0.790	47.2	1.00E-03	1.22E-03	1.52E-03	1.49E-0
Co-60	8.94E-07	5.09E-04	3.04E-02	1.02E-03	4.18E-07	1.32E-03	1.49E-0
Se-79	4.81E-07	2.74E-04	1.64E-02	5.50E-08	2.25E-07	6.51E-07	7.15E-0
Sr-90	4.81E-07	2.74E-04	3 16E+04	0.662	0.812		
			3.16E+04			1.02	1.0
Y-90	0.929	529	7.73E-02	0.662	0.812	1.02	1.0
Zr-93	2.27E-06	1.29E-03	6.32E-02	2.59E-07	1.06E-06	3.08E-06	3.03E-0
Nb-93m	1.85E-06	1.06E-03	0.540	2.12E-07	8.68E-07	2.51E-06	3.21E-0
Fc-99	1.58E-05	9.02E-03		1.81E-06	7.42E-06	2.15E-05	2.15E-0
Ru-106	2.50E-12	1.42E-09	8.50E-08	2.86E-13	1.17E-12	3.38E-12	3.38E-1
Cd-113m	6.99E-06	3.96E-03	0.238	8.00E-07	3.27E-06	9.48E-06	9.48E-0
Sb-125	1.31E-06	7.47E-04	4.47E-02	1.50E-07	6.14E-07	1.78E-06	1.78E-0
in-126	7.39E-07	4.21E-04	2.52E-02	8.45E-08	3.46E-07	1.00E-06	1.14E-0
-129	3.04E-08	1.73E-05	1.04E-03	3.48E-09	1.42E-08	4.13E-08	4.13E-0
Cs-134	2.72E-08	1.55E-05	9.26E-04	7.19E-09	1.52E-08	3.52E-08	3.52E-0
Ca-137	5.60E-02	31.9	1.91E+03	1.48E-02	3.13E-02	7.26E-02	7.26E-0
Ba-137m	5.30E-02	30.2	1.80E+03	1.40E-02	2.96E-02	6.87E-02	6.87E-0
Sm-151	1.71E-03	0.976	58.4	1.96E-04	8.03E-04	2.33E-03	2.64E-0
Bu-152	7.00E-06	3.98E-03	0.238	6.85E-06	6.91E-06	7.06E-06	7.06E-0
Bu-154	2.16E-05	1.23E-02	0.735	2.47E-06	1.01E-05	2.93E-05	2.93E-0
Bu-155	3.30E-04	0.188	11.3	3.23E-04	3.26E-04	3.33E-04	3.33E-0
Ra-226	1.08E-09	6.15E-07	3.68E-05	1.48E-10	6.04E-10	1.56E-09	2.01E-0
Ra-228	9.26E-15	5.28E-12	3.16E-10	9.07E-15	9.15E-15	9.34E-15	9.34E-1
Ac-227	4.76E-09	2.71E-06	1.62E-04	3.06E-10	2.00E-09	7.52E-09	1.02E-0
Pa-231	7.18E-10	4.09E-07	2.44E-05	8.21E-11	3.36E-10	2.04E-09	1.68E-0
Th-229	1.77E-12	1.01E-09	6.02E-08	1.73E-12	1.75E-12	1.78E-12	1.78E-1
Th-232	5.91E-16	3.36E-13	2.01E-11	6.76E-17	2.77E-16	8.01E-16	8.01E-1
U-232	5.24E-12	2.98E-09	1.78E-07	5.99E-13	2.45E-12	7.10E-12	7.10E-1
U-233	2.00E-13	1.14E-10	6.80E-09	2.28E-14	9.34E-14	2.71E-13	2.71E-1
U-234	1.19E-07	6.78E-05	4.06E-03	1.36E-08	5.58E-08	1.62E-07	1.62E-0
U-235	5.13E-09	2.92E-06	1.75E-04	5.86E-10	2.40E-09	6.95E-09	6.95E-0
U-236	1.88E-09	1.07E-06	6.42E-05	2.16E-10	8.82E-10	2.56E-09	2.56E-0
U-238	1.22E-07	6.92E-05	4.14E-03	1.39E-08	5.69E-08	1.65E-07	1.65E-0
Np-237	1.03E-07	5.86E-05	3.50E-03	1.19E-08	4.81E-08	1.83E-07 1.39E-07	1.39E-0
			0.225				
Pu-238	6.61E-06	3.77E-03 0.269	16.1	4.75E-06 3.39E-04	5.66E-06 4.04E-04	7.57E-06 5.40E-04	8.48E-0 6.05E-0
Pu-239	4.72E-04		2 30				
Pu-240	6.76E-05	3.85E-02	13.5	4.85E-05	5.78E-05	7.73E-05	8.66E-0
Pu-241	3.97E-04	0.226	6.21E-05	2.85E-04	3.40E-04	4.55E-04	5.09E-0
Pu-242	1.82E-09	1.04E-06	0.21E-05	1.31E-09	1.56E-09	2.08E-09	2.34E-0
Am-241	8.09E-06	4.61E-03	2.58E-06	9.26E-07	3.79E-06	1.10E-05	1.43E-0
Am-243	7.57E-11	4.31E-08		8.66E-12	3.54E-11	1.03E-10	1.34E-0
Cm-242	1.61E-07	9.16E-05	5.48E-03	1.58E-07	1.59E-07	1.62E-07	1.62E-6
Cm-243	3.69E-09	2.10E-06	1.26E-04	3.61E-09	3.64E-09	3.72E-09	3.72E-C
Cm-244	2.70E-09	L 54E-06	9.21E-05	3.09E-10	1.27E-09	3.67E-09	3.67E-0
				-95 CI (M			
Totals	M	<u> </u>	<u>h</u> g	or g/L)	or g/L)	or g/L)	(M or g/l
Pu	7.89E-03 (g/L)	207	0.269	5.67E-03	6.76E-03	9.03E-03	1.01E-0
U I	1 \$3E-03		12.4	1.75E-04	7.16E-04	2.07E-03	2.07E-0

			le-Shell Tank				
		SMM C	omposite Inve	ntory Estimat	¢		
Physical Properties				-95 Cl	-67 CI	+67 CI	+95 CI
otal SMM Wast	1.52E+06 (kg)	(239 kgal)	-				
lest Losd	2.12 (kW)	(7.25E+03 BTU/hr)		1.99	2.06	2.19	2.20
Bulk Density*	1.67 (g/cc)			1.62	1.65	1.70	1.72
Vater wt%†	28.3			25.7	26.8	29.8	31.1
OC wt% C (wet	0.798			0.523	0.658	0.938	1.0*
Radiological Constituents	CVL	pCl/g	Ci	-95 CI (CI/L)	-67 C1 (Ci/L)	+67 CI (CVL)	+95 CI (CVL)
1-3	2.80E-04	0.167	253	1.46E-04	1.46E-04	2.89E-04	3.00E-0-
2-14	4.03E-05	2.41E-02	36.4	1.23E-05	1.23E-05	4.09E-05	4.15E-0
vi-59	2.61E-06	1.56E-03	2.36	1.29E-06	1.29E-06	2.67E-06	2.74E-0
Ni-63	2.55E-04	0.153	231	1.25E-04	1.25E-04	2.62E-04	2.68E-0
Co-60	4.46E-05	2.66E-02	40.3	1.26E-05	1.26E-05	4.54E-05	4.62E-0
Se-79	4.00E-06	2.39E-03	3.62	2.21E-06	2.21E-06	4.65E-06	5.27E-0
§r-90	0.133	79.6	1.21E+05	0.124	0.129	0.138	0.14
Y-90	0.133	79.6	1.21E+05	7.16E-02	7.16E-02	0.138	0.14
Zr-93	1.96E-05	1.17E-02	17.8	1.07E-05	1.07E-05	2.29E-05	2.60E-0
Nb-93m	1.43E-05	8.51E-03	12.9	8.01E-06	8.01E-06	1.65E-05	1.87E-0
Tc-99	2.87E-04	0.171	260	1.83E-04	2.34E-04	3.41E-04	3.92E-0
Ru-106	7.93E-09	4.73E-06	7.17E-03	3.79E-09	3.79E-09	8.85E-09	9.69E-0
Cd-113m	1.03E-04	6.15E-02	93.2	4.94E-05	4.94E-05	1.22E-04	1.41E-0
5b-125	1.92E-04	0.114	173	5.30E-05	5.30E-05	1.95E-04	1.99E-0
Sn-126	6.05E-06	3.61E-03	5.47	3.37E-06	3.37E-06	7.02E-06	7.94E-0
-129	5.53E-07	3.30E-04	0.500	3.51E-07	4.50E-07	6.57E-07	7.57E-0
Cs-134	3.03E-06	1.81E-03	2.74	2.16E-06	2.55E-06	3.47E-06	3.90E-0
Cs-137	0.310	185	2.80E+05	0.279	0.294	0.325	0.34
Ba-137m	0.293	175	2.65E+05	0.230	0.230	0.308	0.32
Sm-151	L.41E-02	8,41	1.27E+04	7.84E-03	7.84E-03	1.63E-02	1.85E-0
Eu-152	4.61E-06	2.75E-03	4.17	2.40E-06	2.40E-06	4.93E-06	5.24E-0
Eu-152	7.23E-04	0.432	654	2.77E-04	2.77E-04	8.85E-04	9.49E-0
Eu-155	2.73E-04	0.163	247	1.4IE-04	L41E-04	2.92E-04	3.11E-0
Rs-226	1.71E-10	1.02E-07	1.55E-04	1.16E-10	1.16E-10	1.91E-10	2.10E-1
Ra-228	1.67E-07	9.95E-05	0.151	6.98E-08	1.17E-07	2.24E-07	2.85E-0
Ac-227	1.08E-09	6.46E-07	9.79E-04	7.61E-10	7.61E-10	1.20E-09	1.31E-0
	4.96E-09	2.96E-06	4.49E-03	3.18E-09	3.18E-09	5.61E-09	6.23E-0
Pa-231	3.91E-09	2.33E-06	3.54E-03	1.78E-09	2.82E-09	5.17E-09	6.52E-0
Th-229 Th-232	1.11E-08	6.63E-06	1.00E-02	5.74E-09	8 37E-09	1.38E-08	1.65E-0
U-232	8.58E-07	5.12E-04	0.776	4.69E-07	6.59E-07	1.09E-06	1.33E-0
	3.29E-06	1.96E-03	2.97	1.80E-06	2.53E-06	4.17E-06	5.11E-0
U-233	9.64E-07	5.76E-04	0.872	9.28E-07	9.46E-07	9.84E-07	9.94E-0
U-234 U-235	9.64E-07 3.91E-08	2.34E-05	3.54E-02	3.76E-08	3.83E-08	4.00E-08	4.04E-0
U-235 U-236	3.91E-08 3.02E-08	1.80E-05	2.73E-02	2.91E-08	2.97E-08	3.06E-08	3.11E-0
	1.12E-06	6.67E-04	1.01	1.08E-06	1.10E-06	1.14E-06	1.15E-C
U-238	1.05E-06	6.26E-04	0.948	7.07E-07	8.74E-07	1.22E-06	1.39E-0
Np-237	1.63E-06	9.75E-04	1.48	1.23E-06	1.43E-06	1.84E-06	2.03E-0
Pu-238 Pu-239	5.61E-05	3.35E-02	50.8	4.58E-05	5.09E-05	6.13E-05	6.63E-0
	9.51E-06	5.68E-03	8.60	7.60E-06	8.54E-06	1.05E-05	1.14E-4
Pu-240 Pu-241	9.51E-06 1.10E-04	6.59E-02	99.8	8.31E-05	9.64E-05	1.24E-04	1.38E-
	6.06E-10	3.62E-07	5.48E-04	4.43E-10	5.23E-10	6.89E-10	7.69E-
Pu-242	6.81E-05	4.06E-02	61.6	4.91E-05	5.84E-05	7.78E-05	8.71E-4
Am-241	6.81E-05	1.41E-06	2.13E-03	1.76E-09	2.05E-09	2.68E-09	2.98E-
Am-243		1.41E-00 1.04E-04	0.158	8.40E-08	8.40E-08	1.87E-07	1.99E-
Cm-242	1.75E-07 1.62E-08	9.66E-06	1.46E-02	7.52E-09	7.52E-09	1.73E-08	1.83E-
Cm-243		9.55E-05	0.145	7.07E-08	7.07E-08	1.90E-07	2.10E-
Cm-244	1.60 <u>E-07</u>	9.558-05	L	1 1.075-08	1,0/2-08	1 1.500-07	1
					201 (0.000 (0.000 (0.000 (0.000)))	+67 CI (M	
Totals	M	#ø/g	ky .	or g/L)	or g/L)	or g/L)	(M or g/
Pu	7.03E-04 (g/L)		0.636	5.09E-04	6.04E-04	8.02E-04	8.96E-

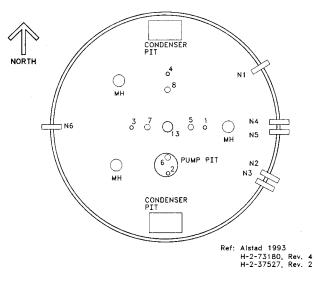
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

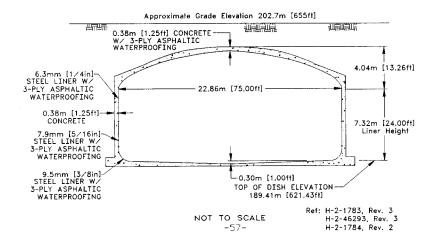
	· · · · · · · · · · · · · · · · · · ·			k 241-S-103			
		To	tal Inventory	Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	1.58E+06 (log)	(248 kgal)					
Heat Load	2.35 (kW)	(8.01E+03 BTU/hr)		2.21	2.28	2.41	2.
Bulk Density†	1.68 (g/cc)			1.63	1.65	1.70	1.
Water wt%†	28.3			25.7	26.8	29.7	31
TOC wt% C (wet	0.768			0.503	0.633	0.903	1.
Radiological Constituents	CVL	pCi/g	Ci	-95 CI (CVL)	-67 CI (CI/L)	+67 CI (CVL)	+95 Cl (Cl/L)
H-3	2.71E-04	0.161	254	1.42E-04	1.42E-04	2.79E-04	2.90E-0
C-14	3.89E-05	2.32E-02	36.5	1.19E-05	1.19E-05	3.95E-05	4.01E-
Ni-59	3.05E-06	1.82E-03	2.86	1.78E-06	1.78E-06	3.12E-06	3.18E-4
Ni-63	2.97E-04	0.177	278	1.7IE-04	1.71E-04	3.03E-04	3.09E-
Co-60	4.30E-05	2.56E-02	40.4	1.21E-05	1.21E-05	4.38E-05	4.46E-4
Se-79	3.87E-06	2.3IE-03	3.64	2.15E-06	2.15E-06	4.50E-06	5.09E-0
Sr-90	0.162	96.6	1.52E+05	0.152	0.158	0.166	0.17
Y-90	0.162	96.6	1.52E+05	0.103	0.103	0.166	0.1
Zz-93	1.90E-05	1.13E-02	17.8	1.04E-05	1.04E-05	2.21E-05	2.51E-
Nb-93m	1.38E-05	8.23E-03	13.0	7.78E-06	7.78E-06	1.60E-05	1.81E-
Tc-99	2.77E-04	0.165	260	1.77E-04	2.26E-04	3.29E-04	3.79E-4
Ru-106	7.64E-09	4.55E-06	7.17E-03	3.65E-09	3.65E-09	8.53E-09	9.34E-
Cd-113m	9.95E-05	5.93E-02	93.4	4,79E-05	4.79E-05	1.18E-04	1.36E-4
Sb-125	1.85E-04	0.110	173	5.11E-05	5.11E-05	1.88E-04	1.92E-0
Sn-126	5.85E-06	3.49E-03	5.49	3.27E-06	3.27E-06	6.79E-06	7.686-0
-129	5.34E-07	3.18E-04	0.501	3.40E-07	4.35E-07	6.34E-07	7.31E-0
Ca-134	2.92E-06	1.74E-03	2.74	2.09E-06	4.33E-07		
Cs-137	0.300	1.748-03	2.82E+05			3.35E-06	3.76E-0
Ba-137m	0.300	169	2.67E+05	0.271	0.285	0.316	0.33
Sm-151	1.36E-02	8.13	1.28E+04	0.223 7.61E-03	0.223 7.61E-03	0.299	0.3
			4.41			1.58E-02	1.79E-C
Eu-152	4.70E-06 6.98E-04	2.80E-03	655	2.57E-06	2.57E-06	5.00E-06	5.30E-C
Eu-154		0.416	258	2.68E-04	2.68E-04	8.53E-04	9.16E-0
Bu-155	2.75E-04	0.164	1.92E-04	1.48E-04	1.48E-04	2.93E-04	3.12E-0
Ra-226	2.04E-10	1.22E-07	0.151	1.51E-10	1.5LE-10	2.23E-10	2.42E-1
Ra-228	1.61E-07	9.58E-05	1.14E-03	6.72E-08	1.13E-07	2.16E-07	2.75E-0
Ac-227	1.22E-09	7.25E-07	4.52E-03	9.06E-10	9.06E-10	1.33E-09	1.44E-0
Pa-231	4.81E-09	2.87E-06	4.52E-03 3.54E-03	3.09E-09	3.09E-09	5.43E-09	6.03E-0
Th-229	3.77E-09	2.25E-06		1.72E-09	2.72E-09	4.98E-09	6.28E-0
Th-232	1.07E-08	6.38E-06	1.00E-02	5.53E-09	8.07E-09	1.33E-08	1.59E-0
U-232	8.27E-07	4.93E-04	0.776	4.52E-07	6.35E-07	1.05E-06	1.29E-0
U-233	3.17E-06	1.89E-03	2.97	1.74E-06	2.44E-06	4.02E-06	4.92E-0
U-234	9.34E-07	5.56E-04	0.876	8.99E-07	9.16E-07	9.51E-07	9.62E-0
U-235	3.79E-08	2.26E-05	3.56E-02	3.64E-08	3.71E-08	3.86E-08	3.91E-0
J-236	2.91E-08	1.74E-05	2.74E-02	2.81E-08	2.87E-08	2.96E-08	3.00E-0
J-238	1.08E-06	6.44E-04	1.01	1.05E-06	1.06E-06	1.10E-06	1.11E-0
Np-237	1.01E-06	6.04E-04	0.952	6.86E-07	8.46E-07	1.18E-06	1.35E-0
Pu-238	1.81E-06	1.08E-03	1.70	1.43E-06	1.62E-06	2.01E-06	2.20E-0
Pu-239	7.12E-05	4.24E-02	66.8	6.13E-05	6.62E-05	7.62E-05	8.10E-0
Pu-240	1.16E-05	6.92E-03	10.9	9.78E-06	1.07E-05	1.26E-05	1.35E-0
Pu-241	1.21E-04	7.20E-02	113	9.45E-05	1.07E-04	1.34E-04	1.47E-0
Pu-242	6.50E-10	3.88E-07	6.10E-04	4.93E-10	5.70E-10	7.30E-10	8.08E-1
Am-241	6.59E-05	3.93E-02	61.8	4.76E-05	5.66E-05	7.52E-05	8.42E-0
Am-243	2.28E-09	1.36E-06	2.14E-03	1.70E-09	L.98E-09	2.58E-09	2.88E-0
Cm-242	1.74E-07	1.04E-04	0.164	8.68E-08	8.68E-08	1.86E-07	1.97E-0
Cm-243	1.57E-08	9.37E-06	1.48E-02	7.38E-09	7.38E-09	1.68E-08	1.78E-0
Cm-244	1.54E-07	9.20E-05	0.145	6.83E-08	6.83E-08	1.83E-07	2.02E-0
				-95 CI (M	-67 CI (M	+67 CI (M	+95 CI
l'otals	М	#g/g	ing .	or g/L)	or g/L)	or g/L)	(M or g/l
<u>հ</u>	9.64E-04 (g/L)		0.905	7.77E-04	8.69E-04	1.06E-03	1.15E-0
J	1.07E-02	1.52E+03	2.39E+03	1.03E-02	1.05E-02		

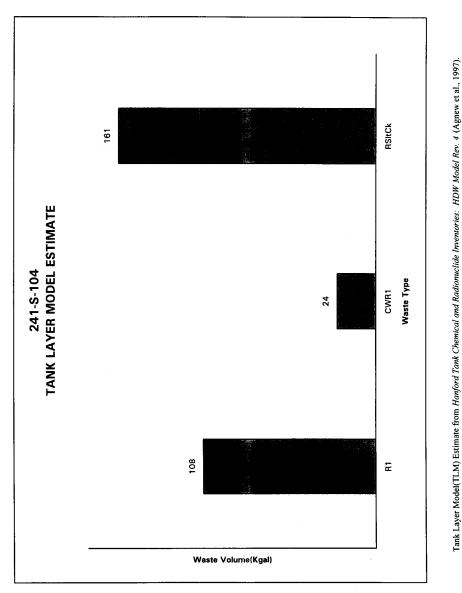

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-104 SUMMARY

TANK H	ISTORY	TANK DE	SCRIPTION	
Entered Service	1st qtr 1953	Diameter	75 ft	
Removed from Service	1975	Bottom Shape	Dish	
Inactive	1977	Nominal Capacity	758,000 gal	
Watch Lists	none	Cascade Tank	to 241-S-105	
Integrity	Assumed Leaker	Total Risers	9	
Assumed Leaker	Dec 1968	WASTE VOLUM	E (HANLON 1996i)	
Interim Stabilization (IS)	Dec 1984	Total Waste Volume	294,000 gal	
Partial Interim Isolation (PI)	•	Waste Type	NCPLX	
Intrusion Prevention (IP)	Sept 1988	Drainable Interstitial Liquids	28,000 gal	
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids	23,000 gal	
Riser Number(s)	Size	Saltcake	0 gal	
1, 3	4 in	Sludge	293,000 gal	
7, 8	12 in	Supernatant	1,000 gal	
TANK TEM	PERATURE	INTERIOR PHOTOGRAPHS		
Average Tank Temperature	98°F	Date	Dec 12, 1984	
Maximum Temperature	114°F	Montage Number	94041033-25CN	
Date	Jan 4, 1995	Photo Set Number	8408365	
Elevation from tank bottom	unknown	WASTE SUR	RFACE LEVEL	
Riser Number	4	Devices	Manual Tape	
Minimum Temperature	83.1°F	Max Level	114 in	
Date	July 2, 1993	Date	Jan 3, 1991 - Feb 11, 1991*	
Elevation from tank bottom	unknown	Min Level	111.25 in	
Riser Number	4	Date	April 3, 1995 - Jan 2, 1996*	


• Numerous dates in this time span.


WHC-SD-WM-ER-352, Rev.



241-S-104

TANK RISER LOCATION

		Sin	le-Shell Tan	k 241-S-104			
		TLM Solid	s Composite	Inventory Est	imate*		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	1.92E+06 (kg)	(293 kgal)				_	
Heat Load	4.67 (kW)	(1.59E+04 BTU/hr)	-	3.94	4.37	4.87	4.96
Bulk Density	1.73 (g/cc)		-	L.58	1.65	1.86	1.91
Void Fraction	0.682		_	0.507	0.565	0.756	0.788
Water wt%	31.0	-		20.1	23.6	36.5	42.0
TOC wt% C (wet	2.85E-03			2.58E-03	2.65E-03	3.06E-03	3.33E-03
Chemical				-95 CI	-67 CI	+67 CI	+95 C1
Constituents	mole/L	ppan	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Ns+	11.0	L.46E+05	2.81E+05	8.34	9.35	13.5	14.7
AJ3+	5.36	8.34E+04	1.60E+05	4.28	4.60	6.18	7.01
Fe3+ (total Fe)	0.397	1.28E+04	2.46E+04	0.390	0.393	0.400	0.404
Cr3+	0.475	1.42E+04	2.74E+04	0.287	0.376	0.644	0.842
Bi3+	3.78E-06	0.455	0.875	3.19E-06	3.48E-06	4.16E-06	4.57E-06
i.a3+	9.30E-12	7.45E-07	1.43E-06	8.15E-12	8.80E-12	L03E-11	1.13E-11
Hg2+	3.35E-04	38.7	74.5	3.30E-04	3.33E-04	3.36E-04	3.37E-04
Zr (as ZrO(OH)2)	3.77E-07	1.98E-02	3.81E-02	3.46E-07	3.61E-07	3.95E-07	4.26E-07
Pb2+	9.73E-03	1.16E+03	2.24E+03	8.95E-03	9.38E-03	1.01E-02	1.04E-02
Ni2+	2.71E-02	917	1.76E+03	2.19E-02	2.48E-02	2.88E-02	2.85E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	2.75E-05	0.871	1.67	1.96E-05	2.35E-05	3.15E-05	3.55E-05
Ca2+	0.133	3.08E+03	5.92E+03	0.106	0,119	0.147	0.161
K+	2.18E-02	493	947	1.82E-02	1.96E-02	2.34E-02	2.51E-02
он-	23.1	2.27E+05	4.36E+05	18.2	19.8	26.7	30.2
NO3-	4.88	1.75E+05	3.36E+05	2.96	2.96	7.89	9.53
NO2-	1.64	4.36E+04	8.395+04	1.15	1.33	1.90	1.90
CO32-	0.136	4.70E+03	9.04E+03	0.108	0.122	0.150	0,163
PO43-	2.44E-04	13.4	25.7	2.27E-04	2 37E-04	2.54E-04	2.77E-04
SO42-	2.67E-02	L.48E+03	2.85E+03	2.33E-02	2.47E-02	2.87E-02	3.08E-02
Si (as SiO32-)	7.61E-02	1.23E+03	2.37E+03	4.98E-02	6.61E-02	8.60E-02	9 57E-02
F.	1.958-04	2.13	4.10	1.66E-04	1.83E-04	2.14E-04	2.31E-04
ci.	9.29E-02	1.90E+03	3.65E+03	5.90E-02	7.56E-02	0.100	0.132
C6H5O73-	2.01E-04	21.9	42.2	1.95E-04	1.98E-04	2.10E-04	2.28E-04
EDTA4	7.84E-06	1.30	2.50	5.51E-06	6.78E-06	9.23E-06	2.26E-04
HEDTA3-	6.51E-06	1.03	1.98	2.09E-06	4.47E-06	9.23E-06 8.69E-06	1.08E-05
				2.095-00	4.475-00	8.09E-00	1.066-03
glycolate-	2.84E-04	12.3	23.6	1.548-04	2.25E-04	3.53E-04	4.19E-04
cetate-	2.95E-05	1.00	1.93	2.85E-05	2.23E-04 2.90E-05	3.53E-04 3.13E-05	4.19E-04 3.35E-05
oxelate2-	1.22E-11	6.19E-07	L.19E-06	1.08E-11	1.15E-11	1.34E-11	3.35E-05
DBP	1.78E-04	21.6	41.6	1.67E-04	1.13E-11	1.34E-11 1.93E-04	2.08E-04
butanol	1.78E-04	7.63	14.7	1.67E-04	1.74E-04	1.93E-04	2.08E-04 2.08E-04
		·····		1.015-04	1.046-04	1.938-04	2.085-04
NHJ	0.114	1.12E+03	2.15E+03	4 40E-02	5.39E-02		0.125
Fe(CN)64-	0.114	0	2156745	4.40E-02 0	5.39E-02 0	0.119	0.125

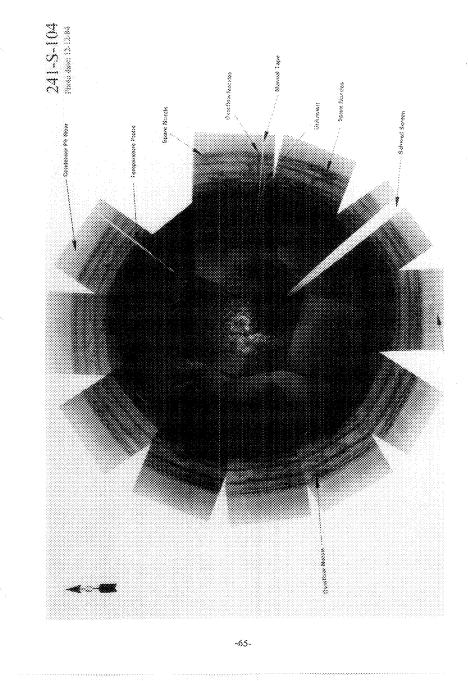
	Single-Shell Tank 241-S-104										
	SMM Composite Inventory Estimate										
Physical											
Properties	김 승규는 것은 것을 했다.			-95 CI	-67 CI	+67 CI	+95 CI				
Total SMM Wast	4.89E+03 (kg)	(1.01 kgal)	_				_				
Heat Load	4.58E-03 (kW)	(15.6 BTU/hr)	-	3.75E-03	4.15E-03	5.01E-03	5.45E-0				
Bulk Density*	1.28 (g/cc)			1.24	1.26	1.29	1.3				
Water wt%	63.4										
TOC wt% C (wet	5.57E-03		••••	61.0	62.1	64,9	67.				
TOC WIN C (Wet	3.3/E-03	L		4.15E-03	4.83E-03	6.27E-03	6.92E-0				
Chemical				-95 CI							
Constituents	mole/L				-67 CI	+67 C1	+95 CI				
Na+	6.39	1.15E+05	kg 561	(mole/L)	(mole/L)	(mole/L)	(mole/L)				
A13+	0.994	2.10E+04	102	5.36	5.92	6.79	7.1				
Fe3+ (total Fe)	1.24E-03	54.3	0.265	0.915	0.957	1.03	1.0				
Cr3+	7.46E-02	3.03E+03	14.8	6.87E-04	9.59E-04	1.53E-03	1.80E-0				
8i3+	5.44E-06	0.889	4.34E-03	4.25E-02	5.82E-02	9.09E-02	0.10				
La3+	1.346-11	1.46E-06	4.34E-03 7.11E-09	4.59E-06	5.01E-06	5.87E-06	6.28E-0				
Hg2+	8.54E-07	0.134	6.55E-04	9.43E-12	1.14E-11	1.54E-11	1.72E-11				
Tig2+ Zr (as ZrO(OH)2)	5.43E-07	3.87E-02		7.70E-07	8.12E-07	8.97E-07	9.38E-0				
Pb2+	1.35E-04	3.8/E-02	1.89E-04 0.107	4.29E-07	4.74E-07	5.90E-07	6.50E-0				
Ni2+	1.12E-03			7.39E-05	1.04E-04	1.67E-04	1.97E-04				
Sr2+	0	51.4	0.251	1.01E-03	1.06E-03	1.18E-03	1.23E-03				
Sr2+ Mn4+	3.96E-05	1.70		0	0	0					
Ca2+	5.59E-03		8.31E-03	2.88E-05	3.41E-05	4.51E-05	5.03E-05				
K+		175	0.856	3.41E-03	4.48E-03	6.71E-03	7.78E-03				
0H-	2.53E-02 6.20	775	3.78	1.92E-02	2.21E-02	2.86E-02	3.19E-02				
		B.24E+04	402	5.42	5.96	6.44	6.65				
NO3-	1.74	B.44E+04	412	1.41	1.57	1.91	2.03				
NO2-	1.48	5.33E+04	260	1.03	1.26	1.63	1.73				
CO32-	9.52E-03	447	2.18	7.33E-03	8.40E-03	1.06E-02	1.17E-02				
PO43-	3.52E-04	26.1	0.128	2.73E-04	3.20E-04	3.75E-04	3.92E-04				
SO42-	3.20E-02	2.40E+03	11.7	2.43E-02	2.80E-02	3.61E-02	4.01E-02				
Si (as SiO32-)	2.11E-02	464	2.27	1.07E-02	1.58E-02	2.65E-02	3.16E-02				
F-	2.81E-04	4.17	2.04E-02	2.01E-04	2.37E-04	3.20E-04	3.52E-04				
C1+	0.106	2.93E+03	14.3	5.68E-02	8.07E-02	0.116	0.116				
C6H5O73-	2.90E-04	42.9	0.209	2.45E-04	2.67E-04	3.11E-04	3.30E-04				
EDTA4	1.13E-05	2.54	1.24E-02	6.38E-06	8.76E-06	1.38E-05	1.62E-05				
HEDTA3-	9.38E-06	2.01	9.82E-03	2.42E-06	5.77E-06	1.30E-05	1.65E-05				
dycolate-	4.09E-04	24.0	0.117	1.78E-04	2.90E-04	5.27E-04	6.40E-04				
cetate-	4.25E-05	1.96	9.57E-03	3.35E-05	3.79E-05	4.68E-05	5.09E-01				
xalate2-	1.76E-11	1.21E-06	5.90E-09	1.55E-11	1.65E-11	4.66E-U3	3.09E-03				
DBP	2.57E-04	42.3	0.206	1.93E-04	2.24E-04		3.18E-04				
outanol	2.57E-04		7.28E-02	1.93E-04	2.24E-04 2.24E-04	2.88E-04 2.88E-04	3.18E-04				
			/	1.938-04	2.24E-04	2.88E-04	3.18E-04				
NH3	2.85E-02	379	1.85	1.77E-02	2.28E-02	3.37E-02	3.84E-02				
Fo(CN)64-	0		0	1.1/15-02	1.28E-4JZ	3.3/12-02	3.84E-02				

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

· · · ·		P :	ale Chall Ta			HDWI	Model Rev. 4				
	Single-Shell Tank 241-S-104 Total Inventory Estimate*										
Phynical	I COBI INVERSORY ESTIMATE*										
Properties				-95 CI	-67 CI	+67 CT	+95 CI				
Total Waste	1.93E+06 (kg)	(294 kgal)		-95 CI	-07 C1	TOTOL	495 CI				
Heat Load	4.67 (kW)	(1.60E+04 BTU/hr)		3,94	4.37	4.87	4.96				
Bulk Density†	1.73 (g/cc)	(1.002-04 810/12)		1.58	4.57	4.87	4.90				
Duik Duibity				1.36	1.65	1.80	1.91				
Water wt%†	31.1			20.2	23.7	36.6	42 1				
TOC wt% C (wet	2.86E-03			2.59E-03	2.66E-03	3.07E-03	42.1 3.33E-03				
				2.395-03	2.00E-03	3.072-03	3.33E-03				
Chemical				-95 CI	-67 CI	+67 C1	+95 CI				
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)				
Na+	11.0	1.46E+05	2.82E+05	8.33	9.34	(41042/2)	14.7				
Al3+	5.34	8.32E+04	1.60E+05	4.27	4.59	6.16	6.99				
Fe3+ (total Fe)	0.395	1.27E+04	2.46E+04	0.388	0.392	0.399	0.402				
Cr3+	0,473	1.42E+04	2.74E+04	0.386	0.392	0.399	0.402				
Bi3+	3.78E-06	0.456	0.879	3 19E-06	3.48E-06	4.16E-06	4.58E-06				
La3+	9.31E-12	7.47E-07	1 44E-06	8.16E-12	3.48E-06 8.81E-12	4.16E-06	4.58E-06				
Hg2+	3.34E-04	38.6	74.5	3.29E-04	3.32E-04	3.35E-04					
Zr (as ZrO(OH)2)	3.77E-07	1.99E-02	3.83E-02	3.47E-07	3.52E-04 3.62E-07	3.35E-04 3.96E-07	3.36E-04				
Pb2+	9.70E-03	1.16E+03	2.24E+03	3.4/E-0/ 8.92E-03			4.27E-07				
Ni2+	2.70E-02	914	1.76E+03	8.92E-03 2.18E-02	9.35E-03 2.47E-02	1.00E-02 2.87E-02	1.04E-02				
Sr2+	0		0	2.18E-02		2.8/E-02	2.84E-02				
Mn4+	2.75E-05	0.873	1.68		0		0				
Ca2+	0.133	3.07E+03	5.92E+03	1.97E-05	2.35E-05	3.16E-05	3.56E-05				
K+	2.19E-02	494	951	0.105 1.82E-02	0.119	0.147	0.160				
он-	23.1	2 26E+05	4.36E+05		1.97E-02	2.34E-02	2.52E-02				
NO3-	4.87	1.74E+05	4.36E+05	18.1	19.7	26.6	30.1				
NO2-	1.64	4.36E+04	3.30E+03 8.41E+04	2.95	2.95	7.87	9.50				
CO32-	0.135	4.69E+03	9.04E+03	1.16	1.33	1.90	1.90				
PO43-	2.45E-04	13.4	25.9	0.108	0.121	0.149	0.163				
5042-	2.68E-02	1.48E+03	2.86E+03	2.27E-04	2.37E-04	2.55E-04	2.77E-04				
Si (as SiO32-)	7.59E-02	1.23E+03	2.30E+03	2.34E-02	2.47E-02	2.87E-02	3.08E-02				
51 (18 58032-) F-	1.95E-02	2.14	2.3/E+03 4.12	4.97E-02	6.59E-02	8.58E-02	9.54E-02				
r. Cl-	9.30E-02	1.90E+03	4.12 3.67E+03	1.66E-04	1.84E-04	2.14E-04	2.31E-04				
C6H5O73-	2.02E-02	22.0	42.4	5.90E-02	7.56E-02	0.100	0.132				
EDTA4	2.02E-04 7.85E-06		42.4	L.95E-04	1.98E-04	2.10E-04	2.29E-04				
EDTA4-	7.85E-06 6.52E-06	1.31	2.52	5.52E-06	6.79E-06	9.24E-06	1.06E-05				
neu/A3	0.34E-U0	1.03	1.99	2.09E-06	4.48E-06	8.70E-06	1.08E-05				
	2.84E-04	12.3	23.7								
glycolate-	2.84E-04 2.95E-05		23.7	1.54E-04	2.25E-04	3.54E-04	4.20E-04				
acetate- oxalate2-	2.95E-05	1.01 6.20E-07	1.94 1.19E-06	2.86E-05	2.908-05	3.14E-05	3.35E-05				
oxalate2-	1.22E-11 1.79E-04			1.08E-11	1.15E-11	1.34E-11	1.47E-11				
		21.7	41.8	1.67E-04	1.74E-04	1.93E-04	2.09E-04				
butanol	1.79E-04	7.65	14.7	1.67E-04	1.74E-04	1.93E-04	2.09E-04				
			A 160								
NH3	0.114	1.12E+03	2.15E+03	4.39E-02	5.38E-02	0.119	0.124				
Fe(CN)64-	0	0	0	0	0	0	0				

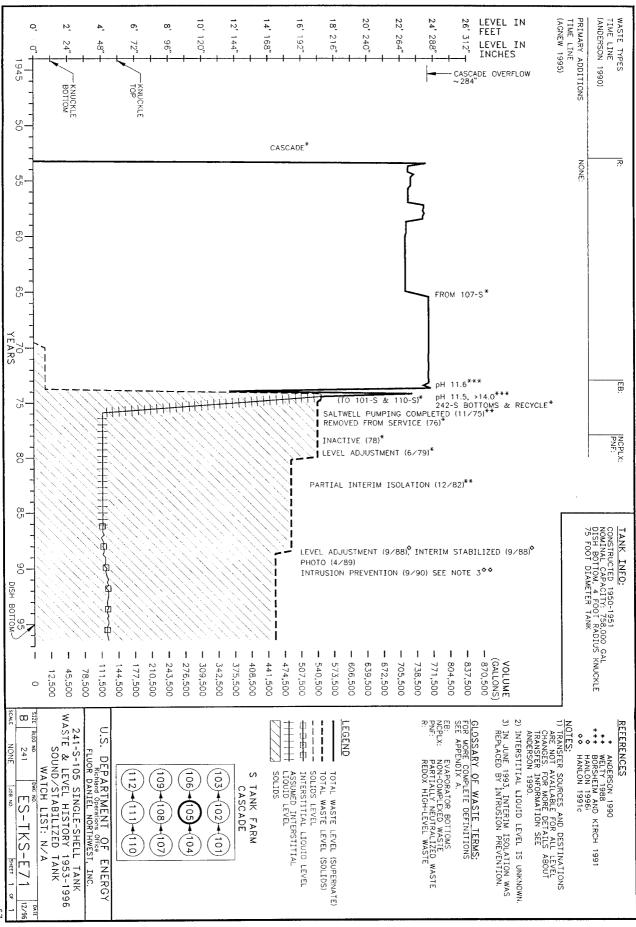
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

			gle-Shell Tan				
		TLM Solid	s Composite	Inventory Esti	mate*		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total TLM Waste	1.92E+06 (kg)	(293 kgal)]	_		
Heat Load	4.67 (kW)	(1.59E+04 BTU/hr)		3.94	4.37	4.87	4.9
Bulk Density	1.73 (g/cc)			1.58	1.65	1.86	13
Void Fraction	0.682	*****	_	0.507	0.565	0.756	0.75
Water wt%	31.0		_	20.1	23.6	36.5	42
TOC wt% C (wet	2.85E-03			2.58E-03	2.65E-03	3.06E-03	3.33E-0
Radiological Constituents	CVL	pCVg	Ci	-95 CI (CI/L)	-67 CI (CVL)	+67 C1 (CVL)	+95 CI (CI/L)
H-3	1.33E-04	7.69E-02	148	1.09E-05	1.09E-05	1.39E-04	1.51E-0
C-14	7.13E-06	4.11E-03	7.90	8.43E-07	8.43E-07	7.42E-06	7.96E-0
Ni-59	9.22E-06	5.32E-03	10.2	5.48E-06	5.48E-06	9.73E-06	9.64E-0
Ni-63	8.75E-04	0.505	971	5.12E-04	5.12E-04	9.23E-04	9.14E-0
Co-60	5.99E-06	3.46E-03	6.64	3.33E-07	3.33E-07	6.23E-06	6.75E-0
Se-79	4.00E-06	2.31E-03	4.43	1.79E-07	1.79E-07	4.06E-06	6.46E-0
Sr-90	0.487	281	5.40E+05	0.389	0.444	0.520	0.402-0
Y-90	0.487	281	5.40E+05	0.342	0.342	0.520	0.52
Zr-93	1.89E-05	1.09E-02	21.0	8.45E-07	8.45E-07	0.520 1.92E-05	0.52 2.93E-0
Nb-93m	1.54E-05	8.86E-03	17.0	6.91E-07	6.91E-07	1.92E-05	2.93E-0 2.65E-0
Гс-99	5.48E-05	3.16E-02	60.7				
Ru-106	1.31E-09	7.55E-02	1.45E-03	4.96E-05 9.43E-13	5.16E-05 9.43E-13	5.84E-05	6.26E-0
Cd-113m	2.81E-05	1.62E-02	31.1			1.37E-09	1.49E-0
Sb-125	2.07E-05		23.0	2.61E-06	2.61E-06	5.91E-05	5.72E-0
Sn-125		1.19E-02	6,80	4.90E-07	4.90E-07	2.16E-05	2.34E-0
	6.14E-06	3.54E-03		2.75E-07	2.75E-07	6.23E-06	1.01E-0
-129	1.04E-07	6.00E-05	0.115	9.41E-08	9.81E-08	L.11E-07	1.19E-0
Cs-134	1.27E-06	7.35E-04	1.41	1.02E-08	1.02E-08	1.32E-06	1.42E-0
Cs-137	0.199	115	2.20E+05	0.184	0.190	0.212	0.22
Ba-137m	0.188	108	2.09E+05	1.97E-02	1.97E-02	0.194	0.20
Sm-151	1.43E-02	8.22	1.582+04	6.39E-04	6.39E-04	1.45E-02	2.33E-0
Bu-152	7.47E-06	4.31E-03	8.28	2.59E-06	2.59E-06	7.50E-06	7.56E-0
Bu-154	1.43E-04	8.27E-02	159	8.05E-06	8.05E-06	1.49E-04	1.86E-0
3u-155	3.70E-04	0.213	410	1.22E-04	1.22E-04	3.71E-04	3.74E-0
Ra-226	6.56E-10	3.79E-07	7.28E-04	3.13E-10	3.98E-10	8.32E-10	1.00E-0
Ra-228	8.66E-09	4.99E-06	9.60E-03	3.44E-15	3.44E-15	8.74E-09	8.84E-0
Ac-227	3.27E-09	1.88E-06	3.62E-03	1.62E-09	1.76E-09	4.28E-09	5.26E-0
Pa-231	5.95E-09	3.43E-06	6.60E-03	2.67E-10	2.67E-10	6.44E-09	1.19E-0
h-229	2.08E-10	1.20E-07	2.31E-04	6.55E-13	6.55E-13	2.10E-10	2.12E-1
Ռ-232	1.16E-10	6.69E-08	1.29E-04	2.21E-16	2.21E-16	1.46E-10	1.76E-1
J-232	3.87E-08	2.23E-05	4.29E-02	1.37E-08	2.53E-08	5.52E-08	7.34E-0
J-233	1.48E-07	8.54E-05	0.164	5.23E-08	9.66E-08	2.11E-07	2.81E-0
J-234	1.96E-06	1.13E-03	2.17	1.56E-06	1.75E-06	2.17E-06	2.39E-0
J-235	8.16E-08	4.71E-05	9.05E-02	6.57E-08	7.34E-08	9.05E-08	9.94E-0
J-236	5.63E-08	3.25E-05	6.25E-02	4.06E-08	4.84E-08	6.46E-08	7.28E-0
J-238	1.84E-06	1.06E-03	2.04	1.49E-06	1.66E-06	2.03E-06	2.23E-0
Np-237	2.51E-07	1.45E-04	0.279	2.18E-07	2.31E-07	2.69E-07	2.89E-0
น-238	5.79E-06	3.34E-03	6.42	4.88E-06	5.32E-06	6.25E-06	6.70E-0
u-239	3.48E-04	0.200	385	2.98E-04	3.23E-04	3.73E-04	3.97E-0
~u-24 0	5.04E-05	2.91E-02	55.9	4.34E-05	4.68E-05	5.40E-05	5.74E-0
u-24 1	3.26E-04	0.188	362	2.80E-04	3.03E-04	3.50E-04	3.73E-0
ա-242	1.51E-09	8.69E-07	1.67E-03	1.26E-09	1.38E-09	1.63E-09	1.75E-0
	6.71E-05	3.87E-02	74,5	3.94E-05	5.85E-05	7.65E-05	1.17E-0
vm-243	2.07E-09	1.20E-06	2.30E-03	9.69E-10	1.80E-09	2.28E-09	2.54E-0
Cm-242	6.05E-08	3.49E-05	6.71E-02	5.92E-08	5.96E-08	6.10E-08	6.10E-0
Cm-243	1.38E-09	7.99E-07	1.54E-03	1.36E-09	1.37E-09	1.40E-09	1.40E-0
Cm-244	1.11E-09	6.41E-07	1.23E-03	2.29E-10	5.81E-10	1.40E-09	1.40E-0
			Geografie	M CI 0:	000-		
lotals	м	#2/g	ie -	-95 CI (M - org/L)	-67 CI (M + or g/L)		+95 Cl (M or g/l
և	5.81E-03 (g/L)		6.44	4.99E-03	5.39E-03	6.23E-03	6.63E-0
J I	2.30E-02	3.16E+03					


*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

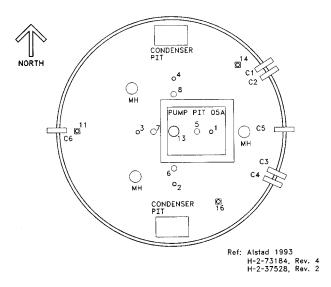
		Singl	e-Shell Tank	241-S-104			
				entory Estimat	e		
Physical				5 Solit	8 M 1. S		fere pri 19
Properties			ti dan sel	-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	4.89E+03 (kg)	(1.01 kgal)	[_			
leat Load	4.58E-03 (kW)	(15.6 BTU/hr)		3.75E-03	4.15E-03	5.01E-03	5.45E-03
Bulk Density*	1.28 (g/oc)		_	1.24	1.26	1.29	1.30
Water wt%†	63.4	-		61.0	62.1	64.9	67.2
FOC wt% C (wet	5.57E-03			4.15E-03	4.83E-03	6.27E-03	6.92E-03
0.000.446.14						nden i	
Rediological				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	CIL	µCi/g	Ci	(CVL)	(CVL)	(CVL)	(Ci/L)
1-3	1.76E-04	0.138	0.674	9.18E-10	9.18E-10	1.77E-04	1.77E-04
C-14	9.06E-06	7.08E-03	3.46E-02	7.13E-11	7.13E-11	9.14E-06	9.22E-06
Ni-59	5.05E-07	3.95E-04	1.93E-03	9.02E-12	9.02E-12	5.32E-07	5.58E-07
Ni-63	4.90E-05	3.83E-02	0.187	8.43E-10	8.43E-10	5.17E-05	5.42E-05
Co-60	8.15E-06	6.37E-03	3.11E-02	2.84E-11	2.84E-11	8 22E-06	8.29E-06
Se-79	1.24E-06	9.72E-04	4.75E-03	1.51E-11	1.51E-11	1.69E-06	2.09E-06
Sr-90	2.11E-02	16.5	80.7	1.81E-02	1.96E-02	2.27E-02	2.42E-02
Y-90	2.11E-02	16.5	80.7	5.85E-07	5.85E-07	2.27E-02	2.42E-02
Zr-93	6.22E-06	4.86E-03	2.37E-02	7.15E-11	7.15E-11	8.46E-06	9.97E-06
Nb-93m	4.35E-06	3.40E-03	1.66E-02	5.84E-11	5.84E-11	5.92E-06	7.43E-06
Tc-99	7.04E-05	5.50E-02	0.269	5.49E-05	6.24E-05	7.84E-05	8.65E-05
Ru-106	1.88E-09	1.47E-06	7.19E-06	1.78E-16	1.78E-16	1.90E-09	1.92E-09
Cd-113m	3.67E-05	2.87E-02	0.140	2.21E-10	2.21E-10	3.70E-05	3.73E-05
Sb-125	2.91E-05	2.28E-02	0.111	4.27E-11	4.27E-11	2.93E-05	2.96E-05
Sn-126	1.86E-06	1.46E-03	7.12E-03	2.33E-11	2.33E-11	2.54E-06	3.06E-06
-129	1.34E-07	1.04E-04	5.10E-04	1.04E-07	1.18E-07	1.49E-07	1.64E-07
Cs-134	1.60E-06	1.25E-03	6.12E-03 862	7.87E-13	7.87E-13	1.62E-06	1.63E-06
Cs-137	0.226	176		0.179	0.201	0.250	0.274
Ba-137m	0.213	167	815	1.39E-06	1.39E-06	0.215	0.217
Sm-151	4.35E-03	3.40	16.6 2.70E-03	5.41E-08	5.4]E-08	5.92E-03	7.38E-03
Eu-152	7.06E-07	5.52E-04	2.70E-03 0.744	5.34E-12	5.34E-12	7.12E-07	7.19E-07
Eu-154	1.95E-04	0.152	0.744	6.85E-10	6.85E-10	1.96E-04	1.98E-04
Eu-155	3.58E-05	2.80E-02	0.137 1.47E-07	2.53E-10	2.53E-10	3.61E-05	3.65E-05
Ra-226	3.85E-11	3.01E-08	4.79E-06	1.05E-15	1.05E-15	5.25E-11	6.58E-11
Ra-228	1.25E-09	9.80E-07	8 55E-00	7.12E-21	7.12E-21	1.27E-09	1.28E-09
Ac-227	2.24E-10	1.75E-07	4.75E-06	6.10E-15	6.10E-15	3.05E-10	3.82E-10 2.12E-09
Pa-231	1.24E-09	9.72E-07	4.75E-06	2.26E-14	2.26E-14	1.69E-09	_
Th-229	3.01E-11	2.35E-08	6.38E-07	1.34E-18	1.34E-18	3.04E-11	3.06E-11 2.49E-10
Th-232	1.67E-10	1.316-07	4.85E-05	1.89E-20	1.89E-20	2.09E-10	
U-232	1.27E-08	9.94E-06	4.85E-05	1.04E-08	1.17E-08	1.37E-08	1.47E-00 5.61E-00
U-233	4.86E-08	3.80E-05	8.77E-04	3.97E-08	4.49E-08 2.18E-07	5.25E-08	2.52E-01
U-234	2.30E-07	L.80E-04	3.54E-05	2.07E-07	2.18E-07 8.80E-09	2.41E-07 9.74E-09	1.02E-0
U-235	9.28E-09	7.25E-06 7.44E-06	3.63E-05	8.35E-09 8.54E-09	9.01E-09	9.74E-09	1.05E-0
U-236	9.51E-09		7.69E-04	1.81E-07	1.91E-07	2.11E-07	2.21E-0
U-238	2.01E-07	1.57E-04 2.40E-04	1.17E-03	2.36E-07	2.70E-07	3.45E-07	3.82E-0
Np-237	3.07E-07	1.34E-04	6.53E-04	5.09E-07	1.10E-07	2.32E-07	2.91E-0
Pu-238	1.71E-07	4.32E-04	2.11E-02	1.66E-06	3.55E-06	7.50E-06	9.39E-0
Pu-239	5.52E-06 9.16E-07	7.16E-04	3.50E-03	2.74E-07	5.89E-07	1.24E-06	1.56E-0
Pu-240		6.86E-03	3.35E-02	2.63E-06	5.64E-06	1.19E-05	1.49E-0
Pu-241	8.77E-06		1.78E-07	1.39E-11	2.99E-11	6.32E-11	7.91E-1
Pu-242	4.65E-11	3.64E-08	7.12E-02	5.42E-06	1.19E-05	8.32E-11 2.54E-05	3.19E-0
Am-241 Am-243	1.86E-05 5.95E-10	1.46E-02 4.65E-07	2.27E-06	3.42E-06	3.33E-10	2.54E-05 8.72E-10	1.15E-0
	5.95E-10 1.26E-10	4.65E-07	4.81E-07	1.40E-10 1.22E-13	1.22E-13	1.28E-10	1.15E-V
Cm-242	2.58E-12	2.01E-09	9.84E-09	2.80E-15	2.80E-15	2.61E-12	2.63E-1
Cm-243 Cm-244	2.58E-12	2.01E-09	5.73E-07	2.80E-15 8.52E-14	2.80E-15 8.52E-14	1.52E-10	1.53E-1
Cm-294	1.308-10	1.1.2-0/			0.000 14		
1992년 - 전통				-95 CI (M	-67 CI M	+67 CI M	+95 CI
Totals	м	#8/8	kr	or g/L)	or g/L)	or g/L)	(M or g/I
	9.20E-05 (g/L)	CO'D	3 51E-04	2.68E-05	5.87E-05	1.25E-04	1.57E-0
Pu							

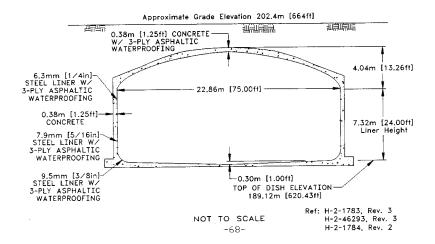
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

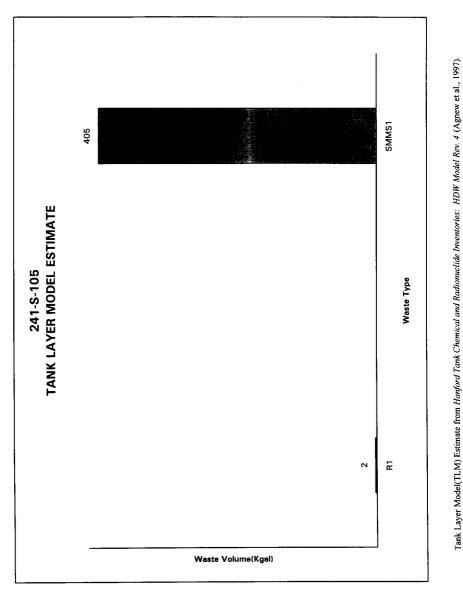

		Sing	le-Shell Tan	k 241-S-104			
		To	tal Inventory	Estimate*			
Physical Properties				-95 CI	-67 CI	+67 C1	+95 CI
Total Waste	1.93E+06 (kg)	(294 kgal)			_		
Heat Load	4.67 (kW)	(1.60E+04 BTU/hr)		3.94	4.37	4.87	4.9
Bulk Density†	1.73 (g/cc)			1.58	1.65	1.86	1.9
Water wt%†	31.1			20.2	23.7	36.6	42.
TOC wt% C (wet	2.86E-03			2.59E-03	2.66E-03	3.07E-03	3.33E-0
			010020				
Rediological Constituents	CIVL	#CVg	Ci	-95 CI (CI/L)	-67 CI (Ci/L)	+67 C1 (Ci/L)	+95 CI (CVL)
H-3	1.33E-04	7.71E-02	149	1.08E-05	1.08E-05	1.40E-04	1.51E-0
C-14	7.13E-06	4.12E-03	7.94	8.40E-07	8.40E-07	7.43E-06	7.96E-0
Ni-59	9.19E-06	5.3IE-03	10.2	5.46E-06	5.46E-06	9.70E-06	9.61E-0
Ni-63	8.72E-04	0.504	971	5.10E-04	5.10E-04	9.20E-04	9.11E-0
Co-60	6.00E-06	3.46E-03	6.67	3.32E-07	3.32E-07	6.24E-06	6.75E-0
Se-79	3.99E-06	2.30E-03	4.44	1.78E-07	1.78E-07	4.05E-06	6.44E-0
Sr-90	0.485	280	5.40E+05	0.387	0.443	0.518	0.52
Y-90	0.485	280	5.40E+05	0.341	0.341	0.518	0.52
Zr-93	1.89E-05	1.09E-02	21.0	8.43E-07	8.43E-07	1.92E-05	2.92E-0
Nb-93m	1.53E-05	8.85E-03	17.0	6.89E-07	6.89E-07	1.56E-05	2.64E-0
Tc-99	5.48E-05	3.16E-02	61.0	4.97E-05	5.17E-05	5.85E-05	6.27E-0
Ru-106	1.31E-09	7.57E-07	1.46E-03	9.39E-13	9.39E-13	1.37E-09	1.49E-0
Cd-113m	2.8LE-05	1.62E-02	31.3	2.60E-06	2.60E-06	5.90E-05	5.70E-0
Sb-125	2.07E-05	1.20E-02	23.1	4.88E-07	4.88E-07	2.16E-05	2.34E-0
Sn-126	6.12E-06	3.53E-03	6.81	2.74E-07	2.74E-07	6.22E-06	1.01E-0
I-129	1.04E-07	6.01E-05	0.116	9.42E-08	9.82E-08	1.11E-07	1.19E-0
Cs-134	1.28E-06	7.36E-04	1.42	1.01E-08	1.01E-08	1.32E-06	1.43E-0
Cs-137	0.199	7.362-04	2.21E+05	0.184	0.190	0.212	0.22
Ba-137m	0.199	109	2.09E+05	1.96E-02	1.96E-02	0.212	0.22
Sm-151	1.42E-02	8.21	1 S8E+04	6.37E-02	6.37E-02	1.44E-02	2.33E-0
Eu-152	7.45E-06	4.30E-03	8.29	2.58E-06	2.58E-06	7.48E-06	7.54E-0
Bu-152 Bu-154	1.43E-04	8.28E-02	160	8.02E-06	2.38E-06 8.02E-06	7.48E-06 1.49E-04	1.86E-0
Eu-155	3.69E-04	0.213	410	1.22E-04	1.22E-04	3.70E-04	3.73E-0
Ra-226	6.54E-10	3.78E-07	7.28E-04	3.12E-04	3.97E-10	8.29E-10	9.97E-1
Ra-228	8.63E-09	4.98E-06	9.60E-03	3.43E-15	3.43E-15	8.71E-09	8.81E-0
Ac-227	3.26E-09	1.88E-06	3.62E-03	1.62E-09	1.75E-09	4.27E-09	5.25E-0
Pa-231	5.93E-09	3.43E-06	6.60E-03	2.66E-10	2.66E-10	6.42E-09	1.18E-0
Th-229	2.08E-10	1.20E-07	2.31E-04	6.53E-13	6.53E-13		
Th-232	1.16E-10	6.71E-08	1.29E-04	2.20E-16	2.20E-16	2.09E-10 1.46E-10	2.12E-10 1.76E-10
U-232	3.86E-08	2.23E-05	4.30E-02		2.52E-08		_
U-232 U-233	1.48E-07	8.53E-05	0,164	1.37E-08 5.23E-08	9.64E-08	5.50E-08 2.10E-07	7.32E-0
U-233			217				
U-235	1.95E-06 8.14E-08	1.13E-03	9.06E-02	1.56E-06 6.55E-08	1.75E-06 7.32E-08	2.17E-06 9.02E-08	2.39E-0 9.91E-0
U-235 U-236	5.62E-08	3.24E-05	6.25E-02	4.05E-08			
U-236 U-238	1.83E-06	3.24E-05	2.04	4.05E-08 1.49E-06	4.83E-08 1.65E-06	6.44E-08 2.03E-06	7.26E-0 2.22E-0
			0.280				
Np-237 Pu-238	2.52E-07 5.77E-06	1.45E-04 3.33E-03	6.42	2.18E-07 4.86E-06	2.32E-07 5.31E-06	2.69E-07 6.23E-06	2.89E-0 6.68E-0
Pu-238 Pu-239	3.46E-04	3.33E-03 0.200	385	4.86E-06 2.97E-04	5.31E-06 3.21E-04	6.23E-06 3.71E-04	6.68E-0 3.95E-0
Pu-239 Pu-240	5.02E-05	2.90E-02	55.9	2.9/E-04 4.32E-05	3.21E-04 4.67E-05	3.71E-04 5.38E-05	
Pu-240 Pu-241		2.90E-02 0.188	362				5.73E-0
Pu-241 Pu-242	3.25E-04	8.67E-07	1.67E-03	2.79E-04	3.02E-04	3.49E-04	3.72E-0
	1.50E-09		74.5	1.25E-09	1.38E-09	1.63E-09	1.75E-0
Am-241	6.70E-05	3.87E-02	2.30E-03	3.93E-05	5.83E-05	7.63E-05	1.17E-0
Am-243	2.07E-09	1.20E-06	2.30E-03 6.71E-02	9.67E-10	1.79E-09	2.28E-09	2.53E-0
Cm-242	6.03E-08	3.48E-05	6.71E-02	5.90E-08	5.94E-08	6.08E-08	6.08E-0
Cm-243	1.36E-09	7.97E-07	1.34E-03	1.35E-09	1.36E-09	1.39E-09	1.39E-0
Cm-244	1.11E-09	6.40E-07	1.230-03	2.28E-10	5.80E-10	1.46E-09	1.46E-0
				-95 CI (M			+95 Cl
Totals Pu	M 5.79E-03 (g/L)	<u> </u>	iug 6.44	er g/L) 4.97E-03	or g/L) 5.37E-03	or g/L) 6.21E-03	(M or g/L 6.61E-0

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-105 SUMMARY


TANK HI	STORY	TANK DES	CRIPTION		
Entered Service	2nd qtr 1953	Diameter	75 ft		
Removed from Service	1975	Bottom Shape	Dish		
Inactive	1978	Nominal Capacity	758,000 gal		
Watch Lists	none	Cascade Tank	to 241-S-106		
Integrity	Sound	Total Risers	12		
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)		
Interim Stabilization (IS)	Sept 1988	Total Waste Volume	456,000 gal		
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX		
Intrusion Prevention (IP)	Sept 1990	Drainable Interstitial Liquids	35,000 gal		
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids 13,000 gal			
Riser Number(s)	Size	Saltcake	454,000 gal		
2, 11, 16	4 in	Sludge	2,000 gai		
6, 8	12 in	Supernatant	0 gaí		
TANK TEMP	ERATURE	INTERIOR PHOTOGRAPHS			
Average Tank Temperature	73°F	Date	April 12, 1989		
Maximum Temperature	82.58°F	Montage Number	94041033-22CN		
Date	Jan 30, 1996	Photo Set Number	89041307		
Elevation from tank bottom	0.56 ft	WASTE SUR	FACE LEVEL		
Riser Number	4	Devices	Manual ENRAF		
Minimum Temperature	58.64°F	Max Level	158 in		
Date	May 20 - 22, 1996	Date	April 11, 1995		
Elevation from tank bottom	10.56 ft	Min Level	155.1 in		
Riser Number	4	Date	July 8 and 29, 1991		


WHC-SD-WM-ER-352. Rev.


-67-

241-S-105

TANK RISER LOCATION

HDW	Model	Rev.	4

· · · · · · · · · · · · · · · · · · ·		Sime	le Shell Ten	k 241-S-105		1011	Aodel Rev. 4
				Inventory Esti			
Physical		ILM Solida	Composite	Diventory Eau	UIRIC .		
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	1.000.04.0	(1 00 h - 1)		-95 CI	-0/01	-+U/ CI	, 133 CI
Heat Load	1.33E+04 (kg)	(2.00 kgal)		3.57E-02			
Bulk Density	4.93E-02 (kW) 1.76 (g/cc)	(168 BTU/hr)			4.37E-02	5.29E-02	5.46E-02
Void Fraction	0.536			1.51	1.53	2.11	2.24
Water wt%	27.0			6.00E-02	0.217	0.737	0.743
	27.0			2.64	10.0	42.6	44.2
TOC wt% C (wet	<u> </u>	L	_	0	0	0	
					-		
Chemical				-95 Cl	-67 CI	+67 CI	+95 CI
Constituents		ppen	kg 1.41E+03	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+		1.06E+05		3.05	3.56	14.7	18.2
Al3+	6.99	1.07E+05	1.43E+03	6.58	6.74	7.15	7.15
Fe3+ (total Fe)	1.01	3.22E+04	428	0.994	1.00	1.02	1.03
Cr3+	6.19E-02	1.83E+03	24.3	7.08E-03	3.39E-02	0.522	1.06
Bi3+	0	0	0	0	0	0	0
La3+	0	0	0	0	0	0	0
Hg2+	0	0	0	0	0	0	C
Zr (as ZrO(OH)2)	0	0	0	0	0	_0	0
Рь2+	0	0	0	0	0	0	0
Ni2+	5.07E-02	1.69E+03	22.5	3.66E-02	4.45E-02	5.54E-02	5.45E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	0	0	0	0	0	0	0
Ca2+	0.220	5.02E+03	66.6	0.146	0.182	0.258	0.294
K+	1.12E-02	250	3.32	1.28E-03	5.25E-03	1.52E-02	1.52E-02
OH-	25.6	2.48E+05	3.29E+03	23.1	24.3	26.9	28.4
NO3-	5.29	1.87E+05	2.48E+03	6.03E-02	6.03E-02	13.5	17.9
NO2-	1.46	3.82E+04	507	0.132	0.595	2.15	2.15
CO32-	0.220	7.51E+03	99.8	0.146	0.182	0.258	0.294
PO43-	0	0	0	0	0	0	0
SO42-	1.048-02	569	7.56	1.19E-03	4.87E-03	1.41E-02	1.41E-02
Si (us SiO32-)	B.06E-03	129	1.71	9.21E-04	3.77E-03	1.09E-02	1.09E-02
F.	0	0	0	0	0	0	6
CI-	5.16E-02	1.04E+03	13.8	5.91E-03	2.42E-02	7.00E-02	0.157
C6H5O73-	0	0	0	0	0	0	C
EDTA4	0	0	0	0	0	0	0
HEDTA3-	0	0	0	0	0	0	0
glycolate-	0	0	0	0	0	0	(
acetate-	0	0	0	0	0	0	(
oxelete2-	0	0	0	0	0	0	0
DBP	0	0	0	0	0	0	C
butanol	0	0	0	0	0	0	
NH3	0.256	2.47E+03	32.9	6.55E-02	9.25E-02	0.270	0.284
Fe(CN)64-	0	0	0	0.552.02	0	0	0.20

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

HDW	Model	Rev.	4

		Sing	le-Shell Tan	k 241-S-105			
				ventory Estim	stc		
Physical						Conterior	
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	2.46E+06 (kg)	(405 iggal)	_			_	
Heat Load	2.89 (kW)	(9.88E+03 BTU/hr)		2.69	2.79	3.01	3.0
Bulk Density*	1.61 (g/cc)			1.54	1.58	1.63	1.6
							. 1.0
Water wt%	34.2	- 1	_	32.4	33.1	35.9	38.
TOC wt% C (wet	0.264	_	_	0.235	0.249	0.278	0.29
Chemical				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Ne+	13.9	1.99E+05	4.90E+05	12.4	13.2	14.4	14.
Al3+	1.97	3.32E+04	8.17E+04	1.70	1.83	2.13	2.0
Fe3+ (total Fe)	8.26E-03	287	707	6.92E-03	7.58E-03	8.93E-03	9.59E-0
Cr3+	0.204	6.59E+03	1.62E+04	0.147	0.178	0.209	0.21
Bi3+	7.36E-04	95.7	236	6.61E-04	6.97E-04	7.74E-04	8.11E-0
La3+	9.36E-10	8.09E-05	1.99E-04	7.17E-10	8.25E-10	1.05E-09	1.16E-0
Hg2+	6.14E-06	0.767	1.89	5.75E-06	5.97E-06	6.23E-06	6.31E-0
Zr (as ZrO(OH)2)	1.54E-04	8.72	21.5	1.40E-04	1.45E-04	1.59E-04	1.67E-0
Pb2+	7.23E-04	93.2	230	5.99E-04	6.60E-04	7.86E-04	8.47E-0
Ni2+	5.57E-03	203	501	5.35E-03	5.45E-03	5.68E-03	5.78E-0
Sr2+	0	0	0	0	0	0	
Mn4+	2.39E-03	81.6	201	1.75E-03	2.06E-03	2.71E-03	3.03E-0
Ca2+	2.84E-02	709	1.75E+03	2.42E-02	2.63E-02	3.06E-02	3.26E-0
K+	5.80E-02	1.41E+03	3.48E+03	5.13E-02	5.45E-02	6.20E-02	6.22E-0
OH-	11.9	1.26E+05	3.10E+05	10.2	11.0	12.9	12.3
NO3-	4.70	1.81E+05	4.47E+05	4.26	4.48	4.88	4.88
NO2-	2.62	7.50E+04	1.85E+05	2.25	2.46	2,76	2.90
CO32-	0.234	8.74E+03	2.15E+04	0.212	0.219	0.253	0.25
PO43-	5.27E-02	3.11E+03	7.67E+03	4.62E-02	4.85E-02	5.41E-02	5.54E-02
SO42-	0.161	9.60E+03	2.36E+04	0.125	0.142	0,180	0.190
Si (as SiO32-)	6.27E-02	1.10E+03	2.70E+03	5.36E-02	5.80E-02	6.74E-02	7.19E-02
F.	3.52E-02	417	1.03E+03	2.87E-02	3.14E-02	3.85E-02	4.10E-02
CI-	0.236	5.19E+03	1.28E+04	0,204	0.219	0.253	0.245
C6H5O73-	1.71E-02	2.01E+03	4.96E+03	1.58E-02	1.64E-02	1.78E-02	1.84E-02
EDTA4-	1.92E-03	344	846	9.55E-04	1.42E-03	2.41E-03	2.89E-03
HEDTA3-	3.07E-03	523	1.29E+03	1.15E-03	2.08E-03	4.06E-03	5.02E-03
dycolate-	2.65E-02	1.24E+03	3.04E+03	1.53E-02	2.08E-02	3.22E-02	3.76E-02
icetate-	2.46E-03	90.4	223	1.99E-03	2.22E-03	2.70E-03	2.93E-03
malate2-	1.23E-09	6.72E-05	1.65E-04	1.11E-09	1.17E-09	1.29E-09	1.34E-09
OBP	1.19E-02	1.55E+03	3.83E+03	9.63E-03	1.07E-02	1.30E-02	1.41E-02
utanol	1.19E-02	548	1.35E+03	9.63E-03	1.07E-02	1.30E-02	1.41E-02
NH3	6.88E-02	728	1.79E+03	5.85E-02	6.26E-02	7.68E-02	8.61E-02
7e(CN)64-	0	0	0	0	0	0	

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HNF-SD-WM-ER-352, Rev. 1

		Sin	gle-Shell Tan	k 241-S-105			
			otal Inventory				
Physical		a berghan da h	n prota ad		9.200 (19.200) 19.200 (19.200)		
Properties				-95 CI	-67 C1	+67 CI	+95 CI
Total Waste	2.48E+06 (kg)	(407 kgal)					
Heat Load	2.94 (kW)	(1.00E+04 BTU/hr)	_	2,73	2.83	3.06	3.0
Bulk Density†	1.61 (g/cc)		_	1.54	1.58	1.63	1.6
Water wt%†	34.2			32.3	33.0	35.9	38.
TOC wt% C (wet	0.262	_	_	0.233	0.247	0.277	0.29
Chemical Constituents	moie/L			-95 CI	-67 CI	+67 CI	+95 CI
Na+	13.9	1.99E+05	4.92E+05	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Al3+	2.00	3 36E+04	4.92E+05 8.31E+04	12.3	13.2	14.4	14.
Fe3+ (total Fe)	1.32E-02	3.36E+04 458	8.31E+04	1.72	1.85	2.16	2.0
Cr3+ (1001 PC)	0.203	438 6.56E+03	1.13E+03	1.19E-02	1.25E-02	1.39E-02	1.45E-02
Bi3+	7.32E-04	6.36E+03 95.2	1.638+04	0.152	0.179	0.209	0.212
a3+	9.32E-10	95.2 8.05E-05	236 1.99E-04	6.57E-04	6.94E-04	7.70E-04	8.07E-04
Hg2+	6.11E-06	0.763		7.14E-10	8.20E-10	1.04E-09	1.15E-09
	L53E-04		1.89	5.72E-06	5.95E-06	6.20E-06	6.28E-06
Zr (as ZrO(OH)2) Pb2+	7.19E-04	8.67	21.5	1.39E-04	1.44E-04	1.58E-04	1.66E-04
		92.7	230	5.96E-04	6.56E-04	7.82E-04	8.43E-04
Ni2+	5.79E-03	211	523	5.59E-03	5.69E-03	5.89E-03	5.98E-03
Sr2+	0	0	٥	0	0	0	0
Vin4+	2.37E-03	81.2	201	1.74E-03	2.05E-03	2.70E-03	3.01E-03
Ca2+	2.94E-02	733	1.81E+03	2.55E-02	2.74E-02	3.13E-02	3.32E-02
K+	5.78E-02	1.41E+03	3.48E+03	5.11E-02	5.43E-02	6.17E-02	6.19E-02
-нс	12.0	1.27E+05	3.13E+05	10.2	11.1	12.9	12.4
NO3-	4.71	1.826+05	4.49E+05	4.33	4.51	4.86	4.86
NO2-	2.61	7.48E+04	1.85E+05	2.25	2.46	2.75	2.89
032-	0.234	8.73E+03	2.16E+04	0.212	0.219	0.252	0.255
-043-	5.24E-02	3.10E+03	7.67E+03	4.60E-02	4.82E-02	5.38E-02	5.52E-02
iO42-	0.160	9.55E+03	2.36E+04	0.125	0.141	0.179	0,195
ši (as SiO32-)	6.24E-02	1.09E+03	2.70E+03	5.33E-02	5.78E-02	6.71E-02	7.16E-02
	3.51E-02	415	1.03E+03	2.86E-02	3.13E-02	3.83E-02	4.08E-02
3.	0.235	5.17E+03	1.28E+04	0.204	0.218	0.252	0.248
C6H5O73-	1.70E-02	2.00E+03	4.96E+03	1.57E-02	1.64E-02	1.77E-02	1.83E-02
EDTA4-	1.91E-03	342	846	9.51E-04	1.42E-03	2.40E-03	2.88E-03
IEDTA3-	3.05E-03	520	1.29E+03	1.14E-03	2.07E-03	4.04E-03	5.00E-03
tycolate-	2.63E-02	1.23E+03	3.04E+03	1.53E-02	2.07E-02	3.20E-02	3.74E-02
cetate-	2.45E-03	89.9	223	1.98E-03	2.21E-03	2.69E-03	2.91E-03
xalate2-	1.22E-09	6.68E-05	1.65E-04	1.10E-09	1.16E-09	1.28E-09	1.34E-09
DBP	1.18E-02	1.55E+03	3.83E+03	9.58E-03	1.07E-02	1.29E-02	1.40E-02
utanol	1.18E-02	545	1.35E+03	9.58E-03	1.07E-02	1.29E-02	1.40E-02
(H3	6.97E-02	737	1.83E+03	5.95E-02	6.35E-02	7.76E-02	8.69E-02
e(CN)64-	0	0	0	0	0	0	0.072-02

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

(M.IT) Isbold grinter and Tyd bergines are voter in the start in any order (M.IT) 2.07E-03 2.07E-03 10-39172 1.75E-04 51.2 E0-3E5'1 n LOZ (1/8) E0-368 L 20-3101 5.03E-03 50-39/.0 26/IE-03 20-3/.6% 8/8 1 Or 5/1) (W or 5/1) OL AT) (7/8 40 24 W 81430 10 S6+ W) 10 L9+ W) 10 L9- W) 10 S6-++7-W 60-31.9°E 60-319'E 60-3/Z'I 3.09E-10 90-3HS 1 50-30L'Z 2.05E-05 Cm-243 60-374 8 3.72E-09 3'94E-06 3'91E-06 3 10E-09 60-769 F \$0-36L'Z \$0-391'6 1.615-07 Cm-242 1.62E-07 1.626-07 1.0-366.1 1.5485.07 1 32E-03 EPZ-WY 60-3HE-1 1.036-10 11-3MS-E Z1-399'8 431E-08 11-945'4 10-321.2 [\$Z-WY £0-319'# 90-360'8 1.43E-04 20-301.1 3.79E-06 70-36E-07 20-321.0 1'85E-00 Pu-242 2.34E-09 3'08E-06 60-3951 60-31E-1 1.386-05 1.046-06 10-355'1 972.0 10-316°E 172-04 \$09E-04 10-30F 3782E-04 10'E 07-740 SO-399'8 2.73E-05 SO-386.5 4.85E-05 115.0 20-358 E \$0-396.9 682-nd ¥0-37/.* PO-350'9 10-301 4.04E-04 10-36E'E 0'369 15.5 8£2-n-90-199 9 90-35L'0 E0-3// E 90-319'9 90-3/S'L 90-387'8 20-300.5 LEZ-dN 1.39E-07 1.398-07 \$0-318'P 80-281 1 SO-398'S 1.035-07 10 JRE 01 /0-3221 862-0 10-3591 1.65E-07 80-369'5 80-36E-1 9.20E-04 \$0-376-92 90-97/01 1'88E-06 9£2-U 5.56E-09 5° 29E-06 01-979'8 01-3917 SO-HEP'I 552-0 60-356.9 60-356'9 5 40E-08 3'92E-06 2 13E-08 01-398'S CO-798'F 1.62E-07 1 62E-07 80-385'S 80-39E'I \$0-38L'9 1 16E-01 1-234 10-310'6 51-7007 ££2*0 2.71E-13 5.71E-13 11-346'6 11-382.2 1.51E-09 01-30111 252-0 £1-366.2 3"38E-03 234E-15 Z1-301'L 21-361-2 Z1-3017 30-396'E 262-41 91-310'8 91-3LL'T 41-39L'9 SI-396.13 91-316°S 91-310'8 71-3L++ 1.78E-12 1.786-12 21-35L'I 21-3E7.1 60-310'1 Z1-944-1 622-4L 80-3951 10-360'+ 7.186-10 162-84 80-<u>3</u>89 l 60-310°Z 3'36E-10 11-312'8 2'43E-08 LZZ-34 80-3201 5'00E-06 3.06E-10 3771E-06 60-39L'V 60-375'L \$0-309°E 84-228 SI-34E-15 S1-34E-15 ST-3ST-6 \$1-340'6 5.285-12 \$1-392'6 11-310.7 Ra-226 2.01E-09 1 26E-00 01-300.9 1 48E-10 10-351.9 60-3301 90-3/1'8 \$\$[-ng 3 30E-04 373E-04 881.0 3.30E-04 3.33E-04 333E-04 05'2 P-154 2936-05 2.93E-05 1'01E-02 3 4/E 00 1.23E-02 3.16E-05 £91'0 Eu-152 90-316'9 90-358'9 3.98E-03 7,00E-06 30-390'L 30-390⁻L 20-362.0 3'94E-03 2.33E-03 PO-3E0'8 10-3961 9/6'0 E0-314'1 [\$[-@S 0.61 20-30E-03 m761-88 20-31/8.9 20-396'2 20-309-1 2'OE 20-3/89 100 20-392 L 1'36E-03 3.13E-02 20-389-1 20-309'S LE1-\$0 \$7\$ F1-10 3-32E-08 3'25E-08 90-3Z5'I 60-36UL 1.55E-05 90-97/ T 3.06E-04 80-361.0 80-3617 80-37F 60-389 E 1.735-05 80-3H0 E 6Z1-1 3'30E-04 1 14E-02 80-357'8 10-312'H 10-36E'L 971-uS 1.00E-06 10-399 8 £0-366°S SS1-42 90-38/.1 90-38L I LO-3119 1.50E-07 10-311PL 131E-00 ED-326'6 90-366.9 Cd-113m 90-387 6 90-38P-6 90-3/LZ'E 10-300'8 3.985-03 S 29E-02 901-nH 3.38E-12 3.38E-12 21-3211 £1-398'Z 1 43E-08 3'20E-13 80-368-1 66-9I 2.15E-05 2.15E-05 145E-08 90-318'I 6.02E-03 SO-385'1 071.0 WE6-9N 3.21E-05 3'21E-00 70-388.8 2.125-07 1.068-03 90-358'1 20-30+1 1.06E-06 10-365 7 1.296-03 3.27E-06 E6-1Z 90-380 6 3.03E-05 1.72E-02 £0'T ZO (218.0 299'0 625 626.0 06-Y £0+320'L 06-15 20.1 8Z6 0 £0'1 Z18'0 299 0 1'05E+03 675 6L-95 90-351'L 10-315'9 7.25E-07 80-305.8 3.74E-04 10-3181 E0-3E9'E 1'31E-00 10-306'8 09-0; 1'51E-00 10-381 9 1.02E-07 10-360.0 £0-39L'9 E0-36# I 1 22E-03 1 22E-03 1.00E-03 062.0 E0-36E-1 £9-!N \$'0t 1 60E-05 \$0-31E-1 \$0-340 I E0-399'8 \$0-36FT 6S-IN \$0-379'I 211.0 10-365 Z ED-362.1 3'36E-06 C-14 90-3/.0% 90-3/.0'9 90-3901 1'11E-03 \$0-301.4 410E-05 \$0-34# T 20-376.1 2.92E-05 £-H 3.05E-06 122.0 SUD# (UVD) (CAI) (CAF) (CNL) D 7/17 Constituents Radiological 1D \$6+ 10 L9+ ID 49-13 S6 0 TOC WIN C (wet 0 0 0 MIN LOTEM 2.44 15.6 10.0 197 0.72 EPL'O LEL'O L12'0 20-300'9 Void Fraction 965.0 \$Z.24 11.2 **65**.1 15.1 _ (30/8) 91.1 Bulk Density 20-399 S 20-362.5 137E-02 20-31/5°E (AI/ILE 891) 4"63E-05 (KAN) Dec.1 Jack (ready 00 z) 1 33E+04 (EE) steaW M.IT latoT Properties 10 \$6+ 10.49+ 10 49 ID \$6 promina. TLM Solids Composite Inventory Estimate* Single-Shell Tank 241-5-105

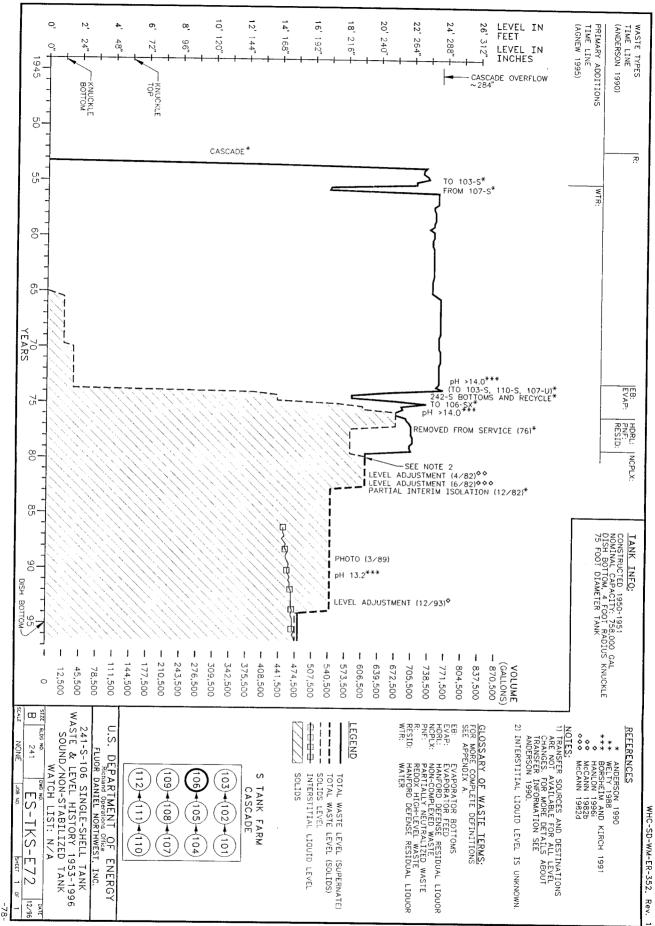
HDW Model Rev. 4

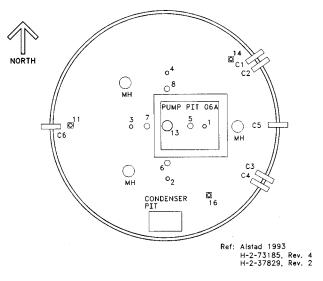
		Sing	le-Sheil Tani	241-S-105			
				entory Estima	e		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	2.46E+06 (kg)	(405 kgal)					
leat Load	2.89 (kW)	(9.88E+03 BTU/hr)		2.69	2.79	3.01	3.0
Bulk Density*	1.61 (g/cc)		-	1.54	1.58	1.63	1.6
Water wt%†	34.2			32.4	33.1	35.9	38.
TOC wt% C (wet	0.264		_	0.235	0.249	0.278	0.29
Radiological Constituents	CIL	µCi/g	G	-95 CI (C/L)	-67 CI (CVL)	+67 CI (Ci/L)	+95 CI (CVL)
H-3	2.25E-04	0.140	345	1.43E-04	1.43E-04	2.41E-04	2.34E-0
C-14	2.77E-05	1.72E-02	42.4	1.06E-05	1.06E-05	2.85E-05	2.83E-0
Ni-59	1.97E-06	1.23E-03	3.02	1.17E-06	1.17E-06	2.01E-06	2.05E-0
Ni-63	1.91E-04	0,119	293	1.11E-04	1.11E-04	1.95E-04	1.99E-0
Co-60	2.72E-05	1.70E-02	41.8	7.72E-06	7.72E-06	2.77E-05	2.81E-0
Se-79	3.02E-06	1.88E-03	4.63	1.93E-06	1.93E-06	3.41E-06	3.79E-0
Sr-90	9.96E-02	62.0	1.53E+05	9.37E-02	9.66E-02	0.103	0.10
Y-90	9.96E-02	62.0	1.53E+05	6.20E-02	6.20E-02	0.103	0.10
Zr-93	1.47E-05	9.16E-03	22.6	9.28E-06	9.28E-06	1.67E-05	1.86E-0
Nb-93m	1.10E-05	6.84E-03	16.8	7.17E-06	7.17E-06	1.24E-05	1.37E-0
Tc-99	1.97E-04	0.123	302	1.34E-04	1.65E-04	2.30E-04	2.62E-0
Ru-106	4.14E-09	2.58E-06	6.35E-03	1.62E-09	1.62E-09	4.71E-09	5.22E-0
Cd-113m	7.02E-05	4.37E-02	106	3.75E-05	3.75E-05	8.20E-05	9.34E-0
Sb-125	1.10E-04	6.87E-02	169	2.58E-05	2.58E-05	1.12E-04	1.14E-0
Sn-126	4.58E-06	2.85E-03	7.02	2.95E-06	2.95E-06	5.17E-06	5.74E-0
I-129	3.80E-07	2.36E-04	0.582	2.57E-07	3.17E-07	4.43E-07	5.04E-0
Cs-134	1.33E-06	8.28E-04	2.04	8.79E-07	8.79E-07	1.44E-06	1.54E-0
Cs-137	0.260	162	3.98E+05	0.232	0.245	0.276	0.27
Ba-137m	0.246	153	3.77E+05	0.185	0.185	0.261	0.26
Sm-151	1.07E-02	6.64	1.63E+04	6.85E-03	6.85E-03	1.20E-02	1.34E-0
Eu-152	2.52E-06	1.57E-03	3.86	1.17E-06	1.17E-06	2.58E-06	2.62E-0
Eu-154	4.43E-04	0.276	680	1.71E-04	1.71E-04	5.42E-04	5.81E-0
Eu-155	1.44E-04	8.96E-02	221	6.36E-05	6.36E-05	1.48E-04	1.52E-0
Ra-226	1.47E-10	9.12E-08	2.25E-04	9.37E-11	1.13E-10	1.73E-10	1.99E-1
Ra-228	5.48E-08	3.41E-05	8.40E-02	2.13E-08	3.77E-08	7.47E-08	9.58E-0
Ac-227	8.85E-10	5.50E-07	1.36E-03	5.78E-10	6.89E-10	1.04E-09	1.14E-0
Pa-231	3.84E-09	2.39E-06	5.89E-03	2.76E-09	2.76E-09	4.24E-09	4.62E-0
Th-229	1.30E-09	8.09E-07	1.99E-03	5.65E-10	9.24E-10	1.74E-09	2.20E-0
Th-232	3.63E-09	2.26E-06	5.57E-03	1.78E-09	2.69E-09	4.58E-09	5.49E-0
U-232	3.20E-07	1.99E-04	0.491	1.86E-07	2.52E-07	4.00E-07	4.85E-0
U-233	1.23E-06	7.65E-04	1.88	7.15E-07	9.66E-07	1.53E-06	1.86E-0
U-234	7.68E-07	4.78E-04	1.18	6.96E-07	7.30E-07	8.09E-07	7.86E-0
U-235	3.18E-08	1.98E-05	4.88E-02	2.87E-08	3.02E-08	3.36E-08	3.26E-0
U-236	2.12E-08	1.32E-05	3.26E-02	2.01E-08	2.06E-08	2.19E-08	2.18E-0
U-238	8.01E-07	4.98E-04	1.23	7.27E-07	7.62E-07	8.43E-07	8.18E-0
Np-237	8.00E-07	4.98E-04	1.23	5.93E-07	6.94E-07	9.08E-07	1.01E-0
Pu-238	9.60E-07	5.97E-04	1.47	7.16E-07	8.35E-07	1.08E-06	1.20E-0
Pu-239	3.73E-05	2.32E-02	57.2	2.98E-05	3.35E-05	4.12E-05	4.49E-0
Pu-240	6.04E-06	3.76E-03	9.26	4.88E-06	5.45E-06	6.63E-06	7.20E-0
Pu-241	6.30E-05	3.92E-02	96.5 5.17E-04	4.63E-05	5.45E-05	7.15E-05	7.96E-0
Pu-242	3.37E-10	2.10E-07		2.38E-10	2.87E-10	3.88E-10	4.37E-1
Am-241	4.89E-05	3.04E-02	74.9 1.98E-03	3.73E-05	4.30E-05	5.48E-05	6.04E-0
Am-243	1.29E-09	8.06E-07	1.98E-03 0.134	9.31E-10	1.10E-09	1.49E-09	1.67E-0
Cm-242	8.75E-08	5.44E-05	0.134	3.21E-08	3.21E-08	8.90E-08	9.05E-0
Cm-243 Cm-244	7.64E-09 8.49E-08	4.76E-06 5.28E-05	0.130	2.36E-09 3.05E-08	2.36E-09 3.05E-08	7.81E-09 1.03E-07	7.97E-0 1.15E-0
Cur-299	0.475-00		05.000010			· · · · · · · · · · · · · · · · · · ·	
				-95 CI (M	-67 CI (M	+67 CI (M	+95 C
Totals	м	⊭g/g	kış	or g/L)	or g/L)	or g/L)	(M or g/
Pu	5.01E-04 (g/L)		0.768	3.75E-04	4.37E-04	5.66E-04	6.27E-0

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

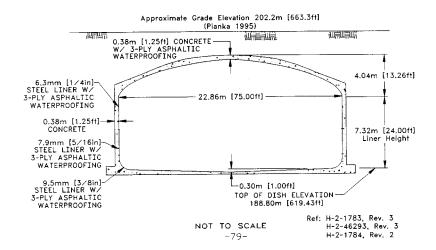
HDW Model Rev. 4

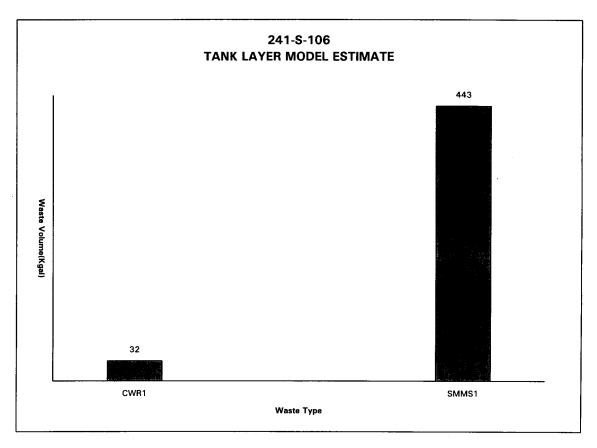
				k 241-S-105			
		To	tal Inventor	Estimate*			
Physical Properties		홍수의 영어		-95 CI	-67 Cl	+67 CI	+95 CI
Total Waste	2.48E+06 (kg)	(407 kgal)				_	-
Heat Load	2.94 (kW)	(1.00E+04 BTU/hr)	_	2.73	2.83	3.06	3.0
Bulk Density†	1.61 (g/oc)		_	1.54	1.58	1.63	1.6
Water wt%†	34.2		_	32.3	33.0	35.9	38
TOC wt% C (wet	0.262	1		0.233	0.247	0.277	0.29
Radiological Constituents	CIVL	#CVg	CI	-95 Cl (Cl/L)	-67 CI (CVL)	+67 CI (CVL)	+95 CI (Ci/L)
H-3	2.24E-04	0.139	345	1.43E-04	1.43E-04	2.40E-04	2.33E-0
C-14	2.75E-05	1.71E-02	42.4	1.06E-05	1.06E-05	2.83E-05	2.82E-0
Ni-59	2.03E-06	1.27E-03	3.13	1.24E-06	1.24E-06	2.07E-06	2.11E-0
Ni-63	1.97E-04	0.122	303	1.18E-04	1.18E-04	2.01E-04	2.05E-0
Co-60	2.71E-05	1.69E-02	41.8	7.69E-06	7.69E-06	2.76E-05	2.80E-0
Se-79	3.01E-06	1.87E-03	4.63	1.92E-06	1.92E-06	3.40E-06	3.78E-0
Sr-90	0.104	64.5	1.60E+05	9.83E-02	0.101	0.106	0.10
Y-90	0.104	64.5	1.60E+05	6.62E-02	6.62E-02	0.106	0.10
Zr-93	1.47E-05	9.12E-03	22.6	9.24E-06	9.24E-06	1.66E-05	1.85E-0
Nb-93m	1.09E-05	6.81E-03	16.9	7.15E-06	7.15E-06	1.23E-05	1.36E-0
Tc-99	1.96E-04	0.122	303	1.33E-04	1.64E-04	2.29E-04	2.60E-0
Ru-106	4.12E-09	2.56E-06	6.35E-03	1.61E-09	1.61E-09	4.68E-09	5.19E-0
Cd-113m	6.99E-05	4.35E-02	108	3.74E-05	3.74E-05	8.17E-05	9.29E-0
Sb-125	1.10E-04	6.83E-02	169	2.57E-05	2.57E-05	1.12E-04	1.14E-0
Sn-126	4.56E-06	2.84E-03	7.02	2.93E-06	2.93E-06	5.15E-06	5 71E-0
-129	3.78E-07	2.35E-04	0.582	2.56E-07	3.15E-07	4.41E-07	5.02E-0
Cs-134	1.32E-06	8.24E-04	2.04	8.75E-07	8.75E-07	1.43E-06	1.53E-0
Cs-137	0.259	161	3.96E+05	0.231	0.244	0.275	0.27
Ba-137m	0.245	152	3.77E+05	0.185	0.185	0.260	0.26
Sm-151	1.06E-02	6.60	1.64E+04	6.83E-03	6.83E-03	1.20E-02	1.33E-0
Bu-152	2.54E-06	1.58E-03	3.91	1.20E-06	1.20E-06	2.60E-06	2.64E-0
Eu-154	4.41E-04	0.275	000	1.70E-04	1.70E-04	5.39E-04	5.78E-0
Eu-155	1.45E-04	9.01E-02	223 2.33E-04	6.49E-05	6.49E-05	1.49E-04	1.52E-0
Ra-226	1.51E-10	9.40E-08	2.33E-04 8.40E-02	1.03E-10	1.18E-10	1.76E-10	1.99E-1
Ra-228	5.45E-08	3.39E-05	8.40E-02 1.39E-03	2.12E-08	3.75E-08	7.43E-08	9.54E-0
Ac-227	9.04E-10	5.62E-07	5.90E-03	6.25E-10	7.09E-10	1.05E-09	1.13E-0
Pa-231	3.83E-09	2.38E-06	1.99E-03	2.75E-09	2.75E-09	4.22E-09	4.60E-0
Th-229	1.29E-09	8.05E-07	5.57E-03	5.62E-10	9.20E-10	1.73E-09	2.19E-0
Th-232 U-232	3.61E-09 3.19E-07	2.25E-06 1.98E-04	0.491	1.77E-09	2.67E-09	4.56E-09	5.46E-0
U-232 U-233	1.22E-06	7.61E-04	1.88	1.85E-07 7.11E-07	2.51E-07	3.98E-07 1.53E-06	4.83E-0 1.85E-0
U-235 U-234	7.64E-07	4.76E-04	1.18	6.93E-07	9.61E-07 7.27E-07	8.05E-07	
U-234 U-235	3.17E-08	4.76E-04 1.97E-05	4.88E-02	0.93E-07 2.86E-08	3.01E-08	8.05E-07 3.34E-08	7.83E-0 3.24E-0
U-235 U-236	2.11E-08	1.328-05	3.26E-02	2.80E-08 2.00E-08	2.06E-08	2.18E-08	3.24E-0
U-238	7.97E-07	4.96E-04	1.23	7.24E-07	7.59E-07	2.16E-08 8.39E-07	8.15E-0
Np-237	7.97E-07	4.96E-04	1.23	5.90E-07	6.91E-07	9.04E-07	1.01E-0
Pu-238	9.88E-07	6.14E-04	1.52	7.45E-07	8.64E-07	9.04E-07	1.01E-0
Pu-239	3.95E-05	2.46E-02	60.8	3.26E-05	3.60E-05	4.30E-05	4.63E-0
Pu-240	6.34E-06	3.94E-03	9.77	5.18E-06	5.75E-06	6.93E-06	7.50E-0
Pu-241	6.46E-05	4.02E-02	99.5	4.80E-05	5.61E-05	7.31E-05	8.12E-0
Pu-242	3.45E-10	2.14E-07	5.31E-04	2.46E-10	2.94E-10	3.95E-10	4.44E-1
Am-241	4.87E-05	3.03E-02	75.0	3.71E-05	4.28E-05	5.46E-05	6.02E-0
Am-243	1.29E-09	8.02E-07	1.99E-03	9.27E-10	L.10E-09	1.48E-09	1.67E-0
Cm-242	8.78E-08	5.46E-05	0.135	3.27E-08	3.27E-08	8.94E-08	9.08E-0
Cm-243	7.63E-09	4.74E-06	1.17E-02	2.37E-09	2.37E-09	7.79E-09	7.95E-0
Cm-244	8.45E-08	5.26E-05	0.130	3.03E-08	3.03E-08	1.03E-07	1.15E-0
				-95 CI (M			
Totala	M	#8/2	kg	or g/L)	or g/L)	or g/L)	(M or g/l
Pu	5.38E-04 (g/L)		0.828	4.20E-04	4.78E-04	5.97E-04	6.55E-0
U	9.06E-03	1.34E+03	3.32E+03	8.14E-03	8.57E-03	9.58E-03	9.27E-0


*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.


- 76-

TANK 241-S-106 SUMMARY


TANK H	ISTORY	TANK DES	SCRIPTION		
Entered Service	2nd qtr 1953	Diameter	75 ft		
Removed from Service	1976	Bottom Shape	Dish		
Inactive	-	Nominal Capacity	758,000 gal		
Watch Lists	none	Cascade Tank	none		
Integrity	Sound	Total Risers	12		
Assumed Leaker	-	WASTE VOLUME	E (HANLON 1996i)		
Interim Stabilization (IS)	-	Total Waste Volume	479,000 gal		
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX		
Intrusion Prevention (IP)		Drainable Interstitial Liquids	186,000 gal		
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids	168,000 gal		
Riser Number(s)	Size	Saltcake	447,000 gal		
11, 14, 16	4 in	Sludge	28,000 gal		
6, 8	12 in	Supernatant	4,000 gai		
TANK TEM	PERATURE	INTERIOR PHOTOGRAPHS			
Average Tank Temperature	76°F	Date	March 17, 1989		
Maximum Temperature	87°F	Montage Number	94041033-23CN		
Date	Jan 1, 1992	Photo Set Number	89032049		
Elevation from tank bottom	4.46 ft	WASTE SUR	FACE LEVEL		
Riser Number	4	Devices	Auto and Manual ENRAF		
Minimum Temperature	62.06°F	Max Level	181.06 in		
Date	March 19, 21 & 24, 1996	Date	Dec 13, 1995		
Elevation from tank bottom	16.46 ft, 18.46 ft	Min Level	174.5 in		
Riser Number	4	Date	April 8 and 22, 1991		



241-S-106

TANK RISER LOCATION

HDW	Model	Rev.	4	

			1. 01.10.70			NDW I	Model Rev.
				k 241-S-106		••	
Physical		ILM Solids	composite	Inventory Est	mete*		
Properties		철학자 소문		-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	2.15E+05 (kg)	(32.0 kgal)		_			
Heat Load	3.00E-03 (kW)	(10.3 BTU/hr)		2.52E-03	2.90E-03	3.11E-03	3.20E-0
Bulk Density	1.77 (g/cc)			1.47	1.57	1.92	2.0
Void Fraction	0.651			0.488	0.557	0.780	0.82
Water wt%	24.5		_	4.37	12.2	45.5	55.
TOC wt% C (wet	0			0	0	0	
Chemical Constituents	mole/L	ppm	kg	-95 CI (mole/L)	-67 CI (mole/L)	+67 CI (mole/L)	+95 Cl (mole/L)
Na+	7.86	1.02E+05	2.19E+04	2.23	3.91	10.7	12.
AL3+	11.2	1.71E+05	3.66E+04	5.84	7.28	14.0	16.
Fe3+ (total Fe)	0.165	5.20E+03	1.12E+03	0.153	0.160	0.170	0.17
Cr3+	2.04E-03	59.8	12.8	1.7(E-03	1.97E-03	2.10E-03	2.17E-0
Bi3+	0		0	0	0	0	
La3+	0	ō	Ó	0	0	0	
Hg2+	4.08E-03	462	99.1	4.02E-03	4.06E-03	4.10E-03	4.11E-0
Zr (as ZrO(OH)2)	0	0	0	0	0	0	
Pb2+	0.118	1.38E+04	2.95E+03	0.108	0.113	0.122	0.12
Ni2+	1.02E-03	33.7	7.24	8.54E-04	9.84E-04	1.51E-03	3.79E-0
Sr2+	0	0	. 0	0	0	0	
Mn4+	0	0	0	0	0	0	
Ca2+	0.121	2.73E+03	586	6.72E-02	9.87E-02	0.141	0.16
K+	1.54E-03	33.9	7.27	1.29E-03	1.48E-03	1.59E-03	1.64E-0
OH-	41.7	4.00E+05	8.59E+04	20.0	25.9	53.0	61.
NO3-	0.572	2.00E+04	4.30E+03	0.485	0.554	0.591	0.61
NO2-	0.958	2.49E+04	5.34E+03	0.799	0.925	0.990	1.0
CO32-	0.121	4.09E+03	878	6.72E-02	9.87E-02	0.141	0.16
PO43-	0	0	0	0	0	0	
8042-	8.39E-03	455	97.6	7.04E-03	8.10E-03	8.67E-03	8.94E-0
Si (as SiO32-)	2.01E-02	319	68.4	1.69E-02	1.94E-02	8.18E-02	0.17
F.	0	0	0	0	0	0.102-02	0.17
ci.	7.07E-03	141	30.3	5.93E-03	6.83E-03	7.30E-03	7.53E-0
C6H5O73-	0	0	0	0.000	0.032-03	0	7.356-0.
EDTA4-	0	0	0	0	- 0	0	
HEDTA3-	0	0	0	0		0	
				-			
Rivcolate-		0	0	0	0	0	
loctate-	0	0	0	0	0	0	
oxalate2-	0	0	0	0	0	0	
DBP	0	0	0	0	0	0	
butanol	0	0	0	0	0	0	
NH3	2.05E-04	1.97	0.422	1.61E-04	1.80E-04	2.38E-04	2.49E-0
Fe(CN)64-	0	0	0	0	0	0	

"Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

		Sing	le-Shell Tan	k 241-S-106			Aodel Rev.
				entory Estimation	ile		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	2.80E+06 (kg)	(447 kgnl)					
Heat Load	3.65 (kW)	(1.25E+04 BTU/hr)	-	3.47	3.56	3.76	3.8
Bulk Density*	1.66 (g/cc)		-	1.60	1.63	1.68	1.6
Water wt%	31.0			28.8	29.8	32.3	34.
TOC wt% C (wet	0.342			0.306	0.324	0.360	0.37
Chemical Constituents	moie/L	ppm	in de la companya de La companya de la comp	-95 CI (mole/L)	-67 Cl (mole/L)	+67 CI (mole/L)	+95 Cl (mole/L)
Na+	15.2	2.11E+05	5.90E+05	13.9	14.6	15.6	16.
A13+	2.08	3.38E+04	9.47E+04	1.85	1.95	2.21	2.1
Fe3+ (total Fe)	9.22E-03	311	871	7.46E-03	8.32E-03	1.01E-02	1.10E-0
Cr3+	0.207	6.50E+03	1.82E+04	0.160	0.185	0.215	0.22
Bi3+	6.55E-04	82.7	232	5.92E-04	6.23E-04	6.87E-04	7.18E-0-
La3+	3.27E-08	2.75E-03	7.69E-03	2.40E-08	2.83E-08	3.72E-08	4.15E-0
Hg2+	5.82E-06	0.705	1.97	5.49E-06	5.68E-06	5.89E-06	5.95E-0
Zr (as ZrO(OH)2)	1.32E-04	7.30	20.4	1.21E-04	1.25E-04	1.37E-04	1.44E-0
Pb2+	7.06E-04	88.3	247	6.08E-04	6.56E-04	7.55E-04	8.03E-0
Ni2+	5.89E-03	209	586	5.72E-03	5.80E-03	5.99E-03	6.07E-0
Sr2+	0	0	Ō	0	0	0	(
Mn4+	3.04E-03	101	283	2.20E-03	2.61E-03	3.48E-03	3.89E-0
Ca2+	3.00E-02	727	2.04E+03	2.65E-02	2.82E-02	3.18E-02	3.35E-02
K+	6.36E-02	1.50E+03	4.21E+03	5.80E-02	6.07E-02	6.68E-02	6.91E-03
OH-	12.7	1.31E+05	3.66E+05	11.3	12.0	13.5	13.3
NO3-	4.93	1.85E+05	5.17E+05	4.56	4.74	5.08	5.10
NO2-	2.90	8.06E+04	2.26E+05	2.54	2.71	3.09	3.2
CO32-	0.291	1.05E+04	2.95E+04	0.261	0.275	0.306	0.31
PO43-	5.70E-02	3.27E+03	9.15E+03	5.16E-02	5.34E-02	5.83E-02	5.96E-0
SO42-	0.185	1.07E+04	3.00E+04	0.138	0.160	0.210	0.23
Si (as SiO32-)	7.16E-02	1.21E+03	3.40E+03	5.94E-02	6.54E-02	7.77E-02	8.37E-0,
F-	3.13E-02	359	1.00E+03	2.58E-02	2.81E-02	3.39E-02	3.61E-02
CI-	0.256	5.49E+03	1.54E+04	0.230	0.243	0.271	0.27
C6H5O73-	2.34E-02	2.67E+03	7.48E+03	2.17E-02	2.25E-02	2.43E-02	2.51E-0
EDTA4-	2.10E-03	366	1.02E+03	1.06E-03	1.57E-03	2.64E-03	3.16E-0
HEDTA3-	3.45E-03	571	1.60E+03	1.37E-03	2.39E-03	4.52E-03	5.56E-03
glycolate-	4.48E-02	2.03E+03	5.69E+03	2.44E-02	3.44E-02	5.53E-02	6.53E-0
sortate-	2.43E-03	86.6	243	1.97E-03	2.20E-03	2.66E-03	2.89E-03
oxalate2-	4.29E-08	2.28E-03	6.38E-03	3.81E-08	4.04E-08	4.53E-08	4.76E-0
DBP	1.51E-02	1.92E+03	5.37E+03	1.21E-02	1.36E-02	1.66E-02	1.80E-02
butanol	1.51E-02	676	1.89E+03	1.21E-02	1.36E-02	1.66E-02	1.80E-0
NH3	7.44E-02	764	2.14E+03	6.07E-02	6.61E-02	8.49E-02	9.72E-0
Fe(CN)64-	0	0	0	0	0	0	
Density is calculate	d based on Na, OH-, from the difference of				0	0	

		Sing	le-Shell Tan	k 241-S-106		1.000	Model Rev.
			tal Inventory				
Physical Properties				-95 CI	-67 CI	+67 C1	+95 CI
Total Waste	3.02E+06 (kg)	(479 kgal)				_	
Heat Load	3.66 (kW)	(1.25E+04 BTU/hr)	-	3.47	3.56	3.76	3.8
Bulk Density†	1.66 (g/cc)			1.61	1.64	1.68	1.7
Water wt%†	30.6			28.5	29.3	32.0	33.
TOC wt% C (wet	0.317	_	ł	0.284	0.300	0.334	0.35
Chemical Constituents	male/L	ppm	kg	-95 CI (moie/L)	-67 CI (mole/L)	+67 C1 (mole/L)	+95 CI (mole/L)
Na+	14.7	2.03E+05	6.12E+05	13.5	14.2	15.1	15.
Al3+	2.69	4.36E+04	1.31E+05	2.31	2.43	2.86	2.9
Fe3+ (total Fe)	1.96E-02	659	1.99E+03	1.80E-02	1.88E-02	2.05E-02	2.13E-0
Cr3+	0.193	6.04E+03	1.82E+04	0.150	0.173	0.201	0.20
Bi3+	6.11E-04	76.8	232	5.52E-04	5.81E-04	6.41E-04	6.70E-0
La3+	3.05E-08	2.55E-03	7.69E-03	2.24E-08	2.64E-08	3.47E-08	3.87E-0
Hg2+	2.78E-04	33.5	101	2.74E-04	2.76E-04	2.79E-04	2.80E-0
Zr (ms ZrO(OH)2)	1.24E-04	6.78	20.4	1.13E-04	1.17E-04	1.28E-04	1.34E-0
Pb2+	8.52E-03	1.06E+03	3.20E+03	7.68E-03	8.26E-03	8.75E-03	8.98E-0
Ni2+	5.57E-03	197	593	5.40E-03	5.48E-03	5.65E-03	5.78E-0
Sr2+	0	0	0	0	0	0	
Mn4+	2.84E-03	93.8	283	2.05E-03	2.44E-03	3.24E-03	3.63E-0
Ca2+	3.61E-02	869	2.62E+03	3.25E-02	3.44E-02	3.77E-02	3.93E-0
K+	5.95E-02	1.40E+03	4.22E+03	5.42E-02	5.67E-02	6.25E-02	6.46E-0
OH-	14.7	1.50E+05	4.52E+05	13.2	13.7	15.4	15.
N03-	4.64	1.73E+05	5.22E+05	4.30	4.46	4.78	4.8
NO2-	2.77	7.67E+04	2.31E+05	2.43	2.59	2.95	3.1
CO32-	0.279	1.01E+04	3.04E+04	0.252	0.265	0.294	0.30
PO43-	5.32E-02	3.04E+03		4.81E-02	4.99E-02	5.44E-02	5.56E-0
SO42- Si (as SiO32-)	0.173 6.81E-02	9.96E+03	3.01E+04 3.47E+03	0.129	0.150	0.196	0.21
Si (as SiO32-) F.	0.81E-02 2.92E-02	1.15E+03	3.4/E+03	5.68E-02	6.24E-02	7.39E-02	7.94E-0
		5.11E+03	1.54E+04	2.40E-02	2.62E-02	3.17E-02	3.37E-0
CI- C6H5O73-	0.240 2.18E-02	2.48E+03	1.54E+04 7.48E+03	0.216	0.227	0.254	0.25
EDTA4-	2.18E-02	2.462+03	7.46E+03	2.02E-02	2.10E-02	2.26E-02	2.34E-0
HEDTA3-	3.22E-03	530	1.60E+03	9.93E-04	1.47E-03	2.46E-03	2.95E-0
	3.220-93	331	1.005+03	1.28E-03	2.23E-03	4.22E-03	5.19E-0
glycolate-	4.18E-02	L.89E+03	5.69E+03	2.28E-02	3.21E-02	5.16E-02	6.09E-0
acetate-	2.27E-03	80.5	243	1.84E-03	2.05E-03	2.49E-03	2.70E-0
oxalate2-	4.00E-08	2.12E-03	6.38E-03	3.56E-08	3.77E-08	4.23E-08	4.44E-0
DBP	1.41E-02	1.78E+03	5.37E+03	1.13E-02	1.27E-02	1.55E-02	1.68E-0
butanol	1.41E-02	628	1.89E+03	1.13E-02	1.27E-02	1.55E-02	1.68E-0
NH3	6.94E-02	710	2.14E+03	5.67E-02	6.17E-02	7.92E-02	9.07E-0
Fe(CN)64-	0	0	0	0	0	0	
*Unknowns in tank	solids inventory are a	ssigned by Tank Layeris of density and total disa		LM).	0	0	

				k 241-S-106			
		TLM Solids	Composite	Inventory Esti	imate*		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	2.15E+05 (kg)	(32.0 kgal)				_	-
Heat Load	3.00E-03 (kW)	(10.3 BTU/hr)		2.52E-03	2.90E-03	3.11E-03	3.20E-
Bulk Density	1.77 (g/cc)			1.47	1.57	1.92	2.0
Void Fraction	0.651	_		0.488	0.557	0.780	0.8
Water wt%	24.5	-		4.37	12.2	45.5	55
TOC wt% C (wet	0		_	0	0	0	
Radiological Constituents	CVL	μCVg	a	-95 CI (CVL)	-67 CI (CVL)	+67 CI (CVL)	+95 Cl (CVL)
H-3	1.01E-06	5.71E-04	0.123	6.33E-07	8.98E-07	1.13E-06	1.24E-4
C-14	1.09E-07	6.16E-05	1.32E-02	9.15E-08	1.05E-07	1.13E-07	1.16E-
Ni-59	3.09E-08	1.75E-05	3.75E-03	2.59E-08	2.99E-08	4.60E-08	1.15E-0
Ni-63	2.90E-06	1.64E-03	0.351	2.43E-06	2.80E-06	4.00E-06	1.08E-0
Co-60	4.71E-08	2.66E-05	5.71E-03	3.96E-08	4.56E-08	4.51E-06 4.87E-08	5.02E-0
Se-79	2.37E-08	1.34E-05	2.87E-03	1.99E-08	4.36E-08 2.29E-08		
Sr-90	2.05E-03	1.348-05	248	1.99E-08	2.29E-08 1.98E-03	2.45E-08 2.12E-03	2.53E-0 2.18E-0
Y-90	2.05E-03	1.16	246	1.72E-03			
1-90 Zr-93	1.12E-07	6.34E-05	1.36E-02		1.96E-03	2.12E-03	2.18E-0
Zr-93 Nb-93m			1.38E-02 1.11E-02	9.42E-08	1.09E-07	1.16E-07	1.20E-0
	9.13E-08	5.15E-05	9.49E-02	7.66E-08	8.82E-08	9.43E-08	9.73E-0
Tc-99 Ru-106	7.84E-07	4.42E-04	9.49E-02 3.34E-08	6.57E-07	7.57E-07	8.10E-07	8.35E-0
	2.76E-13	1.56E-10	4.25E-08	2.31E-13	2.66E-13	2.85E-13	2.94E-
Cd-113m	3.51E-07	1.98E-04	9.56E-03	2.94E-07	3.39E-07	3.62E-07	3.74E-0
Sb-125	7.89E-08	4.46E-05	9.36E-03	6.62E-08	7.63E-08	8.16E-08	8.41E-C
Sn-126	3.61E-08	2.04E-05		3.03E-08	3.49E-08	3.73E-08	3.85E-0
-129	1.50E-09	8.47E-07	1.82E-04	1.26E-09	1.45E-09	1.55E-09	1.60E-0
Cs-134	1.65E-09	9.34E-07	2.00E-04	1.39E-09	1.60E-09	1.71E-09	1.76E-0
Cs-137	2.35E-03	1.33	285	1.97E-03	2.27E-03	2.43E-03	2.50E-0
Be-137m	2.22E-03	1.26	269	1.87E-03	2.15E-03	2.30E-03	2.37E-0
Sm-151	8.47E-05	4.78E-02	10.3	7.10E-05	8.18E-05	8.75E-05	9.02E-0
Eu-152	1.75E-07	9.89E-05	2.12E-02	1.74E-07	1.75E-07	1.76E-07	1.76E-0
Eu-154	1.15E-06	6.48E-04	0.139	9.63E-07	1.11E-06	1.19E-06	1.22E-0
Bu-155	8.33E-06	4.71E-03	1.01	8.27E-06	8.32E-06	8.35E-06	8.36E-0
Ra-226	2.83E-12	1.60E-09	3.42E-07	2.37E-12	2.73E-12	2.92E-12	3.01E-1
Ra-228	2.92E-16	1.65E-13	3.54E-11	2.90E-16	2.91E-16	2.92E-16	2.93E-1
Ac-227	1.45E-11	8.19E-09	1.76E-06	1.22E-11	1.40E-11	1.50E-11	1.55E-1
Pa-231	3.44E-11	1.94E-08	4.17E-06	2.89E-11	3.32E-11	3.55E-11	3.67E-1
Th-229	4.13E-14	2.33E-11	5.00E-09	4.09E-14	4.12E-14	4.13E-14	4.14E-1
Th-232	4.04E-17	2.28E-14	4.89E-12	3.39E-17	3.90E-17	4.17E-17	4.30E-1
U-232	6.47E-10	3.65E-07	7.83E-05	5.62E-10	6.12E-10	6.72E-10	6.90E-1
U-233	2.39E-11	1.35E-08	2.90E-06	2.08E-11	2.26E-11	2.49E-11	2.55E-1
U-234	1.48E-05	8.36E-03	i.79	1.29E-05	1.40E-05	1.54E-05	1.58E-0
U-235	6.29E-07	3.55E-04	7.62E-02	5.46E-07	5.95E-07	6.53E-07	6.71E-0
U-236	3.26E-07	1.84E-04	3.95E-02	2.83E-07	3.08E-07	3.39E-07	3.48E-0
U-238	1.44E-05	8.14E-03	1.75	1.25E-05	1.36E-05	1.50E-05	1.54E-0
Np-237	5.48E-09	3.09E-06	6.64E-04	4.60E-09	5.30E-09	5.67E-09	5.84E-0
Pu-238	2.51E-05	1.42E-02	3.04	2.40E-05	2.45E-05	2.57E-05	2.62E-0
Pu-239	1.61E-03	0.908	195	1.54E-03	1.57E-03	1.64E-03	1.68E-0
Pu-240	2.27E-04	0.128	27.5	2.17E-04	2.22E-04	2.32E-04	2.37E-0
Pu-241	1.39E-03	0.782	168	1.32E-03	1.35E-03	1.42E-03	1.45E-0
Pu-242	5.88E-09	3.32E-06	7.12E-04	5.62E-09	5.75E-09	6.01E-09	6.14E-0
Am-241	4.09E-07	2.31E-04	4.95E-02	3.43E-07	3.95E-07	4.22E-07	4.36E-0
Am-243	3.73E-12	2.10E-09	4.51E-07	3.13E-12	3.60E-12	3.85E-12	3.97E-1
Cm-242	3.65E-09	2.06E-06	4.42E-04	3.62E-09	3.65E-09	3.66E-09	3.67E-0
Cm-243	8.34E-11	4.71E-08	1.01E-05	8.27E-11	8.32E-11	8.35E-11	8.36E-1
Cm-244	1.30E-10	7.33E-08	1.57E-05	1.09E-10	1.25E-10	1.34E-10	1.38E-1
				-95 CI M	-67 CI (M	+67 CL M	+95 CI
Totals	м	P8/8	ka	or g/L)	or g/L)		e kolente santa
	2.69E-02 (g/L)	TE B					(M or g/I
Pu			3.26	2.57E-02	2.63E-02	2.75E-02	2.81E-0

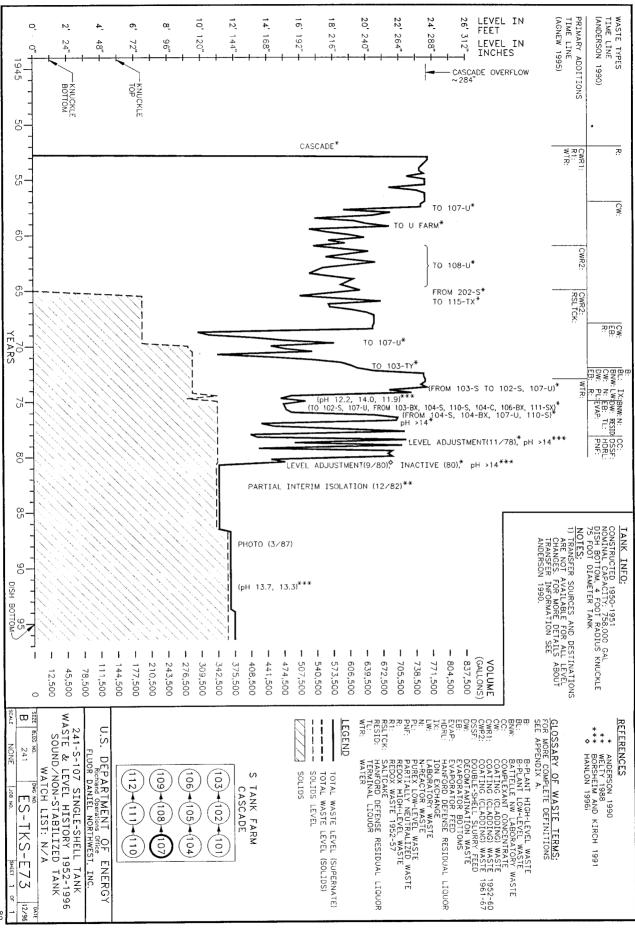
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

HDW	Model	Rev.	4

			le-Shell Tan				
		SMM C	omposite In	entory Estimation	te		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	2.80E+06 (kg)	(447 kgal)					
Heat Load	3.65 (kW)	(1.25E+04 BTU/hr)		3.47	3.56	3.76	3.8
Bulk Density*	1.66 (g/oc)	-		1.60	1.63	1.68	1.6
Water wt%†	31.0			28.8	29.8	32.3	34
FOC wt% C (wet	0.342			0.306	0.324	0.360	0.37
Radiological Constituents	СИ	µCi/g	Ci	-95 Cl (Ci/L)	-67 Cl (Ci/L)	+67 CI (CVL)	+95 CI (CVL)
H-3	2.82E-04	0.171	478	1.74E-04	1.74E-04	2.95E-04	2.90E-0
2-14	3.45E-05	2.09E-02	58.4	1.19E-05	1.19E-05	3.52E-05	3.5IE-0
Ni-59	2.26E-06	1.36E-03	3.82	1.20E-06	1.20E-06	2.31E-06	2.36E-0
Ni-63	2.20E-04	0.133	372	1.15E-04	1.15E-04	2.25E-04	2.30E-0
Co-60	3.54E-05	2.14E-02	59.9	9.52E-06	9.52E-06	3.58E-05	3.61E-0
Se-79	3.57E-06	2.16E-03	6.04	2.13E-06	2.13E-06	4.09E-06	4.59E-0
Sr-90	0.112	67.6	1.89E+05	0.105	0.108	0.116	0.11
Y-90	0.112	67.6	1.89E+05	6.21E-02	6.21E-02	0.116	0.11
Zr-93	1.75E-05	1.06E-02	29.6	1.03E-05	1.03E-05	2.01E-05	2.26E-0
Nb-93m	1.29E-05	7.77E-03	21.8	7.81E-06	7.81E-06	1.47E-05	1.64E-0
Tc-99	2.47E-04	0.149	418	1.63E-04	2.04E-04	2.90E-04	3.32E-0
Ru-106	5.80E-09	3.50E-06	9.81E-03	2.46E-09	2.46E-09	6.55E-09	7.23E-0
Cd-113m	8.82E-05	5,33E-02	149	4.49E-05	4.49E-05	1.04E-04	1.19E-0
Sb-125	1.46E-04	8.80E-02	246	3.37E-05	3.37E-05	1.47E-04	1.19E-0
Sn-126	5.41E-06	3.27E-03	9.15	3.25E-06	3.25E-06	6.19E-06	6.94E-0
-129	4.76E-07	2.87E-04	0.805	3.13E-07	3.92E-06	5.60E-07	6.41E-0
Cs-134	1.72E-06	1.04E-03	2.92	9.10E-07	9.10E-07	1.82E-06	1.91E-0
Cs-137			5.07E+05				
-137 Ba-137m	0.300	181	4.80E+05	0.276	0.288	0.313	0.32
	0.284		2.13E+04		0.175	0.296	0.29
Sm-151	1.26E-02	7.61	5 32	7.55E-03	7.55E-03	1.44E-02	1.62E-0
Eu-152	3.14E-06	1.90E-03	978	1.36E-06	1.36E-06	3.20E-06	3.25E-0
Eu-154	5.78E-04	0.349	305	2.18E-04	2.18E-04	7.08E-04	7.60E-0
Eu-155	1.80E-04	0.109	2.66E-04	7.38E-05	7.38E-05	1.84E-04	1.87E-0
Ra-226	1.57E-10	9.51E-08	8.74E-02	1.13E-10	1.13E-10	1.80E-10	2.01E-1
Ra-228	5.17E-08	3.12E-05	8.74E-02	2.06E-08	3.58E-08	7.01E-08	8.97E-0
Ac-227	9.48E-10	5.73E-07	7.24E-03	6.89E-10	6.89E-10	1.08E-09	1.16E-0
Pa-231	4.28E-09	2.58E-06		2.84E-09	2.84E-09	4.80E-09	5.30E-0
Th-229	1.24E-09	7.47E-07	2.09E-03 6.03E-03	5.55E-10	8.88E-10	1.64E-09	2.07E-0
Th-232	3.56E-09	2.15E-06		1.85E-09	2.69E-09	4.44E-09	5.28E-0
U-232	3.23E-07	1.95E-04	0.547	1.99E-07	2.59E-07	3.97E-07	4.75E-0
U-233	1.24E-06	7.49E-04	2.10	7.63E-07	9.96E-07	1.52E-06	1.82E-0
U-234	8.07E-07	4.88E-04		7.47E-07	7.76E-07	8.41E-07	8.31E-0
U-235	3.33E-08	2.01E-05	5.63E-02	3.07E-08	3.19E-08	3.48E-08	3.43E-0
U-236	2.39E-08	1.44E-05	4.04E-02	2.29E-08	2.34E-08	2.44E-08	2.46E-0
U-238	8.30E-07	5.01E-04	L.40	7.69E-07	7.98E-07	8.65E-07	8.53E-0
Np-237	9.66E-07	5.84E-04	1.64	6.91E-07	8.26E-07	1.11E-06	1.25E-0
Pu-238	1.18E-06	7.13E-04	2.00	8.58E-07	1.02E-06	1.35E-06	1.50E-0
Pu-239	4.26E-05	2.57E-02	72.0	3.43E-05	3.84E-05	4.68E-05	5.08E-0
Pu-240	7.06E-06	4.27E-03	12.0	5.52E-06	6.28E-06	7.85E-06	8.60E-0
Pu-241	7.81E-05	4.72E-02	132	5.61E-05	6.69E-05	8.94E-05	1.00E-0
Pu-242	4.26E-10	2.57E-07	7.20E-04	2.94E-10	3.59E-10	4.93E-10	5.57E-1
Am-241	5.79E-05	3.50E-02	97.9	4.25E-05	5.01E-05	6.57E-05	7.32E-0
Am-243	1.75E-09	1.06E-06	2.96E-03	1.27E-09	1.50E-09	2.01E-09	2.25E-0
Cm-242	1.09E-07	6.57E-05	0.184	3.55E-08	3.55E-08	1.12E-07	1.14E-0
Cm-243	9.83E-09	5.94E-06	1.66E-02	2.84E-09	2.84E-09	1.01E-08	1.04E-0
Cm-244	1.10E-07	6.65E-05	0.186	3.80E-08	3.80E-08	1.35E-07	1.50E-0
				-95 CI (M	-67 CI (M	+67 CI (M	+95 CI
l'otals	М	# 8/ 8	kg	ar g/L)	or g/L)	or g/L)	(M or g/l
Pu	5.47E-04 (g/L)	T	0.926	3.91E-04	4.68E-04	6.27E-04	7.03E-0
Ű	9.47E-03	1.36E+03	3.81E+03				

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

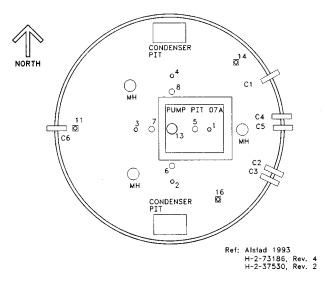
HDW	Model Rev.	4

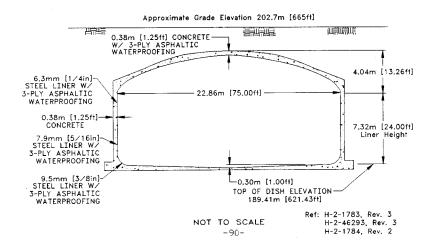

			le-Shell Tan						
	Total Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Fotal Waste	3.02E+06 (lgg)	(479 kgal)	-	_		1	_		
Heat Load	3.66 (kW)	(1.25E+04 BTU/hr)		3.47	3.56	3.76	3.8		
Bulk Density†	1.66 (g/cc)		_	1.61	1.64	1.68	1.7		
Water wt%†	30.6	·		28.5	29.3	32.0	33.		
FOC wt% C (wet	0.317			0.284	0.300	0.334	0.35		
Radiological Constituents	CIL	pCi/g	Ci	-95 C1 (Ci/L)	-67 CI (Ci/L)	+67 CI (CVL)	+95 CI (Ci/L)		
н-з	2.63E-04	0.158	478	1.63E-04	1.63E-04	2.76E-04	2.71E-0		
C-14	3.22E-05	1.94E-02	58.4	1.11E-05	1.11E-05	3.28E-05	3.27E-0		
Ni-59	2.11E-06	1.27E-03	3.82	1.12E-06	1.12E-06	2.16E-06	2.21E-0		
Ni-63	2.05E-04	0.123	372	1.07E-04	1.07E-04	2.10E-04	2.15E-0		
Co-60	3.30E-05	1.99E-02	59.9	8.89E-06	8.89E-06	3.34E-05	3.37E-0		
Se-79	3.34E-06	2.01E-03	6.05	1.99E-06	1.99E-06	3.82E-06	4.29E-0		
Sr-90	0.105	62.9	1.90E+05	9.80E-02	0.101	0.108	0.11		
Y-90	0.105	62.9	1.90E+05	5.81E-02	5.81E-02	0.108	0.11		
Zr-93	1.63E-05	9.82E-03	29.6	9.60E-06	9.60E-06	1.88E-05	2.11E-0		
Nb-93m	1.20E-05	7.22E-03	21.8	7.30E-06	7.30E-06	1.376-05	1.53E-0		
Tc-99	2.31E-04	0.139	418	1.52E-04	1.90E-04	2.71E-04	3.10E-0		
Ru-106	5.41E-09	3.25E-06	9.81E-03	2.29E-09	2.29E-09	6.11E-09	6.74E-0		
Cd-113m	8.23E-05	4.95E-02	149	4.19E-05	4.19E-05	9.69E-05	1.11E-0		
Sb-125	1.36E-04	8.17E-02	246	3.14E-05	3.14E-05	1.38E-04	1.39E-0		
Sn-126	5.05E-06	3.04E-03	9.15	3.03E-06	3.03E-06	5.78E-06	6.48E-0		
-129	4.44E-07	2.67E-04	0.805	2.92E-07	3.66E-07	5.22E-07	5.98E-0		
Cs-134	1.61E-06	9.67E-04	5.08E+05	8.49E-07	8.49E-07	1.70E-06	1.78E-0		
Cs-137	0.280	168	4.80E+05	0.258	0.269	0.293	0.30		
Ba-137m	0.265	159	2.13E+04	0.164	0.164 7.05E-03	0.277 1.35E-02	0.27		
Sm-151	1.18E-02 2.95E-06	7.07 1.77E-03	5.34	7.05E-03	7.05E-03	1.35E-02 3.00E-06	1.51E-0 3.04E-0		
Bu-152	2.95E-06	0.324	978	2.03E-04	2.03E-04	6.61E-04	7.10E-0		
Eu-154 Eu-155	1.69E-04	0.101	306	6.94E-05	6.94E-05	1.72E-04	1.75E-0		
Ra-226	1.47E-10	8.85E-06	2.67E-04	1.05E-10	1.05E-10	1.68E-10	L.88E-1		
Ra-228	4.82E-06	2.90E-05	8.74E-02	1.93E-08	3.34E-08	6.54E-08	8.37E-0		
Ac-228	4.82E-06 8.86E-10	5.33E-07	1.61E-03	6.44E-10	6.44E-10	1.01E-09	1.08E-0		
Pa-231	4.00E-09	2.40E-06	7.24E-03	2.65E-09	2.65E-09	4.48E-09	4.95E-0		
Th-229	1,15E-09	6.93E-07	2.09E-03	5.18E-10	8.28E-10	1.53E-09	1.93E-0		
Th-232	3.338-09	2.00E-06	6.03E-03	1.72E-09	2.51E-09	4.14E-09	4.93E-0		
U-232	3.02E-07	1.81E-04	0.547	1.85E-07	2.42E-07	3.70E-07	4.44E-0		
U-233	1.16E-06	6.96E-04	2.10	7.12E-07	9.30E-07	1.42E-06	1.70E-4		
U-234	1.74E-06	1.05E-03	3.16	1.61E-06	1.69E-06	1.78E-06	1.81E-0		
U-235	7.31E-08	4.39E-05	0.132	6.76E-08	7.08E-08	7.47E-08	7.59E-0		
U-236	4.4)E-08	2.65E-05	7.99E-02	4.12E-08	4.29E-08	4.49E-08	4.55E-0		
U-238	1.74E-06	1.04E-03	3.15	1.61E-06	1.68E-06	1.77E-06	1.80E-0		
Np-237	9.02E-07	5.42E-04	1.64	6.46E-07	7.71E-07	1.03E-06	1.16E-0		
Pu-238	2.78E-06	1.67E-03	5.04	2.48E-06	2.63E-06	2.93E-06	3.08E-0		
Pu-239	1.47E-04	8.85E-02	267	1.39E-04	1.43E-04	1.51E-04	1.55E-4		
Pu-240	2.17E-05	1.31E-02	39.4	2.03E-05	2.10E-05	2.25E-05	2.32E-		
Pu-241	1.65E-04	9.95E-02	300	1.45E-04	1.55E-04	1.76E-04	1.86E-4		
Pu-242	7.90E-10	4.75E-07	1.43E-03	6.67E-10	7.27E-10	8.53E-10	9.13E-		
Am-241	5.40E-05	3.25E-02	98.0	3.97E-05	4.67E-05	6.13E-05	6.83E-		
Am-243	1.63E-09	9.82E-07	2.96E-03	1.18E-09	1.40E-09	1.87E-09	2.10E-		
Cm-242	1.02E-07	6.12E-05	0.185	3.34E-08	3.34E-08	1.04E-07	1.07E-		
Cm-243	9.18E-09	5.52E-06	1.66E-02	2.66E-09	2.66E-09	9.46E-09	9.73E-		
Cm-244	1.03E-07	6.18E-05	0.186	3.55E-08	3.55E-08	1.26E-07	1.40E-		
				-95 CI (M					
	M	P8/2	łg	or g/L)	or g/L)	or g/L)	(M or g/		
Totais Pu	2.31E-03 (g/L)		4.18	2.16E-03	2.23E-03	2.38E-03	2.45E-		

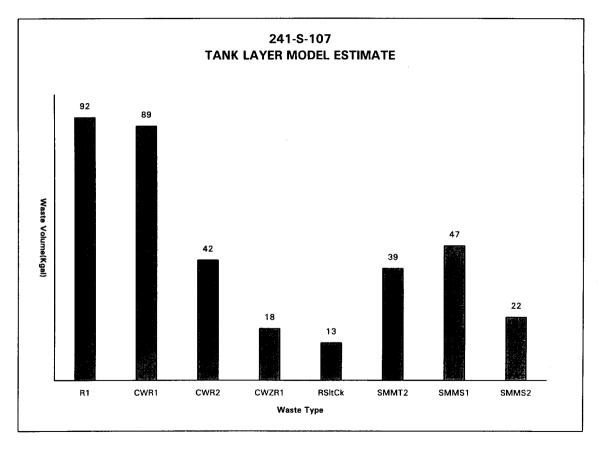
*Unknowns in tank solids inventory are assigned by Tank Layering Model (ILM). †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-107 SUMMARY

TANK HIS	TORY	TANK DES	TANK DESCRIPTION			
Entered Service	4th qtr 1952	Diameter	75 ft			
Removed from Service	-	Bottom Shape	Dish			
Inactive	1980	Nominal Capacity	758,000 gal			
Watch Lists	none	Cascade Tank	to 241-S-108			
Integrity	Sound	Total Risers	12			
Assumed Leaker		WASTE VOLUME	E (HANLON 1996i)			
Interim Stabilization (IS)	-	Total Waste Volume	376,000 gal			
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX			
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	45,000 gal			
TENTATIVELY AVAI	LABLE RISERS	Pumpable Liquids 88,000 gal				
Riser Number(s)	Size	Saltcake	69,000 gal			
2, 11, 14, 16	4 in	Sludge	293,000 gal			
6	12 in	Supernatant	14,000 gał			
TANK TEMPE	RATURE	INTERIOR P	OTOGRAPHS			
Average Tank Temperature	101°F	Date	March 12, 1987			
Maximum Temperature	123°F	Montage Number	94041033-24CN			
Date	May 2, 1988	Photo Set Number	8701464			
Elevation from tank bottom	0.48 ft	WASTE SUR	FACE LEVEL			
Riser Number	4	Devices	Auto and Manual ENRAF			
Minimum Temperature	78.3°F	Max Level	146.49 in			
Date	Feb 13, 1993	Date	Sept 15, 1996			
Elevation from tank bottom	24.44 ft	Min Level	142.1 in			
Riser Number	4	Date	Jan 1, 1991 - May 16, 1991*			


Numerous dates in this time span.


-68-


WHC-SD-WM-ER-352. Rev.

241-S-107

TANK RISER LOCATION

-91-

HNF-SD-WM-ER-352, Rev. 1

HNF-SD-WM-ER-352, Rev. 1

HDW Model Rev. 4

		Sino	le-Shell Tani	241-5-107			
				inventory Estin	mate®		
Physical		TEM SONG	Composite	alventory Late	libre	N. C. S. S.	
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	14/E. or 0-1	(254 kgal)		-75 61			
Heat Load	1.64E+06 (kg)	(8.38E+03 BTU/hr)		1.83	2.19	2.62	2,70
	2.45 (kW) 1.71 (g/cc)	(8.38E*03 BTU/m)		1.61	1.63	1.84	1.89
Bulk Density	0.649				0.534	0.722	0,724
Void Fraction	31.8			0.477	24.5	39.2	42.1
Water wt%	2.69E-04				24.5 2.51E-04		42.1 3.21E-04
TOC wt% C (wet	2.09E-04			2.44E-04	2.51E-04	2.94E-04	3.21E-04
				-95 C1	-67 CI	+67 CI	+95 CI
Chemical						SC 13 55 103	SC - 567,000738
Constituents	mole/L	9.42E+04	1.55E+05	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	7.01			5.04	5.35	9.39	10.7
A13+	7.60	1.20E+05	1.97E+05	5.72	6.22	8.58	9.30
Fe3+ (total Fe)	0.510	1.67E+04	2.74E+04	0.503	0.507	0.514	0.517
Cr3+	6.58E-02	2.00E+03	3.29E+03	4.59E-02	5.56E-02	0.232	0.427
Bi3+	3.52E-07	4.30E-02	7.06E-02	2.97E-07	3.24E-07	3.87E-07	4.26E-07
La3+	8.66E-13	7.04E-08	1.16E-07	7.59E-13	8.20E-13	9.58E-13	1.05E-12
Hg2+	3.39E-03	398	654	3.37E-03	3.38E-03	3.40E-03	3.40E-03
Zr (as ZrO(OH)2)	6.57E-02	3.50E+03	5.76E+03	6.06E-02	6.45E-02	6.62E-02	6.65E-02
Pb2+	9.51E-02	1.15E+04	1.89E+04	9.10E-02	9.30E-02	9.71E-02	9.91E-02
Ni2+	1.98E-02	679	1.12E+03	1.47E-02	L.76E-02	2.15E-02	2.12E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	2.56E-06	8.23E-02	0.135	1.83E-06	2.19E-06	2.94E-06	3.3(E-06
Ca2+	0.186	4.36E+03	7.16E+03	0.159	0.172	0.200	0.213
K+	2.03E-02	465	764	1.10E-02	1.56E-02	2.52E-02	2.99E-02
OH-	29.0	2.88E+05	4.74E+05	21,4	23.5	33.0	35.8
NO3-	2.51	9.10E+04	1.50E+05	0.617	0.617	5.47	7.08
NO2-	1.00	2.69E+04	4.43E+04	0.521	0.689	1.25	1.25
CO32-	0.186	6.53E+03	1.07E+04	0.159	0.172	0.200	0.213
PO43-	2.28E-05	1.26	2.06	2.11E-05	2.21E-05	2.37E-05	2.58E-05
SO42-	1.05E-02	588	966	7.12E-03	8.46E-03	1.18E-02	1.18E-02
Si (as SiO32-)	1.66E-02	273	449	1.40E-02	1.51E-02	3.82E-02	7.10E-02
F-	0.375	4.16E+03	6.84E+03	1.49E-02	0.282	0.418	0.442
CI-	3.04E-02	630	1.04E+03	1.38E-02	2.05E-02	3.71E-02	6.85E-02
C6H5O73-	1.87E-05	2.07	3.41	1.82E-05	1.84E-05	1.96E-05	2.13E-0
EDTA4	7.30E-07	0.123	0.202	5.14E-07	6.32E-07	8.60E-07	9.89E-0
HEDTA3-	6.06E-07	9.72E-02	0.160	1.95E-07	4.17E-07	8.09E-07	1.01E-00
glycolate-	2.65E-05	1.16	1.91	1.44E-05	2.09E-05	3.29E-05	3.91E-0
acetate-	2.75E-06	9.48E-02	0.156	2.66E-06	2.70E-06	2.92E-06	3.12E-0
oxalate2-	1.13E-12	5.84E-08	9.60E-08	1.01E-12	1.07E-12	1.25E-12	1.37E-12
DBP	1.668-05	2.04	3.36	1.55E-05	1.628-05	1.80E-05	1.94E-0
butanol	1.66E-05	0.721	1.18	1.55E-05	1.62E-05	1.80E-05	1.94E-0
							-
лнэ	0.141	1.40E+03	2.31E+03	7.24E-02	8.22E-02	0.157	0.17
	0.141	0	0	1.140-04	0.220 02	0.157	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

		Sing	de-Shell Tan	k 241-S-107						
	SMM Composite Inventory Estimate									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total SMM Wast	6.46E+05 (kg)	(122 kgal)								
Heat Load	0.732 (kW)	(2.50E+03 BTU/hr)	_	0.670	0,710	0.755	0.77			
Bulk Density*	1.40 (g/cc)			1.37	1.38	1.41	1.43			
Water wt%	49.0			46.8	47.8	50.4	51.9			
TOC wt% C (wet	0.898			0.468	0.679	1.12	1.3			
Chemical Constituents	mole/L	ppm	ke	-95 Cl (mole/L)	-67 CI (mole/L)	+67 CI (mole/L)	+95 CI (mole/L)			
Na+	9.39	1.54E+05	9.97E+04	8.60	9.00	9.73	10.0			
Al3+	1.05	2.03E+04	1.31E+04	0.975	1.01	1.09	1.13			
Fe3+ (total Fe)	7.79E-03	311	201	6.49E-03	7.13E-03	8.46E-03	9.09E-03			
Cr3+	9.29E-02	3.45E+03	2.23E+03	7.83E-02	8.61E-02	9.55E-02	9.81E-02			
Bi3+	8.42E-04	126	81.2	7.67E-04	8.04E-04	8.79E-04	9.16E-04			
La3+	2.73E-05	2.72	1.75	1.98E-05	2.35E-05	3.12E-05	3.49E-01			
Hg2+	5.80E-06	0.832	0.537	5.41E-06	5.63E-06	5.89E-06	5.97E-06			
Zr (na ZrO(OH)2)	1.55E-04	10.1	6.52	1.41E-06	1.46E-04	1.60E-04	1.68E-04			
Pb2+	6.44E-04	95.4	61.6	5.20E-04	5.81E-04	7.07E-04	7.68E-04			
Ni2+	4.33E-03	182	117	4.14E-03	4.24E-03	4.38E-03	4.43E-03			
Sr2+	0	0	0	4.142-05	4.242.00	0	4.450-05			
Mn4+	2.64E-03	104	67.0	2.02E-03	2.32E-03	2.96E-03	3.27E-03			
Ca2+	2.33E-02	668	431	2.14E-02	2.23E-02	2.43E-02	2.52E-02			
K+	4.35E-02	1.22E+03	786	3.97E-02	4.1.5E-02	4.56E-02	4.76E-02			
OH-	6.38	7.76E+04	5.01E+04	5.93	6.14	6.63	6.78			
NO3-	3.21	1.42E+05	9.19E+04	2.97	3.11	3.26	3.31			
NO2-	1.58	5.21E+04	3.37E+04	1.32	1.44	1.72	1.86			
CO32-	0 319	1.37E+04	8.86E+03	0.286	0.303	0.338	0.348			
PO43-	6.02E-02	4.09E+03	2.64E+03	5.23E-02	5.51E-02	6.16E-02	6.30E-02			
SO42+	0,171	1.17E+04	7.59E+03	0.137	0.153	0.105-02	0.302-02			
Si (as SiO32-)	5.57E-02	1.12E+03	723	4.68E-02	5.12E-02	6.03E-02	6.47E-02			
F-	4.13E-02	562	363	3.49E-02	3.76E-02	4.45E-02	4.70E-02			
ci-	0.162	4.12E+03	2.66E+03	0.147	0.154	9.436-02	4.70E-02 0.175			
C6H5O73-	1.90E-02	2.57E+03	L.66E+03	1.72E-02	1.81E-02	2.00E-02	2.09E-02			
EDTA4-	2.04E-02	4.20E+03	2.71E+03	5.54E-03	1.28E-02	2.80E-02	3.55E-02			
HEDTA3-	3.94E-02	7.72E+03	4.99E+03	9.66E-03	2.42E-02	5.47E-02	6.96E-02			
giyoolate-	8.79E-02	4.72E+03	3.05E+03	5.82E-02	7.27E-02	0.103	0.118			
acetate-	4.52E-03	191	123	3.71E-03	4.10E-03	4.93E-03	5.33E-03			
oxalate2-	3.58E-05	2.25	1.46	3.17E-05	3.37E-05	3.79E-05	3.99E-05			
DBP	1.24E-02	1.87E+03	1.21E+03	1.02E-02	1.13E-02	1.35E-02	3.99E-03			
butanol	1.24E-02	660	426	1.02E-02	1.13E-02	1.35E-02	1.46E-02			
				1.066-02	1.136-04	1.372-02	1.402-02			
NH3	5.52E-02	671	433	4.51E-02	4.91E-02	6.30E-02	7.20E-02			
Fe(CN)64-	0	0	0	4.512-02	4.512-02	0.3/2-02	1.202-02			

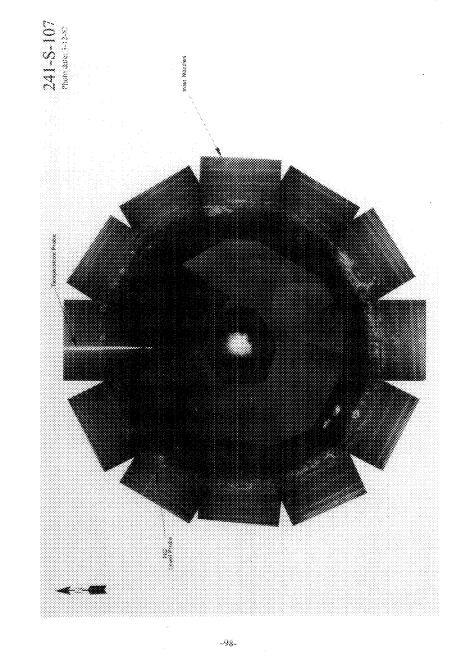
*Density is calculated based on Na, OH-, and AlO2-.

†Water wt% derived from the difference of density and total dissolved species.

		Sing	ie-Shell Tan	k 241-S-107						
	Total Inventory Estimate*									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total Waste	2.29E+06 (kg)	(376 kgal)	. –	-		ŧ				
Heat Load	3.19 (kW)	(1.09E+04 BTU/hr)	1	2.55	2.92	3.36	3.43			
Bulk Density†	1.61 (g/cc)			1.54	1.55	1.70	1.7;			
Water wt%†	36.7			28.4	30.9	42.0	44.3			
FOC wt% C (wet	0.253		_	0.131	0.191	0.316	0.37			
Chemical Constituents	mole/L	ppm	kg	-95 Cl (mole/L)	-67 CI (mole/L)	+67 Cl (mole/L)	+95 CI (mole/L)			
va+	7.78	1.11E+05	2.55E+05	6.41	6.61	9.43	10.2			
1 <u>0</u> +	5.47	9.18E+04	2.10E+05	4.20	4.55	6.14	6.62			
e3+ (total Fe)	0.347	1.21E+04	2.76E+04	0.343	0.345	0.350	0.35			
213+	7.46E-02	2.41E+03	5.52E+03	6.14E-02	6.79E-02	0.185	0.314			
3i3+	2.73E-04	35.5	81.3	2.49E-04	2.61E-04	2.86E-04	2.97E-04			
4 3+	8.87E-06	0.766	1.75	6.43E-06	7.62E-06	1.01E-05	1.13E-0			
ig2+	2.29E-03	286	655	2.28E-03	2.29E-03	2.30E-03	2.30E-03			
r (as ZrO(OH)2)	4.44E-02	2.52E+03	5.77E+03	4.10E-02	4.36E-02	4.48E-02	4.50E-02			
Pb2+	6.44E-02	8.30E+03	1.90E+04	6.17E-02	6.30E-02	6.58E-02	6.71E-02			
Vi2+	1.48E-02	539	1.23E+03	1.13E-02	1.33E-02	1.59E-02	1.57E-02			
šr2+	0	0	0	0	0	0	(
din4+	8.59E-04	29.3	67.2	6.56E-04	7.55E-04	9.63E-04	1.06E-03			
a2+	0.133	3.32E+03	7.59E+03	0.115	0.124	0.142	0.15			
(+	2.79E-02	677	1.55E+03	2.08E-02	2.43E-02	3.15E-02	3.50E-02			
ж.	21.7	2.29E+05	5.24E+05	16.5	17.9	24.3	26.3			
103-	2.74	1.05E+05	2.41E+05	1.44	1.46	4.73	5.75			
102-	1.19	3.40E+04	7.80E+04	0.850	0.988	1.37	1.3			
CO32-	0.229	8.56E+03	1.96E+04	0.212	0.220	0.239	0.24			
043-	1.96E-02	1.16E+03	2.64E+03	1.70E-02	1.79E-02	2.00E-02	2.05E-02			
SO42-	6.26E-02	3.74E+03	8.55E+03	5.14E-02	5.67E-02	6.86E-02	7.39E-03			
i (as SiO32-)	2.93E-02	512	1.17E+03	2.64E-02	2.78E-02	4.38E-02	6.57E-02			
<u> </u>	0.266	3.15E+03	7.21E+03	2.34E-02	0,204	0.296	0.312			
1-	7.33E-02	1.61E+03	3.69E+03	6.23E-02	6.77E-02	7.77E-02	9.85E-02			
C6H5O73-	6.19E-03	728	1.67E+03	5.59E-03	5.88E-03	6.50E-03	6.80E-03			
EDTA4-	6.62E-03	1.19E+03	2.71E+03	1.80E-03	4.15E-03	9.10E-03	1.15E-0			
HEDTA3-	1.28E-02	2.18E+03	4.99E+03	3.14E-03	7.85E-03	1.77E-02	2.26E-0			
tycolate-	2.85E-02	1.33E+03	3.05E+03	1.89E-02	2.36E-02	3.35E-02	3.83E-02			
cetate-	1.47E-03	53.9	123	1.21E-03	1.33E-03	1.60E-03	1.73E-03			
xalate2-	1.16E-05	0.636	1.46	1.03E-05	1.09E-05	1.23E-05	1.29E-0			
DBP	4.05E-03	529	1.21E+03	3.34E-03	3.69E-03	4.41E-03	4.75E-0			
putanol	4.05E-03	187	427	3.34E-03	3.69E-03	4.41E-03	4.75E-0			
-unmast/s				3.346-03	3.092-03	4.415-03	4.738-0.			
NH3	0.113	1.20E+03	2.74E+03	6.62E-02	7.31E-02	0.125	0.13			
Fe(CN)64-	0	0	0	0	0	0	(

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

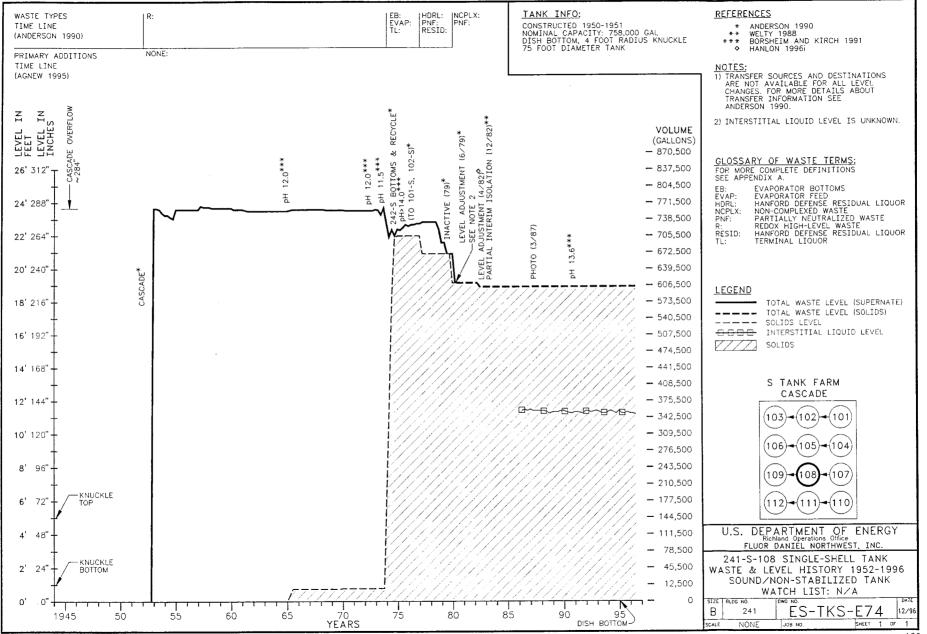
		Sing	de-Shell Tan	k 241-S-107					
	TLM Solids Composite Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Total TLM Waste	1.64E+06 (kg)	(254 kgal)		_					
Heat Load	2.45 (kW)	(8.38E+03 BTU/hr)	_	1.83	2.19	2.62	2.7		
Bulk Density	1.71 (g/cc)		-	1.61	1.63	1.84	1.8		
Void Fraction	0.649			0.477	0.534	0.722	0.72		
Water wt%	31.8			20.9	24.5	39.2	42		
TOC wt% C (wet	2.69E-04			2.44E-04	2.51E-04	2.94E-04	3.21E-0		
Radiological Constituents	CIL	µCi/g	Ci	-95 Cl (CVL)	-67 CI (Ci/L)	+67 Ci (CVL)	+95 CI (CI/L)		
H-3	2.26E-05	1.32E-02	21.8	1.12E-05	1.12E-05	2.69E-05	2.69E-0		
C-14	1.51E-06	8.81E-04	1.45	7.81E-07	9.22E-07	L.80E-06	1.80E-0		
Ni-59	5.75E-06	3.36E-03	5.53	4.25E-06	5.10E-06	6.25E-06	6.16E-0		
Ni-63	5.38E-04	0.315	517	3.99E-04	4.77E-04	5.85E-04	5.76E-0		
Co-60	9.91E-07	5.79E-04	0.952	4.64E-07	4.64E-07	1.11E-06			
Se-79	5.49E-07	3.21E-04	0 528				1.11E-0		
Sr-90		3.21E-04	3.38E+05	1.94E-07	1.94E-07	6.11E-07	2.97E-0		
Sr-90 Y-90	0.352		3.38E+05	0.255	0.310	0.384	0.38		
	0.352	206	3.38E+03	0.255	0.310	0.384	0.38		
Zr-93	2.60E-06	1.52E-03	2.50	9.16E-07	9.16E-07	2.89E-06	1.28E-0		
Nb-93m	2.11E-06	1.23E-03	2.03	7.43E-07	7.43E-07	2.35E-06	1.30E-0		
Tc-99	1.09E-05	6.40E-03		5.86E-06	7.89E-06	1.30E-05	1.30E-0		
Ru-106	1.08E-09	6.31E-07	1.04E-03	2.44E-10	3.67E-10	2.17E-09	3.22E-0		
Cd-113m	5.29E-06	3.09E-03	5.08	2.92E-06	2.92E-06	8.18E-06	8.00E-0		
Sb-125	2.91E-06	1.70E-03	2.79	1.02E-06	1 02E-06	3.08E-06	3.19E-0		
Sn-126	8.43E-07	4.93E-04	0.811	2.97E-07	2.97E-07	9.39E-07	4.72E-0		
-129	2.09E-08	1.22E-05	2.01E-02	1.12E-08	1.51E-08	2.49E-08	2.49E-0		
Cs-134	2.25E-07	1.32E-04	0.216	1.07E-07	1.07E-07	2.57E-07	2.89E-0		
Ca-137	3.91E-02	22.9	3.76E+04	2.42E-02	3.02E-02	4.51E-02	4.51E-0		
Ba-137m	3.70E-02	21.6	3.56E+04	2.13E-02	2.13E-02	4.27E-02	4.27E-0		
Sm-151	1.95E-03	1.14	1.88E+03	6.86E-04	6.86E-04	2.18E-03	1.09E-0		
Bu-152	3.44E-06	2.01E-03	3.30	2.98E-06	2.98E-06	3.46E-06	3.46E-0		
Eu-154	2.40E-05	1.40E-02	23.1	1.14E-05	1.14E-05	2.68E-05	2.80E-0		
Bu-155	1.62E-04	9.49E-02	156	1.39E-04	1.39E-04	1.63E-04	1.63E-0		
Ra-226	4.17E-10	2.44E-07	4.01E-04	7.91E-11	2.45E-10	5.89E-10	7.55E-1		
Ra-228	8.06E-10	4.72E-07	7.75E-04	3.92E-15	3.92E-15	8.14E-10	8.23E-1		
Ac-227	1.87E-09	1.10E-06	1.80E-03	2.59E-10	8.72E-10	2.87E-09	3.84E-0		
Pa-231	8.10E-10	4.74E-07	7.78E-04	2.80E-10	2.80E-10	1.29E-09	6.63E-0		
Th-229	2.00E-11	1.17E-08	1.92E-05	6.84E-13	6.84E-13	2.02E-11	2.04E-1		
Th-232	1.062-11	6.32E-09	1.04E-05	2.65E-16	2.65E-16	1.36E-11	1.64E-1		
U-232	4.75E-09	2.78E-06	4.57E-03	2.42E-09	3.50E-09	6.28E-09	7.99E-0		
U-233	1.38E-08	2.765-06 8 0RF-06	1.33E-02	4.90E-09	9.02E-09				
U-233 U-234	1.52E-05	8.88E-03	146	4.90E-09 1.45E-05	9.02E-09	1.97E-08 1.54E-05	2.62E-0 1.55E-0		
U-234 U-235	1.52E-05 5.99E-07		0,576						
		3.51E-04	0.3/0	5.70E-07	5.87E-07	6.08E-07	6.14E-0		
U-236	7.89E-07	4.61E-04	0.736	7.27E-07	7.71E-07	7.98E-07	8.06E-0		
U-238	1.20E-05	7.03E-03	6.14E-02	1.14E-05	1.17E-05	1.22E-05	1.24E-0		
Np-237	6.38E-08	3.73E-05	6.14E-02 71.0	3.08E-08	4.40E-08	7.71E-08	7.71E-0		
Pu-238	7.39E-05	4.32E-02		7.12E-05	7.33E-05	7.45E-05	7.52E-0		
Pu-239	1.76E-03	1.03	L.69E+03	1.71E-03	1.74E-03	1.79E-03	1.81E-0		
Pu-240	3.16E-04	0.185	303	3.09E-04	3.12E-04	3.19E-04	3.23E-0		
Pu-241	4.03E-03	2.35	3.87E+03	3.84E-03	3.98E-03	4.05E-03	4.08E-0		
Pu-242	2.30E-08	1.34E-05	2.21E-02	2.15E-08	2.26E-08	2.32E-08	2.33E-0		
Am-241	1.07E-05	6.27E-03	10.3	8.13E-06	9.16E-06	1.45E-05	5.96E-0		
Am-243	4.51E-10	2.64E-07	4.34E-04	2.93E-10	3.71E-10	1.02E-09	1.96E-0		
Cm-242	9.40E-08	5.50E-05	9.03E-02	9.21E-08	9.30E-08	9.49E-08	9.59E-0		
Cm-243	5.56E-09	3.25E-06	5.34E-03	5.32E-09	5.44E-09	5.68E-09	5.80E-0		
Cm-244	1.04E-07	6.10E-05	0.100	5.75E-09	6.55E-08	1.26E-07	1.47E-0		
				-95 CI (M	ഹവര	+67 CL M	+95 (**		
Totals	м	48/S	la c	or g/L)	org/L)	or g/L)	(M or g/1		
Pu	2.98E-02 (g/L)	T	28.6	2.90E-02	2.94E-02	3.02E-02	3.06E-0		
		2.11E+04	28.0 3.46E+04	2.90E-02 0,143	2.94E-02 0.148				
U I	0.151					0.154	0.15		


*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

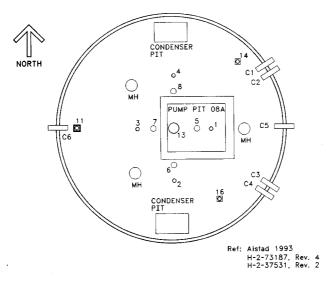
	Single-Shell Tank 241-S-107								
	SMM Composite Inventory Estimate								
Phynical Properties			i ser de Grant	-95 CI	-67 CI	+67 CI	+95 CI		
Total SMM Wast	6.46E+05 (kg)	(122 kgai)		_					
Heat Load	0.732 (kW)	(2.50E+03 BTU/hr)	_	0.670	0.710	0.755	0.77		
Bulk Density*	1.40 (g/cc)		_	1.37	1.38	1.41	14		
Water wt%†	49.0			46.8	47.8	50.4	51		
TOC wt% C (wet	0.898			0.468	0.679	1.12	1.3		
Radiological Constituents	CI/L	HCi/g	Ci	-95 CI (CVL)	-67 CI (Ci/L)	+67 CI (Ci/L)	+95 CI (Ci/L)		
H-3	1.69E-04	0.121	78.2	8.95E-05	8.95E-05	1.81E-04	1.95E-0		
C-14	2.51E-05	1.80E-02	11.6	8.45E-06	8.45E-06	2.55E-05	2.58E-0		
Ni-59	1.62E-06	1.16E-03	0.751	8.41E-07	8.41E-07	1.66E-06	1.70E-0		
Ni-63	1.59E-04	0.114	73.6	8.19E-05	8.19E-05	1.63E-04	1.67E-0		
Co-60	2.86E-05	2.04E-02	13.2	9.49E-06	9.49E-06	2.94E-05	3.03E-0		
Se-79	2.63E-06	1.88E-03	1.22	1.57E-06	1.57E-06	3.02E-06	3.39E-0		
Sr-90	9.03E-02	64.6	4.17E+04	8.44E-02	8.76E-02	9.30E-02	9.55E-0		
Y-90	9.03E-02	64.6	4.17E+04	5.36E-02	5.36E-02	9.30E-02	9.56E-0		
Zr-93	1.29E-05	9.25E-03	5.97	7.61E-06	7.61E-06	1.49E-05	1.67E-0		
Nb-93m	9.36E-06	6.70E-03	4.32	5.64E-06	5.64E-06	1.07E-05	1.20E-0		
Tc-99	1.79E-04	0.128	82.5	1.16E-04	1.47E-04	2.11E-04	2.41E-0		
Ru-106	5.56E-09	3.97E-06	2.57E-03	3.09E-09	3.09E-09	6.11E-09	6.61E-0		
Cd-113m	6.88E-05	4.92E-02	31.8	3.69E-05	3.69E-05	8.03E-05	9.14E-0		
Sb-125	1.25E-04	8.95E-02	57.8	4.25E-05	4.25E-05	1.30E-04	1.35E-0		
Sn-126	3.98E-06	2.85E-03	1.84	2.38E-06	2.38E-06	4.56E-06	5.11E-0		
1-129	3.44E-07	2.46E-04	0.159	2.24E-07	2.83E-07	4.06E-07	4.66E-0		
Cs-134	2.70E-06	1.93E-03	1.25	1.58E-06	2.83E-07	3.28E-06	4.66E-0		
Cs-134 Cs-137	0.209	1.936-03	9.63E+04	0.188	0.198	0.219	3.842-0		
Ba-137m	0.197	149	9.11E+04	0.163	0.198	0.219	0.22		
Sm-151	9.276-03	6.63	4.28E+03	5.55E-03	5.55E-03	1.06E-02	1.19E-0		
Eu-152	3.48E-06	2.49E-03	1.61	2.16E-06	2.16E-06	3.89E-02	4.29E-0		
Eu-152 Eu-154	4.84E-04	0.346	224	2.182-00	2.18E-04	5.80E-04	6.19E-0		
Eu-155	2.08E-04	0.149	96.0	1.29E-04	1.296-04	2.33E-04	2.58E-0		
Ra-226	1.09E-10	7.78E-08	5.02E-05	7.58E-11	7.58E-11				
Ra-228	9.63E-08	6.89E-05	4.45E-02	4.09E-08	6.80E-08	1.21E-10	1.32E-1		
Ac-228	6.84E-10	6.89E-05	3.16E-04	4.09E-08 4.92E-10	6.80E-08 4.92E-10	1.29E-07 7.53E-10	1.64E-0 8.20E-1		
			1.47E-03						
Ps-231 Th-229	3.17E-09 2.26E-09	2.27E-06 1.62E-06	1.05E-03	2.11E-09 1.05E-09	2.11E-09 1.64E-09	3.56E-09 2.98E-09	3.93E-0 3.75E-0		
Th-232	6.50E-09	4.65E-06	3.00E-03	3.43E-09	4.93E-09	2.98E-09 8.06E-09	9.57E-0		
U-232	4.98E-07	3.56E-04	0 230	2.76E-07	3.84E-07	6.30E-09	9.57E-0 7.70E-0		
	· · · · · ·		0.882						
U-233 U-234	1.91E-06 5.63E-07	1.37E-03 4.03E-04	0.062	1.06E-06 5.42E-07	1.47E-06 5.53E-07	2.41E-06 5.74E-07	2.95E-0 5.81E-0		
U-234 U-235			1.05E-02						
U-235 U-236	2.28E-08	1.63E-05 1.27E-05	8.19E-02	2.20E-08	2.24E-08	2.33E-08 1.80E-08	2.36E-0		
U-236 U-238			0.302	1.71E-08	1.75E-08		1.83E-0		
	6.53E-07	4.67E-04	0.302	6.33E-07	6.43E-07	6.64E-07	6.70E-0		
Np-237	6.43E-07	4.60E-04	0.297	4.40E-07	5.39E-07	7.47E-07	8.48E-0		
Pu-238	1.18E-06	8.46E-04	18.5	9.448-07	1.06E-06	1.30E-06	1.42E-0		
Pu-239	4.00E-05	2.86E-02	3.16	3.39E-05	3.69E-05	4.31E-05	4.61E-0		
Pu-240	6.85E-06	4.90E-03	3.10	5.71E-06	6.27E-06	7.42E-06	7.98E-0		
Pu-241	8.10E-05	5.80E-02	37.4 2.06E-04	6.48E-05	7.27E-05	8.93E-05	9.73E-0		
Pu-242	4.45E-10	3.19E-07	2.06E-04	3.48E-10	3.96E-10	4.95E-10	5.43E-1		
Am-241	4.46E-05	3.19E-02	20.0 7 59E-04	3.33E-05	3.89E-05	5.04E-05	5.60E-0		
Am-243	1.64E-09	1.18E-06	6.11E-02	1.26E-09	1.44E-09	1.88E-09	2.09E-0		
Cm-242	1.32E-07	9.46E-05	6.11E-02 5.62E-03	7.81E-08	7.81E-08	1.48E-07	1.63E-0		
Cm-243 Cm-244	1.22E-08 1.12E-07	8.71E-06 8.02E-05	5.62E-03	7.01E-09 5.89E-08	7.01E-09 5.89E-08	1.36E-08 1.30E-07	1.50E-0 1.42E-0		
~ 동안 있어?				-95 CI (M			+95 CI		
Totals	M	µ8/8	<u>lu</u>	or g/L)	or g/L)		(M or g/l		
Pu	4.60E-04 (g/L)	-	0.212	3.44E-04	4.01E-04	5.18E-04	5.75E-0		
U I	6 45E-03	1.10E+03	709	6.20E-03	6.32E-03	6.59E-03	6.66E-0		

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

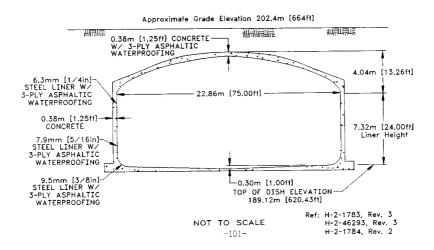
	HDW Model Rev. 4 Single-Shell Tank 241-S-107								
	Total Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 Cl	+95 CI		
Total Waste	2.29E+06 (kg)	(376 kgal)	_		—				
Heat Load	3.19 (kW)	(1.09E+04 BTU/hr)		2.55	2.92	3.36	3.4		
Bulk Density†	1.61 (g/cc)			1.54	1.55	1.70	1.7		
Water wt%†	36.7			28.4	30.9	42.0	44.3		
TOC wt% C (wet	0.253			0,131	0.191	0.316	0.37		
	1		10000000	•		0.510			
Radiological				-95 Cl	-67 CI	+67 C1	+95 CI		
Constituents	СИ	#Ci/g	Ci	(Ci/L)	(CVL)	(CVL)	(CVL)		
H-3	7.02E-05	4.36E-02	99.9	4.43E-05	4.43E-05	7.40E-05	7.87E-0		
C-14	9.17E-06	5.70E-03	13.1	3.76E-06	3.76E-06	9.37E-06	9.40E-0		
Ni-59	4.41E-06	2.74E-03	6.28	3.40E-06	3.97E-06	4.75E-06	4.68E-0		
Ni-63	4.15E-04	0.258	591	3.21E-04	3.74E-04	4.47E-04	4.40E-0-		
Co-60	9.94E-06	6.18E-03	14.2	3.75E-06	3.75E-06	1.02E-05	1.05E-03		
Se-79	1.23E-06	7.62E-04	1.74	8.80E-07	8.80E-07	1.35E-06	2.83E-06		
Sr-90	0.267	166	3.80E+05	0.202	0.238	0.289	0.292		
Y-90	0.267	166	3.80E+05	0.202	0.239	0.289	0.292		
Zr-93	5.95E-06	3.70E-03	8.47	4.23E-06	4.23E-06	6.58E-06	1.27E-05		
Nb-93m	4.46E-06	2.77E-03	6.35	3.25E-06	3.25E-06	4.90E-06	1.17E-0		
Tc-99	6.53E-05	4.06E-02	93.0	4.52E-05	5.50E-05	7.57E-05	8.58E-05		
Ru-106	2.53E-09	1.57E-06	3.60E-03	1.73E-09	1.73E-09	3.26E-09	3.96E-05		
Cd-113m	2.59E-05	1.61E-02	36.9	1.55E-05	1.55E-05	2.96E-05	3.32E-0		
Sb-125	4.26E-05	2.65E-02	60.6	1.57E-05	1.57E-05	4.41E-05	4.56E-05		
Sn-126	1.86E-06	1.16E-03	2.65	1.34E-06	1.34E-06	2.05E-06	4.43E-06		
-129	1.26E-07	7.83E-05	0.179	8.69E-08	1.06E-07	1.46E-07	1.65E-07		
Cs-134	1.03E-06	6.39E-04	1.46	6.63E-07	8.42E-07	1.22E-06	L.40E-06		
Cs-137	9.41E-02	58.5	1.34E+05	8.42E-02	8.91E-02	9.81E-02	0.101		
Ba-137m	8.90E-02	55.3	1.27E+05	6.72E-02	6.72E-02	9.28E-02	9.54E-02		
Sm-151	4.33E-03	2.69	6.16E+03	3.12E-03	3.12E-03	4.77E-03	1.02E-02		
Bu-152	3.45E-06	2.15E-03	4.91	3.02E-06	3.02E-06	3.58E-06	3.71E-06		
Eu-154	1.73E-04	0.106	247	8.70E-05	8.70E-05	2.05E-04	2.17E-04		
Bu-155	1.77E-04	0.110	252	1.52E-04	1.52E-04	1.85E-04	1.93E-04		
Ra-226	3.17E-10	1.97E-07	4.51E-04	9.31E-11	2.03E-10	4.31E-10	5.41E-10		
Ra-228	3.18E-08	1.98E-05	4.53E-02	1.38E-08	2.26E-08	4.25E-08	5.38E-08		
Ac-227	1.49E-09	9.25E-07	2.12E-03	4.18E-10	8.24E-10	2.15E-09	2.79E-09		
Pa-231	1.58E-09	9.80E-07	2.24E-03	1.15E-09	1.15E-09	1.89E-09	5.43E-09		
Гһ-229	7.48E-10	4.65E-07	1.06E-03	3.53E-10	5.46E-10	9.82E-10	1.23E-09		
Th-232	2.12E-09	1.32E-06	3.01E-03	1.12E-09	1.61E-09	2.62E-09	3.11E-09		
U-232	1.65E-07	1.02E-04	0.235	9.27E-08	1.28E-07	2.08E-07	2.53E-07		
U-233	6.29E-07	3.91E-04	0.895	3.53E-07	4.88E-07	7.93E-07	9.67E-07		
U-234	1.04E-05	6.49E-03	14.9	9.98E-06	1.02E-05	1.06E-05	1.07E-05		
U-235	4.12E-07	2.56E-04	0.587	3.93E-07	4.04E-07	4.18E-07	4.22E-07		
U-236	5.39E-07	3.35E-04	0.767	4.97E-07	5.27E-07	5.44E-07	5.50E-07		
J-238	8.33E-06	5.18E-03	11.9	7.88E-06	8.14E-06	8.46E-06	8.56E-06		
Np-237	2.52E-07	1.56E-04	0.358	1.86E-07	2.18E-07	2.86E-07	3.19E-07		
Pu-238	5.03E-05	3.13E-02	71.6	4.85E-05	4.99E-05	5.07E-05	5.11E-05		
Pu-239	1.20E-03	0.748	1.71E+03	1.17E-03	1.19E-03	1.22E-03	1.24E-03		
Pu-240	2.15E-04	0.134	307	2.11E-04	2.13E-04	2.18E-04	2.20E-04		
Pu-241	2.75E-03	1.71	3.91E+03	2.62E-03	2.72E-03	2.76E-03	2.78E-03		
Pu-242	L.57E-08	9.73E-06	2.23E-02	1.47E-08	1.54E-08	1.58E-08	1.59E-08		
Am-241	2.17E-05	1.35E-02	30.9	1.81E-05	1.99E-05	2.43E-05	5.4LE-05		
Am-243	8.38E-10	5.21E-07	1.19E-03	7.14E-10	7.71E-10	1.22E-09	1.84E-09		
Cm-242	1.06E-07	6.61E-05	0.151	8.88E-08	8.88E-08	1.11E-07	1.16E-07		
Cm-243	7.70E-09	4.79E-06	1.10E-02	6.03E-09	6.03E-09	8.16E-09	8.61E-09		
Cm-244	1.07E-07	6.64E-05	0.152	4.01E-08	8.06E-08	1.21E-07	1.35E-07		
			(1997) 1997	N	m m a :				
Totala	м	#B/E	ke	-95 C1 (M or g/L)	-67 CI (M or g/L)		+95 Cl (M or g/L		
<u>א</u>	2.03E-02 (g/L)		28.8	1.97E-02	2.00E-02	2.05E-02	2.08E-02		
U	0.104	1.54E+04	3.54E+04	1.715-04	A.WV0-16	4.476-44	4.V0L-V/		

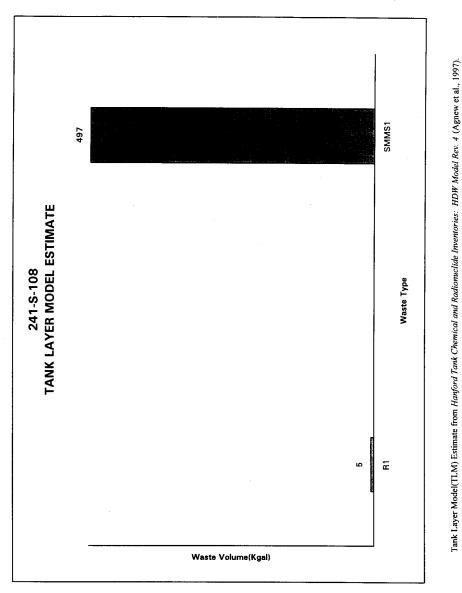

2.03E-02 (g/L) 0.104 Pu U *Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-108 SUMMARY


TANK HIS	TORY	TANK DESC	CRIPTION		
Entered Service	4th qtr 1952	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	1979	Nominal Capacity	758,000 gal		
Watch Lists	none	Cascade Tank	to 241-S-109		
Integrity	Sound	Total Risers	12		
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)		
Interim Stabilization (IS)	-	Total Waste Volume	604,000 gal		
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX		
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	92,000 gal		
TENTATIVELY AVA	ILABLE RISERS	Pumpable Liquids 105,000 gal			
Riser Number(s)	Size	Saltcake	600,000 gal		
11, 14	4 in	Sludge	4,000 gal		
7, 8	12 in	Supernatant	0 gal		
TANK TEMPI	ERATURE	INTERIOR PHO	DTOGRAPHS		
Average Tank Temperature	81°F	Date	March 12, 1987		
Maximum Temperature	94.64°F	Montage Number	94041033-32CN		
Date	Dec 15, 1995	Photo Set Number	8701462		
Elevation from tank bottom	10.45 ft	WASTE SURF	ACE LEVEL		
Riser Number	4	Devices	Manual ENRAF		
Minimum Temperature	57°F	Max Level	191 in		
Date	July 2, 1994	Date	Feb 4, 1991		
Elevation from tank bottom	30.45 ft	Min Level	158.8 in		
Riser Number	4	Date	April 3, 1995		

WHC-SD-WM-ER-352, Rev. 1




-100-

241-S-108

TANK RISER LOCATION

-102-

HNF-SD-WM-ER-352, Rev. 1

	HD	N Me	odel F	lev. 4
--	----	------	--------	--------

						112111	Aodel Rev. 4			
			le-Shell Tan							
	TLM Solids Composite Inventory Estimate*									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 Cl			
Total TLM Waste	3.32E+04 (kg)	(5.00 kgal)	ł	ł	1	1	-			
Heat Load	0.123 (kW)	(421 BTU/hr)		8.94E-02	0.109	0.132	0.136			
Bulk Density	1.76 (g/cc)			1.51	1.53	2.11	2.24			
Void Fraction	0.536			6.00E-02	0.217	0.737	0.743			
Water wt%	27.0		_	2.64	10.0	42.6	44.2			
TOC wt% C (wet	0	_	-	0	0	0	0			
Chemical Constituents	mole/L	ppm	kg	-95 CI (mole/L)	-67 Cl (mole/L)	+67 CI (mole/L)	+95 Cl (mole/L)			
Na+	8.13	1.06E+05	3.53E+03	3.05	3.56	14.7	18.2			
Al3+	6.99	1.07E+05	3.56E+03	6.58	6.74	7.15	7.15			
Fe3+ (total Fe)	1.01	3.22E+04	1.07E+03	0.994	1.00	1.02	1.03			
Cr3+	6.19E-02	1.83E+03	60.B	7.08E-03	3.39E-02	0.522	1.06			
Bi3+	0	0	0	0	. 0	0	0			
La3+	0	0	0	0	0	0	0			
Hg2+	0	0	0	0	0	0	0			
Zr (as ZrO(OH)2)	0	0	0	0	0	0	0			
Pb2+	0	0	0	0	0	0	0			
Ni2+	5.07E-02	1.69E+03	56.3	3.66E-02	4.45E-02	5.54E-02	5.45E-02			
Sr2+	0		0	0	0	0	0			
Mn4+	0	0	0	0	0	0	0			
Ca2+	0.220	5.02E+03	167	0.146	0.182	0.258	0.294			
К+	1.12E-02	250	8.30	1.28E-03	5.25E-03	1.52E-02	1.52E-02			
OH-	25.6	2.48E+05	8.23E+03	23.1	24.3	26.9	28.4			
NO3-	5.29	1.87E+05	6.20E+03	6.03E-02	6.03E-02	13.5	17.9			
NO2-	1.46	3.82E+04	1.27E+03	0.132	0.595	2.15	2.15			
CO32-	0.220	7.51E+03	249	0.146	0.182	0.258	0.294			
PO43-	0	0	0	0	0	0	0			
SO42-	1.04E-02	569	18.9	1.19E-03	4.87E-03	1.41E-02	1.41E-02			
Si (as SiO32-)	8.06E-03	129	4.28	9.21E-04	3.77E-03	1.09E-02	1.09E-02			
F-	0	0	0	0	0	0	0			
а-	5.16E-02	1.04E+03	34.6	5.91E-03	2.42E-02	7.00E-02	0.157			
C6H5O73-	0	0	0	0	0	0	0			
EDTA4-	0	0	0	0	0	0	0			
HEDTA3-	0	0	0	0	0	0	0			
givcolate-	0		0	0	0	0	0			
acetate-	0		0	0	0	0	0			
oxalate2.		0	0	0	0	0	0			
DBP	0		0	0	0	0	0			
butanol	Ö	0	0	0	0	0	0			
NH3	0.256	2.47E+03	82.1	6.55E-02		0 270	0.284			
NH3	0.238	2.4/E+U3	64.1	0.33E-02	9.25E-02	0.270	0.284			

"Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

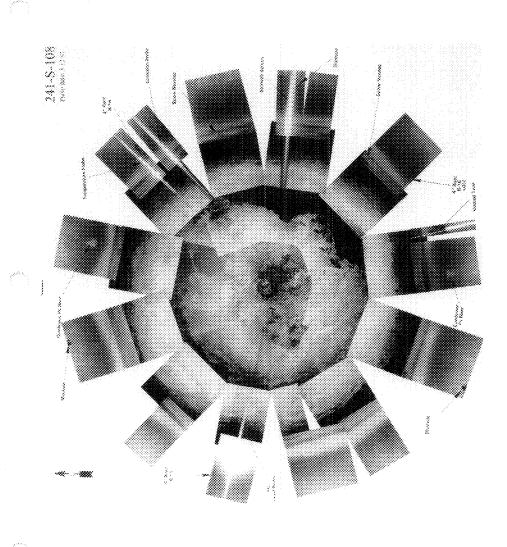
		Sing	le-Shell Tan	k 241-S-108						
	SMM Composite Inventory Estimate									
Physical			te da é fi			0.02.000	1040404			
Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total SMM Wast	3.14E+06 (kg)	(497 kgal)					_			
Heat Load	3.98 (kW)	(1.36E+04 BTU/hr)		3.73	3.85	4.12	4.14			
Bulk Density*	1.67 (g/cc)			1.60	1.64	1.70	1.70			
Water wt%	30.0	-		27.8	28.7	31.5	34.0			
TOC wt% C (wet	0.321			0.286	0.303	0.338	0.355			
Chemical				-95 CI	-67 CI	+67 CI	+95 CI			
Constituents	mole/L	ppm	ke	(mole/L)	(mole/L)	(mole/L)	(mole/L)			
Na+	15.4	2.13E+05	6.68E+05	13.9	14.8	15.9	16.3			
A13+	2.15	3.47E+04	1.09E+05	1.86	2.00	2.31	2.22			
Fe3+ (total Fe)	9.59E-03	320	1.01E+03	7.88E-03	8.72E-03	1.05E-02	1.13E-02			
Cr3+	0.221	6.87E+03	2.16E+04	0.163	0.194	0.226	0.231			
Bi3+	8.02E-04	100	315	7.21E-04	7.61E-04	8.43E-04	8.82E-04			
La3+	1.17E-09	9.74E-05	3.06E-04	8.91E-10	1.03E-09	1.32E-09	1.45E-09			
Hg2+	6.71E-06	0.806	2.53	6.29E-06	6.53E-06	6.80E-06	6.89E-06			
Zr (as ZrO(OH)2)	1.66E-04	9.06	28.5	1.51E-04	1.56E-04	1.72E-04	1.80E-04			
Pb2+	7.92E-04	96.3	309	6.64E-04	7.27E-04	8.58E-04	9.21E-04			
Ni2+	6.26E-03	220	691	6.04E-03	6.15E-03	6.37E-03	6.48E-03			
Sr2+	0	0	0	0	0	0	0			
Mn4+	3.01E-03	98.8	311	2.18E-03	2.59E-03	3.42E-03	3.83E-03			
Ca2+	3.20E-02	767	2.41E+03	2.77E-02	2.98E-02	3.41E-02	3.62E-02			
K+	6.48E-02	1.52E+03	4.77E+03	5.79E-02	6.11E-02	6.88E-02	7.01E-02			
он-	13.0	1.32E+05	4.16E+05	11.2	12.1	14.0	13.5			
NO3-	5.17	1.92E+05	6.03E+05	4.72	4.94	5.35	5.35			
NO2-	2.92	8.03E+04	2.53E+05	2.55	2.73	3.10	3.27			
CO32-	0.284	1.02E+04	3.21E+04	0.256	0.268	0.304	0.307			
PO43-	6.33E-02	3.60E+03	1.13E+04	5.64E-02	5.88E-02	6.48E-02	6.62E-02			
SO42-	0.188	1.08E+04	3.40E+04	0.143	0.165	0.213	0.234			
Si (as SiO32-)	7.18E-02	1.21E+03	3.79E+03	6.00E-02	6.58E-02	7.78E-02	8.35E-02			
F-	3.83E-02	436	1.37E+03	3.13E-02	3.43E-02	4.18E-02	4.45E-02			
Cl-	0.261	5.54E+03	1.74E+04	0.229	0.244	0.279	0.278			
C6H5O73-	2.20E-02	2.48E+03	7.81E+03	2.03E-02	2.11E-02	2.28E-02	2.36E-02			
EDTA4-	2.37E-03	409	1.29E+03	1.15E-03	1.75E-03	3.00E-03	3.61E-03			
HEDTA3-	3.90E-03	640	2.01E+03	1.46E-03	2.65E-03	5.15E-03	6.38E-03			
giycolate-	3.44E-02	1.55E+03	4.86E+03	1.99E-02	2.70E-02	4.19E-02	4.90E-02			
acetate-	2.73E-03	96.3	303	2.21E-03	2.46E-03	2.99E-03	3.24E-03			
oxalate2-	1.54E-09	8.09E-05	2.54E-04	1.38E-09	1.46E-09	1.61E-09	1.69E-09			
DBP	1.48E-02	1.87E+03	5.87E+03	1.19E-02	1.34E-02	1.63E-02	1.07E-02			
butanol	1.48E-02	658	2.07E+03	1.19E-02	1.34E-02	1.63E-02	1.77E-02			
NH3	7.75E-02	789	2.48E+03	6.43E-02	6.95E-02	8.78E-02	9.97E-02			
Fe(CN)64-	0	0	0	0	0	0.102.02	0			

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

		Sinc	de-Shell Tan	k 241-5-108		110111	Aodel Rev. 4			
	Total Inventory Estimate*									
Physical					646.6474					
Properties				95 CI	-67 CI	+67 CI	+95 CI			
Total Waste	3.18E+06 (kg)	(502 kgal)								
Heat Load	4.10 (KW)	(1.40E+04 BTU/hr)	_	3.82	3.95	4.26	4.26			
Bulk Density†	1.67 (g/cc)		_	1.60	1.64	1.70	1.71			
Water wt%†	29.9		1	27.8	28.7	31.6	34.1			
TOC wt% C (wet	0.318			0.283	0.300	0.335	0.351			
Chemical				-95 CI	-67 CI	+67 CI	+95 CI			
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)			
Ne+	15.4	2.11E+05	6.72E+05	13.8	14.7	15.9	16.2			
A13+	2.19	3.54E+04	1.13E+05	1.92	2.05	2.35	2.26			
Fe3+ (total Fe)	1.96E-02	654	2.08E+03	1.79E-02	1.87E-02	2.04E-02	2.13E-02			
Cr3+	0.219	6.81E+03	2.16E+04	0.172	0.197	0.227	0.229			
Bi3+	7.94E-04	99.2	315	7.14E-04	7.53E-04	8.34E-04	8.73E-04			
La3+	1.16E-09	9.64E-05	3.06E-04	8.82E-10	1.02E-09	1.30E-09	1.44E-09			
Hg2+	6.64E-06	0.797	2.53	6.23E-06	6.46E-06	6.73E-06	6.82E-06			
Zr (as ZrO(OH)2)	1.64E-04	8.96	28.5	1.50E-04	1.55E-04	1.70E-04	1.79E-04			
Pb2+	7.85E-04	97.2	309	6.57E-04	7.19E-04	8.50E-04	9.12E-04			
Ni2+	6.70E-03	235	748	6.52E-03	6.61E-03	6.79E-03	6.88E-03			
Sr2+	0	0	0	0	0	0	0			
Mn4+	2.98E-03	97.8	311	2.16E-03	2.56E-03	3.39E-03	3.79E-03			
Ca2+	3.38E-02	811	2.58E+03	3.03E-02	3.20E-02	3.56E-02	3.73E-02			
K+	6.43E-02	1.50E+03	4.77E+03	5.74E-02	6.07E-02	6.81E-02	6.95E-02			
OH-	13.1	1.34E+05	4.24E+05	11.4	12.2	14.1	13.6			
NO3-	5.17	1.92E+05	6.09E+05	4.78	5.00	5.30	5.30			
NO2-	2.90	7.99E+04	2.54E+05	2.54	2.72	3.08	3.26			
CO32-	0.284	1.02E+04	3.23E+04	0.256	0.268	0.303	0.306			
PO43-	6.27E-02	3.56E+03	1.13E+04	5.58E-02	5.82E-02	6.41E-02	6.56E-02			
SO42-	0.187	1.07E+04	3.41E+04	0.142	0.163	0.211	0.232			
Si (as SiO32-)	7.11E-02	1.20E+03	3.80E+03	5.95E-02	6.52E-02	7.71E-02	8.28E-02			
F-	3.79E-02	431	1.37E+03	3.10E-02	3.39E-02	4.13E-02	4.40E-02			
CI-	0.259	5.49E+03	1.74E+04	0.228	0.243	0.277	0.276			
C6H5O73-	2.17E-02	2.46E+03	7.81E+03	2.01E-02	2.09E-02	2.26E-02	2.34E-02			
EDTA4-	2.35E-03	405	1.29E+03	1.14E-03	1.73E-03	2.97E-03	3.58E-03			
HEDTA3-	3.86E-03	633	2.01E+03	1.45E-03	2.63E-03	5.10E-03	6.31E-03			
giycolate-	3.41E-02	1.53E+03	4.86E+03	1.97E-02	2.67E-02	4.15E-02	4.86E-02			
acetate-	2.70E-03	95.3	303	2.19E-03	2.44E-03	2.96E-03	3.21E-03			
oxalate2-	1.52E-09	8.00E-05	2.54E-04	1.37E-09	1.44E-09	1.60E-09	1.67E-09			
DBP	1.47E-02	1.85E+03	5.87E+03	1.18E-02	1.32E-02	1.61E-02	1.75E-02			
butanol	1.47E-02	651	2.07E+03	1.18E-02	1.32E-02	1.61E-02	1.75E-02			
NH3	7.93E-02	807	2.56E+03	6.62E-02	7.14E-02	8.94E-02	0.101			
Fe(CN)64-	0	0	0	0	0	0	0			

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

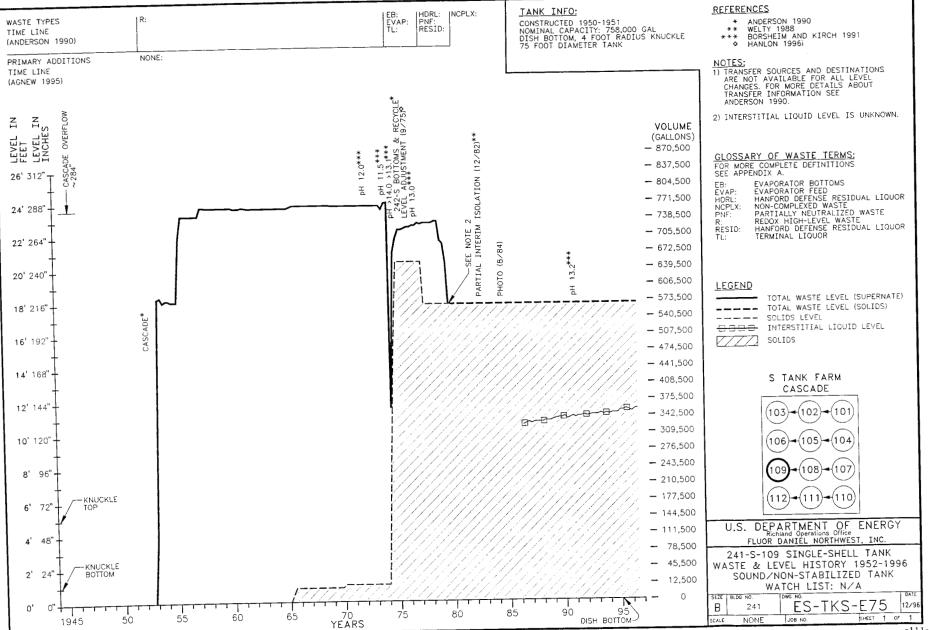
		Sing	le-Shell Tan	k 241-S-108					
			lids Composite Inventory Estimate*						
Physical				161.642					
Properties	90. See			-95 CI	-67 CI	+67 CI	+95 CI		
Total TLM Waste	3.32E+04 (kg)	(5.00 kgal)		1		—	ł		
Heat Load	0.123 (kW)	(421 BTU/ar)		8.94E-02	0.109	0.132	0.13		
Bulk Density	1.76 (g/cc)		—	1.51	1.53	2.11	2.2		
Void Fraction	0.536	_		6.00E-02	0.217	0.737	0.74		
Water wt%	27.0			2.64	10.0	42.6	44.		
TOC wt% C (wet	0			0	0	0			
Radiological	~~	 _		-95 Cl	-67 CI	+67 C1	+95 CI		
Coustituents	CN	µCl/g	Ci 0.553	(CVL)	(СИ.)	(CVL)	(CVL)		
H-3	2.92E-05	1.67E-02	4.28E-02	3.05E-06	1.47E-05	4.10E-05	4.10E-0		
C-14	2.26E-06	1.29E-03	4.282-02	2.59E-07	1.06E-06	3.07E-06	3.07E-0		
Ni-59	1.49E-05	8.46E-03	26.2	1.07E-05	1.31E-05	1.62E-05	1.60E-0		
Ni-63	1.39E-03	0.790	1.69E-02	L.00E-03	1.22E-03	1.52E-03	1.49E-0		
Co-60	8.94E-07	5.09E-04	9.09E-02	1.02E-07	4.18E-07	1.21E-06	1.21E-0		
Se-79	4.81E-07	2.74E-04	9.09E-03	5.50E-08	2.25E-07	6.51E-07	7.15E-0		
Sr-90 Y-90	0.928	525	1.76E+04	0.662	0.812	1.02	1.0		
Y-90 Zr-93	0.929 2.27E-06	529 1.29E-03	4.29E-02	0.662 2.59E-07	0.812	1.02	1.0		
			4.29E-02 3.51E-02			3.08E-06	3.03E-0		
Nb-93m Tc-99	1.85E-06	1.06E-03 9.02E-03	0.300	2.12E-07 1.81E-06	8.68E-07 7.42E-06	2.51E-06	3.21E-0		
Ru-106	2.50E-12	9.02E-03	4.72E-08		7.42E-06 1.17E-12	2.15E-05 3.38E-12	2.15E-0		
		3.98E-03	0.132	2.86E-13			3.38E-1		
Cd-113m Sb-125	6.99E-06	3.98E-03 7.47E-04	2.48E-02	8.00E-07 1.50E-07	3.27E-06 6.14E-07	9.48E-06	9.48E-0 1.78E-0		
SB-125 Sn-126	7.39E-07	4.21E-04	1.40E-02		6.14E-07 3.46E-07				
-120	3.04E-08	4.218-04 1.73E-05	5.76E-04	8.45E-06 3.48E-09	3.46E-07	1.00E-06 4.13E-08	1.14E-0 4.13E-0		
-129 Ca-134	2.72E-08	1.73E-05	5.14E-04	3.48E-09 7.19E-09	1.42E-08	4.13E-08 3.52E-08	4.13E-0 3.52E-0		
Cs-134 Cs-137	5.60E-02	1.358-05	1.06E+03	7.19E-09 1.48E-02	3.13E-02	3.52E-08 7.26E-02			
Ba-137m	5.302-02	31.9	1.00E+03	1.48E-02	2.96E-02	6.87E-02	7.26E-0 6.87E-0		
Sm-151	1.71E-03	0.976	32.4	1.40E-02	2.96E-02 8.03E-04	2.33E-02	0.8/E-0 2.64E-0		
Eu-152	7.00E-06	3.98E-03	0,132	6.85E-04	6.91E-06	2.33E-03 7.06E-06	2.64E-0 7.06E-0		
Eu-152 Eu-154	2.16E-05	1.23E-02	0,408	2.47E-06	1.01E-05	2.93E-05	2.93E-0		
Eu-155	3.30E-04	0.188	625	3.23E-04	3.26E-04	2.93E-05 3.33E-04	3.33E-0		
Ra-226	1.08E-09	6.15E-07	2.04E-05	3.48E-10	6.04E-10	1.56E-09	2.01E-0		
Ra-228	9.26E-15	5.28E-12	1.75E-10	9.07E-15	9.15E-15	9.34E-15	9.34E-1		
Ac-227	4.76E-09	2.71E-06	9.00E-05	3.06E-10	2.00E-09	7.52E-09	1.02E-0		
Pa-231	7.18E-10	4.09E-07	1.36E-05	8.21E-11	3.36E-10	2.048-09	1.68E-0		
Th-229	1.77E-12	1.01E-09	3.34E-08	1.73E-12	1.75E-12	1.788-12	1.78E-1		
Th-232	5.91E-16	3.36E-13	1.12E-11	6.76E-17	2.77E-16	8.01E-16	8.01E-1		
U-232	5.24E-12	2.98E-09	9.90E-08	5.99E-13	2.45E-12	7.10E-12	7.10E-1		
U-233	2.00E-13	1.14E-10	3.77E-09	2.28E-14	9.34E-14	2.71E-13	2.71E-1		
U-234	1.19E-07	6.78E-05	2.25E-03	1.36E-08	5.58E-08	1.62E-07	1.62E-0		
U-235	5.13E-09	2.92E-06	9.69E-05	5.86E-10	2.40E-09	6.95E-09	6.95E-0		
U-236	1.88E-09	1.07E-06	3.56E-05	2.16E-10	8.82E-10	2.56E-09	2.56E-0		
U-238	1.22E-07	6.92E-05	2.30E-03	1.39E-08	5.69E-08	1.65E-07	1.65E-0		
Np-237	1.03E-07	5.86E-05	1.94E-03	1.18E-08	4.81E-08	1.39E-07	1.39E-0		
Pu-238	6.61E-06	3.77E-03	0.125	4.75E-06	5.66E-06	7.57E-06	8.48E-0		
Pu-239	4.72E-04	0.269	8.92	3.39E-04	4.04E-04	5.40E-04	6.05E-0		
Pu-240	6.76E-05	3.85E-02	1.28	4.85E-05	5.78E-05	7.73E-05	8.66E-0		
Pu-241	3.97E-04	0.226	7.51	2.85E-04	3.40E-04	4.55E-04	5.09E-0		
Pu-242	1.82E-09	1.04E-06	3.45E-05	1.31E-09	1.56E-09	2.08E-09	2.34E-0		
Am-241	8.09E-06	4.61E-03	0.153	9.26E-07	3.79E-06	1.10E-05	1.43E-0		
Am-243	7.57E-11	4.31E-08	1.43E-06	8.66E-12	3.54E-11	1.03E-10	1.34E-0		
Cm-242	1.61E-07	9.16E-05	3.04E-03	1.58E-07	1.59E-07	1.62E-07	1.62E-0		
Cm-243	3.69E-09	2.10E-06	6.98E-05	3.61E-09	3.64E-09	3.72E-09	3.72E-0		
Cm-244	2.70E-09	1.54E-06	5.11E-05	3.09E-10	1.27E-09	3.67E-09	3.67E-0		
				-95 CI (M	-67 CI (M	+67 CI (M	+95 CI		
Totala	м	HØ/8	. ku	or g/L)	or g/L)	or g/L)	(M or g/l		
Pu	7.89E-03 (g/L)		0.149	5.67E-03	6 76E-03	9.03E-03	1.01E-0		
U	1.53E-03	207	6.89	1.75E-04	7.16E-04	2.07E-03	2.07E-0		


*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

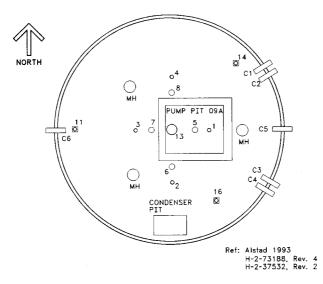
			le-Shell Tani							
	SMM Composite Inventory Estimate									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total SMM Wast	3.14E+06 (log)	(497 kgal)	1			-				
Heat Load	3.98 (kW)	(1.36E+04 BTU/hr)	—	3.73	3.85	4.12	4.1			
Bulk Density*	1.67 (g/cc)			1.60	1.64	1.70	1.7			
Water wt%†	30.0			27.8	28.7	31.5	. 34			
TOC wt% C (wet	0.321			0.286	0.303	0.338	0.35			
Radiological Constituents	CIL	pCVg	Ci	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI (Ci/L)	+95 CI (Ci/L)			
H-3	2.62E-04	0.157	494	1.58E-04	1.58E-04	2.78E-04	2.72E-0			
C-14	3.34E-05	2.00E-02	62.9	1.15E-05	1.15E-05	3.42E-05	3.41E-0			
Ni-59	2.29E-06	1.37E-03	4.30	1.26E-06	1.26E-06	2.34E-06	2.39E-0			
Ni-63	2.22E-04	0.133	418	1.20E-04	1.20E-04	2.27E-04	2.32E-0			
Co-60	3.37E-05	2.02E-02	63.5	8.66E-06	8.66E-06	3.42E-05	3.47E-0			
Sc-79	3.49E-06	2.09E-03	6.57	2.09E-06	2 09E-06	4.00E-06	4.48E-0			
Sr-90	0.114	68.5	2.15E+05	0.108	0.111	0.118	0.12			
Y-90	0.114	68.5	2.15E+05	6.62E-02	6.62E-02	0.118	0.12			
Zr-93	1.71E-05	1.02E-02	32.1	1.01E-05	1.01E-05	1.96E-05	2.20E-0			
Nb-93m	1.27E-05	7.57E-03	23.8	7.76E-06	7.76E-06	1.44E-05	1.61E-0			
Tc-99	2.38E-04	0.143	448	1.57E-04	1.96E-04	2.80E-04	3.21E-0			
Ru-106	5.19E-09	3.11E-06	9.76E-03	1.95E-09	1.95E-09	5.91E-09	6.57E-0			
Cd-113m	8.33E-05	4.98E-02	157	4.13E-05	4.13E-05	985E-05	1.13E-0			
Sb-125	1.38E-04	8.28E-02	260	2.97E-05	2.97E-05	1.40E-04	1.43E-0			
Sn-126	5.29E-06	3.17E-03	9.96	3.19E-06	3.19E-06	6.05E-06	6.78E-0			
-129	4.59E-07	2.75E-04	0.863	3.01E-07	3.78E-07	5.40E-07	6.19E-0			
Cs-134	1.56E-06	9.31E-04	2 93	1.04E-06	1.04E-06	1.67E-06	1.79E-0			
Cs-134 Cs-137	0.287	9.318-04	5.40E+05	0.258	0.272	0.303	0.30			
Ba-137m	0.287	1/2	5.10E+05	0.203	0.203	0.303	0.30			
	1.23E-02	7.38	2.32E+04	7.43E-03	7.43E-03	1.41E-02	1.58E-0			
Sm-151			5.74							
Eu-152 Eu-154	3.05E-06 5.42E-04	1.83E-03 0.325	1.02E+03	1.32E-06 1.93E-04	1.32E-06 1.93E-04	3.11E-06 6.69E-04	3.17E-0 7.19E-0			
			330							
Eu-155	1.75E-04	0.105	3.07E-04	7.20E-05	7.20E-05	1.80E-04	1.84E-0			
Ra-226	1.63E-10	9.78E-08	0110	1.10E-10	1.20E-10	1.91E-10	2.17E-1			
Ra-228	5.84E-08	3.50E-05	1 85E-03	2.28E-08	4.02E-08	7.96E-08	1.02E-0			
Ac-227	9.86E-10	5.90E-07	8.18E-03	6.74E-10	7.34E-10	1.15E-09	1.24E-0			
Pa-231	4.35E-09	2.60E-06	8.18E-03 2.62E-03	2.95E-09	2.95E-09	4.86E-09	5.34E-0			
Th-229	1.39E-09	8.33E-07	7.40E-03	6.10E-10	9.92E-10	1.86E-09	2.35E-0			
Th-232	3.93E-09	2.35E-06		1.96E-09	2.93E-09	4.94E-09	5.91E-0			
U-232	3.53E-07	2.11E-04	0.664	2.10E-07	2.80E-07	4.38E-07	5.28E-0			
U-233	1.35E-06	8.10E-04		8.07E-07	1.07E-06	1.68E-06	2.02E-0			
U-234	8.55E-07	5.12E-04	1.61 6.66E-02	7.82E-07	8.17E-07	8.98E-07	8.79E-0			
U-235	3.54E-08	2.12E-05		3.22E-08	3.37E-08	3.72E-08	3.64E-0			
U-236	2.42E-06	1.45E-05	4.56E-02	2.31E-08	2.36E-08	2.49E-08	2.49E-0			
U-238	8.89E-07	5.32E-04	1.67	8.14E-07	8.50E-07	9.33E-07	9.12E-0			
Np-237	9.44E-07	5.65E-04	1.78	6.77E-07	8.08E-07	1.08E-06	1.21E-0			
Pu-238	1.16E-06	6.94E-04	2.18	8.47E-07	1.00E-06	1.32E-06	1.47E-0			
Pu-239	4.36E-05	2.61E-02	82.1	3.56E-05	3.95E-05	4.77E-05	5.16E-0			
Pu-240	7.14E-06	4.27E-03	13.4	5.64E-06	6.37E-06	7.90E-06	8.63E-0			
Pu-241	7.65E-05	4.58E-02	144	5.52E-05	6.56E-05	8.75E-05	9.80E-0			
Pu-242	4.13E-10	2.47E-07	7.77E-04	2.86E-10	3.48E-10	4.79E-10	5.41E-1			
Am-241	5.64E-05	3.38E-02	106	4.16E-05	4.88E-05	6.40E-05	7.13E-0			
Am-243	1.57E-09	9.41E-07	2.96E-03	1.11E-09	1.33E-09	1.82E-09	2.06E-0			
Cm-242	1.08E-07	6.49E-05	0.204	3.73E-08	3.73E-08	1.10E-07	1.12E-0			
Cm-243	9.64E-09	5.77E-06	1.81E-02	2.86E-09	2.86E-09	9.86E-09	1.01E-0			
Cm-244	1.06E-07	6.35E-05	0.200	3.63E-08	3.63E-08	1.30E-07	1.45E-0			
				-95 CI (M	-67 CI (M	+67 CI (M	+95 CI			
Totala	м	µ\$/2	lug -	or g/L)	or g/L)		(M or g/I			
Pu	5.71E-04 (g/L)	I	1.07	4.19E-04	4.94E-04	6.48E-04	7.22E-0			
U I	1.01E-02	1.44E+03	4.52E+03							

*Density is calculated based on Na, OH-, and AIO2-. †Water wt% derived from the difference of density and total dissolved species.

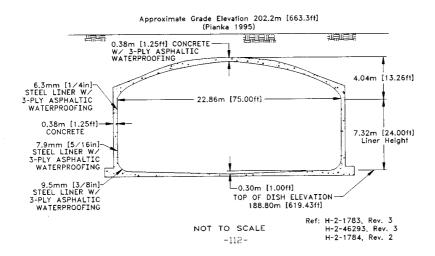
	Single-Shell Tank 241-S-108										
	Total Inventory Estimate*										
Physical						2.4049					
Properties		oore haade de	1999	-95 CI	-67 CI	+67 C1	+95 C				
Total Waste	3.18E+06 (kg)	(502 kgal)									
Heat Load	4.10 (kW)	(1.40E+04 BTU/hr)		3.82	3.95	4.26	4.				
Bulk Density†	1.67 (g/cc)			1.60	1.64	1.70	1.				
Water wt%†	29.9		_	27,8	28.7	31.6	3				
TOC wt% C (wet	0.318	1		0.283	0.300	0.335	0.3				
Radiological Constituents	CVL	#Ci/g	CI	-95 CI (Ci/L)	-67 CI (Ci/L)	+67 CI (CVL)	+95 C				
H-3	2.60E-04	0,156	494	1.56E-04	1.56E-04	2.76E-04	(CI/L) 2.70E-				
C-14	3.31E-05	1.98E-02	62.9	1.14E-05	1.146-05	3.39E-05					
Ni-59	2.41E-06	1.44E-02	4.58	1.39E-06	1.39E-06	2.46E-06	3.38E-				
Ni-63	2.34E-04	0.140	444	1.39E-06	1.39E-06		2.51E-				
Co-60	3.34E-05	2.00E-02	63.5	8.58E-06	8.58E-06	2.39E-04	2.44E-				
Se-79	3.46E-06	2.07E-03	6.58	2.08E-06		3.39E-05	3.44E-				
Sr-90	0.123	73.3	2.33E+05	2.06E-06 0.116	2.08E-06	3.96E-06	4.44E-				
Y-90	0.123	73.3	2.33E+05	0.116 7.47E-02	0.119 7.47E-02	0.126	0.1				
1-90 Zr-93	0.123 1.69E-05	73.3 1.01E-02	2.336405			0.126	0.1				
Nb-93m	1.69E-05	7.51E-03	23.8	9.99E-06	9.99E-06	1.94E-05	2.18E-				
Tc-99			448	7.70E-06	7.70E-06	1.43E-05	1.60E-				
Ru-106	2.36E-04	0.141	9.76E-03	1.55E-04	1.95E-04	2.78E-04	3.18E-				
	5.14E-09	3.07E-06	9.766-03	1.93E-09	1.93E-09	5.86E-09	6.51E-				
Cd-113m	8.25E-05	4.94E-02	260	4.10E-05	4.10E-05	9.76E-05	1.12E-				
Sb-125	1.37E-04	8.19E-02	260 9.97	2.94E-05	2.94E-05	1.39E-04	1.41E-				
Sn-126	5.25E-06	3.14E-03	0.864	3.17E-06	3.17E-06	6.00E-06	6.72E-0				
-129	4.55E-07	2.72E-04		2.96E-07	3.74E-07	5.35E-07	6.13E-0				
Ca-134	1.54E-06	9.21E-04	2.93	1.03E-06	1.03E-06	1.66E-06	1.77E-				
Ca-137	0.285	170	5.41E+05	0.256	0.270	0.301	0.3				
Ba-137m	0.269	161	5.11E+05	0.201	0.201	0.284	0.2				
Sm-151	1.22E-02	7.31	2.32E+04	7.37E-03	7.37E-03	1.40E-02	1.57E-0				
Bu-152	3.09E-06	1.85E-03	5.87	1.37E-06	1.37E-06	3.15E-06	3.20E-4				
Bu-154	5.37E-04	0.321	1.02E+03	1.91E-04	1.91E-04	6.62E-04	7.12E-				
Bu-155	1.77E-04	0.106	336	7.46E-05	7.46E-05	1.81E-04	1.85E-4				
Rn-226	1.73E-10	1.03E-07	3.28E-04	1.29E-10	1.30E-10	1.95E-10	2.17E-				
Ra-228	5.79E-08	3.46E-05	0.110	2.26E-08	3.98E-08	7.88E-08	1.01E-0				
Ac-227	1.02E-09	6.12E-07	1.94E-03	7.68E-10	7.74E-10	1.15E-09	1.23E-4				
Pa-231	4.31E-09	2.58E-06	8.19E-03	2.93E-09	2.93E-09	4.81E-09	5.30E-6				
Th-229	1.38E-09	8.24E-07	2.62E-03	6.04E-10	9.83E-10	1.84E-09	2.33E-(
Th-232	3.90E-09	2.33E-06	7.40E-03	1.94E-09	2.90E-09	4.89E-09	5.85E-4				
J-232	3.49E-07	2.09E-04	0.664	2.08E-07	2.77E-07	4.33E-07	5.22E-4				
J-233	1.34E-06	8.02E-04	2.55	7.99E-07	1.06E-06	1.66E-06	2.00E-0				
J-234	8.48E-07	5.07E-04	1.61	7.75E-07	8.10E-07	8.89E-07	8.71E-0				
J-235	3.51E-08	2.10E-05	6.67E-02	3.20E-08	3.34E-08	3.69E-08	3.60E-0				
J-236	2.40E-08	1.44E-05	4.56E-02	2.29E-08	2.34E-08	2.47E-08	2.47E-0				
J-238	8.82E-07	5.27E-04	1.68	8.08E-07	8.43E-07	9.24E-07	9.04E-0				
Np-237	9.36E-07	5.60E-04	1.78	6.72E-07	8.01E-07	1.07E-06	1.20E-0				
2u-238	1.21E-06	7.26E-04	2.31	9.04E-07	1.06E-06	1.37E-06	1.53E-0				
Pu-239	4.79E-05	2.86E-02	91.0	3.99E-05	4.38E-05	5.19E-05	5.58E-0				
Pu-240	7.74E-06	4.63E-03	14.7	6.26E-06	6.98E-06	8.49E-06	9.21E-0				
Pu-241	7.97E-05	4.77E-02	151	5.86E-05	6.89E-05	9.05E-05	1.01E-0				
น-242	4.27E-10	2.56E-07	8.12E-04	3.01E-10	3.63E-10	4.92E-10	5.54E-1				
-241	5.60E-05	3.35E-02	106	4.12E-05	4.84E-05	6.35E-05	7.07E-0				
Am-243	1.56E-09	9.32E-07	2.96E-03	L.10E-09	1.32E-09	1.80E-09	2.04E-0				
Cm-242	1.09E-07	6.51E-05	0.207	3.85E-06	3.85E-08	1.11E-07	1.136-0				
Cm-243	9.58E-09	5.73E-06	1.82E-02	2.87E-09	2.87E-09	9.80E-09	1.00E-0				
Cm-244	1.05E-07	6.29E-05	0.200	3.59E-08	3.59E-08	1.29E-07	1.44E-0				
				കവല	-67 CI (M -	67 CI M	+95 Cl				
l'ot nin	м	##/E	ky	org/L)			(Morg/				
าน	6.44E-04 (g/L)	T	1.22	4.94E-04	5.68E-04	7.21E-04	7.94E-4				

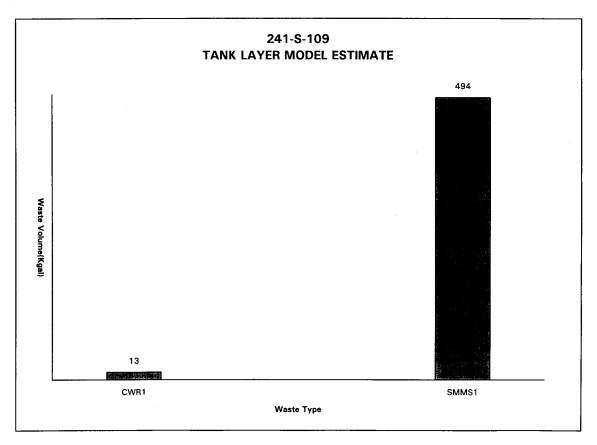

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). † Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-S-109 SUMMARY


TANK H	ISTORY	TANK DES	CRIPTION		
Entered Service	4th qtr 1952	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	-	Nominal Capacity	758,000 gal		
Watch Lists	none	Cascade Tank	none		
Integrity	Sound	Total Risers	12		
Assumed Leaker	•	WASTE VOLUME	(HANLON 1996i)		
Interim Stabilization (IS)	-	Total Waste Volume	568,000 gal		
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX		
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	141,000 gal		
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids 119,000 gal			
Riser Number(s)	Size	Saltcake	555,000 gal		
2, 11, 14, 16	4 in .	Sludge	13,000 gal		
6	12 in	Supernatant	0 gal		
TANK TEM	PERATURE	INTERIOR PH	OTOGRAPHS		
Average Tank Temperature	79°F	Date	Aug 24, 1984		
Maximum Temperature	89.42°F	Montage Number	94041033-18CN		
Date	Jan 30, 1996, Feb 1 & 2, 1996	Photo Set Number	8905333		
Elevation from tank bottom	4.49 ft	WASTE SUR	FACE LEVEL		
Riser Number	4	Devices	Manual ENRAF		
Minimum Temperature	55.3°F	Max Level	172.8 in		
Date	Feb 13, 1993	Date	Sept 6, 1993		
Elevation from tank bottom	unknown	Min Level	171.1 in		
Riser Number	4	Date	July 1, 1995		

WHC-SD-WM-ER-352, Rev. 1




-111-

241-S-109

TANK RISER LOCATION

Tank Layer Model(TLM) Estimate from Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997).

-113-

HDW	м	odel	Rev	۰.	

		Sing	de-Shell Tan	k 241-S-109			
				Inventory Esti	mate*		
Physical				911-520-5			9111121
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	8.71E+04 (kg)	(13.0 kgal)					
Heat Load	1.22E-03 (kW)	(4.17 BTU/hr)	-	1.02E-03	1.18E-03	1.26E-03	1.30E-0
Bulk Density	1.77 (g/cc)			1.47	1.57	1.92	2.03
Void Fraction	0.651	_	-	0.488	0.557	0.780	0.82
Water wt%	24.5		1	4.37	12.2	45.5	55.1
TOC wt% C (wet	0			0	0	0	
Chemical				-95 CI	-67 CI	+67 CI	+95 Cl
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	7.86	1.02E+05	8.89E+03	2.23	3.91	10.7	12.5
A13+	11.2	1.71E+05	1.49E+04	5.84	7.28	14.0	16.1
Fe3+ (total Fe)	0.165	5.20E+03	453	0.153	0.160	0.170	0.175
Cr3+	2.04E-03	59.8	5.21	1.71E-03	1.97E-03	2.10E-03	2.17E-03
Bi3+	0	0	0	0	0	0	0
La3+	0	0	0	0	0	0	0
Hg2+	4.08E-03	462	40.3	4.02E-03	4.06E-03	4.10E-03	4.11E-03
Zr (ns ZrO(OH)2)	0	0	0	0	0	0	C
Pb2+	0.118	1.38E+04	1.20E+03	0.108	0.113	0.122	0.126
Ni2+	1.02E-03	33.7	2.94	8.54E-04	9.84E-04	1.51E-03	3.79E-03
Sr2+	0	0	0	0	0	0	C
Mn4+	0	0	0	0	0	0	C
Ca2+	0.121	2.73E+03	238	6.72E-02	9.87E-02	0.141	0.161
K+	1.54E-03	33.9	2.95	1.29E-03	1.48E-03	1.59E-03	1.64E-03
OH-	41.7	4.00E+05	3.49E+04	20.0	25.9	53.0	61.2
NO3-	0.572	2.00E+04	1.75E+03	0.485	0.554	0.591	0.610
NO2-	0.958	2.49E+04	2.17E+03	0.799	0.925	0.990	1.02
CO32-	0.121	4.09E+03	356	6.72E-02	9.87E-02	0.141	0.161
PO43-	0	0	0	0	0	0	c
SO42-	8.39E-03	455	39.6	7.04E-03	8.10E-03	8.67E-03	8.94E-03
Si (as SiO32-)	2.01E-02	319	27.8	1.69E-02	1.94E-02	8.18E-02	0.175
F.	0	0	0	0	0	0	(
CI-	7.07E-03	141	12.3	5.93E-03	6.83E-03	7.30E-03	7.53E-03
C6H5O73-	0	0	0	0	0	0	c
EDTA4-	0	0	0	0	0	0	
HEDTA3-	0	0	0	0	0	0	(
		0	0				
giycolate-	0		0	0	0	0	
acetate-	0	0	0	0	0	0	
oxalate2-	0	0	-	0	0	0	(
DBP	0	0	0	0	0	0	(
butanol	0	0	0	0	0	0	
NH3	2.05E-04	1.97	0.171	1.61E-04	1.80E-04	2.38E-04	2.49E-04

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

		Sins	de-Shell Tan	k 241-S-109			Model Rev. 4				
	SMM Composite Inventory Estimate										
Physical											
Properties				-95 CI	-67 CI	+67 CI	+95 CI				
Total SMM Wast	3.10E+06 (kg)	(494 kgal)		_	_						
Heat Load	3.87 (kW)	(1.32E+04 BTU/hr)		3.64	3.75	4.00	4.02				
Bulk Density*	1.66 (g/cc)			1.59	1.63	1.68	1.65				
Water wt%	30.9			28.6	29.6	32.3	34.7				
TOC wt% C (wet	0.340			0.304	0.321	0.358	0.375				
Chemical		홍 광 승 .		-95 CI	-67 CI	+67 CI	+95 Cl				
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)				
Na+	15.1	2.10E+05	6.51E+05	13.7	14.5	15.6	16.0				
A13+	2.08	3.38E+04	1.05E+05	1.81	14.3	2.23	2.15				
Fe3+ (total Fe)	9.65E-03	325	1.01E+03	7.85E-03	8.73E-03	1.06E-02	2.15 1.14E-02				
Cr3+	0.213	6.68E+03	2.07E+04	0.159	0.188	0.218	0.223				
Bi3+	7.78E-04	98.2	304	7.01E-04	7.39E-04	8.17E-04	8.55E-04				
La3+	1.75E-08	1.47E-03	4.54E-03	1.29E-08	1.52E-04	1.98E-08	2.20E-08				
Hg2+	6.58E-06	0.797	2.47	6.17E-06	6.40E-06	6.66E-06	6.74E-06				
Zr (as ZrO(OH)2)).60E-04	8.82	27.3	1.46E-04	1.51E-04	1.66E-04	1.74E-04				
Pb2+	7.81E-04	97.7	303	6.60E-04	7.19E-04	8.43E-04	9.02E-04				
Ni2+	6.20E-03	220	681	6.00E-03	6.10E-03	6.31E-03	9.02E-04 6.41E-03				
Sr2+	0	0	0	0.002-03	0.102-03	0.31E-03	5.41E-03 0				
Mn4+	3.14E-03	104	322	2.27E-03	2.70E-03	3.58E-03	4.00E-03				
Ca2+	3.17E-02	767	2.37E+03	2.77E-03	2.96E-02	3.37E-02	3.57E-02				
K+	6.37E-02	1.50E+03	4.65E+03	5.72E-02	6.03E-02	5.37E-02 6.74E-02	6.93E-02				
OK-	12.6	1.30E+05	4.01E+05	11.0	0.032-02	13.5	13.2				
NO3-	5.04	1.89E+05	5.85E+05	4.62	4.83	5.21	5.21				
NO2-	2.85	7.93E+04	2.45E+05	2.48	2.65	3.05	3.23				
CO32-	0.295	1.07E+04	3.32E+04	0,266	0.280	0.315	0.317				
PO43-	6.49E-02	3.72E+03	1.15E+04	5.83E-02	6.06E-02	6.64E-02	6.79E-02				
SO42-	0.190	1.10E+04	3.42E+04	0.143	0.165	0.04E-02	0.792-02				
Si (na SiO32-)	7.16E-02	1.21E+03	3.76E+03	5.92E-02	6.53E-02	7.79E-02	8.40E-02				
F•	3.72E-02	427	1.32E+03	3.05E-02	3.33E-02	4.05E-02	4.31E-02				
Cl-	0.256	5.47E+03	1.69E+04	0.226	0.240	0.273	4.316-02				
C6H5O73-	2.33E-02	2.66E+03	8.23E+03	2.15E-02	2.24E-02	2.42E-02	2.50E-02				
EDTA4	2.32E-03	403	1.25E+03	1.15E-02	1.72E-02	2.42E-02 2.92E-03	2.50E-02 3.50E-03				
HEDTA3-	3.80E-03	629	1.95E+03	1.47E-03	2.60E-03	5.00E-03	6.17E-03				
		1.0.0			_						
glycolate-	3.85E-02	1.74E+03	5.40E+03	2.17E-02	2.99E-02	4.71E-02	5.52E-02				
acetate-	2.70E-03	96.3	298	2.19E-03	2.44E-03	2.96E-03	3.21E-03				
oxalate2-	2.29E-08	1.22E-03	3.77E-03	2.04E-08	2.16E-08	2.41E-08	2.53E-08				
DBP	1.55E-02	1.97E+03	6.08E+03	1.24E-02	1.39E-02	1.70E-02	1.85E-02				
butanol	1.55E-02	693	2.15E+03	1.24E-02	1.39E-02	1.70E-02	1.85E-02				
NH3	7.63E-02	783	2.42E+03								
uno cum	7.6312-02	/83	2.422+03	6.23E-02	6.78E-02	8.70E-02	9.96E-02				

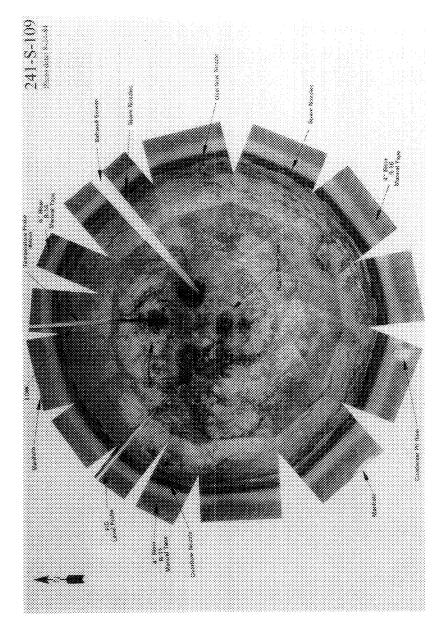
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

		Sing	le-Shell Tan	k 241-S-109			
		То	tal inventory	Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	3.18E+06 (kg)	(507 kgal)	_]		-	_
Heat Load	3.87 (kW)	(1.32E+04 BTU/hr)		3.64	3.75	4.01	4.0
Bulk Density†	1.66 (g/cc)			1.60	1.63	1.68	1.69
Water wt%†	30.7			28.4	29.4	32.1	34.
TOC wt% C (wet	0.331	_		0.295	0.313	0.348	0.36
Chemical Constituents	mole/L	ppm	kg	-95 Cl (mole/L)	-67 CI (mole/L)	+67 CI (mole/L)	+95 CI (mole/L)
Na+	14.9	2.07E+05	6.60E+05	13.5	14.3	15.4	15.8
A13+	2.31	3.76E+04	1.20E+05	2.05	2.1B	2.46	2.4
Fe3+ (total Fe)	1.36E-02	459	1.46E+03	1.19E-02	1.27E-02	1.45E-02	1.54E-02
Cr3+	0.207	6.49E+03	2.07E+04	0.155	0.183	0.212	0.211
Bi3+	7.58E-04	95.5	304	6.83E-04	7.20E-04	7.96E-04	8.33E-0-
+641	1.70E-08	1.43E-03	4.54E-03	1.26E-08	1.48E-08	1.93E-08	2.15E-0
Hg2+	1.11E-04	13.4	42.7	1.09E-04	1.10E-04	1.11E-04	1.12E-04
Zr (as ZrO(OH)2)	1.56E-04	8.57	27.3	1.42E-04	1.47E-04	1.62E-04	1.69E-04
Pb2+	3.78E-03	472	1.50E+03	3.53E-03	3.68E-03	3.85E-03	3.90E-0
Ni2+	6.07E-03	215	684	5.87E-03	5.97E-03	6.17E-03	6.27E-0
Sr2+	0	0	0	0	0	0	(
Mn4+	3.06E-03	101	322	2.21E-03	2.63E-03	3.49E-03	3.90E-0
Ca2+	3.40E-02	820	2.61E+03	3.00E-02	3.20E-02	3.59E-02	3.78E-0
K+	6.21E-02	1.46E+03	4.66E+03	5.58E-02	5.88E-02	6.57E-02	6.75E-0
OH-	13.4	1.37E+05	4.36E+05	11.8	12.5	14.2	13.9
NO3-	4.93	1.84E+05	5.86E+05	4.52	4.72	5.10	5.10
NO2-	2.80	7.78E+04	2.48E+05	2.44	2.61	2.99	3.1*
CO32-	0.291	1.05E+04	3.35E+04	0.262	0.276	0.310	0.31
PO43-	6.32E-02	3.62E+03	1.15E+04	5.68E-02	5.90E-02	6.47E-02	6.61E-0
SO42-	0.186	1.08E+04	3.42E+04	0.139	0.161	0.211	0.23
Si (na SiO32-)	7.03E-02	1.19E+03	3.79E+03	5.82E-02	6.41E-02	7.64E-02	8.24E-0
F-	3.63E-02	415	1.32E+03	2.97E-02	3.25E-02	3.95E-02	4.20E-0
a.	0.249	5.32E+03	1.69E+04	0.220	0.234	0.266	0.26
C6H5O73-	2.27E-02	2.59E+03	8.23E+03	2.10E-02	2.18E-02	2.36E-02	2.44E-0
EDTA4-	2.26E-03	392	1.25E+03	1.12E-03	1.68E-03	2.84E-03	3.41E-0
HEDTA3-	3.70E-03	611	1.95E+03	1.43E-03	2.54E-03	4.87E-03	6.01E-0
glycolate-	3.75E-02	1.70E+03	5.40E+03	2.12E-02	2.92E-02	4.58E-02	5.38E-0
acetate-	2.63E-03	93.6	298	2.13E-03	2.38E-03	2.89E-03	3.13E-0
oxalate2-	2.23E-08	1.18E-03	3.77E-03	1.99E-08	2.11E-08	2.35E-08	2.47E-0
DBP	1.51E-02	1.91E+03	6.08E+03	1.21E-02	1.36E-02	1.66E-02	1.80E-0
butanol	1.51E-02	674	2.15E+03	1.21E-02	1.36E-02	1.66E-02	1.80E-0
t				1			
нэ	7.43E-02	762	2.42E+03	6.07E-02	6.61E-02	8.48E-02	9.70E-0
Fe(CN)64-	0	0	0		0	0	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

es M Waste d sity ction
es M Waste d sity ction
d sity ction
sity ction
tion
%
i C (wet
gical ents
- +
_
-+-
<u> </u>
.09.24

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

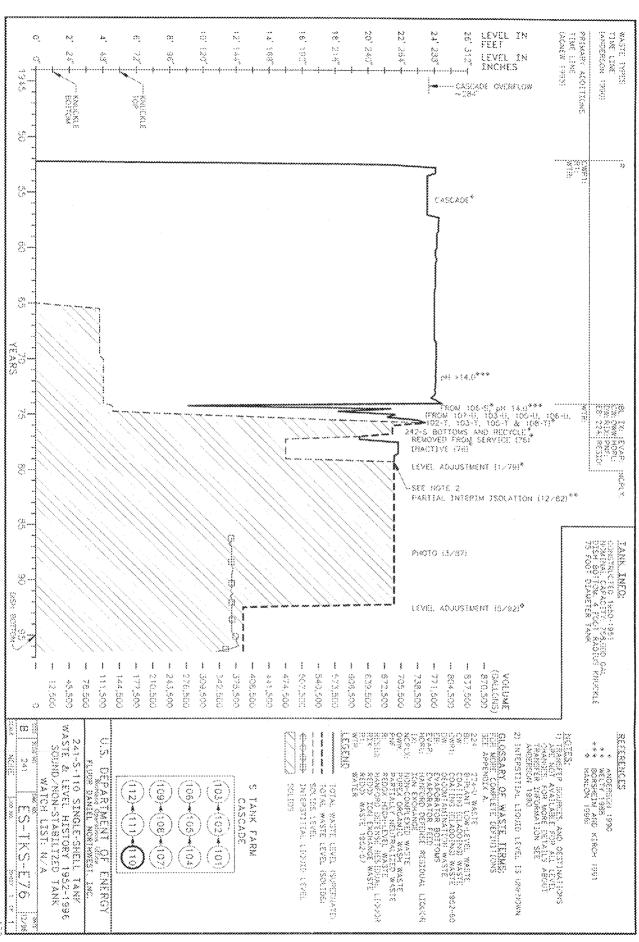

		Sing	e-Shell Tank	241-S-109			
				entory Estimat	e		
hysical				-95 CI	-67 CI	+67 CI	+95 CI
Properties Total SMM Wast	3.10E+06 (kg)	(494 kgal)		-95 (1			175 CI
leat Load	3.102.406 (kg)	(1.32E+04 BTU/hr)		3.64	3.75	4.00	4.0
Bulk Density*	the second se	(1.326-04 610/00)		1.59	1.63	1.68	1.6
Bulk Density	1.66 (g/cc)			1,39	1.03	1.00	1.0
Water wt%†	30.9			28.6	29.6	32.3	34
TOC wt% C (wet	0.340			0.304	0.321	0.358	0.37
	0,340	L		1	0.521	0.0.0	0.51
Radiological	6 14	- 1 3(-	Ci	-95 CI (CI/L)	-67 C1 (Ci/L)	+67 CI (CVL)	+95 CI (CI/L)
Constituents	2.62E-04	pCi/g 0.158	490	1.52E-04	1.52E-04	2.77E-04	2.71E-0
6-3 C-14	3.41E-05	2.06E-02	63.8	1.10E-05	1.10E-05	3.48E-05	3.48E-0
Ni-59	2.29E-06	1.38E-03	4.28	1.20E-06	1.20E-06	2.34E-06	2.40E-0
Ni-59	2.23E-04	0.134	416	1.15E-04	1.15E-04	2.28E-04	2.33E-0
	2.23E-04	2.10E-02	65.2	8.45E-04	8.45E-06	3.53E-05	3.58E-0
Co-60 Se-79	3.49E-05	2.11E-03	6.54	2.02E-06	2.02E-06	4.03E-06	4.54E-0
Se-79 Sr-90	0.114	2.11E-03	2.14E+05	0.107	0.111	0.118	0.12
Sr-90 Y-90	0.114	69.0	2.14E+05	6.35E-02	6.35E-02	0.118	0.12
Y-90 Zr-93	1.7iE-05	1.03E-02	31.9	9.72E-06	9.72E-06	1.97E-05	2.23E-0
Zr-93 Nb-93m	1.71E-05	7.63E-02	23.6	7.48E-06	7.48E-06	1.45E-05	1.63E-0
ND-93m Tc-99	2.43E-04	0.147	454	1.57E-04	1.99E-04	2.87E-04	3.30E-0
Ic-99 Ru-106	2.43E-04 5.43E-09	3.28E-06	1.02E-02	2.02E-09	2.02E-09	6.19E-09	6.89E-0
Cd-113m	8.42E-05	5.06E-02	157	4.00E-05	4.00E-05	1.00E-04	1.16E-0
Sb-125	1.44E-04	8.68E-02	269	2.95E-05	2.95E-05	1.46E-04	1.48E-0
Sn-126	5 29E-06	3.20E-03	9.90	3.09E-06	3.09E-06	6.09E-06	6.86E-0
1-129	4.68E-07	2.83E-04	0.875	3.02E-07	3.83E-07	5.54E-07	6.36E-0
Cs-134	1.53E-06	9.25E-04	2.86	1.03E-06	1.03E-06	1.64E-06	1.75E-0
Ca-134 Ca-137	0.277	167	5.19E+05	0.251	0.263	0.293	0.29
Ba-137m	0.262	158	4.91E+05	0.196	0.196	0.277	0.27
Sm-151	1.23E-02	7.45	2.31E+04	7.18E-03	7.18E-03	1.42E-02	1.60E-0
Eu-152	3.12E-06).88E-03	5.83	1.29E-06	1.29E-06	3.18E-06	3.23E-0
Eu-154	5.57E-04	0,336	1.04E+03	1.89E-04	1.89E-04	6.90E-04	7.43E-0
Eu-155	1.79E-04	0.106	336	7.09E-05	7.09E-05	1.84E-04	1.88E-0
Ra-226	1.61E-10	9.72E-08	3.01E-04	1.11E-10	1.15E-10	1.86E-10	2.11E-1
Ra-228	5.94E-08	3.59E-05	0.111	2.33E-08	4.09E-06	8.08E-08	1.04E-0
Ac-227	9.72E-10	5.87E-07	1.82E-03	6.81E-10	7.07E-10	1.12E-09	1.21E-0
Ps-231	4.31E-09	2.61E-06	8.07E-03	2.84E-09	2.84E-09	4.85E-09	5.36E-0
Th-229	1.42E-09	8.55E-07	2.65E-03	6.24E-10	1.01E-09	1.88E-09	2.38E-0
Tb-232	4.02E-09	2.43E-06	7.51E-03	2.02E-09	3.00E-09	5.03E-09	6.01E-0
U-232	3.61E-07	2.18E-04	0.676	2.17E-07	2.87E-07	4.47E-07	5.38E-0
U-233	1.39E-06	8.37E-04	2.59	8.33E-07	1.10E-06	1.71E-06	2.06E-0
U-234	8.42E-07	5.08E-04	1.57	7.73E-07	8.05E-07	8.81E-07	8.66E-0
U-235	3.482-08	2.10E-05	6.50E-02	3.18E-08	3.32E-08	3.65E-08	3.58E-0
U-236	2.41E-08	1.46E-05	4.51E-02	2.30E-08	2.35E-08	2.47E-08	2.49E-0
U-238	8.77E-07	5.30E-04	1.64	8.07E-07	8.40E-07	9.17E-07	9.01E-C
Np-237	9.52E-07	5.75E-04	1.78	6.71E-07	8.08E-07	1.10E-06	1.24E-
Pu-238	1.19E-06	7.19E-04	2.23	8.61E-07	1.02E-06	1.36E-06	1.52E-4
Pu-239	4.40E-05	2.66E-02	82.3	3.55E-05	3.97E-05	4.83E-05	5.24E-
Pu-240	7.24E-06	4.37E-03	13.5	5.66E-06	6.44E-06	8.04E-06	8.81E-
Pu-241	7.89E-05	4.76E-02	147	5.64E-05	6.74E-05	9.04E-05	1.01E-
Pu-242	4.28E-10	2.58E-07	7.99E-04	2.93E-10	3.59E-10	4.96E-10	5.62E-
Am-241	5.66E-05	3.42E-02	106	4.09E-05	4.86E-05	6.46E-05	7.22E-
Am-243	1.63E-09	9.85E-07	3.05E-03	1.14E-09	1.37E-09	1.89E-09	2.14E-
Cm-242	1.12E-07	6.78E-05	0.210	3.74E-08	3.74E-08	1.15E-07	1.17E-
Cm-243	1.01E-08	6.09E-06	1.89E-02	2.94E-09	2.94E-09	1.03E-08	1.06E-
Cm-244	1.11E-07	6.71E-05	0.208	3.76E-08	3.76E-08	1.36E-07	1.52E-
							بد جن
						+67 CI (M	
Totals	M	<u>µg/g</u>	kg 1.06	or g/L)	or g/L)	or g/L) 6.50E-04	(M or g/ 7.28E-
Pu	5.69E-04 (g/L) 9.92E-03	 1.43E+03	4.41E+03	4.09E-04 9.04E-03	4.88E-04 9.45E-03	6.50E-04	1.02E-
U							

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.	4

			yle-Shell Tan				
		To	tal Inventory	Estimate*			
Physical							
Properties Total Weste			1998, e	-95 CI	-67 CI	+67 CI	+95 Cl
Heat Load	3.18E+06 (kg)	(507 kgal)					
Bulk Density†	3.87 (kW)	(1.32E+04 BTU/hr)		3.64	3.75	4.01	4.0
Buik DelBiky	1.66 (g/cc)			1.60	1.63	1.68	1.6
Water wt%†	30.7	_		28.4	29.4	32.1	
TOC wt% C (wet	0.331	_		0.295	0.313	0.348	0.36
Radiological Constituents	ĆVL.	#Ci/g	Ci	-95 CI (CI/L)	-67 CI (CI/L.)	+67 CI (CVL)	+95 CI (CV/L)
H-3	2.55E-04	0.154	490	1.48E-04	1.48E-04	2.70E-04	2.64E-0
C-14	3.32E-05	2.00E-02	63.8	1.08E-05	1.08E-05	3.40E-05	3.39E-0
Ni-59	2.23E-06	1.34E-03	4.28	1.17E-06	1.17E-06	2.28E-06	2.34E-0
Ni-63	2.17E-04	0.131	416	1.12E-04	1.12E-04	2.22E-04	2.27E-0
Co-60	3.40E-05	2.05E-02	65.2	8.24E-06	8.24E-06	3.44E-05	3.49E-0
Se-79	3.41E-06	2.05E-03	6.54	1.97E-06	1.97E-06	3.93E-06	4.42E-0
Sr-90	0.111	67.2	2.14E+05	0.104	0.108	0.115	0.11
Y-90	0.111	67.2	2.14E+05	6.19E-02	6.19E-02	0.115	0.11
Zr-93	1.66E-05	1.00E-02	31.9	9.48E-06	9.48E-06	1.92E-05	2.17E-0
Nb-93m	1.23E-05	7.42E-03	23.6	7.29E-06	7.29E-06	1.41E-05	1.59E-0
Tc-99	2.37E-04	0.143	454	1.53E-04	1.94E-04	2.80E-04	3.22E-0
Ru-106	5.29E-09	3.19E-06	1.02E-02	1.97E-09	1.97E-09	6.04E-09	6.71E-0
Cd-113m	8.21E-05	4.95E-02	157	3.90E-05	3.90E-05	9.76E-05	1.13E-0
Sb-125	i.40E-04	8.44E-02	269	2.87E-05	2.87E-05	1.42E-04	1.44E-0
Sn-126	5.16E-06	3.11E-03	9.90	3.01E-06	3.01E-06	5.94E-06	6.68E-0
-129	4.56E-07	2.75E-04	0.875	2.94E-07	3.73E-07	5.40E-07	6.20E-0
Cs-134	1.49E-06	8.99E-04	2.86	1.00E-06	1.00E-06	1.60E-06	1.71E-0
Cs-137	0.270	163	5.19E+05	0.244	0.257	0.285	0.28
Ba-137m	0.256	154	4.91E+05	0.191	0.191	0.270	0.27
Sm-151	1.20E-02	7.24	2.31E+04	6.99E-03	6.99E-03	1.38E-02	1.56E-0
Eu-152	3.04E-06	1.83E-03	5.84	1.27E-06	1.27E-06	3.10E-06	3.15E-0
Eu-154	5.42E-04	0.327	1.04E+03	1.84E-04	1.84E-04	6.72E-04	7.24E-0
Bu-155	1.75E-04	0.106	336 3.01E-04	6.93E-05	6.93E-05	1.79E-04	1.83E-0
Ra-226	1.57E-10	9.45E-08	0.111	1.08E-10	1.12E-10	1.82E-10	2.06E-1
Ra-228	5.79E-08	3.49E-05	1.82E-03	2.27E-08	3.99E-08	7:87E-08	1.01E-0
Ac-227 Pa-231	9.48E-10	5.71E-07	8.07E-03	6.64E-10	6.89E-10	1.09E-09	1.18E-0
Th-229	4.20E-09	2.53E-06 8.31E-07	2.65E-03	2.77E-09 6.08E-10	2.77E-09 9.85E-10	4.72E-09 1.84E-09	5.22E-0
Th-232	3.91E-09	8.31E-07 2.36E-06	7.51E-03	6.08E-10 1.97E-09	9.85E-10 2.92E-09	1.84E-09 4.91E-09	2.32E-0 5.86E-0
U-232	3.512-05	2.12E-04	0.676	2.11E-07	2.92E-09 2.80E-07	4.36E-07	5.24E-0
U-233	1.35E-06	8.14E-04	2.59	8.12E-07	1.08E-06	1.67E-06	2.01E-0
U-234	1.202-06	7.23E-04	2.30	1.13E-06	1.16E-06	1.24E-06	1.22E-0
U-235	5.002-08	3.01E-05	9.60E-02	4.71E-08	4.85E-08	5.17E-08	5.11E-0
U-236	3.19E-08	1.92E-05	6.11E-02	3.08E-08	3.13E-08	3.25E-08	3.26E-0
U-238	1.22E-06	7.38E-04	2.35	1.16E-06	1.19E-06	1.26E-06	1.25E-0
Np-237	9.28E-07	5.59E-04	1.78	6.54E-07	7.88E-07	1.07E-06	1.21E-0
Pu-238	1.80E-06	1.09E-03	3.46	1.48E-06	1.64E-06	1.97E-06	2.13E-0
Pu-239	B.41E-05	5.07E-02	161	7.58E-05	7.99E-05	8.83E-05	9.23E-0
Pu-240	1.29E-05	7.76E-03	24.7	1.13E-05	1.21E-05	1.37E-05	1.44E-0
Pu-241	1.12E-04	6.77E-02	216	9.05E-05	1.01E-04	1.24E-04	1.34E-0
Pu-242	5.67E-10	3.42E-07	1.09E-03	4.36E-10	5.00E-10	6.34E-10	6.98E-1
Am-241	5.51E-05	3.32E-02	106	3.99E-05	4.74E-05	6.29E-05	7.04E-0
Am-243	1.59E-09	9.58E-07	3.05E-03	1.11E-09	1.34E-09	1.84E-09	2.09E-0
Cm-242	1.10E-07	6.60E-05	0.210	3.66E-08	3.66E-08	1.12E-07	1.14E-0
Cm-243	9.83E-09	5.92E-06	1.89E-02	2.87E-09	2.87E-09	1.01E-08	1.03E-0
Cm-244	1.08E-07	6.53E-05	0.208	3.66E-08	3.66E-08	1.33E-07	1.48E-0
				of (7) (**	en cu o 2		
Totals	м	nala	by .	-95 CI (M			+95 Cl
Pu	1.24E-03 (g/L)	<u>##/2</u>	2.39	ar g/L)	ter g/L) 1.16E-03	or g/L) 1.32E-03	(M or g/I 1.40E-0
	1.24E-03 (B/L)		4.35	1.076-03	1.102-03	1.346-03	1.40E-0

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.



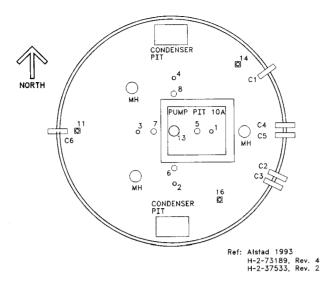
>∞
ŚĽ,
ب ريد
5
~
**
3
-
600
<u>.</u>
ΰ

ž
£-3
*
z
-
2

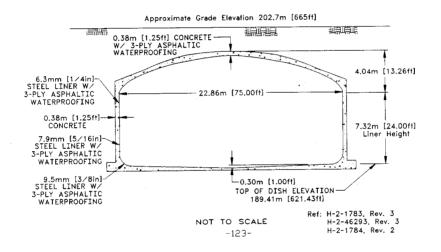
8	1 MM 11 10 10 10 1	IANK DE	ARK DESURIFIUR
Entered Service	Znd atr 1952	[Diameter	75 %
Removed from Service	1976	Bottom Shape	Distr
Inactive	1978	Nominal Capacity	756.000 gal
§ Watch Lists	none	Cascade Tank	to 241-S-111
Integrity	Saund	Tota: Risers	\$2
Assumed Leaker	۲	WASTE VOLUM	VASTE VOLUME (HANLON 1996)
interim Stabilization (IS)	f	Total Waste Volume	390.000 gai
Partial Interim Isciation (PI)	Dec 1982	Wasts Type	NCPLX
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	36,000 gai
TENTATIVELY AVAILABLE RISERS	ailable risers	Pumpabie Liquids	103.000 gai
Riser Number(s)	Size	Saitcake	259,000 gai
11, 14, 15	4 ki	Shudge	131,000 gai
88	\$2 in	§ Supernatarit	0 gal
TANK TEMP	ANK TEMPERATURE	_	NTERIDR PHOTOGRAPHS
Average Tank Temperature	106°F	§ Date	March 12, 1967
Maximum Temperature	136°F	Montage Number	84641033-18CN
Date	May 2, 1988	Fhoto Set Number	870:463
Elevation from tank bottom	G.47 R	WASTE SUF	VASTE SURFACE LEVEL
Riser Number	^ \$'	Devices	Manusi ENRAF
Minmum Temperature	72.6°F	§ Max Levei	149.52 in
Date	Feb 13, 1993	Date	Aug 26, 1995 - Aug 30, 1996*
Elevation from tank bottom	24.43 R	ន្តិអំពេ Level	148.2 in
Riser Number	×	E Date	Oct 19, 1992

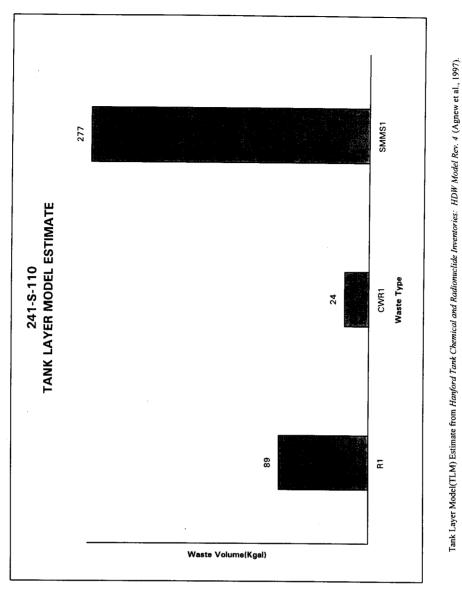
* Numerous dates in this time span.

-121-



一本本


WHC-SO-WM-ER-352, Rev.


HNF-SD-WM-ER-352, Rev. 1

241-S-110

TANK RISER LOCATION

-124-

HNF-SD-WM-ER-352, Rev. 1

		Sin	gle-Shell Tar	k 241-S-110			Model Rev.
				Inventory Est	mate*		
Physical Properties				-95 Cl	-67 CI	+67 CI	+95 CI
Total TLM Waste	7.53E+05 (kg)	(113 kgal)		_			
Heat Load	2.20 (kW)	(7.50E+03 BTU/hr)		1.59	1.95	2.36	2.4
Bulk Density	1.76 (g/cc)	_		1.56	1.58	2.04	2.14
Void Fraction	0.560			0,185	0.309	0.719	0.723
Water wt%	26.5			6.48	12.7	38.3	39.4
TOC wt% C (wet	0	_		0	0		39.4
Chemical		18 G. (C.)		-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Ne+	8.07	1.05E+05	7.93E+04	4.07	4.47	13.2	16.0
AB+	7.88	1.21E+05	9.10E+04	6.74	7.05	8.48	8.91
Fe3+ (total Fe)	0.833	2.64E+04	1.99E+04	0.818	0.825	0.84)	0.848
Cr3+	4.92E-02	1.45E+03	1.09E+03	6.01E-03	2.71E-02	0.411	0.835
Bi3+	0	0	0	0	0	0	0
La3+	0	0	0	0	0	0	0
Hg2+	8.66E-04	98.8	74.3	8.54E-04	8.61E-04	8.70E-04	8.73E-04
Zr (as ZrO(OH)2)	0	0	0	0	0	0	0
Pb2+	2.50E-02	2.94E+03	2.21E+03	2.30E-02	2.41E-02	2.59E-02	2.67E-02
Ni2+	4.01E-02	1.34E+03	1.01E+03	2.90E-02	3.53E-02	4.38E-02	4.32E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	0	0	0	0	0	0	0
Ca2+	0.199	4.53E+03	3.41E+03	0.140	0.169	0.229	0.258
K+	9.17E-03	204	153	1.34E-03	4.47E-03	1.23E-02	1.23E-02
OH-	29.0	2.80E+05	2.11E+05	24.4	25.7	31.4	33.2
NO3-	4.29	1.51E+05	1.14E+05	0.169	0.169	10.7	14.2
NO2-	1.35	3.53E+04	2.66E+04	0.307	0.672	1.90	1.90
CO32-	0.199	6.78E+03	5.10E+03	0.140	0.169	0.229	0.258
PO43-	0	0	0	ø	0	0	0
5042-	9.98E-03	545	410	2.72E-03	5.62E-03	1.29E-02	1.29E-02
Si (as SiO32-)	1.06E-02	169	127	4.99E-03	7.24E-03	2.37E-02	4.35E-02
P.	0	0	0	0	0	0	0
Ci-	4.22E-02	849	639	6.15E-03	2.05E-02	5.66E-02	0.125
C6H5O73-	0	0	0	0	0	0	0.125
EDTA4-	0	Ö		0	0		
HEDTA3-	0	0	0		0		0
							<u>v</u>
dycolate-	0	0	- 0		0		0
icetate-	0	0	- 0		. 0		0
malate2-	0	0		0			0
OBP	0	0	0	0			0
outanol	0	0		0	0		
				*			0
NH3	0.201	1.95E+03	1.46E+03	5.17E-02	7.29E-02	0.213	0.224
e(CN)64-	0	0	0	3.17E-02	1.296-02	0.213	0.224

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

- 125 -

		Sing	gie-Shell Tan	k 241-S-110			
		SMM (Composite In-	ventory Estim	<u>stc</u>		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	1.67E+06 (kg)	(277 kgal)			_		-
Heat Load	2.09 (kW)	(7.14E+03 BTU/hr)		1.96	2.03	2.14	2.18
Bulk Density*	1.59 (g/cc)			1.54	1.57	1.62	1.63
Water wt%	34.6			31.8	33.0	36.2	38.1
IOC wt% C (wet	0.569			0.441	0.503	0.634	0.698
Chemical Constituents	mole/L,	ppm	kg	-95 Cl (mole/L)	-67 CI (mole/L)	+67 C1 (mole/L)	+95 Cl (mole/L)
Na+	13.9	2.00E+05	3.34E+05	12.6	13.2	14.4	14.9
A13+	1.76	2.98E+04	4.98E+04	1.61	1.68	1.85	1.86
Fe3+ (total Fe)	9.82E-03	344	575	7.75E-03	8.77E-03	1.09E-02	1.19E-02
213+	0.163	5.33E+03	8.91E+03	0.134	0.150	0.170	0.176
3i3+	8.12E-04	107	178	7.49E-04	7.80E-04	8.45E-04	8.76E-04
+ئە	7.38E-06	0.643	1.08	5.35E-06	6.34E-06	8.43E-06	9.44E-06
ig2+	7.06E-06	0.889	1.49	6.73E-06	6.92E-06	7.17E-06	7.28E-06
Ir (as ZrO(OH)2)	1.42E-04	8.13	13.6	1.30E-04	1.35E-04	1.47E-04	1.54E-04
×b2+	8.62E-04	112	187	7.03E-04	7.81E-04	9.44E-04	1.02E-03
Ni2+	5.77E-03	212	355	5.53E-03	5.65E-03	5.85E-03	5.92E-03
šr2+	0	0	0	0	0	0	0
vin4+	3.58E-03	123	206	2.59E-03	3.07E-03	4.09E-03	4.58E-03
3a2+	2.98E-02	750	1.25E+03	2.68E-02	2.83E-02	3.13E-02	3.28E-02
(+	6.00E-02	1.47E+03	2.46E+03	5.39E-02	5.68E-02	6.33E-02	6.64E-02
ж-	10.8	1.15E+05	1.92E+05	9.84	10.3	11.3	11.4
103-	4.56	1.77E+05	2.97E+05	4.30	4.44	4,66	4.69
102-	2.55	7.36E+04	1.23E+05	2.13	2.32	2.77	2.98
CO32-	0.365	1.38E+04	2.30E+04	0.328	0.347	0.384	0.397
043-	6.36E-02	3.79E+03	6.33E+03	5.69E-02	5.93E-02	6.48E-02	6.59E-02
iO42-	0.209	1.26E+04	2.10E+04	0.154	0.180	0.239	0.265
ii (as SiO32-)	7.246-02	1.28E+03	2.13E+03	5.82E-02	6.52E-02	7.97E-02	8.67E-02
	3.95E-02	471	786	3.39E-02	3.63E-02	4.22E-02	4.43E-02
<u>л- </u>	0.235	5.22E+03	8.72E+03	0.210	0.223	0.246	0.255
C6H5O73-	2.82E-02	3.34E+03	5.59E+03	2.61E-02	2.71E-02	2.93E-02	3.03E-02
DTA4	7.79E-03	1.41E+03	2.35E+03	2.75E-02	5.21E-02	1.04E-02	1.29E-02
IEDTA3-	1.40E-02	2.41E+03	4.03E+03	3.96E-03	8.88E-03	1.92E-02	2.43E-02
· · · · · · · · · · · · · · · · · · ·				3.742-45	0.002-43	1.926-02	2.432-02
tycolate-	6.95E-02	3.27E+03	5.47E+03	4.18E-02	5.53E-02	8.38E-02	9.73E-02
cetate-	4.96E-03	184	307	4.18E-02 4.03E-03	4.48E-03	5.43E-02	9.73E-02 5.89E-03
xalate2-	9.67E-06	0.534	0.893	8.57E-06	9.11E-06	5.43E-03	3.89E-03
BP	1.83E-02	2.41E+03	4.02E+03	1.48E-02	9.11E-08	2.00E-02	2.17E-02
utanol	1.83E-02	849	1.42E+03	1.48E-02			
		647	2.444,5143	1.488-02	1.65E-02	2.00E-02	2.17E-02
013	7.24E-02	772	1.29E+03	5.63E-02	6 977 62	0.400.00	0.000
1	0		1.196+03	5.03E-02	6.27E-02	8.48E-02	9.92E-02

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

- 126 -

· •

		Sing	le-Shell Tanl	k 241-S-110			
		То	tal Inventory	Estimate*			
Physical Properties			- 555	-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	2.42E+06 (kg)	(390 kgal)		_	_	_	
Heat Load	4.29 (kW)	(1.46E+04 BTU/hr)		3.61	4.00	4.49	4.50
Bulk Density†	1.64 (g/cc)	_		1.56	1.58	1.73	1.75
Water wt%†	32.1	_		25.2	26.7	36.3	37.6
TOC wt% C (wet	0.392			0.304	0.347	0.438	0.482
Chemical Constituents	mole/L	ppm	kg	-95 CI (mole/L)	-67 CI (mole/L)	+67 Cl (mole/L)	+95 CI (mole/L)
Ne+	12.2	1.71E+05	4.13E+05	10.4	10.9	13.9	14.3
Al3+	3.53	5.81E+04	1.41E+05	3.20	3.30	3.70	3.82
Fe3+ (total Fe)	0.248	8.45E+03	2.05E+04	0.244	0.246	0.250	0.252
Cr3+	0.130	4.13E+03	1.00E+04	0.116	0.125	0.225	0.337
Bi3+	5.77E-04	73.4	178	5.32E-04	5.54E-04	6.00E-04	6.22E-04
La3+	5.25E-06	0.444	1.08	3.80E-06	4.51E-06	5.99E-06	6.70E-06
Hg2+	2.56E-04	31.3	75.8	2.52E-04	2.55E-04	2.57E-04	2.58E-04
Zr (as ZrO(OH)2)	1.01E-04	5.61	13.6	9.26E-05	9.56E-05	1.04E-04	1.09E-04
Pb2+	7.85E-03	991	2.40E+03	7.26E-03	7.61E-03	8.09E-03	8.31E-03
Ni2+	1.57E-02	562	1.36E+03	1.25E-02	1.43E-02	1.68E-02	1.65E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	2.54E-03	85.1	206	1.84E-03	2.18E-03	2.91E-03	3.25E-03
Ca2+	7.88E-02	1.92E+03	4.66E+03	6.27E-02	7.09E-02	8.66E-02	9.42E-02
K+	4.53E-02	1.08E+03	2.61E+03	4.09E-02	4.30E-02	4.76E-02	4.99E-02
OH-	16.1	1.66E+05	4.03E+05	14.7	15.1	16.7	17.2
NO3-	4.48	1.69E+05	4.10E+05	3.18	3.27	6.31	7.19
NO2-	2.20	6.17E+04	1.50E+05	1.83	2.00	2.39	2.51
CO32-	0.317	1.16E+04	2.81E+04	0.291	0.304	0.330	0.339
PO43-	4.52E-02	2.61E+03	6.33E+03	4.04E-02	4.21E-02	4.60E-02	4.68E-02
SO42-	0.151	8.85E+03	2.15E+04	0.112	0.131	0.172	0.191
Si (as SiO32-)	5.45E-02	932	2.26E+03	4.44E-02	4.94E-02	5.97E-02	6.46E-02
F-	2.80E-02	324	786	2.41E-02	2.58E-02	3.00E-02	3.15E-02
CI-	0.179	3.86E+03	9.36E+03	0.162	0.170	0.187	0.201
C6H5O73-	2.00E-02	2.31E+03	5.59E+03	1.86E-02	1.93E-02	2.08E-02	2.15E-02
EDTA4-	5.53E-03	971	2.35E+03	1.95E-03	3.70E-03	7.37E-03	9.17E-03
HEDTA3-	9.97E-03	1.66E+03	4.03E+03	2.81E-03	6.31E-03	1.37E-02	1.72E-02
glycolate-	4.94E-02	2.26E+03	5.47E+03	2.97E-02	3.93E-02	5.95E-02	6.91E-02
acctate-	3.52E-03	127	307	2.86E-03	3.18E-03	3.86E-03	4.18E-03
oxalate2-	6.87E-06	0.368	0.893	6.09E-06	6.47E-06	7.27E-06	7.65E-06
DBP	1.30E-02	1.66E+03	4.02E+03	1.05E-02	1.17E-02	1.42E-02	1.54E-02
butanol	1.30E-02	585	1.42E+03	1.05E-02	1.17E-02	1.42E-02	1.54E-02
NH3	0.110	1.14E+03	2.75E+03	6.34E-02	7.10E-02	0.119	0.125
Fe(CN)64-	0	0	0	0	0	0	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

- 127 -

HNF-SD-WM-ER-352, Rev. 1

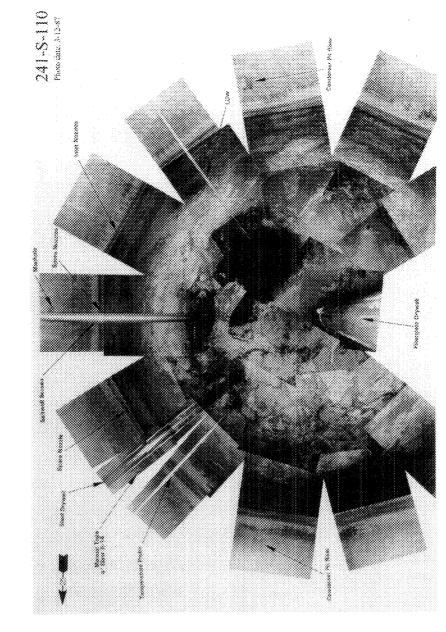
.

	•••••••••••••••••••••••••••••••••••••••		gle-Shell Tan				
Physical		TLM Solid	a Composite	Inventory Est	mate*	· · · · · · · · · · · · · · · · · · ·	
Properties	191. AQ - AQ		말감 것	-95 CI	-67 CI	+67 CI	+95 (
Total TLM Waste	7.53E+05 (kg)	(113 kgal)		-		_	
Heat Load	2.20 (kW)	(7.50E+03 BTU/hr)		1.59	1.95	2.36	2
Bulk Density	1.76 (g/cc)			1.56	1.58	2.04	2
Void Fraction	0.560			0.185	0.309	0.719	0.1
Water wt%	26.5			6.48	12.7	38.3	3
TOC wt% C (wet	0			0	0	0	
Rediological				-95 CI	-67 CI	+67 CI	+95 (
Constituents	CVL	µCi/g	CI	(CVL)	(CVL)	(CVL)	2020/07/07/07
н-3	2.32E-05	1.32E-02	994	2.62E-06	1.18E-05	3.25E-05	(Ci/L
C-14	1.81E-06	1.03E-03	0.772	2.02E-08 2.27E-07	8.58E-07	2.44E-06	3.25E
Ni-59	1.17E-05	6.65E-03	5.01	8.45E-06	1.03E-05	1.28E-05	
Ni-63	1.09E-03	0.621	468	7 89E-04	9.61E-04	1.19E-03	1.26E
Co-60	7.14E-07	4.06E-04	0.305	9.05E-04	3.39E-07	9.64E-07	1.18E 9.64E
Se-79	3.84E-07	2.18E-04	0.164	4.83E-08	3.39E-07		
Sr-90	0.732	416	3.13E+05	0.522	0.640	5.18E-07 0.802	5.64E
Y-90	0.732	416	3.13E+05	0.522	0.640	0.802	0.1
Zr-93	1.81E-06	1.03E-03	0.774	2.28E-07	8.60E-07	2.45E-06	0.1
Nb-93m	1.48E-06	8.41E-04	0.633	1.86E-07	7.03E-07		2.39E
Tc-99	1.46E-05	7.19E-03	5.41	1.59E-06		2.00E-06	2.53E
Ru-106	2.02E-12	1.15E-09	8.66E-07	2.83E-13	6.01E-06 9.79E-13	1.71E-05	1.71E-
Cd-113m	5.58E-06	3.17E-03	2.39	7.04E-07		2.72E-12	2.72E-
Sb-125	1.05E-06	5.97E-04	0.449		2.65E-06	7.54E-06	7.54E
Sn-126	5.89E-07	3.35E-04	0.252	1.35E-07	5.01E-07	1.42E-06	1.42E-
I-129	2.43E-08		1.04E-02	7.42E-08	2.80E-07	7.96E-07	9.03E
Cs-134		1.38E-05	9.31E-03	3.06E-09	1.15E-08	3.28E-08	3.28E-
Cs-134 Cs-137	2.18E-08 4.46E-02	1.24E-05	1.91E+04	6.01E-09	1.23E-08	2.81E-08	2.81E-
Ba-137m	4.46E-02 4.22E-02	25.4	1.912+04	1.22E-02	2.51E-02	5.77E-02	5.77E-
Sm-151	1.37E-03		585	1.15E-02	2.38E-02	5.45E-02	5.45E-
		0.778	2.37	1.72E-04	6.50E-04	1.85E-03	2.08E-
Eu-152 Eu-154	5.55E-06	3.15E-03	7.38	5.43E-06	5.48E-06	5.60E-06	5.60E-
Eu-155	1 72E-05	9.80E-03	/.38	2.19E-06	8.20E-06	2.33E-05	2.33E-
	2.62E-04	0.149	3.64E-04	2.56E-04	2.59E-04	2.64E-04	2.64E-
Ra-226	8.52E-10	4.84E-07	3.64E-04 3.15E-09	1.17E-10	4.77E-10	1.23E-09	1.59E-
Ra-228 Ac-227	7.36E-15	4.18E-12	1.61E-03	7.20E-15	7.27E-15	7.42E-15	7.42E-
	3.75E-09	2.13E-06	2.45E-04	2.44E-10	1.58E-09	5.93E-09	8.02E-
Pa-231	5.73E-10	3.25E-07		7.20E-11	2.72E-10	1.62E-09	1.32E-
Th-229	1.40E-12	7.96E-10	5.99E-07	1.37E-12	1.38E-12	1.41E-12	1.418-
Th-232	4.74E-16	2.69E-13	2.03E-10	6.18E-17	2.26E-16	6.39E-16	6.39E-
U-232	1.41E-10	8.04E-08	6.05E-05	1.23E-10	1.34E-10	1.47E-10	1.51E-
U-233	5.24E-12	2.98E-09	2.24E-06	4.57E-12	4.96E-12	5.44E-12	5.58E-
U-234	3.24E-06	1.84E-03	1.38	2.83E-06	3.07E-06	3.36E-06	3.45E-
U-235	1.38E-07	7.82E-05	5.88E-02	1.20E-07	1.30E-07	1.43E-07	1.46E-
U-236	7.07E-08	4.02E-05	3.02E-02	6.16E-08	6.69E-08	7.34E-08	7.53E-
U-238	3.16E-06	1.79E-03	1.35	2.75E-06	2.99E-06	3.28E-06	3.36E-
Np-237	8.22E-08	4.67E-05	3.51E-02	1.04E-08	3.91E-08	L.I.I.E-07	1.11E-
Pu-238	1.05E-05	5.99E-03	4.51	9.07E-06	9.79E-06	1.13E-05	1.20E-
Ри-239	7.13E-04	0.405	305	6.08E-04	6.60E-04	7.67E-04	8.18E-4
Pu-240	1.01E-04	5.76E-02	43.4	8.64E-05	9.37E-05	1.09E-04	1.16E-
Pu-241	6.07E-04	0.345	260	5.19E-04	5.62E-04	6.52E-04	6.96E-
Pu-242	2.68E-09	1.53E-06	1.15E-03	2.28E-09	2.48E-09	2.89E-09	3.09E-4
Am-241	6.46E-06	3.67E-03	2.76	8.16E-07	3.07E-06	8.73E-06	1.13Ĕ-
Am-243	6.04E-11	3.43E-08	2.58E-05	7.61E-12	2.87E-11	8.16E-11	1.06E-
Cm-242	1.28E-07	7.25E-05	5.45E-02	1.25E-07	1.26E-07	1.29E-07	1.29E-0
Cm-243	2.92E-09	1.66E-06	1.25E-03	2.86E-09	2.89E-09	2.95E-09	2.95E-0
Cm-244	2.16E-09	1.23E-06	9.23E-04	2.71E-10	1.02E-09	2.92E-09	2.92E-
8249666				~ ~ ~ ~			
Cotals	м			95 CI (M		60.000 C 2000-000	+95 Cl
- Cornea - Cu	Mi 1.19E-02 (g/L)	<u> </u>		or g/L)	or g/L)		(M or g/l
			5.10	1.02E-02	1.10E-02	1.28E-02	1.37E-0

- 128 -

		Sing	le-Sheil Tani	241-S-110			fodel Rev. 4
		SMM C	omposite Inv	entory Estima	le		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	1.67E+06 (kg)	(277 kgal)			-		
Heat Load	2.09 (kW)	(7.14E+03 BTU/hr)		1.96	2.03	2.14	2.18
Bulk Density*	1.59 (g/cc)	—		1.54	1.57	1.62	1.63
Water wt%†	34.6			31.8	33.0	36.2	38.1
TOC wt% C (wet	0.569			0.441	0.503	0.634	0.690
Radiological				-95 CI	-67 CI	+67 C1	+95 Cl
Constituents	CIL	#Ci/g	a	(CI/L)	(CVL)	(CVL)	(Ci/L)
H-3	2.65E-04	0.166	278	1.38E-04	1.38E-04	2.73E-04	2.75E-04
C-14	3.67E-05	2.30E-02	50.5	1.02E-05	1.02E-05	3.71E-05	3.74E-05
Ni-59	2.28E-06	1.43E-03	2.39	1.03E-06	1.03E-06	2.34E-06	2.40E-06
Ni-63	2.23E-04	0.140	234	9.95E-05	9.95E-05	2.29E-04	2.35E-04
Co-60	3.98E-05	2.49E-02	41.7	9.37E-06	9.37E-06	4.03E-05	4.07E-0.
Se-79	3.55E-06	2.23E-03	3.72	1.86E-06	1.86E-06	4.16E-06	4.75E-06
Sr-90	0.115	71.9	1.20E+05	0.106	0.110	0.119	0.12
Y-90	0.115	72.0	1.20E+05	5.62E-02	5.62E-02	0.119	0.12
Zr-93	1.74E-05	1.09E-02	18.3	8.94E-06	8.94E-06	2.05E-05	2.34E-0
Nb-93m	1.27E-05	7.95E-03	13.3	6.74E-06	6.74E-06	1.48E-05	1.69E-0
Tc-99	2.62E-04	0.164	274	1.63E-04	2.11E-04	3.12E-04	3.62E-0
Ru-106	6.78E-09	4.25E-06	7.10E-03	2.85E-09	2.85E-09	7.65E-09	8.45E-0
Cd-113m	9.11E-05	5.71E-02	95.5	4.03E-05	4.03E-05	1.09E-04	1.27E-04
Sb-125	1.69E-04	0.106	177	3.73E-05	3.73E-05	1.71E-04	1.73E-04
Sn-126	5.37E-06	3.37E-03	5.63	2.83E-06	2.83E-06	6.29E-06	7.17E-0
I-129	5.04E-07	3.16E-04	0,528	3.13E-07	4.06E-07	6.03E-07	6.98E-0
Cs-134	2.03E-06	1.27E-03	2.12	1.42E-06	1.42E-06	2.22E-06	2.4IE-00
Cs-137	0.261	164	2.73E+05	0.241	0.248	0.270	0.275
Ba-137m	0.247	155	2.59E+05	0.166	0.166	0.256	0.26
Sm-151	1.25E-02	7.84	1.31E+04	6.57E-03	6.57E-03	1.46E-02	1.67E-02
Eu-152	3.69E-06	2.31E-03	3.87	1.59E-06	1.59E-06	3.83E-06	3.97E-0
Eu-154	6.36E-04	0.399	667	2.12E-04	2.12E-04	7.89E-04	8.50E-0
Eu-155	2.16E-04	0.135	226	9.05E-05	9.05E-05	2.24E-04	2.32E-0-
Ra-226	1.49E-10	9.33E-08	1.56E-04	9.62E-11	9.62E-11	1.68E-10	1.86E-10
Ra-228	1.18E-07	7.38E-05	0.123 9.78E-04	4.88E-08	8.25E-08	1.59E-07	2.02E-0
Ac-227	9.33E-10	5.85E-07	9.78E-04 4.53E-03	6.28E-10	6 28E-10	1.04E-09	1.15E-0
Pa-231	4.32E-09	2.71E-06	4.53E-03 2.91E-03	2.63E-09	2.63E-09	4.94E-09	5.53E-0
Th-229	2.78E-09	1.74E-06	8.25E-03	1.26E-09	2.00E-09	3.67E-09	4.63E-0
Th-232	7.86E-09	4.93E-06	0.656	4.05E-09	5.92E-09	9.81E-09 7.89E-07	1.17E-00 9.64E-0
U-232	6.26E-07	3.92E-04	2.52	3.49E-07	4.84E-07		9.64E-0 3.69E-0
U-233	2.40E-06	1.51E-03	0.847	1.34E-06	1.86E-06	3.03E-06	3.69E-0
U-234	8.08E-07	5.07E-04 2.06E-05	3.45E-02	7.70E-07 3.12E-08	7.88E-07 3.20E-08	8.30E-07 3.38E-08	8.36E-0 3.41E-0
U-235	3.29E-08		2.61E-02	2.40E-08	2.44E-08	2.53E-08	2.57E-0
U-236	2.49E-08 8.99E-07	1.56E-05 5.64E-04	0.943	2.40E-08 8.60E-07	2.44E-08 8.79E-07	9.22E-07	9.26E-0
U-238	9.73E-07	5.64E-04	1.02	6.49E-07	8.07E-07	9.22E-07	9.26E-0
Np-237	9.73E-07 1.36E-06	8.52E-04	1.42	9.78E-07	1.16E-06	1.55E-06	1.74E-0
Pu-238 Pu-239	1.30E-00 4.64E-05	2.91E-02	48.6	3.66E-05	4.14E-05	5.13E-05	5.61E-0
	4.64E-03 7.86E-06	4.93E-03	8.24	6.05E-05	4.14E-03	8.79E-06	9.67E-0
Pu-240 Pu-241	9.18E-05	4.93E-03 5.76E-02	96.2	6.59E-05	7.85E-05	1.05E-04	9,87 <u>E</u> -0
Pu-241 Pu-242	5.03E-10	3.15E-02	5.27E-04	3.48E-10	4.24E-10	5.82E-10	6.58E-1
Pu-242 Am-241	5.83E-05	3.66E-02	61.2	4.03E-05	4.24E-10	6.76E-05	7.64E-0
Am-241 Am-243	1.98E-09	1.24E-06	2.07E-03	1.41E-09	1.68E-09	2.28E-09	2.57E-0
Cm-243	1.37E-07	8.60E-05	0.144	5.09E-08	5.09E-08	1.42E-07	1.48E-0
Cm-242 Cm-243	1.37E-08	7.98E-06	1.33E-02	4.50E-09	4.50E-09	1.32E-08	1.37E-0
Cm-243	1.33E-07	8.32E-05	0.139	4.30E-09 4.79E-08	4.30E-09 4.79E-08	1.61E-07	1.80E-0
CIII-244	1-356-07	0.326-93		1.172-08	L		
				-95 CI (M	-67 CI (M	+67 CI (M	
Totals	M	<u>#8/8</u>	<u>k</u>	or g/L)	or g/L)	ar g/L)	(M or g/l
Pu	5.77E-04 (g/L)	—	0.605	3.93E-04	4.84E-04	6.71E-04	7.60E-0
U	9.33E-03	1.39E+03	2.33E+03	8.83E-03	9.07E-03	9.61E-03	9.66E-0

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species


- 129 -

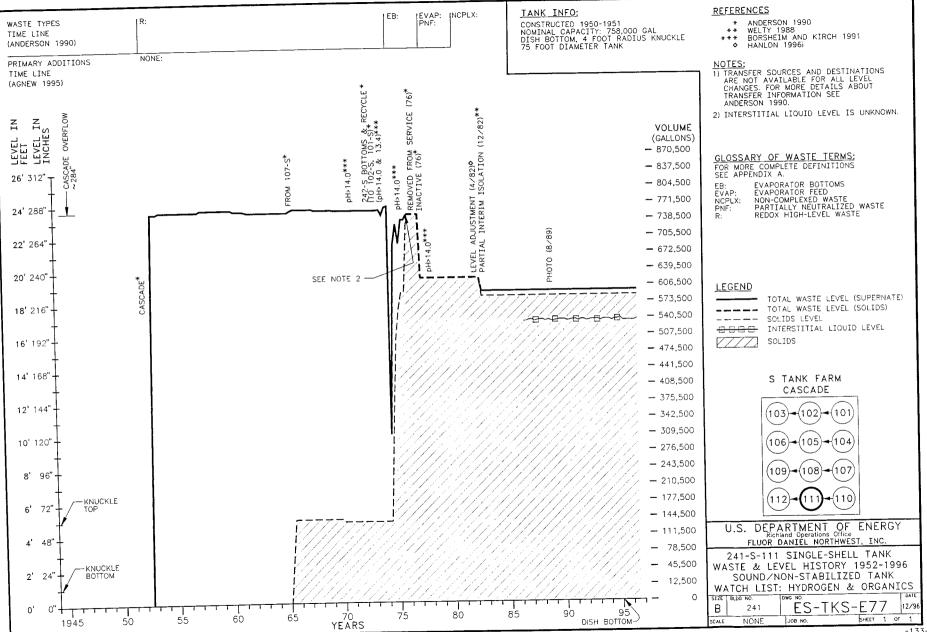
HNF-SD-WM-ER-352, Rev. 1

	HDW Model Rev. 4 Single-Shell Tank 241-S-110							
	Total Inventory Estimate*							
Physical Properties				-95 Cl	-67 CI	+67 Cl	+95 CI	
Total Waste	2.42E+06 (kg)	(390 kgal)						
Heat Load	4.29 (kW)	(1.46E+04 BTU/hr)		3.61	4.00	4.49	4.50	
Bulk Density	1.64 (g/cc)			1.56	1.58	1.73	1.75	
							37.6	
Water wt%† TOC wt% C (wet	32.1			25.2 0.304	26.7 0.347	36.3 0,438	37.6	
		an na an a					24.846	
Radiological Constituents	CVL	µCi/g	CI	-95 CI (CVL)	-67 CI (Ci/L)	+67 Cl (CVL)	+95 CI (Ci/L)	
H-3	1.95E-04	0.119	288	1.05E-04	1.05E-04	1.98E-04	2.02E-04	
C-14	2.66E-05	1.62E-02	39.3	7.73E-06	7.73E-06	2.68E-05	2.71E-05	
Ni-59	5.01E-06	3.05E-03	7.40	4.07E-06	4.12E-06	5.33E-06	5.24E-06	
Ni-63	4.75E-04	0.289	701	3.87E-04	3.87E-04	5.05E-04	4.97E-04	
Co-60	2.84E-05	1.73E-02	42.0	6.86E-06	6.86E-06	2.88E-05	2.91E-05	
Se-79	2.63E-06	1.60E-03	3.89	L.43E-06	1.43E-06	3.07E-06	4.01E-06	
Sr-90	0.293	179	4.33E+05	0.233	0.267	0,314	0.315	
Y-90	0.293	179	4.33E+05	0.233	0.252	0,314	0.315	
Zr-93	1.29E-05	7.85E-03	19.0	6.88E-06	6.88E-06	1.51E-05	1.87E-05	
Nb-93m	9.43E-06	5.74E-03	13.9	5.22E-06	5.22E-06	1.10E-05	1.57E-05	
Tc-99	1.89E-04	0.115	280	1.19E-04	1.53E-04	2.26E-04	2.61E-04	
Ru-106	4.81E-09	2.93E-06	7.10E-03	2.02E-09	2.02E-09	5.44E-09	6.00E-09	
Cd-113m	6.63E-05	4.04E-02	97.9	3.02E-05	3.02E-05	7.94E-05	9.19E-05	
Sb-125	1.20E-04	7.32E-02	177	2.68E-05	2.68E-05	1.22E-04	1.23E-04	
Sn-126	3.96E-06	2.43E-03	5.88	2.18E-06	2.18E-06	4.64E-06	6.20E-06	
I-129	3.65E-07	2.22E-04	0.539	2.29E-07	2.95E-07	4.35E-07	5.03E-07	
Cs-134	1.44E-06	8.80E-04	2.13	1.01E-06	1.01E-06	1.58E-06	1.72E-06	
Ca-137	0.198	121	2.93E+05	0.184	0.189	0.205	0.211	
Be-137m	0.138	114	2.77E+05	0.130	0.130	0.194	0.200	
Sm-151	9.27E-03	5.65	1.37E+04	5.06E-03	5.06E-03	1.08E-02	1.44E-02	
Eu-152	4.23E-06	2.58E-03	6.24	2.74E-06	2.74E-06	4.33E-06	4.42E-06	
Eu-154	4.57E-04	0.278	674	1.56E-04	1.56E-04	5.65E-04	6.09E-04	
Eu-155	2.29E-04	0.139	338	1.40E-04	1.40E-04	2.35E-04	2.41E-04	
Ra-226	3.52E-10	2.15E-07	5.20E-04	1.59E-10	2.54E-10	4.51E-10	5.45E-10	
Rs-228	8.36E-08	5.09E-05	0.123	3.46E-08	5.86E-08	1.13E-07	1.44E-07	
Ac-227	1.75E-09	1.07E-06	2.58E-03	8.28E-10	1.18E-09	2.32E-09	2.87E-09	
Pa-231	3.24E-09	1.97E-06	4.78E-03	2.03E-09	2.03E-09	3.67E-09	6.56E-09	
Th-229	1.97E-09	1.20E-06	2.91E-03	8.97E-10	1.42E-09	2.61E-09	3.29E-09	
Th-232	5.59E-09	3.40E-06	8.25E-03	2.88E-09	4.20E-09	6.97E-09	8.30E-09	
U-232	4.44E-07	2.71E-04	0.656	2.48E-07	3.44E-07	5.61E-07	6.85E-07	
U-233	1.70E-06	1.04E-03	2.52	9.53E-07	1.32E-06	2.15E-06	2.62E-06	
U-234	1.51E-06	9.21E-04	2.23	1.39E-06	1.46E-06	1.55E-06	1.57E-06	
U-235	6.32E-08	3.85E-05	9.33E-02	5.81E-08	6.11E-08	6.47E-08	6.58E-08	
U-236	3.82E-08	2.328-05	5.63E-02	3.55E-08	3.71E-08	3.89E-08	3.95E-08	
U-238	1.55E-06	9.46E-04	2.29	1.44E-06	1.51E-06	1.59E-06	1.61E-00	
Np-237	7.15E-07	4.35E-04	1.05	4.85E-07	5.97E-07	8.33E-07	9.47E-01	
Pu-238	4.02E-06	2.45E-03	5.93	3.63E-06	3.82E-06	4.22E-06	4.40E-00	
Pu-239	2.40E-04	0.146	354	2.12E-04	2.26E-04	2.54E-04	2.67E-04	
Pu-240	3.50E-05	2.13E-02	51.6	3.10E-05	3.29E-05	3.70E-05	3.89E-0	
Pu-241	2.41E-04	0.147	356	2.18E-04	2.29E-04	2.53E-04	2.64E-04	
Pu-242	1.13E-09	6.91E-07	1.67E-03	1.02E-09	1.08E-09	1.19E-09	1.24E-0	
Am-241	4.33E-05	2.64E-02	63.9	3.05E-05	3.68E-05	4.99E-05	7.12E-0	
Am-243	1.42E-09	8.65E-07	2.10E-03	1.02E-09	1.21E-09	1.63E-09	1.84E-0	
Cm-242	1.34E-07	8.18E-05	0.198	7.31E-08	7.312-08	1.38E-07	1.42E-0	
Cm-243	9.88E-09	6.02E-06	1.46E-02 0.140	4.04E-09	4.04E-09	1.02E-08	1.05E-0	
Cm-244	9.48E-08	5.78E-05	U.140	3.47E-08	3.47E-08	1.15E-07	I.28E-0	
	1			-45 CI M	-67 CL M	+67 CI (M	+95 CI	
Trat	м		kar	or g/L)	or g/L)	or g/L)	(M or g/I	
Totals Pu	3.87E-03 (g/L)	<u> </u>	5.71	3.40E-03	3.63E-03	4.10E-03	4.33E-0	
I	3.070-02 (2/0)	2.63E+03						

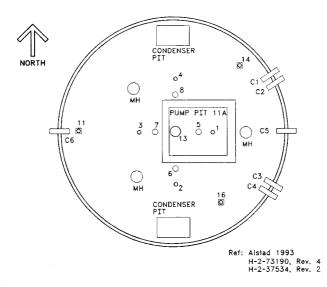
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

- 130 -

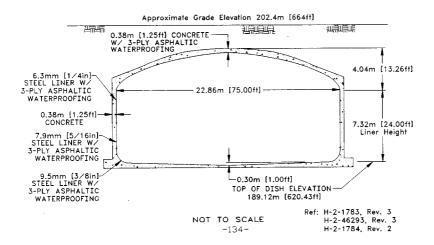
-331-

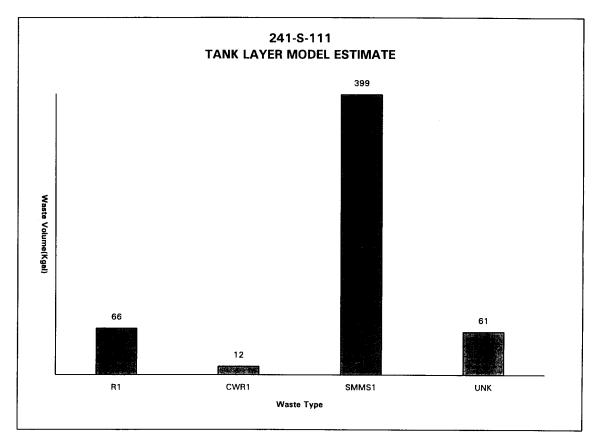

TANK H	ISTORY	TANK DESCRIPTION				
Entered Service	3rd qtr 1952	Diameter	75 ft			
Removed from Service	1976	Bottom Shape	Dish			
Inactive	1976	Nominal Capacity	758,000 gal			
Watch Lists	Hydrogen & Organics	Cascade Tank	to 241-S-112			
Integrity	Sound	Total Risers	12			
Assumed Leaker	umed Leaker -		WASTE VOLUME (HANLON 1996i)			
Interim Stabilization (IS)	_	Total Waste Volume	596,000 gai			
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX			
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	195,000 gal			
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids	134,000 gal			
Riser Number(s)	Size	Saltcake	447,000 gal			
11, 14	4 in	Sludge	139,000 gai			
6, 7, 8	12 in	Supernatant	10,000 gai			
TANK TEM	PERATURE	INTERIOR PHOTOGRAPHS				
Average Tank Temperature	83°F	Date	Aug 10, 1989			
Maximum Temperature	97°F	Montage Number	94041033-17CN			
Date	arch 9, 1991 - March 1, 1992	Photo Set Number	89081043			
Elevation from tank bottom	0.5 ft, 2.5 ft, 4.5 ft	WASTE SURFACE LEVEL				
Riser Number	4	Devices	Auto and Manual ENRAF			
Minimum Temperature	65.2° F	Max Level	204.255 in			
Date	April 18, 1992	Date	Dec. 12, 1995			
Elevation from tank bottom	30.50 ft	Min Level	202.5 in			
Riser Number	4	Date	Feb 11, 1991 - March 13, 1994*			

TANK 241-S-111 SUMMARY


-132-

• Numerous dates in this time span.


WHC-SD-WM-ER-352, Rev. 1



TANK RISER LOCATION

		Sing	le-Shell Tan	k 241-S-111			
		TLM Solids	Composite	Inventory Esti	mate*		
Physical			a nadi	n de de terre		a status (h.)	10.000
Properties		pad ada una	ana an a'	-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Waste	5.19E+05 (kg)	(78.0 kgal)					_
Heat Load	1.63 (kW)	(5.56E+03 BTU/hr)	-	1.18	1.44	1.75	1.8
Bulk Density	1.76 (g/cc)		_	1.55	1.57	2.06	2.1
Void Fraction	0.554			0.151	0.284	0.724	0.72
Water wt%	26.6			5.39	12.0	39.4	40.
TOC wt% C (wet	0	1	_	0	o	0	
		Received and the	0.002144			11111	
Chemical				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	ke	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	8.09	1.06E+05	5.49E+04	3.79	4.22	13.6	16.
Al3+	7.64	1.17E+05	6.08E+04	6.81	7.03	8.07	8.3
Fe3+ (total Fe)	0.883	2.80E+04	1.46E+04	0.867	0.874	0.891	0.89
Cr3+	5.27E-02	1.56E+03	809	6.30E-03	2.90E-02	0.442	0.89
Bi3+	0	0	0	0	0	0	
La3+	0	0	0	0	0	0	
Hg2+	6.28E-04	71.6	37.2	6.18E-04	6.24E-04	6.30E-04	6.32E-0
Zr (as ZrO(OH)2)	0	0	0	0	0	0	
Pb2+	1.81E-02	2.13E+03	1.11E+03	1.66E-02	1.74E-02	1.87E-02	1.94E-0
Ni2+	4.30E-02	1.44E+03	746	3.11E-02	3.78E-02	4.70E-02	4.636-0
Sr2+	0	0	0	0	0	0	
Mn4+	0	0	0	0	0	0	
Ca2+	0.205	4.66E+03	2.42E+03	0.142	0,173	0.237	0.26
K+	9.73E-03	216	112	1.32E-03	4.68E-03	1.31E-02	1.31E-0
OH-	28.1	2.71E+05	1.41E+05	24.7	25.7	29.8	31.
NO3-	4.56	1.61E+05	8.35E+04	0.139	0.139	11.5	15.3
NO2-	1.38	3.61E+04	1.88E+04	0.259	0.650	1.97	1.9
CO32-	0.205	6.98E+03	3.62E+03	0,142	0.173	0.237	0.26
PO43-	0	0	0	0	0	0	
SO42-	1.01E-02	551	286	2.30E-03	5.41E-03	1.32E-02	1.32E-0
Si (as SiO32-)	9.91E-03	158	82.2	3.87E-03	6.28E-03	1.94E-02	3.38E-0
F-	0	0	0	0.07.0-05	0.200-05	0	
CI-	4.48E-02	902	468	6.08E-03	2.15E-02	6.03E-02	0.13
C6H5O73-	0	0	0	0.002-03	2132-02	0.03E-02	.13
EDTA4-	0	0	0	0	0	0	
HEDTA3	0	0	0	0	0	0	
					v	·	
giycolate-		0	0	0	0	0	
acetate-	0	0	0	0	0	0	
oxalate2-	0		0	0	0	0	
DBP	0	0		0		0	
butanol		0		0	0	0	
	·····					V	
NH3	0 216	2.095+03	1.09E+03	5.55E-02	7.83E-02	0.229	0.24
Fe(CN)64-	0	0	1.072.03	3.332-02	/.835,402	0.229	0.24

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

		Sing	le-Shell Tan	k 241-S-111			
				entory Estim	ale .		
Physical	algebra (1890) a	Solon Streke de	ol 1 1 1 1 1 1 1	er Stan Hille		999 J.S	ana tanggar
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	3.01E+06 (kg)	(460 kgal)			_		
Heat Load	4.23 (kW)	(1.44E+04 BTU/hr)	_	3.99	4.12	4.33	4.43
Bulk Density*	1.73 (g/cc)		_	1.67	1.70	1.75	1.77
-							
Water wt%	26.4	_		23.9	25.0	27.8	29.5
TOC wt% C (wet	0.503			0.407	0.454	0.551	0.599
		A	0.00	84. L. M.	0.04.00		
Chemical				-95 CI	-67 Cl	+67 CI	+95 C1
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	16.9	2.25E+05	6.76E+05	15.6	16.2	17.5	18.0
A13+	2.23	3.48E+04	1.05E+05	2.00	2.11	2.36	2.31
Fe3+ (total Fe)	1.11E-02	357	1.07E+03	8.90E-03	9.95E-03	1.22E-02	1.32E-02
Cr3+	0.217	6.52E+03	1.96E+04	0.171	0.196	0.225	0.233
Bi3+	9.01E-04	109	328	8.21E-04	8.60E-04	9.42E-04	9.81E-04
La3+	1.61E-05	1.29	3.88	1.16E-05	1.38E-05	1.83E-05	2.05E-05
Hg2+	7.45E-06	0.865	2.60	7.03E-06	7.27E-06	7.54E-06	7.62E-06
Zr (as ZrO(OH)2)	1.71E-04	9.02	27.1	1.56E-04	1.61E-04	1.77E-04	1.85E-04
Pb2+	8.91E-04	107	321	7.64E-04	8.26E-04	9.56E-04	1.02E-03
Ni2+	6.83E-03	232	698	6.64E-03	6.73E-03	6.92E-03	7.00E-03
Sr2+	0	0	0	0	0	0	0
Mn4+	3.80E-03	121	363	2.76E-03	3.27E-03	4.32E-03	4.83E-03
Ca2+	3.50E-02	\$13	2.45E+03	3.16E-02	3.33E-02	3.68E-02	3.84E-02
K+	7.28E-02	1.65E+03	4.96E+03	6.65E-02	6.95E-02	7.63E-02	7.96E-02
OH-	13.6	1.34E+05	4.04E+05	12.2	12.9	14.4	14.3
NO3-	5.54	1.99E+05	5.98E+05	5.18	5.36	5.69	5.71
NO2-	3.16	8.43E+04	2.53E+05	2.72	2.93	3.39	3.61
CO32-	0.378	1.31E+04	3.95E+04	0.341	0.359	0.397	0.408
PO43-	7.39E-02	4.07E+03	1.22E+04	6.64E-02	6.91E-02	7.55E-02	7.70E-02
SO42-	0.229	1.27E+04	3.82E+04	0.172	0.199	0.259	0.286
Si (as SiO32-)	8.35E-02	1.36E+03	4.08E+03	6.87E-02	7.59E-02	9.10E-02	9.83E-02
F-	4.35E-02	479	1.44E+03	3.66E-02	3.95E-02	4.70E-02	4.97E-02
CI-	0.286	5.87E+03	1.77E+04	0.261	0.273	0.301	0.308
C6H5O73-	2.91E-02	3.19E+03	9.59E+03	2.70E-02	2.81E-02	3.02E-02	3.12E-02
EDTA4-	6.48E-03	1.08E+03	3.25E+03	2.42E-03	4.41E-03	8.57E-03	1.06E-02
HEDTA3-	1.15E-02	1.83E+03	5.50E+03	3.40E-03	7.36E-03	1.57E-02	1.98E-02
glycolate-	6.60E-02	2.87E+03	8.62E+03	3.90E-02	5.22E-02	7.99E-02	9.31E-02
acetate-	4.65E-03	159	477	3.81E-03	4.22E-03	5.07E-03	5.48E-03
oxalate2-	2.10E-05	1.07	3.22	1.86E-05	1.98E-05	2.23E-05	2.34E-05
DBP	1.89E-02	2.30E+03	6.92E+03	1.53E-02	1.71E-02	2.07E-02	2.25E-02
butanol	1.89E-02	812	2.44E+03	1.53E-02	1.71E-02	2.07E-02	2.25E-02
NH3	8.63E-02	850	2.55E+03	6.96E-02	7.62E-02	9.92E-02	0.114
Fe(CN)64-	0	0	0	0	0	0	0

*Density is calculated based on Na, OH-, and AlO2-.

†Water wt% derived from the difference of density and total dissolved species.

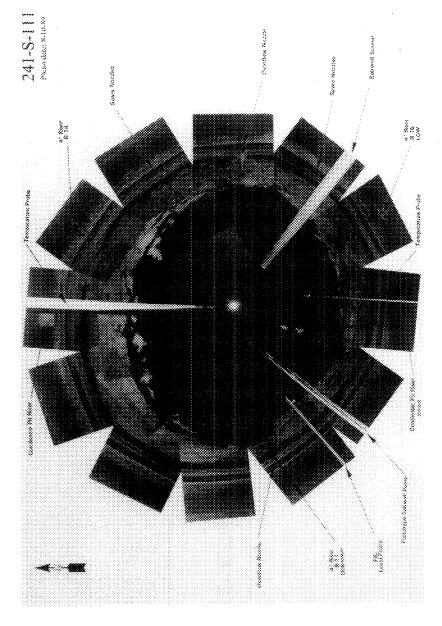
HNF-SD-WM-ER-352, Rev. 1

HDW	Model	Rev.	4

		Sin	gie-Shell Tar	1k 241-S-111			Model Rev.
			otal Inventory				
Physical					ant fand i	a a de la com	x
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	3.53E+06 (kg)	(538 kgal)					
Heat Load	5.85 (kW)	(2.00E+04 BTU/hr)		5.22	5.57	6.08	6.0
Bulk Density†	1.73 (g/cc)			1.65	1.68	1.79	1.7
Water wt%†	26.4			23.7	23.3	29.1	30.8
TOC wt% C (wet	0.429			0.347	0.387	0.470	0.511
Chemical Constituents	mole/],			-95 CI	-67 CI	+67 C1	+95 CI
Na+	15.6	2.07E+05	7.31E+05	(mole/L)	(mole/L)	(mole/L)	(mole/L)
A13+	3.01	4.69E+04	1.65E+05	13.9	14.6	16.8	16.5
Fe3+ (total Fe)	0.137	4.43E+03	1.65E+03	2.82	2.92	3.09	3.10
Cr3+	0.193	5.79E+03	2.04E+04	0.135	0.136	0.138	0.139
Bi3+	7.70E-04	93.0	328	0.167	0.181	0.231	0.276
43+	1.37E-05	1.10	3.88	7.02E-04	7.36E-04	8.05E-04	8.39E-04
Hg2+	9.73E-05	11.3	39.8	9.95E-06	1.18E-05	1.57E-05	1.75E-05
Zr (as ZrO(OH)2)	1.46E-04	7.69	27.1	9.60E-05	9.68E-05	9.77E-05	9.80E-05
262+	3.38E-03	405	1.43E+03		1.38E-04	1.51E-04	1.58E-04
Ni2+	1.216-02	410	1.44E+03	3.17E-03 1.03E-02	3.30E-03	3.45E-03	3.49E-03
šr2+	0	0	0		1.13E-02	1.27E-02	1.24E-02
dn4+	3.25E-03	103	363	0 2.36E-03	0 2.79E-03		0
Ca2+	5.96E-02	1.38E+03	4.87E+03	5.10E-03	5.59E-03	3.70E-03	4.13E-03
(+	6.37E-02	1.44E+03	5.07E+03	5.83E-02	6.08E-02	6.28E-02 6.66E-02	6.59E-02 6.94E-02
)H-	15.7	1.54E+05	5.45E+05	14.5	15.2	0.00E-02 16.3	6.94E-02 16.3
103-	5.40	1.93E+05	6.82E+05	4.54	4.71	6.34	6.64
102-	2.91	7.72E+04	2.72E+05	2.53	2.70	3.10	3.29
2032-	0.353	1.22E+04	4.31E+04	0.322	0.336	0.369	0.379
·O43-	6.32E-02	3.47E+03	1.22E+04	5.68E-02	5.90E-02	6.45E-02	6.58E-02
iO42-	0.197	1.09E+04	3.85E+04	0.148	0.171	0.223	0.38E-02
ii (as SiO32-)	7.28E-02	1.18E+03	4.16E+03	6.02E-02	6.64E-02	7.93E-02	8.55E-02
-	3.72E-02	409	1,44E+03	3.13E-02	3.38E-02	4.02E-02	4.25E-02
1-	0.251	5.14E+03	1.81E+04	0.230	0.240	0.261	0.270
6H5O73-	2.49E-02	2.72E+03	9.59E+03	2.31E-02	2.40E-02	2.58E-02	2.67E-02
DTA4-	5.54E-03	922	3.25E+03	2.07E-03	3.77E-03	7.33E-03	9.07E-03
EDTA3-	9.85E-03	1.56E+03	5.50E+03	2.90E-03	6.30E-03	1.34E-02	1.69E-02
lycolate-	5.64E-02	2.45E+03	8.62E+03				
cetate-	3.97E-03	135	477	3.33E-02	4.46E-02	6.83E-02	7.96E-02
xalate2-	1.80E-05	0.914	322	3.26E-03	3.61E-03	4.34E-03	4.69E-03
BP	1.62E-02	1.96E+03	6.92E+03	1.59E-05	1.69E-05	1.90E-05	2.00E-05
utanol	1.62E-02	692	2.44E+03	1.31E-02	1.46E-02	1.77E-02	1.92E-02
				1.512-02	1.405-02	1.77E-02	1.92E-02
нз	0.105	1.03E+03	3.64E+03	7.64E-02	8.24E-02		0.100
e(CN)64-	0	0	0	7.046-02	a.246-02 0	0.116	0.129

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

			de-Shell Tan				
DEstate		ILM Solids	Composite	Inventory Esti	mate*		
Physical Properties				-95 Cl	-67 C1	+67 C1	+95 C
Total TLM Waste	5.19E+05 (kg)	(78.0 kgal)				—	—
Heat Load	1.63 (kW)	(5.56E+03 BTU/hr)		1.18	1.44	1.75	1
Bulk Density	1.76 (g/cc) 0.554			1.55	1.57	2.06	2
Void Fraction				0.151	0.284	0.724	0.7
Water wt%	26.6			5.39	12.0	39.4	4
TOC wt% C (wet	<u> </u>			0	0	0	
Radiological Constituents	CIL	µCi/g	a	-95 CI (C/L)	-67 CI (CVL)	+67 CI (CVL)	+95 C (CVL)
H-3	2.49E-05	1.42E-02	7.35	2.74E-06	1.26E-05	3.49E-05	3.49E-
C-14	1.93E-06	1.10E-03	0.570	2.36E-07	9.13E-07	2.61E-06	2.61E-
Ni-59	1.26E-05	7.15E-03	3.71	9.08E-06	1.11E-05	1.37E-05	1.35E
Ni-63	1.17E-03	0.668	347	8.48E-04	1.03E-03	1.28E-03	1.26E
Co-60	7.63E-07	4.34E-04	0.225	9.37E-08	3.61E-07	1.03E-06	1.03E
Se-79	4.10E-07	2.33E-04	0.121	5.02E-08	1.94E-07	5.55E-07	6.06E-
Sr-90	0.786	447	2.32E+05	0.561	0.688	0.861	0.8
Y-90	0.786	447	2.32E+05	0.56)	0.688	0.861	0.8
Zr-93	1.94E-06	1.10E-03	0.572	2.37E-07	9.16E-07	2.62E-06	2.57E
Nb-93m	1.586-06	9.00E-04	0.467	1.94E-07	7.49E-07	2.14E-06	2.71E
Tc-99	1.35E-05	7.69E-03	3.99	1.65E-06	6.40E-06	1.83E-05	1.83E-
Ru-106	2.15E-12	1.23E-09	6.36E-07	2.84E-13	1.03E-12	2.91E-12	2.91E-
Cd-113m	5.97E-06	3.40E-03	1.76	7.31E-07	2.82E-06	8.08E-06	8.08E-
Sb-125	1.12E-06	6.38E-04	0.331	1.39E-07	5.32E-07	1.52E-06	1.52E-
Sn-126	6.31E-07	3.59E-04	0.186	7.70E-08	2.98E-07	8.53E-07	9.69E-
1-129	2.60E-08	1.48E-05	7.67E-03	3.18E-09	1.23E-08	3.52E-08	3.52E-
Cs-134	2.33E-06	1.32E-05	6.87E-03	6.34E-09	1.31E-08	3.01E-08	3.01E-
Ca-137	4.78E-02	27.2	1.41E+04	1.29E-02	2.68E-02	6.18E-02	6.18E-
Ba-137m	4.52E-02	25.7	1.33E+04	1.22E-02	2.54E-02	5.84E-02	5.84E-
Sm-151	1.46E-03	0.833	432	1.79E-04	6.92E-04	1.98E-03	2.23E-
Eu-152	5.95E-06	3.38E-03	1.76	5.82E-06	5.87E-06	6.00E-06	6.00E-
Eu-154	L.84E-05	1.05E-02	5.44	2.27E-06	8.73E-06	2.49E-05	2.49E-
Bu-155	2.81E-04	0.160	82.9	2.75E-04	2.77E-04	2.83E-04	2.83E-
Ra-226	9.15E-10	5.20E-07	2.70E-04	1.25E-10	5.12E-10	1.32E-09	1.70E-
Ra-228	7.88E-15	4.48E-12	2.33E-09	7.72E-15	7.78E-15	7.95E-15	7.95E-
Ac-227	4.03E-09	2.29E-06	1.19E-03	2.61E-10	1.69E-09	6.37E-09	8.61E-
Pa-231	6.13E-10	3.48E-07	1.81E-04	7.48E-11	2.90E-10	1.73E-09	1.42E
Th-229	1.50E-12	8.54E-10	4.43E-07	1.47E-12	1.48E-12	1.51E-12	1.51E-
Th-232	5.06E-16	2.88E-13	1.49E-10	6.34E-17	2.40E-16	6.84E-16	6.B4E-
U-232	1.04E-10	5.91E-08	3.07E-05	9.08E-11	9.85E-11	1.08E-10	1.11E
U-233	3.85E-12	2.19E-09	1.14E-06	3.37E-12	3.65E-12	3.99E-12	4.10E-
U-234	2.38E-06	1.35E-03	0.702	2.08E-06	2.25E-06	2.47E-06	2.53E-
U-235	1.01E-07	5.75E-05	2.98E-02	8.84E-08	9.58E-08	1.05E-07	1.08E-
U-236	5.17E-08	2.94E-05	1.53E-02	4.51E-08	4.90E-08	5.37E-08	5.51E-
U-238	2.32E-06	1.32E-03	0.685	2.03E-06	2.20E-06	2.41E-06	2.47E-
Np-237	8.79E-08	5.00E-05	2.59E-02	1.08E-08	4.16E-08	1.19E-07	1.19E-
Pu-238	9.46E-06	5.38E-03	2.79	7.88E-06	8.65E-06	1.03E-05	1.10E-
Pu-239	6.47E-04	0.368	191	5.34E-04	5.89E-04	7.04E-04	7.59E-
Pu-240	9.21E-05	5.23E-02	27.2	7.59E-05	8.38E-05	1.00E-04	1.08E-
Pu-241	5.49E-04	0.312	162	4.54E-04	5.01E-04	5.98E-04	6.44E-
Pu-242	2.45E-09	1.39E-06	7.22E-04	2.01E-09	2.22E-09	2.67E-09	2.88E-
Am-241	6.91E-06	3.93E-03	2.04	8.46E-07	3.27E-06	9.35E-06	1.21E-
Am-243	6.46E-11	3.67E-08	1.91E-05	7.90E-12	3.06E-11	8.74E-11	1.13E-
Cm-242	1.37E-07	7.78E-05	4.04E-02	1.34E-07	1.35E-07	1.38E-07	1.38E-
Cm-243	3.13E-09	1.78E-06	9.25E-04	3.07E-09	3.09E-09	3.16E-09	3.16E-
Cm-244	2.31E-09	1.31E-06	6.81E-04	2.82E-10	1.09E-09	3.12E-09	3.12E-
				-95 CI (M	AT CLON	LAT CLAK	105 0
				- and free			
Totala Pu	M 1.08E-02 (g/L)	#8/8	icg 3.19	or g/L) 8.93E-03	or g/L) 9.85E-03		(M or g/ 1.27E-

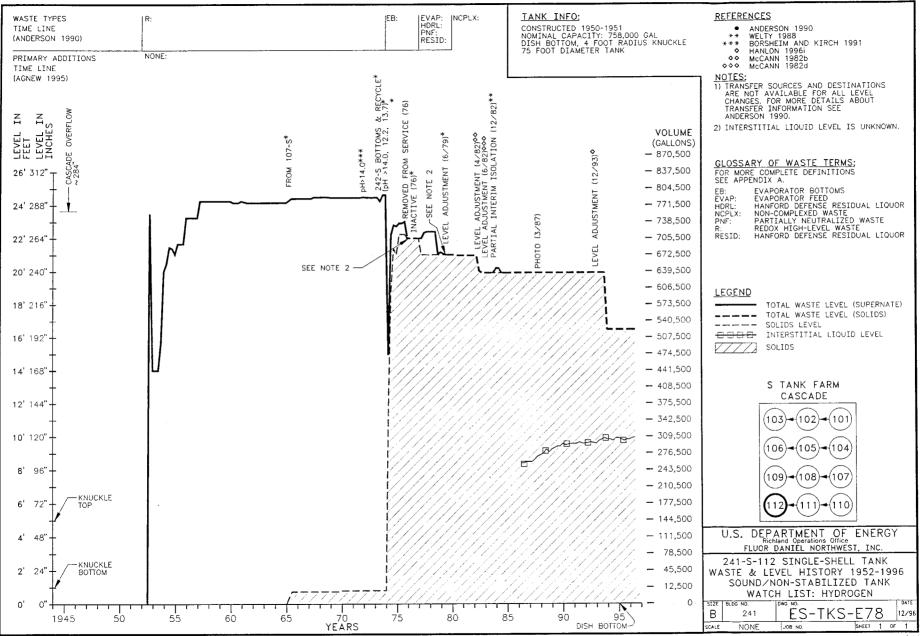

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

			ie-Shell Tanl				
		SMM C	omposite Inv	entory Estima	te		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM Wast	3.01E+06 (kg)	(460 ikgml)	-			_	_
Heat Load	4.23 (kW)	(1.44E+04 BTU/hr)		3.99	4.12	4.33	4.4
Bulk Density*	1.73 (g/cc)			1.67	1.70	1.75	1.7
Water wt%†	26.4	_		23.9	25.0	27.8	29
TOC wt% C (wet	0.503			0.407	0.454	0.551	0.59
Radiological Constituents	CIAL	pCi/g	Ci	-95 CI (CI/L)	-67 C1 (Ci/L)	+67 C1 (CI/L)	+95 CI (Ci/L)
H-3	3.15E-04	0.182	548	1.83E-04	1.83E-04	3.28E-04	3.25E-0
C-14	4.07E-05	2.36E-02	70.9	1.31E-05	1.31E-05	4.14E-05	4.15E-0
Ni-59	2.62E-06	L.51E-03	4.55	1.32E-06	1.32E-06	2.68E-06	2.74E-0
Ni-63	2.55E-04	0.148	444	1.27E-04	1.27E-04	2.62E-04	2.68E-0
Co-60	4.29E-05	2.48E-02	74.7	1.13E-05	1.13E-05	4.34E-05	4.39E-0
Se-79	4.12E-06	2.38E-03	7.17	2.35E-06	2.35E-06	4.75E-06	5.37E-0
Sr-90	0.131	76.0	2.28E+05	0.122	0.127	0.136	0.14
Y-90	0.131	76.0	2.28E+05	7.03E-02	7.03E-02	0.136	0.14
Zr-93	2.02E-05	1.17E-02	35.1	1.14E-05	1.14E-05	2.34E-05	2.64E-0
Nb-93m	1.48E-05	8.55E-03	25.7	8.60E-06	8.60E-06	1.70E-05	1.91E-0
Tc-99	2.91E-04	0.169	507	1.88E-04	2.39E-04	3.44E-04	3.95E-0
Ru-106	7.19E-09	4.17E-06	1.25E-02	3.11E-09	3.11E-09	8.11E-09	8.94E-0
Cd-113m	1.03E-04	5.98E-02	180	5.04E-05	5.04E-05	1.22E-04	1.4IE-0
Sb-125	1.79E-04	0.104	312	4.25E-05	4.25E-05	1.82E-04	1.84E-0
Sn-126	6.23E-06	3.61E-03	10.8	3.59E-06	3.59E-06	7.19E-06	8.10E-0
1-129	5.61E-07	3.25E-04	0.976	3.62E-07	4.59E-07	6.63E-07	7.62E-0
Cs-134	2.24E-06	1.30E-03	3.90	1.43E-06	1.43E-06	2.40E-06	2.56E-0
Cs-137	0.330	191	5.74E+05	0.306	0.316	0.343	0.35
Ba-137m	0.312	181	5.43E+05	0.204	0.204	0.324	0.33
Sm-151	1.45E-02	8.40	2.53E+04	8.34E-03	8.34E-03	1.67E-02	1.89E-0
Eu-152	3.96E-06	2.29E-03	6.89	1.77E-06	1.77E-06	4.07E-06	4.18E-0
Eu-154	6.96E-04	0.403	1.21E+03	2.55E-04	2.55E-04	8.55E-04	9.19E-0
Eu-155	2.29E-04	0.133	399	9.91E-05	9.91E-05	2.36E-04	2.43E-0
Ra-226	1.78E-10	1.03E-07	3.10E-04	1.23E-10	1.23E-10	2.00E-10	2.21E-1
Ra-228	8.85E-08	5.12E-05	0.154	3.78E-08	6.26E-08	1.19E-07	1.51E-0
Ac-227	1.09E-09	6.30E-07	1.89E-03	7.71E-10	7.71E-10	1.21E-09	1.31E-0
Ps-231	4.95E-09	2.87E-06	8.62E-03	3.19E-09	3.19E-09	5.59E-09	6.20E-0
Th-229	2.10E-09	1.22E-06	3.66E-03	9.88E-10	1.53E-09	2.76E-09	3.46E-0
Th-232	6.18E-09	3.58E-06	1.08E-02	3.37E-09	4.75E-09	7.61E-09	8.98E-0
U-232	4.99E-07	2.89E-04	0.869	2.96E-07	3.95E-07	6.19E-07	7.48E-0
U-233	1.91E-06	1.11E-03	3.33	1.14E-06	1.52E-06	2.38E-06	2.87E-0
U-234	9.31E-07	5.39E-04	1.62	8.73E-07	9.00E-07	9.65E-07	9.61E-0
U-235	3.82E-08	2.21E-05	6.65E-02	3.57E-08	3.69E-08	3.97E-08	3.94E-0
U-236	2.80E-08	1.62E-05	4.87E-02	2.71E-08	2.75E-08	2.85E-08	2.89E-0
U-238	9.94E-07	5.76E-04	1.73	9.35E-07	9.63E-07	1.03E-06	1.02E-0
Np-237	1.11E-06	6.45E-04	1.94	7.77E-07	9.41E-07	1.29E-06	1.45E-6
Pu-238	1.46E-06	8.46E-04	2.54	1.07E-06	1.26E-06	1.66E-06	1.86E-4
Pu-239	5.15E-05	2.98E-02	89.7	4.14E-05	4.64E-05	5.66E-05	6.16E-4
Pu-240	8.62E-06	4.99E-03	15.0	6.74E-06	7.66E-06	9.58E-06	1.05E-4
Pu-241	9.76E-05	5.65E-02	170	7.07E-05	8.39E-05	1.11E-04	1.25E-4
Pu-242	5.34E-10	3.09E-07	9.29E-04	3.73E-10	4.52E-10	6.16E-10	6.95E-
Am-241	6.73E-05	3.89E-02	117	4.85E-05	5.77E-05	7.68E-05	8.60E-(
Am-243	2.14E-09	1.24E-06	3.73E-03	1.55E-09	1.83E-09	2.45E-09	2.75E-0
Cm-242	1.42E-07	8.20E-05	0.247	5.20E-08	5.20E-08	1.46E-07	1.50E-C
Cm-243	1.29E-08	7.49E-06	2.25E-02	4.39E-09	4.39E-09	1.33E-08	1.37E-0
Cm-244	1.39E-07	8.05E-05	0.242	5.08E-08	5.08E-08	1.69E-07	1.88E-
				-95 CI (M	-67 CI (M	+67 CI (M	+95 C
Totals	м	# \$ /\$	by:	or g/L)	or g/L)	or g/L)	(M or g/
Pu	6.50E-04 (g/L)	T	1.13	4.59E-04	5.53E-04	7.48E-04	8.41E-4

*Density is calculated based on Ns, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

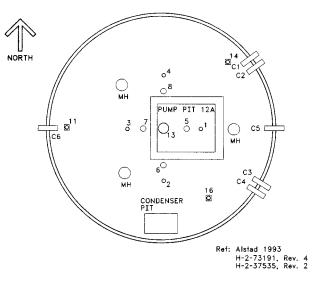
		Sin	de-Shell Tan	k 241-S-111			Aodel Rev.
		To	tal Inventory	Estimate*			
Physical							
Properties				-95 Cl	-67 CI	+67 CI	+95 CI
Total Waste	3.53E+06 (kg)	(538 kgal)					
Heat Load	5.85 (kW)	(2.00E+04 BTL/hr)		5.22	5.57	6.08	6.0
Bulk Density†	1.73 (g/cc)		-	1.65	1.68	1.79	1.5
Water wt%†	26.4			23.7	23.3	29.1	30
TOC wt% C (wet	0.429			0.347	0.387	0,470	0.51
122001000000000000000000000000000000000			33772249				
Radiological				-95 CI	-67 CI	+67 CI	+95 Cl
Constituents H-3	2.73E-04	pCi/g	Ci	(CVL)	(CVL)	(CVL)	(CVL)
		0.158	71.5	1.60E-04	1.60E-04	2.82E-04	2.82E-0
C-14 Ni-59	3.51E-05	2.03E-02	8.27	1.15E-05	1.15E-05	3.55E-05	3.57E-0
	4.06E-06	2.34E-03	8.27 791	2.95E-06	2.95E-06	4.23E-06	4.17E-0
Ni-63	3.88E-04	0.224	74,9	2.79E-04	2.79E-04	4.04E-04	3.99E-0
Co-60	3.68E-05	2.12E-02	7.29	9.77E-06	9.77E-06	3.72E-05	3.77E-0
Se-79	3.58E-06	2.07E-03	7.29 4.60E+05	2.07E-06	2.07E-06	4.12E-06	4.65E-0
Sr-90	0.226	131	4.60E+05	0.193	0.212	0.237	0.23
Y-90	0.226	131	4.60E+05 35.7	0.174	0.174	0.237	0.23
Zr-93	1.75E-05	1.01E-02	35.7	1.00E-05	1.00E-05	2.03E-05	2.29E-0
Nb-93m	1.29E-05	7.43E-03	26.2 511	7.58E-06	7.58E-06	1.48E-05	1.66E-0
Tc-99	2.51E-04	0.145	1.25E-02	1.63E-04	2.06E-04	2.96E-04	3.40E-0
Ru-106	6.15E-09	3.55E-06	1.258-02	2.66E-09	2.66E-09	6.93E-09	7.64E-0
Cd-113m	8.92E-05	5.15E-02	313	4.40E-05	4.40E-05	1.06E-04	1.21E-0
Sb-125	1.53E-04	8.86E-02	11.0	3.65E-05	3.65E-05	1.55E-04	1.57E-0
Sn-126	5.42E-06	3.13E-03	0.984	3.16E-06	3.16E-06	6.24E-06	7.02E-0
-129	4.83E-07	2.79E-04	3.91	3.13E-07	3.96E-07	5.71E-07	6.56E-0
Cs-134	1.92E-06	1.11E-03	5.88E+05	1.23E-06	1.23E-06	2.06E-06	2.19E-0
Cs-137	0.289	167	5.66E+05	0.269	0.277	0.299	0.31
Be-137m	0.273	158	3.50E+03 2.57E+04	0.181	0.181	0.281	0.28
Sm-151	1.26E-02	7.29	2.5/2+04	7.34E-03	7.34E-03	1.45E-02	1.64E-0
Eu-152	4.24E-06	2.45E-03	1.22E+03	2.38E-06	2.38E-06	4.34E-06	4.43E-0
Eu-154	5.98E-04	0.345	1.22E+03 482	2.21E-04	2.21E-04	7.34E-04	7.88E-0
Eu-155	2.37E-04	0.137	5.80E-04	1.25E-04	1.25E-04	2.42E-04	2.48E-0
Rs-226	2.85E-10	1.65E-07	0.154	2.07E-10	2.38E-10	3.25E-10	3.63E-1
Rs-228	7.57E-08	4.37E-05	3.08E-03	3.23E-08	5.35E-08	1.01E-07	1.29E-0
Ac-227	1.51E-09	8.75E-07	3.06E-03 8.81E-03	1.14E-09	1.24E-09	1.75E-09	1.97E-0
Pa-231	4.32E-09	2.50E-06	3.66E-03	2.82E-09	2.82E-09	4.87E-09	5.67E-0
Th-229	1.80E-09	1.04E-06	1.08E-02	8.45E-10	1.31E-09	2.36E-09	2.96E-0
Th-232	5.28E-09	3.05E-06	0.869	2.89E-09	4.06E-09	6.51E-09	7.68E-0
U-232	4.27E-07	2.46E-04	3.33	2.53E-07	3.38E-07	5.30E-07	6.39E-0
U-233 U-234	1.64E-06	9.45E-04	2.32	9.72E-07	1.30E-06	2.03E-06	2.45E-0
	1.14E-06	6.59E-04	9.64E-02	1.09E-06	1.12E-06	1.16E-06	1.17E-0
U-235	4.73E-08	2.73E-05	9.64E-02 6.40E-02	4.52E-08	4.63E-08	4.82E-08	4.84E-0
U-236	3.14E-08	1.82E-05	0.4UE-02 2.42	3.05E-08	3.10E-08	3.18E-08	3.22E-0
U-238	1.19E-06	6.85E-04	1.96	1.14E-06	1.16E-06	1.21E-06	1.21E-0
Np-237	9.64E-07 2.62E-06	5.57E-04	5.34	6.77E-07 2.28E-06	8.17E-07 2.45E-06	1.11E-06 2.79E-06	1.26E-0 2.96E-0
Pu-238		1.51E-03	281				
Pu-239	1.38E-04	7.96E-02	42.2	1.27E-04	1.32E-04	1.43E-04 2.15E-05	1.49E-0 2.23E-0
Pu-240	2.07E-05		332				
Pu-241	1.63E-04 8.11E-10	9.42E-02 4.68E-07	1.65E-03	1.40E-04 6.73E-10	1.51E-04 7.41E-10	1.75E-04 8.81E-10	1.86E-0 9.49E-1
Pu-242			1.002-03			8.81E-10 6.67E-05	
Am-241	5.85E-05	3.36E-02	3.75E-03	4.25E-05	5.03E-05	6.67E-05 2.11E-09	7.45E-0 2.36E-0
Am-243		1.06E-06	0.287				
Cm-242	1.41E-07	8.14E-05	2.34E-02	6.43E-08	6.43E-08 4.21E-09	1.45E-07 1.19E-08	1.48E-0
Cm-243 Cm-244	1.15E-08 1.19E-07	6.65E-06	0.243	4.21E-09 4.38E-08	4.21E-09 4.38E-06	1.19E-08 1.45E-07	1.22E-0 1.61E-0
CIII-244	1.198-07	6.88E-05	<u></u>	4.388-08	4.38E-06	1.432-407	1.01E-0
				-95 CI (M	ROM		+95 CI
Totals	м	nata	-				
l otals Pu	3M 2.12E-03 (g/L)	<u> #\$/2</u>	433	or g/L)	or g/L) 2.03E-03	or g/L) 2.22E-03	(M or g/l 2.31E-0
U U	1.35E-02		6.55E+03	1.94E-03	1.32E-03	1.38E-02	2.31E-0
۲			0.000	1.475-92	1.546-02	1.300-02	L JoE-L

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

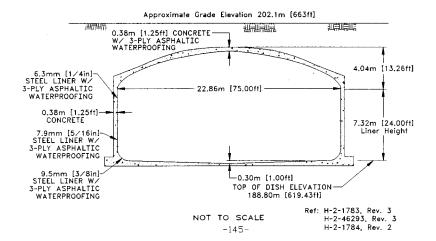


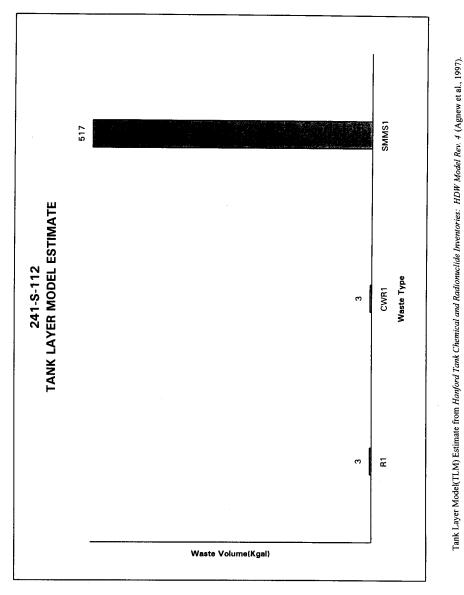
-142-

TANK 241-S-112 SUMMARY


TANK H	ISTORY	TANK DES	CRIPTION
Entered Service	3rd qtr 1952	Diameter	75 ft
Removed from Service	1976	Bottom Shape	Dish
Inactive	1976	Nominal Capacity	758,000 gal
Watch Lists	Hydrogen	Cascade Tank	none
Integrity	Sound	Total Risers	12
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)
Interim Stabilization (IS)	-	Total Waste Volume	523,000 gal
Partial Interim Isolation (PI)	Dec 1982	Waste Type	NCPLX
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	110,000 gal
	AILABLE RISERS	Pumpable Liquids	107,000 gal
Riser Number(s)	Size	Saltcake	518,000 gal
2, 11, 14, 16	4 in	Sludge	5,000 gal
6	12 in	Supernatant	0 gal
TANK TEM	PERATURE	INTERIOR PH	OTOGRAPHS
Average Tank Temperature	78°F	Date	March 24, 1987
Maximum Temperature	92°F	Montage Number	94041033-30CN
Date	April 18, 1991, March 26, 1992	Photo Set Number	8701812
Elevation from tank bottom	6.33 ft, 10.33 ft	WASTE SUR	FACE LEVEL
Riser Number	4	Devices	Manual ENRAF
Minimum Temperature	50°F	Max Level	197.8 in
Date	March 19, 1992	Date	April 11, 1995
Elevation from tank bottom	30.33 ft	Min Level	194.9 in
Riser Number	4	Date	July 22, 1991

WHC-SD-WM-ER-352, Rev. 1




-144-

241-S-112

TANK RISER LOCATION

HNF-SD-WM-ER-352, Rev. 1

HDW	Model	Rev. 4

						HUN N	lodel Rev. 4
			le-Shell Tani				
		TLM Solids	Composite I	nventory Esti	mate*		
Physical Properties				-95 CI	-67 Cl	+67 CI	+95 CI
Total TLM Waste	4.00E+04 (kg)	(6.00 kgal)					
Heat Load	7.43E-02 (kW)	(254 BTU/hr)	-	5.39E-02	6.58E-02	7.97E-02	8.22E-00
Bulk Density	1.76 (g/cc)			1.61	1.65	1.94	2.0
Void Fraction	0.593			0.355	0.434	0.694	0.69
Water wt%	25.8			12.3	16.7	35.7	39.8
TOC wt% C (wet	0			0	0	0	
Chemical Constituents	mole/L	ppen	kg	-95 CI (mole/L)	-67 CI (mole/L)	+67 CI (male/L)	+95 Cl (mole/L)
Na+	7,99	1.04E+05	4.17E+03	5.18	5.71	11.3	13.0
A13+	9.10	1.39E+05	5.57E+03	6.41	7.13	10.5	11.5
Fe3+ (total Fe)	0.589	1.87E+04	747	0.580	0.584	0.594	0.59
Cr3+	3.20E-02	942	37.7	4.56E-03	1.80E-02	0.262	0.53
Bi3+	0	0	0	0	0	0	
La3+	0	0	0	0	0	0	
Hg2+	2.04E-03	232	9.29	2.01E-03	2.03E-03	2.05E-03	2.05E-0
Zr (as ZrO(OH)2)	0	0	0	· 0	0	0	
Pb2+	5.88E-02	6.91E+03	277	5.40E-02	5.67E-02	6.09E-02	6.29E-0
Ni2+	2.59E-02	861	34.5	1.88E-02	2.28E-02	2.82E-02	2.78E-0
Sr2+	0	0	0	0	0	0	
Mn4+	0	0	0	0	0	0	
Ca2+	0.170	3.87E+03	155	0.133	0.151	0.189	0.20
К+	6.38E-03	143	5.67	1.41E-03	3.40E-03	8.38E-03	8.38E-0
OH-	33.7	3.24E+05	1.30E+04	22.8	25.8	39.3	43.
NO3-	2.93).03E+05	4.12E+03	0.316	0.316	7.02	9.2
NO2-	1.21	3.15E+04	1.26E+03	0.545	0.776	1.55	1.5
CO32-	0.170	5.79E+03	232	0.133	0.151	0.189	0.20
PO43-	0	0	0	0	0	0	
SO42-	9.40E-03	512	20.5	4.79E-03	6.63E-03	1.12E-02	1.12E-0
Si (as SiO32-)	1.41E-02	224	8.97	1.05E-02	1.19E-02	4.49E-02	9.16E-0
F-	0	0	0	0	0	0	
CI-	2.94E-02	590	23.6	6.49E-03	1.56E-02	3.85E-02	8.20E-0
C6H5O73-	0	0	0	0	0	0	
EDTA4-	0	0	0	0	0	0	
HEDTA3-	0	0	0	0	0	0	
glycolate-	0	0	0	0	0	0	
acetate-	0	0	0	0	0	0	
oxalate2-	0	0	D	0	0	. 0	
DBP	0	0	0	0	0	0	
butanol	0	0	0	0	0	0	
<u>├────</u> †							
NH3	0.128	1.23E+03	49.4	3.29E-02	4.64E-02	0.135	0.14
Fe(CN)64-	al	0	0	0		0	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

		Sin	gle-Shell Tan	k 241-S-112			
		SMM	Composite In	ventory Estim	ste		
Physical			1.02111	Ar e da e			
Properties				-95 CI	-67 CI	+67 CI	+95 CL
Total SMM Wast	3.29E+06 (kg)	(517 kgal)		_	••••	_	
Heat Load	4.21 (kW)	(1.44E+04 BTU/hr)		3.94	4.07	4.36	4.38
Bulk Density*	1.68 (g/cc)	-		1.61	1.65	1.71	1.72
Water wt%	29.3			27.1	28.0	30.8	
TOC wt% C (wet	0.328			0.293	0.310	0.346	33.3
100 100 (44				0.293	0.310	0.346	0.362
Chemical				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	ke	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	15.7	2.15E+05	7.06E+05	14.1	15.0	16.2	
Al3+	2.18	3.50E+04	1.15E+05	14.1			16.6
Fe3+ (total Fe)	9.77E-03	325	1.07E+03	8.02E-03	2.03 8.88E-03	2.34 1.07E-02	2.25
Cr3+	0.224	6.92E+03	2.28E+04	8.02E-03 0.166	8.86E-03 0.197	0.229	1.15E-02 0.234
Bi3+	8.16E-04	101	334				
La3+	5.41E-07	4.47E-02	0.147	7.35E-04 3.92E-07	7.75E-04	8.58E-04	8.98E-04
Hg2+	6.84E-06	0.816	2.68		4.65E-07	6.18E-07	6.91E-07
Zr (as ZrO(OH)2)	1.68E-04	9.14	30.1	6.41E-06	6.65E-06	6.93E-06	7.02E-06
Pb2+	8.08E-04	99.6	328	1.53E-04	1.59E-04	1.75E-04	1.83E-04
Ni2+	6.37E-03	222	731	6.78E-04	7.42E-04	8.75E-04	9.39E-04
Sr2+	0.572-05		,31	6.14E-03	6.25E-03	6.48E-03	6.59E-03
Mn4+	3.08E-03	101	331	0	٥	0	0
Ca2+	3.25E-02	775	2.55E+03	2.23E-03	2.65E-03	3.51E-03	3.92E-03
K+	6.59E-02	1.53E+03	2.33E+03	2.82E-02	3.03E-02	3.47E-02	3.68E-02
OH-	13.2	1.33E+05	4 398+05	5.89E-02	6.22E-02	6.99E-02	7.14E-02
NO3-	5.25	1.33E+05	4.39E+05 6.37E+05	11.4	12.3	14.2	13.7
NO2-	2.97	8.11E+04	2.67E+05	4.79	5.02	5.44	5.44
CO32-	0.291	1.04E+04	3.42E+04	2.59	2.77	3.15	3.33
PO43-	6.46E-02			0.262	0.275	0.311	0.314
SO42-	0.465-02	3.65E+03	1.20E+04	5.76E-02	6.00E-02	6.61E-02	6.76E-02
		1.10E+04	3.61E+04	0.146	0.168	0.217	0.239
Si (as SiO32-) F-	7.31E-02	1.22E+03	4.02E+03	6.10E-02	6.69E-02	7.92E-02	8.51E-02
	3.90E-02	441	1.45E+03	3.19E-02	3.49E-02	4.25E-02	4.53E-02
CI-	0.265	5.59E+03	1.84E+04	0.233	0.248	0.284	0.283
C6H5O73-	2.25E-02	2.53E+03	8.32E+03	2.08E-02	2.16E-02	2.34E-02	2.42E-02
EDTA4-	2.49E-03	427	1.40E+03	1.21E-03	1.83E-03	3.15E-03	3.80E-03
HEDTA3-	4.09E-03	667	2.19E+03	1.52E-03	2.78E-03	5.41E-03	6.70E-03
giycolate-	3.54E-02	1.58E+03	5.20E+03	2.05E-02	2.78E-02	4.31E-02	5.04E-02
acetate-	2.87E-03	101	332	2.33E-03	2.59E-03	3.15E-03	3.42E-03
oxalate2-	7.09E-07	3.71E-02	0.122	6.28E-07	6.68E-07	7.50E-07	7.90E-07
DBP	1.52E-02	1.90E+03	6.25E+03	1.22E-02	1.37E-02	1.67E-02	1.81E-02
butanol	1.52E-02	669	2.20E+03	1.22E-02	1.37E-02	1.67E-02	1.81E-02
	T						
NH3	7.89E-02	797	2.62E+03	6.53E-02	7.07E-02	8.93E-02	0.102
Fe(CN)64	0	0	0	0	0	0	0

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HNF-SD-WM-ER-352, Rev. 1

HDW Model Rev. 4

		Sine	de-Shell Tan	k 241-S-112			Model Rev.
			tal Inventory			-	
Physical		940442.00				-	an maran
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	3.33E+06 (kg)	(523 kgal)					()5 CI
Heat Load	4.28 (kW)	(1.46E+04 BTU/hr)		4.00	4.13	4.44	4.4
Bulk Density	1.68 (g/cc)			1.61	1.65	1.71	1.7
				1.01	1.05	1.11	1.7
Water wt%†	29.2			27.1	28.0	30.8	33.
TOC wt% C (wet	0.324			0.289	0.306	0.341	0.35
			70.111			v	
Chemical				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	mole/L	ppm	ke	(mole/L)	(mole/L)	(mole/L)	(mole/L)
Na+	15.6	2.13E+05	7.11E+05	14.0	14.9	16.1	16
Al3+	2.26	3.62E+04	1.21E+05	1.98	2.11	2.42	2.3
Fe3+ (total Fe)	1.64E-02	545	1.82E+03	1.47E-02	1.55E-02	1.73E-02	1.82E-0
Cr3+	0.222	6.85E+03	2.28E+04	0.170	0.198	0.228	0.23
Bi3+	8.07E-04	100	334	7.27E-04	7.66E-04	8.48E-04	8.88E-0-
l.a3+	5.35E-07	4.42E-02	0.147	3.88E-07	4.60E-07	6.11E-07	6.83E-0
Hg2+	3.01E-05	3.59	12.0	2.97E-05	3.00E-05	3.02E-05	3.03E-0
Zr (as ZrO(OH)2)	1.66E-04	9.03	30.1	1.52E-04	1.57E-04	1.73E-04	1.81E-0
Pb2+	1.47E-03	181	604	1.38E-03	1.43E-03	1.52E-03	1.57E-0
Ni2+	6.59E-03	230	766	6.39E-03	6.49E-03	6.69E-03	6.79E-0
Sr2+	0	0	0	0	0	0.072.05	0.172-0
Mn4+	3.04E-03	99.3	331	2.21E-03	2.62E-03	3.47E-03	3.87E-0
Ca2+	3.41E-02	812	2.71E+03	3.02E-02	3.21E-02	3.61E-02	3.80E-02
K+	6.52E-02	1.52E+03	5.05E+03	5.83E-02	6.16E-02	6.92E-02	7.06E-02
OH-	13.4	1.36E+05	4.52E+05	11.7	12.5	14.4	14.0
NO3-	5.23	1.93E+05	6.41E+05	4.85	5.03	5.38	5.36
NO2-	2.95	8.05E+04	2.68E+05	2.57	2.75	3.13	3.31
CO32-	0.289	1.03E+04	3.44E+04	0.261	0.274	0.309	0.312
PO43-	6.38E-02	3.60E+03	1.20E+04	5.69E-02	5.93E-02	6.54E-02	6.68E-07
SO42-	0.190	1.09E+04	3.62E+04	0.144	0,166	0.215	0.237
Si (as SiO32-)	7.24E-02	1.21E+03	4.03E+03	6.05E-02	6.63E-02	7.85E-02	8.43E-02
F-	3.86E-02	436	1.45E+03	3.16E-02	3.45E-02	4.20E-02	4.48E-02
CI-	0.263	5.53E+03	1.84E+04	0.231	0.246	0,281	0.280
C6H5O73-	2.22E-02	2.50E+03	8.32E+03	2.05E-02	2.14E-02	2.31E-02	2.39E-02
EDTA4-	2.46E-03	422	1.40E+03	1.19E-03	1.81E-03	3.12E-03	3.75E-03
HEDTA3-	4.04E-03	659	2.19E+03	1.50E-03	2.74E-03	5.35E-03	6.63E-03
						-	
ciycolate-	3.50E-02	1.56E+03	5.20E+03	2.02E-02	2.75E-02	4.26E-02	4.98E-02
icetate-	2.84E-03	99.5	332	2.30E-03	2.56E-03	3.11E-03	3.38E-03
oxalate2-	7.01E-07	3.67E-02	0.122	6.21E-07	6.60E-07	7.42E-07	7.8LE-07
DBP	1.50E-02	1.88E+03	6.25E+03	1.21E-02	1.35E-02	1.65E-02	1.79E-02
outunol	1.50E-02	661	2.20E+03	1.21E-02	1.35E-02	1.65E-02	1.79E-02
NH3	7.94E-02	802	2.67E+03	6.60E-02	7.13E-02	8.98E-02	0.102
Fe(CN)64-	0	0	0	0	0	0	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

				HDW P	Aodel Rev. 4
Sin	gle-Shell Tan	k 241-S-112			
Solid	s Composite	Inventory Esti	mate*		
		-95 CI	-67 CI	+67 CI	+95 CI
kgal)					_
U/hr)	-	5.39E-02	6.58E-02	7.97E-02	8.22E-02
	1	1.61	1.65	1.94	2.01
	_	0.355	0.434	0.694	0.697
	-	12.3	16.7	35.7	39.8
	-	0	0	0	0
	Ci	-95 CI (Ci/L)	-67 CI (CI/L)	+67 C1 (CVL)	+95 CI (CVL)
E-03	0.344	2.03E-06	7.86E-06	2.10E-05	2.10E-05
E-04	2.69E-02	1.84E-07	5.85E-07	1.59E-06	1.59E-06
E.03	0.169	\$ 385 04	6 660 04	0.4F.M	BALE A

Haddi WE/G				12.3	16.7	35.7	39.8
TOC wt% C (wet	0			0	0	0	c
Radiological Constituents	CVL	-611-		-95 CI	-67 CI	+67 C1	+95 CI
H-3	1.51E-05	µCVg	CI 0 344	(CI/L)	(Ci/L)	(CVL)	(CVL)
H-3 C-14		8.58E-03	2.69E-02	2.03E-06	7.86E-06	2.10E-05	2.10E-0
Ni-59	1.19E-06	6.73E-04	0.169	1.84E-07	5.85E-07	1.59E-06	1.59E-06
	7.45E-06	4.22E-03		5.38E-06	6.55E-06	8.14E-06	8.01E-06
Ni-63	6.95E-04	0.394	15.8 1.07E-02	5.02E-04	6.11E-04	7.60E-04	7.48E-04
Co-60	4.71E-07	2.67E-04	5.73E-03	7.47E-08	2.33E-07	6.30E-07	6.30E-07
Se-79	2.52E-07	1.43E-04	5.73E-03	3.94E-08	1.24E-07	3.38E-07	3.59E-00
Sr-90 Y-90	0.465	264	1.06E+04	0.332	0.407	0.510	0.511
Y-90 Zr-93	0.465	264	2.70E-02	0.332	0.407	0.510	0.516
	1.19E-06	6.75E-04	2.70E-02 2.21E-02	1.86E-07	5.87E-07	1.59E-06	1.52E-0
Nb-93m	9.73E-07	5.52E-04	0.189	1.52E-07	4.80E-07	1.30E-06	1.61E-0
Tc-99	8.32E-06	4.72E-03		1.30E-06	4.10E-06	1.11E-05	1.11E-05
Ru-106	1.39E-12	7.86E-10	3.15E-08	2.81E-13	7.22E-13	1.83E-12	1.83E-12
Cd-113m	3.67E-06	2.08E-03	B.34E-02	5.75E-07	1.81E-06	4.92E-06	4.92E-06
Sb-125	6.96E-07	3.94E-04	1.58E-02	1.15E-07	3.47E-07	9.29E-07	9.29E-07
Sn-126	3.87E-07	2.20E-04	8.80E-03	6.03E-08	1.91E-07	5.19E-07	5.74E-06
1-129	1.60E-08	9.06E-06	3.63E-04	2.49E-09	7.88E-09	2.14E-08	2.14E-08
Cs-134	1.44E-08	8.18E-06	3.27E-04	4.42E-09	8.42E-09	1.84E-08	1.84E-08
Cs-137	2.92E-02	16.6	663	8.58E-03	1.68E-02	3.75E-02	3.75E-02
Ba-137m	2.76E-02	15.7	627	8.12E-03	1.59E-02	3.54E-02	3.54E-02
Sm-151	9.00E-04	0.510	20.4	1.40E-04	4.44E-04	1.21E-03	1.32E-02
Eu-152	3.59E-06	2.03E-03	8.14E-02	3.51E-06	3.54E-06	3.62E-06	3.62E-06
Bu-154	1.14E-05	6.45E-03	0.258	1.81E-06	5.63E-06	1.52E-05	1.52E-05
Bu-155	1.69E-04	9.60E-02	3.85	1.66E-04	1.67E-04	1.71E-04	1.71E-04
Ra-226	5.42E-10	3.07E-07	1.23E-05	7.52E-11	3.04E-10	7.80E-10	1.01E-09
Re-228	4.78E-15	2.71E-12	1.09E-10	4.68E-15	4.72E-15	4.82E-15	4.82E-15
Ac-227	2.39E-09	1.35E-06	5.42E-05	1.60E-10	1.01E-09	3.77E-09	5.10E-09
Pa-231	3.76E-10	2.13E-07	8.54E-06	5.83E-11	1.85E-10	1.04E-09	8.41E-09
Th-229	9.05E-13	5.13E-10	2.05E-08	8.86E-13	8.93E-13	9.12E-13	9.12E-13
Ռ-232	3.16E-16	1.79E-13	7.17E-12	5.40E-17	1.58E-16	4.21E-16	4.21E-16
U-232	3.26E-10	1.85E-07	7.40E-06	2.83E-10	3.08E-10	3.38E-10	3.47E-10
U-233	1.21E-11	6.84E-09	2.74E-07	1.05E-11	1.14E-11	1.25E-11	1.29E-11
U-234	7.46E-06	4.23E-03	0.169	6.49E-06	7.06E-06	7.75E-06	7.95E-06
U-235	3.17E-07	1.80E-04	7.19E-03	2.76E-07	3.00E-07	3.29E-07	3.38E-07
U-236	1.64E-07	9.29E-05	3.72E-03	1.42E-07	1.55E-07	1.70E-07	1.75E-07
U-238	7.27E-06	4.12E-03	0.165	6.32E-06	6.87E-06	7.54E-06	7.75E-06
Np-237	5.42E-08	3.07E-05	1.23E-03	8.62E-09	2.68E-08	7.25E-08	7.25E-08
Pu-238	1.59E-05	8.99E-03	0.360	1.49E-05	1.54E-05	1.63E-05	1.68E-05
Pu-239	1.04E-03	0.590	23.6	9.73E-04	1.01E-03	1.07E-03	1.11E-03
Pu-240	1.47E-04	8.34E-02	334	1.38E-04	1.42E-04	1.52E-04	1.57E-04
Pu-241	8.91E-04	0.505	20.2	8.35E-04	8.63E-04	9.20E-04	9.47E-04
Pu-242	3.85E-09	2.18E-06	8.74E-05	3.59E-09	3.72E-09	3.98E-09	4.11E-09
Am-241	4.25E-06	2.41E-03	9.65E-02	6.67E-07	2.10E-06	5.69E-06	7.18E-05
Am-243	3.97E-11	2.25E-08	9.02E-07	6.19E-12	1.96E-11	5.32E-11	6.71E-10
Cm-242	8.23E-08	4.67E-05	1.87E-03	8.06E-08	8.13E-08	8.30E-08	8.30E-08
Cm-243	1.89E-09	1.07E-06	4.28E-05	1.85E-09	1.86E-09	1.90E-09	1.90E-09
Cm-244	1.42E-09	8.04E-07	3.22E-05	2.20E-10	6.98E-10	1.90E-09	1.90E-09
	80 - A. A.			-95 CI (M		H67 CI (M	
lotals	М		kg	or g/L)	or g/L)		M or g/L)
u^	1.74E-02 (g/L)	-	0.395	1.63E-02	1.68E-02	1.80E-02	1.85E-02
J	9.14E-02	1.23E+04	494	7.95E-02	8.65E-02	9.50E-02	9.75E-02

TLM Solids

(6.00 kgal)

(254 BTU/hr)

Physical Properties Total TLM Waste Heat Load Bulk Density Void Fraction

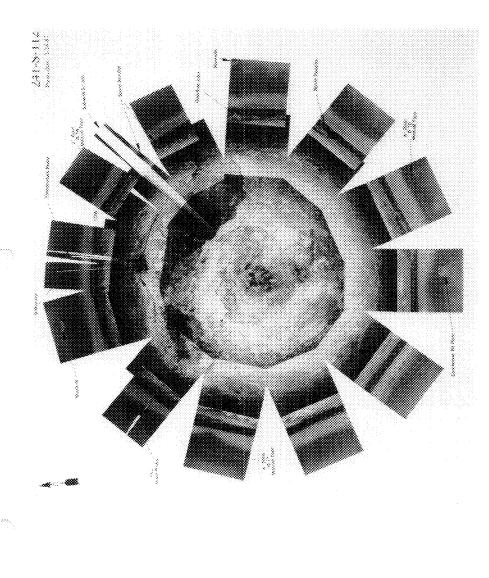
Water wt%

4.00E+04 (kg)

7.43E-02 (kW)

1.76 (g/cc) 0.593

25.8


"Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

			de-Shell Tanl		_				
		SMM Composite Inventory Estimate							
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Total SMM Wast	3.29E+06 (kg)	(517 kgal)							
Heat Load	4.21 (kW)	(1.44E+04 BTU/hr)		3.94	4.07	4.36	4.3		
Bulk Density*	1.68 (g/cc)		-	1.61	1.65	1.71	1.7		
Water wt%†	29.3			27.1	28.0	30.8	33.		
TOC wt% C (wet	0.328			0.293	0.310	0.346	036		
Radiological Constituents	CIL	#Ci/g	CI	-95 C1 (Ci/L)	-67 CI (Ci/L)	+67 CI (CVL)	+95 CI (CVL)		
H-3	2.67E-04	0.159	523	1.60E-04	1.60E-04	2.84E-04	2.77E-0		
C-14	3.41E-05	2.03E-02	66.8	1.17E-05	1.17E-05	3.49E-05	3.48E-0		
Ni-59	2.33E-06	1.38E-03	4.56	1.27E-06	1.27E-06	2.38E-06	2.43E-0		
Ni-63	2.26E-04	0.134	443	1.22E-04	1.22E-04	2.31E-04	2.37E-0		
Co-60	3.45E-05	2.05E-02	67.5	8.8IE-06	8.81E-06	3.50E-05	3.55E-0		
Se-79	3.56E-06	2.12E-03	6.96	2.13E-06	2.13E-06	4.08E-06	4.57E-0		
Sr-90	0.117	69.3	2.28E+05	0.110	0.113	0.120	0.12		
Y-90	0.117	69.3	2.28E+05	6.71E-02	6.71E-02	0.120	0.12		
Zr-93	1.74E-05	1.03E-02	34.0	1.02E-05	1.02E-05	2.00E-05	2.25E-0		
Nb-93m	1.29E-05	7.66E-03	25.2	7.87E-06	7.87E-06	1.47E-05	1.64E-0		
Tc-99	2.43E-04	0.145	476	1.60E-04	2.00E-04	2.86E-04	3.28E-0		
Ru-106	5.31E-09	3.16E-06	1.04E-02	1.99E-09	1.99E-09	6.05E-09	6.73E-0		
Cd-113m	8.50E-05	5.05E-02	166	4.20E-05	4.20E-05	1.01E-04	1.15E-0		
Sb-125	1.41E-04	8.41E-02	277	3.03E-05	3.03E-05	1.44E-04	1.46E-0		
Sn-126	5.39E-06	3.21E-03	10.5	3.24E-06	3.24E-06	6.17E-06	6.91E-0		
1-129	4.68E-07	2.79E-04	0.917	3.06E-07	3.86E-07	5.52E-07	6.32E-0		
Cs-134	1.59E-06	9.44E-04	3.11	1.06E-06	1.06E-06	1.71E-06	1.82E-0		
Cs-137	0.291	173	5.70E+05	0.262	0.276	0.308	0.31		
Ba-137m	0.276	164	5.39E+05	0.206	0.206	0.291	0.29		
Sm-151	1.26E-02	7.46	2.46E+04	7.54E-03	7.54E-03	1.44E-02	1.61E-0		
Eu-152	3.12E-06	1.85E-03	6.10	1.34E-06	1.34E-06	3.18E-06	3.24E-0		
Eu-154	5.54E-04	0.329	1.08E+03	1.96E-04	1.96E-04	6.84E-04	7.35E-0		
Eu-155	1.79E-04	0.106	350	7.34E-05	7.34E-05	1.84E-04	1.88E-0		
Ra-226	1.66E-10	9.88E-08	3.25E-04	1.128-10	1.22E-10	1.94E-10	2.21E-1		
Ra-228	6.02E-08	3.58E-05	0.118	2.35E-08	4.14E-08	8.19E-08	1.05E-0		
Ac-227	1.00E-09	5.96E-07	1.96E-03	6.87E-10	7.45E-10	1.16E-09	1.26E-0		
Pa-231	4.43E-09	2.63E-06	8.67E-03	3.00E-09	3.00E-09	4.95E-09	5.45E-0		
Th-229	1.43E-09	8.52E-07	2.80E-03 7.93E-03	6.29E-10	1.02E-09	1.91E-09	2.42E-0		
Th-232	4.05E-09	2.41E-06		2.03E-09	3.02E-09	5.09E-09	6.08E-0		
U-232	3.63E-07	2.16E-04	0.710	2.16E-07	2.88E-07	4.50E-07	5.42E-0		
U-233	1.39E-06	8.27E-04	1.70	B.29E-07	1.10E-06	1.72E-06	2.08E-0		
U-234	8.70E-07	5.18E-04	7.05E-02	7.96E-07	8.31E-07	9.13E-07	8.95E-0		
U-235 U-236	3.60E-08 2.47E-08	2.14E-05 1.47E-05	4.83E-02	3.28E-08 2.35E-08	3.43E-08 2.41E-08	3.78E-08 2.54E-08	3.70E-0 2.54E-0		
U-238	9.06E-07	5.39E-04	1.77	2.35E-08 8.31E-07	2.41E-08 8.66E-07	2.54E-08 9.50E-07	2.54E-0 9.29E-0		
Np-237	9.63E-07	5.72E-04	1.88	6.89E-07	8.23E-07	9.30E-07	9.29E-0		
Pu-238	1.19E-06	7.05E-04	2.32	8.64E-07	1.02E-06	1.35E-06	1.51E-0		
Pu-239	4.45E-05	2.65E-02	87.1	3.63E-05	4.03E-05	4.87E-05	5.27E-0		
Pu-240	7.28E-06	4.33E-02	14.3	5.75E-06	6.50E-06	8.06E-06	8.81E-0		
Pu-241	7.82E-05	4.65E-02	153	5.64E-05	6.71E-05	8.94E-05	1.00E-0		
Pu-241	4.23E-10	2.51E-07	8.27E-04	2.92E-10	3.56E-10	4.89E-10	5.54E-1		
Am-241	5.75E-05	3.42E-02	112	4.23E-05	4.97E-05	6.53E-05	7.27E-0		
Am-243	1.61E-09	9.55E-07	3.14E-03	1.13E-09	1.36E-09	1.86E-09	2.11E-0		
Cm-242	1.11E-07	6.59E-05	0.217	3.802-08	3.80E-08	1.13E-07	1.15E-0		
Cm-243	9.88E-09	5.87E-06	1.93E-02	2.93E-09	2.93E-09	1.01E-08	1.03E-0		
Cm-244	1.09E-07	6.46E-05	0.213	3.70E-08	3.70E-08	1.33E-07	1.48E-0		
				M (** A*	0000				
T-1-1-				-95 CI (M			+95 CI		
Totala Pu	M 5.82E-04 (g/L)	<u>##/g</u>	1.14	or g/L) 4.26E-04	or g/L) 5.03E-04	or g/L) 6.61E-04	(M or g/L 7.37E-0		
	5.82E-04 (g/L)								

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

				nk 241-S-112		_	
		Te	tal Inventor	y Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total Waste	3.33E+06 (kg)	(523 kgal)					T
Heat Load	4.28 (kW)	(1.46E+04 BTU/hr)		4.00	4.13	4.44	4.4
Bulk Density†	1.68 (g/oc)			1.61	1.65	1.71	1.7
Water wt%†	29.2			27.1	28.0	30.8	33
TOC wt% C (wet	0.324			0.289	0.306	0.341	0.35
Radiological Constituents	CVL	pCl/g	Ci	-95 CI (CVL)	-67 CI (CVL)	+67 CI (CVL)	+95 CI (CVL)
Н-3	2.64E-04	0.157	523	1.58E-04	1.58E-04	2.80E-04	2.74E-0
C-14	3.37E-05	2.00E-02	66.8	1.16E-05	1.16E-05	3.45E-05	3.44E-0
Ni-59	2.39E-06	1.42E-03	4.73	1.34E-06	1.34E-06	2.44E-06	2.49E-0
Ni-63	2.32E-04	0.138	458	1.28E-04	1.28E-04	2.37E-04	2.42E-0
Co-60	3.41E-05	2.03E-02	67.5	8.71E-06	8.71E-06	3.46E-05	3.51E-0
Se-79	3.52E-06	2.09E-03	6.97	2.10E-06	2.10E-06	4.03E-06	4.52E-0
Sr-90	0.121	71.7	2.39E+05	0.114	0.117	0.124	0.12
Y-90	0.121	71.7	2.39E+05	7.17E-02	7.17E-02	0.124	0.12
Zr-93	1.72E-05	1.02E-02	34.0	1.01E-05	1.01E-05	1.98E-05	2.22E-0
Nb-93m	1.28E-05	7.58E-03	25.2	7.80E-06	7.80E-06	1.45E-05	1.63E-0
Tc-99	2.4IE-04	0.143	476	1.58E-04	1.98E-04	2.83E-04	3.24E-0
Ru-106	5.25E-09	3.12E-06	1.04E-02	1.97E-09	1.97E-09	5.98E-09	6.65E-0
Cd-113m	8.40E-05	4.99E-02	166	4.15E-05	4.15E-05	9.94E-05	
Sb-125	1.40E-04	B.31E-02	277	3.00E-05	3.00E-05		1.14E-0
Sn-126	5.33E-06	3.17E-03	10.6	3.21E-06	3.00E-05	1.42E-04	1.44E-0
-129	4.63E-07	2.75E-04	0.917	3.03E-07		6.10E-06	6.84E-0
Cs-134	1.57E-06	9.33E-04	311		3.81E-07	5.46E-07	6.25E-0
Ca-134			5.71E+05	1.05E-06	1.05E-06	1.69E-06	1.80E-0
Ba-137m	0.288	171	5.40E+05	0.260	0.273	0.305	0.30
		162	2.46E+04	0.204	0.204	0.288	0.290
Sm-151	1.24E-02	7.38	2.405+04	7.46E-03	7.46E-03	1.42E-02	1.59E-02
Eu-152	3.12E-06	1.86E-03	0.18 1.08E+03	1.37E-06	1.37E-06	3.18E-06	3.24E-00
Eu-154	5.48E-04	0_326	1.062+03	1.94E-04	1.94E-04	6.76E-04	7.27E-04
Eu-155 Ra-226	1.79E-04	0.106	3.38E-04	7.45E-05	7.45E-05	1.83E-04	1.88E-04
	1.70E-10	1.01E-07		1.22E-10	1.27E-10	1.95E-10	2.19E-10
Ra-228	5.95E-08	3.53E-05	0.118	2.33E-08	4.10E-08	8.09E-08	1.04E-0
Ac-227	1.02E-09	6.05E-07	2.02E-03	7.38E-10	7.64E-10	1.16E-09	1.25E-05
Pa-231	4.38E-09	2.60E-06	8.67E-03	2.97E-09	2.97E-09	4.89E-09	5.39E-05
Th-229	1.42E-09	8.42E-07	2.80E-03	6.22E-10	1.01E-09	1.89E-09	2.39E-09
h-232	4.01E-09	2.38E-06	7.93E-03	2.00E-09	2.98E-09	5.03E-09	6.01E-09
J-232	3.58E-07	2.13E-04	0.710	2.13E-07	2.84E-07	4.44E-07	5.36E-07
J-233	1.38E-06	8.17E-04	2.72	8.20E-07	1.09E-06	1.70E-06	2.06E-06
J-234	9.46E-07	5.62E-04	1.87	8.73E-07	9.07E-07	9.88E-07	9.70E-07
J-235	3.92E-08	2.33E-05	7.76E-02	3.61E-08	3.76E-08	4.10E-08	4.02E-08
J-236	2.63E-08	1.56E-05	5.20E-02	2.51E-08	2.57E-08	2.69E-08	2.70E-08
J-238	9.79E-07	5.82E-04	1.94	9.04E-07	9.40E-07	1.02E-06	1.00E-06
vip-237	9.52E-07	5.66E-04	1.89	6.82E-07	8.14E-07	1.09E-06	1.23E-06
² u-238	1.35E-06	8.04E-04	2.68	1.04E-06	1.19E-06	1.52E-06	1.67E-00
Pu-239	5.59E-05	3.32E-02	m	4.78E-05	5.18E-05	6.00E-05	6.40E-0
Pu-240	8.89E-06	5.28E-03	17.6	7.37E-06	8.12E-06	9.66E-06	1.04E-05
u-24 1	8.76E-05	5.20E-02	173	6.59E-05	7.65E-05	9.86E-05	1.098-04
-u-242	4.62E-10	2.74E-07	9.14E-04	3.33E-10	3.96E-10	5.28E-10	5.91E-10
Am-241	5.69E-05	3.38E-02	113	4.18E-05	4.92E-05	6.46E-05	7.19E-05
Am-243	1.59E-09	9.44E-07	3.15E-03	1.12E-09	1.34E-09	1.84E-09	2.08E-09
-242	1.11E-07	6.57E-05	0.219	3.86E-08	3.86E-08	1.13E-07	1.15E-07
Cm-243	9.78E-09	5.81E-06	1.94E-02	2.92E-09	2.92E-09	1.00E-08	1.02E-08
Cm-244	1.07E-07	6.38E-05	0.213	3.66E-08	3.66E-08	1.31E-07	1.47E-07
1.55				-95 CI (M	-67 CI (M	+67 CI M	+95 CI
otals	м	P8/2	kg	or g/L)	or g/L)		(M or g/L
` u	7.75E-04 (g/L)	- 1	1.53	6.21E-04	6.96E-04	8.53E-04	9.28E-04
J	1.12E-02	1:59E+03	5.28E+03				

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

SX TANK FARM

3.0 241-SX Tank Farm

The SX Tank Farm is located in the 200 West Area west of Beliot Avenue and south of 13th Street. The farm contains fifteen 100 series, dish bottom design, single-shell tanks built in 1953 and 1954. The 100 series tanks are 75 feet in diameter with an operating capacity of 1,000,000 gallons. The tanks were designed to store boiling waste. The tanks contents were allowed to boil for one to five years at a fluid temperature up to 250°F. The fifteen tanks were constructed at different elevations with connecting overflow lines that allowed waste to cascade from tank. The tank farm has five cascades of three tanks each. For more information on the design, construction, and waste contents of the tanks, refer to the SX Tank Farm Supporting Document, HNF-SD-WM-ER-324, Rev. 1 (Brevick et al., 1997b).

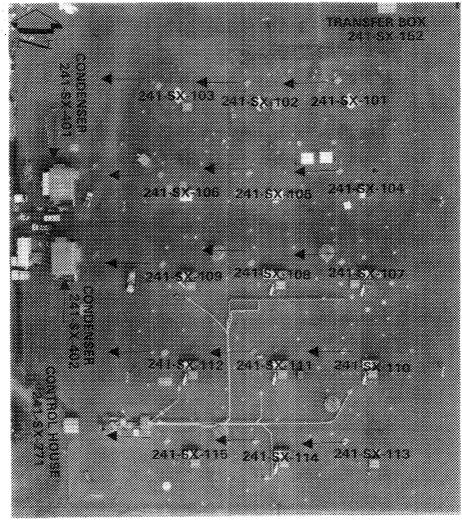
The SX Tank Farm tanks were the first tanks designed to store self-boiling wastes. Tanks 241-SX-101 through -106 started operations in 1954 and began receiving REDOX (S Plant) plant salt waste and first-cycle condensate. The other nine tanks (241-SX-107 through -115) were not released for use until late 1955 when they began receiving REDOX boiling high-level waste and salt waste (Leach and Stahl, 1993). The primary additions to the tanks were REDOX high-level waste (R1 and R2), REDOX cladding waste (CWR1), REDOX saltcake (RsltCk), partial neutralization feed (NIT), diatomaceous earth (DE), and water (WTR) (Agnew et al., 1995).

Concrete or diatomaceous earth has been added to various tanks in the SX farm. Tank 241-SX-107 contains 41 small bottles of neutralized waste from 100 F, each bottle contained less than 1 g (gram) of ²³⁹Pu (Plutonium 239). Tank 241-SX-110 contains 16 bottles totaling 204 g ²³⁹Pu and 6 g of enriched uranium (Leach and Stahl, 1993).

The following table presents a summary of the 241-SX Tank Farm. Refer to the glossary for waste type terminology.

TANK FARM	DESCRIPTION	WASTE VOLUME (HA	NLON 1996i)
Shell Type	Single	Total Waste Volume	4,419,000 gal
Number of Tanks	15	Waste Type	DSSF, DC, NCPLX
Construction Date	1953-1954	Drainable Interstitial Liquids	1,298,000 gal
INT	EGRITY	Pumpable Liquids	1,445,000 gal
Sound	101, 102, 103, 105	Saltcake	3,102,000 gal
	106	Sludge	1,254,000 gal
Assumed Leaker	104, 107, 108, 109	Supernatant	63,000 gal
	110, 111, 112,113	WATCH I	LISTS
	114, 115	Hydrogen	101, 102, 103, 104
TANK	VOLUMES		105, 106, 109
		Organics	103, 106
15@1,	000,000 gal	High Heat	none
		Ferrocyanide	none

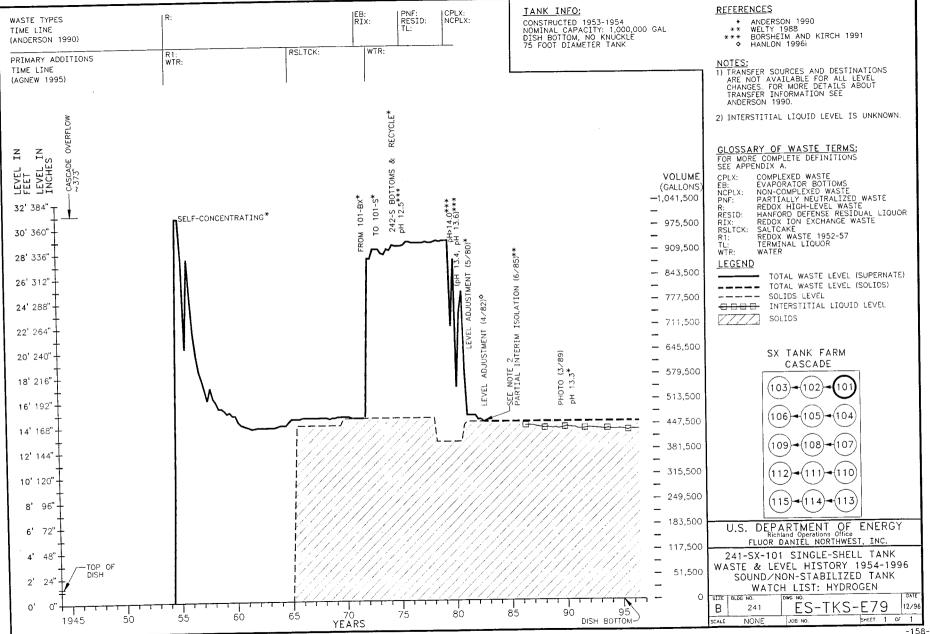
241-SX TANK FARM SUMMARY

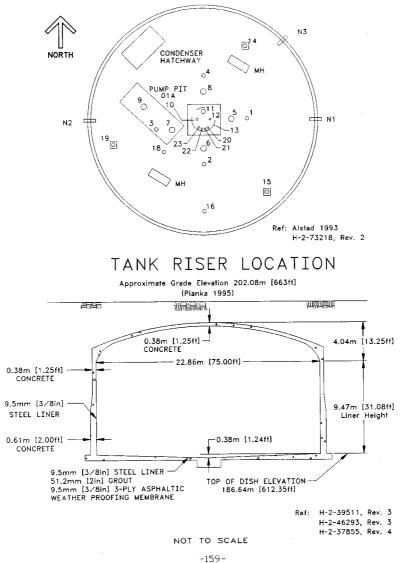

The historical characterization and waste inventory information for each tank is assembled into a set of tables, sketches, graphs, and interior tank montage. The set consists of the following for each tank in SX Tank Farm:

- Tank Summary table
- Waste and Level History sketch
- Riser Configuration sketch
- Tank Layer Model Estimate graph
- Total Inventory Estimate tables
- TLM Solids Composite Inventory Estimate tables
- SMM Composite Inventory Estimate tables
- Interior tank montage

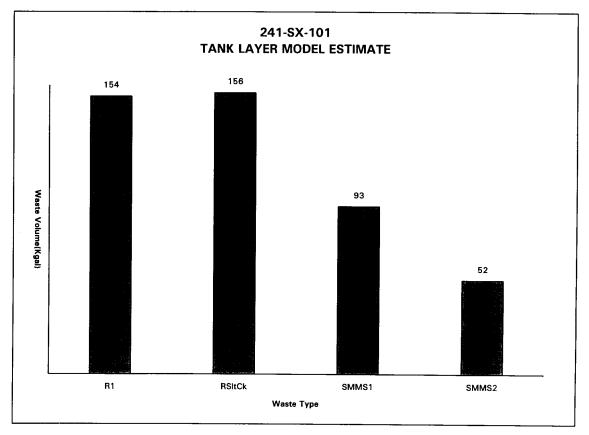
The supporting document for SX Tank Farm provides backup data and further explanation of the above tables, sketches, and graphs.

HNF-SD-WM-ER-352, Boy.)




TANK 241-SX-101 SUMMARY

TANK HIS	TORY	TANK DES	CRIPTION
Entered Service	2nd qtr 1954	Diameter	75 ft
Removed from Service	-	Bottom Shape	Dish
Inactive	-	Nominal Capacity	1,000,000 gal
Watch Lists	Hydrogen	Cascade Tank	to 241-SX-102
Integrity	Sound	Total Risers	22
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)
Interim Stabilization (IS)	-	Total Waste Volume	456,000 gal
Partial Interim Isolation (PI)	June 1985	Waste Type	DC
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	145,000 gal
TENTATIVELY AVAI	LABLE RISERS	Pumpable Liquids	174,000 gal
Riser Number(s)	Size	Saltcake	343,000 gal
10	3 in	Sludge	112,000 gal
18	4 in	Supernatant	1,000 gai
11	8 in	INTERIOR PH	OTOGRAPHS
19	12 in	Date	March 10, 1989
TANK TEMPE	RATURE	Montage Number	94041033-5CN
Average Tank Temperature	128°F	Photo Set Number	89031034
Maximum Temperature	154.2°F	WASTE SUR	FACE LEVEL
Date	Jan 4, 1988	Devices	Manual ENRAF
Elevation from tank bottom	0.21 ft	Max Level	171.8 in
Riser Number	15	Date	Aug 20 and 24, 1992
Minimum Temperature	90°F	Min Level	166.44 in
Date	April 24, 1995	Date	Oct 2, 1996
Elevation from tank bottom	30.25 ft		
Riser Number	15		


WHC-SD-WM-ER-352, Rev. 1

241-SX-101

Tank Layer Model(TLM) Estimate from Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997).

-160-

		Single	-Shell Tanl	< 241-SX-10	91		
		TLM Solids	Composite	Inventory E	stimate*		
Physical							
Properties				-95 CI	-67 CI	+67 C1	+95 C
Total TLM Wa	2.04E+06 (kg)	(310 kgal)				•	—
Heat Load	5.74 (kW)	(1.96E+04 BTU/hr)		4.70	5.31	6.02	6.
Bulk Density	1.73 (g/cc)			1.60	1.62	1.91	1.9
Void Fraction	0.661	-		0.425	0.503	0.761	0.7
Water wt%	30.8			16.6	21.2	38.4	40
TOC wt% C (w	2.61E-03		_	2.29E-03	2.37E-03	2.81E-03	3.04E-
Chemical				-95 CI	-67 CI	+67 CI	10.10.0.05
Constituents	mote/L	1,43E+05	kg 2.92E+05		(mole/L)		
Na+	10.8			8.29	8.54	14.1	15
Al3+	5.18	8.06E+04	1.64E+05	4.19	4.48	5.93	6.
Fe3+ (total Fe)	0.512	1.65E+04	3.36E+04	0.503	0.507	0.517	0.5
Cr3+	0,444	1.33E+04	2.71E+04	0,272	0.354	0.673	0.9
Bi3+	3.46E-06	0.417	0.848	2.92E-06	3.18E-06	3.81E-06	4.19E-
La3+	8.52E-12	6.82E-07	1.39E-06	7.46E-12	8.06E-12	9.42E-12	1.03E-
Hg2+	5.43E-07	6.28E-02	0.128	4.81E-07	5.11E-07	5.98E-07	6.56E-
Zr (as ZrO(OH)2	3.45E-07	1.82E-02	3.69E-02	3.17E-07	3.31E-07	3.62E-07	3.90E-
P52+	8.61E-05	10.3	20.9	4.61E-05	6.56E-05	1.07E-04	1.27E-
Ni2+	3.28E-02	1.11E+03	2.26E+03	2.58E-02	2.97E-02	3.51E-02	3.47E-
Sr2+	0	0	0	0	0	. 0	
Mn4+	2.52E-05	0.797	1.62	1.80E-05	2.15E-05	2.89E-05	3.25E-
Ca2+	0.148	3.42E+03	6.95E+03	0.111	0.129	0.167	0,1
K+	2.17E-02	489	995	1.67E-02	1.87E-02	2.37E-02	2.47E-
OH-	22.1	2.17E+05	4.41E+05	17.6	19.0	25.4	21
NO3-	5.27	1.88E+05	3.83E+05	2.67	2.67	9.33	11
NO2-	1.67	4.42E+04	8.99E+04	1.01	1.24	2.01	2.
CO32-	0,150	5.20E+03	1.06E+04	0.113	0.132	0.169	0.1
PO43-	2.24E-04	12.3	24.9	2.08E-04	2.17E-04	2.33E-04	2.53E-
SO42-	2.55E-02	1.41E+03	2.88E+03	2.09E-02	2.28E-02	2.74E-02	2.92E-
Si (au SiO32-)	6.94E-02	1.12E+03	2.29E+03	4.54E-02	6.03E-02	7.86E-02	8.74E-
F-	1.78E-04	1.95	3.98	1.52E-04	1.68E-04	1.96E-04	2.11E-
CI-	9.28E-02	1.90E+03	3.86E+03	6.18E-02	7.69E-02	0.102	0.1
C6H5O73-	1.84E-04	20.1	40.9	1.78E-04	1.81E-04	1.92E-04	2.09E-
EDTA4-	7.18E-06	1.19	2.43	5.05E-06	6.21E-06	8.45E-06	9.72E-
HEDTA3-	5.96E-06	0.942	1.92	1.91E-06	4.10E-06	7.96E-06	9,90E-
							1
glycolate-	2.60E-04	11.3	22.9	1.41E-04	2.06E-04	3.23E-04	3.84E
acetate-	2.70E-05	0.919	1.87	2.61E-05	2.66E-05	2.87E-05	3.07E
oxalate2-	1.12E-11	5.66E-07	1.15E-06	9.89E-12	1.05E-11	1.23E-11	1,35E
DBP	1.63E-04	19.8	40.3	1.53E-04	1.59E-04	1.77E-04	1.91E
butanol	1.63E-04	6.99	14.2		1.59E-04	1.77E-04	1.91E
			· · · · · ·		1		1
NH3	0,145	1.42E+03	2.89E+03	5.07E-02	6.41E-02	0,152	0,1
Fe(CN)64-	0	0	0				

HDW Model Rev. 4

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

++9(ND)	0	0	0	0	0	0	0
EH	\$0-3E0.0	265	181	3.36E-02	3 65E-02	4 66E-02	20-32E.2
locuti	£0~306'B	015	596	7.30E-03	£0-360'\$	6° 10E-03	20-320-1
48	£0-306.8	E0+351	E0+3E0.1	7.30E-03	£0-360.#	£0-307.6	20-350.1
-Sotala:	50-3L1.2	L#1	\$0'l	1.926-05	2.04E-05	2.29E-05	5"45E-02
otato-	50-3198'Z	161	1 16	2.34E-03	2.60E-03	3, 13E-03	3 36E O3
Acolate-	\$0-301 ¥	£0+34£2	£0+30L'1	2.68E-02	3:316.02	4.82E-02	20-922.2
-€¥£03	20-362°1	2.72E+03	1.95E+03	E0-32E.E	1.98E-03	1.78E-02	20-352 Z
-+VL0	E0-341 9	E0+3E5 1	£0+360'1	2.115-03	4'44E-03	6 33E-03	20-371.1
-105H9	1 32E-02	£0+9£6 I	E0+38E'I	1.215-02	20-312.1	1.376-02	1 43E-02
	611'0	3 25E+03	5.33E+03	801'0	Z[1'0	0.124	\$21'0
		0++	SIE	20-315'Z	Z0-3ZL'Z	3 54E-05	3'43E-03
(20-300 E			3 00E-02	3'41E-05	20-310 P	4.39E-02
(-ZEOIS =)	3,745-02	218	185	20-366 8	201.0	121.0	0110
-240	\$11.0	EO+BES'8	6,10E+03	3'91E-03	3 82E-02	20-30E.A	4 40E-02
-690	1 20E-02	3.08E+03	2.20E+03	981'0	161'0	912'0	612'0
035-	202.0	£0+36£'6	£0+327.03	10.1	011	161	0100
-70	12.1	#0+362"#	3.07E+04	222	EE.S	107	9972
-50	01-2	\$0+351'I	8.23E+04	857	11.1	07.5	LZ'S
н-	86'>	10+E15'9	40+389'b		3.00E-02	20-306-62	20-35+'E
+	3.15E-02	256	189	2.87E-02	20-300 1	20-302 1	20-394-1
+7+	1 62E-02	205	651	1 46E-02			
++94	1.7965.03	1'92	5.45	1.34E-03	1.56E-03	2.03E-03	2,256-03
+2+	0	0	0	0	0	0	0
+71	3,10E-03	01	001	2.97E-03	3.03E-03	3,136-03	£0-3171.£
+74	4.70E-04	T'SL	8'65	3.84E-04	4.26E-04	\$.14E-04	\$"26E-04
Z(HO)OJZ m) J	1.16E-04	91'8	18.5	1.06E-04	1.095-04	1.20E-04	1.26E-04
+78	4'52E-00	659'0	1200	3.96E-06	4112E-06	4'31E-00	90-94E-1
+8	1.66E-05	841	133	1.206-05	1 45E-02	1 86E-02	2 12E-05
+£!	+0-3Z1'9	8'86	L'0L	10-395 S	\$'BHE-04	PO-319'9	6.68E-04
+£1	7.46E-02	3.00E+03	5 I4E+03	20-351 9	20-398.9	7.69E-02	1 61E-03
(a9 lator) +6a	£0-361 \$	524	091	4 24E-03	4"11E-03	50-376.03	6.14E-03
+6[128.0	10+974'I	1'53E+04	£92'0	E62.0	198.0	198'0
+1	68'9	1"33E+02	HO+394 8	28.9	19.9	¥172	15.1
Chemical Chemical	Jelon	wdd	\$ 7	(Tolen)	(J) 78- 19 78- 19 78-	(mole/L) +67 CI	(Tolog) (Tolog) (Tolog)
M) 2 %14 20.	45+0			482'0	09£'0	£15'0	485'0
Vater w1%	9'65			L'LS	9 85	8.09	0'29
() million and	(an fD) (an)			42.1	82.1	06.1	18.1
ulk Density*	(xx) 195.0	(1.94E+03 BTU/hr)		PES'0	055'0	P85'0	009.0
leat Load	(8) 50+39112	(189 9+1)					
W MMS PRO	1000 301 21 2	4-1980	L.,	13.66	10 49-	ID 49+	17 64
hysical roperties					99. AB	1J 677	
		O WWS	ni sizoqmo	ventory Eati	nate		
		18m2	usi listic-t	1-XS-1+Z	10		

Water wt% derived from the difference of density and total dissolved species.

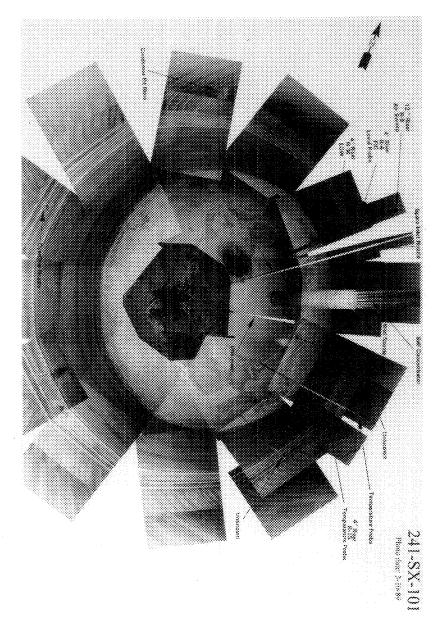
		Sing	e-Sheli Tan	k 241-SY.1	01		Iodel Rev.		
	Single-Shell Tank 241-SX-101 Total Inventory Estimate*								
Physical			au mventor	y roumate.					
Properties				-95 (1	-67 CI	-67 (7)	+95 CI		
Total Waste	2.75E+06 (kg)	(456 kgal)			-07 CI	70/ 01	775 (1		
Heat Load	6.30 (kW)	(2.15E+04 BTU/hr)		5.25	5,86				
Bulk Density†	1.59 (g/cc)	_(2.152.104 B10/m)		3.23	1.52	6.60	6.71		
				1.30	1.52	1.71	1.76		
Water wt%†	38.3	_		26.9	30.4	44.3	46.2		
TOC wt% C (w	0.115	_		7.65E-02	9.55E-02	0.136	0.155		
Chemical Constituents	mole/L	ppm	ky	-95 CI	-67 CI		+95 CI		
Na+	9.56	1.38E+05	3.796+05			<u> </u>			
Al3+	3.78	6.41E+04	1.76E+05	7.73	7.96	11.8	12.9		
Fe3+ (total Fe)	0,350	1.23E+04	3.37E+04	3.11 0.343	3.31	4.30	4.82		
Cr3+	0.326	1.06E+04	2.93E+04	0.343	0.347	0.353	0.356		
Bi3+	1.98E-04	26.0	71.6	0.209 1.80E-04	0.265 1.89E-04	0.479	0.658		
La3+	5.30E-06	0.462	1.27	1.80E-04 3.84E-06		2.08E-04	2.16E-04		
Hg2+	1.73E-06	0.218	0,599		4.55E-06	6.05E-06	6.77E-06		
Zr (as ZrO(OH)2	3.73E-05	2.14	5.87	1.64E-06 3.40E-05	1.69E-06	1.77E-06	1.81E-06		
Pb2+	2.09E-04	27.2	74.8		3.52E-05	3.87E-05	4 05E-05		
Ni2+	2.33E-02	858	2.36E+03	1.79E-04	1.94E-04	2.25E-04	2.40E-04		
Sr2+	0	0	2.306.00	1.85E-02	2.12E-02	2.49E-02	2.46E-02		
Mn4+	5.91E-04	20.4	56.1	0 4.46E-04	0	0	0		
Ca2+	0.106	2.66E+03	7.31E+03	4.46E-04 8.09E-02	5.17E-04	6.66E-04	7.37E-04		
K+	2 48E-02	609	1.68E+03	8.09E-02 2.15E-02	9.31E-02 2.31E-02	0.138	0.131		
DH-	16.6	1.77E+05	4.88E+05	2.156-02		2.62E-02	2.72E-02		
103-	4.35	1.69E+05	4.668+05	2.58	14.5 2.59	18.8	21.0		
NO2-	1.52	4 38E+04	1218+05	4.36	1.23	7.10	8.58		
2032-	0.167	6.29E+03	1.73E+04	0.142	0.154	1.76	1.76		
2043-	1.36E-02	810	2 236+03	1.17E-02	1.24E-02	0.180	0.192		
6042-	5.42E-02	3.26E+03	8.98E+03	4.61E-02	5.00E-02	1.39E-02 5.85E-02	1.42E-02		
Si (as SiO32-)	5.92E-02	1.04E+03	2.87E+03	4.33E-02	5.30E-02	6.54E-02	6.23E-02		
	9.72E-03	116	319	8,16E-03	5.30E-02 8.82E-03	6.54E-02	7.14E-02		
3-	0.101	2 25E+03	6.18E+03	7.78E-02	8.92E-03	0.107			
C6H5O73-	4.35E-03	316	1.42E+03	4.01E-02	4.18E-03	4.53E-03	0.136 4.69E-03		
DTA4-	2.21E-03	399	1.10E+03	6.80E-04	1.42E-03	2.99E-03	4.69E-03 3.76E-03		
EDTA3-	4.12E-03	709	1.95E+03	0.80E-04	2.56E-03	2.99E-03	3.76E-03 7.22E-03		
					2.502-05	J.09E-03	7.228-03		
lycolate-	1.33E-02	626	1.72E+03	8.75E-03	1.10E-02	1.56E-02	1.78E-02		
cetate-	9.36E-04	34.7	95.3	7.69E-04	8.51E-04	1.02E-03	1.10E-03		
xalste2-	6.94E-06	0.384	1.05	6.15E-06	6.54E-06	7.35E-06	7.74E-06		
DBP	2.96E-03	391	1.07E+03	2.45E-03	2 70E-03	3.22E-01	3.46E-03		
utanoi	2.96E-03	138	379	2.45E-03	2.70E-03	3.22E-01	3.46E-03		
1									
(H3	0.112	1.19E+03	3.28E+03	4.70E-02	5 64E-02	0.117	0.121		
6(CN)64-	0	0	0	0	0	0	0.121		

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

HD	WM	odel	Rev.	4

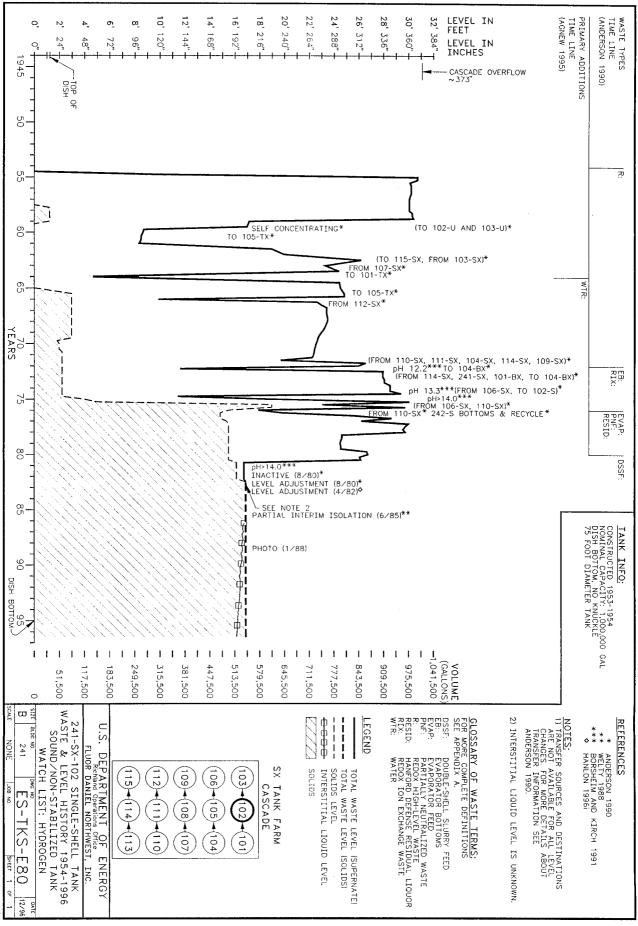
		Single	-Shell Tani	241-SX-10	1		
		TLM Solids					
Physical	4	. 2.11 201143	- simposite				
Properties				-95 CI	-67 CI	+67 C1	+95 C
Total TLM Wa	2.04E+06 (kg)	(310 kgal)					
Heat Load	5.74 (kW)	(1.96E+04 BTU/hr)		4.70	5.31	6.02	6.1
Bulk Density	1.73 (g/cc)			1.60	1.62	1.91	1.9
Void Fraction	0.661			0.425	0.503	0.761	0.76
Water wt%	30.8			16.6	21.2	38.4	40
TOC wt% C (w	2.61E-03			2.29E-03	2.37E-03	2.81E-03	3.04E-0
Radiological				-95 CI	-67 CI	+67 CI	+95 C
Constituents	CIVL	µCi/g	CI	(CVL)	(CI/L)	(CVL)	(CVL)
н-3	1.27E-04	7.31E-02	149	1.45E-05	1.45E-05	1.33E-04	1.43E-0
C-14	6.88E-06	3.97E-03	8.07	1.12E-06	1.12E-06	7.28E-06	7.64E-0
Ni-59	1.08E-05	6.23E-03	12.7	7.38E-06	7.38E-06	1.15E-05	1.14E-0
Ni-63	1.02E-03	0.589	1.20E+03	6.89E-04	6.89E-04	1.09E-03	1.07E-0
Co-60	5.62E-06	3.24E-03	6.60	4.44E-07	4.44E-07	5.85E-06	6.32E-0
Se-79	3.74E-06	2.15E-03	4,38	2.39E-07	2.39E-07	3.82E-06	7.05E-0
Sr-90	0.593	342	6.96E+05	0.461	0.536	0.638	0.64
Y-90	0.594	342	6.96E+05	0.461	0.461	0.638	0.64
Zr-93	1.77E-05	1.02E-02	20.7	1.13E-06	1.13E-06	1.81E-05	3.16E-0
Nb-93m	1.44E-05	8.28E-03	16.8	9.21E-07	9.21E-07	1.47E-05	2.94E-0
Tc-99	5.26E-05	3.03E-02	61.7	4.56E-05	4.84E-05	5.60E-05	5.98E-0
Ru-106	1.20E-09	6.91E-07	1.4(E-03	1.24E-12	1.24E-12	1.25E-09	1.36E-0
Cd-113m	2.68E-05	1.54E-02	31.4	3.47E-06	3.47E-06	5.52E-05	5.35E-0
Sb-125	1.92E-05	1.10E-02	22.5	6.52E-07	6.52E-07	2.00E-05	2.17E-0
Sn-126	5.73E-06	3.31E-03	6 73	3.67E-07	8.52E-07	5.86E-06	2.1/E-0
1-129			0.117				
	1.00E-07	5.77E-05	1.37	8.66E-08	9.20E-08	1.06E-07	1.14E-0
Ca-134	1.17E-06	6.75E-04	2.24E+05	1.35E-08	1.35E-08	1.22E-06	1.31E-0
Cs-137	0.191	110	2.12E+05	0.170	0.179	0.203	0.21
Ba-137m	0.180	104	2.12E+05 1.56E+04	2.63E-02	2.63E-02	0.188	0,19
Sm-151	1.33E-02	7.68		8.52E-04	8.52E-04	1.36E-02	2.56E-0
Eu-152	7.94E-06	4.58E-03	9.32	3.48E-06	3.48E-06	7.97E-06	8.02E-0
Eu-154	1.35E-04	7.76E-02	158	1.07E-05	1.07E-05	1.40E-04	1.74E-0
Eu-155	3.91E-04	0.225	458	1.64E-04	1.64E-04	3.92E-04	3.95E-0
R#-226	7.73E-10	4.46E-07	9.07E-04	3.10E-10	5.37E-10	1.01E-09	1.24E-0
R#-228	7.93E-09	4.57E-06	9.30E-03	4.60E-15	4.60E-15	8.00E-09	8.09E-0
Ac-227	3.75E-09	2.16E-06	4.40E-03	1.53E-09	2.37E-09	5.12E-09	6.44E-0
Pa-231	5.56E-09	3.21E-06	6.52E-03	3.57E-10	3.57E-10	6.22E-09	1.35E-0
Th-229	1.91E-10	1.10E-07	2.24E-04	8.78E-13	8.78E-13	1.93E-10	1.95E-1
Th-232	1.06E-10	6.13E-08	1.25E-04	2.93E-16	2.93E-16	1.34E-10	1.61E-1
U-232	3.54E-08	2.04E-05	4.16E-02	1.25E-08	2.31E-08	5.05E-08	6.72E-0
U-233	1.36E-07	7.82E-05	0.159	4.79E-08	8.84E-08	1.93E-07	2.57E-0
U-234	6.99E-07	4.03E-04	0.821	3.39E-07	5.15E-07	8.99E-07	1.10E-0
U-235	2.84E-08	1.64E-05	3.33E-02	1.38E-08	2.09E-08	3.65E-08	4.47E-0
U-236	2.74E-08	1.58E-05	3.22E-02	1.30E-08	2.02E-08	3.51E-08	4.26E-0
U-238	6.22E-07	3.58E-04	0.729	3.04E-07	4.58E-07	7.99E-07	9.79E-0
Np-237	2.46E-07	1.42E-04	0.289	2.01E-07	2.19E-07	2.64E-07	2.81E-0
Pu-238	4.47E-06	2.58E-03	5.25	3.54E-06	4.00E-06	4.94E-06	5 40E-0
Pu-239	2.73E-04	0.157	320	2.07E-04	2.39E-04	3.07E-04	3.39E-0
Pu-240	3.99E-05	2.30E-02	46.8	3.04E-05	3.51E-05	4.47E-05	4.94E-0
Pu-241		0.149	303	2.03E-04			
	2.58E-04		1.44E-03		2.30E-04	2.87E-04	3.14E-0
Pu-242	1.23E-09	7.08E-07	73.6	9.73E-10	1.10E-09	1.36E-09	1.48E-0
Am-241	6.27E-05	3.62E-02	2.24E-03	3.74E-05	5.48E-05	7.13E-05	1.30E-0
Am-243	1.91E-09	I.10E-06	2.24E-03 9.47E-02	9.00E-10	1.66E-09	2.10E-09	2.54E-0
Cm-242	8.07E-08	4.66E-05		7.90E-08	7.97E-08	8.14E-08	8.14E-0
Cm-243	1.85E-09	1.07E-06	2.17E-03	1.81E-09	1.83E-09	1.86E-09	1.86E-0
Cm-244	1.44E-09	8.30E-07	1.69E-03	2.49E-10	7.24E-10	1.92E-09	1.92E-0
				-95 CI	-67 Cl	+67 CI	+95 C
		다 지나 나타나 가 물건을 얻을 것	e tatelo filie	(M er	(M or	(M ar	(M or
			Weissen er er				
	M	HE/2	kę	(/ L)	g/L)	1 /L)	1/L)
Totals Pu U	M 4.56E-03 (g/L) 7.69E-03	#g/g	kg 5.35 2.15E+03				g/L) 5.67E-0

•Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).


HDW	Model	Rev.	4

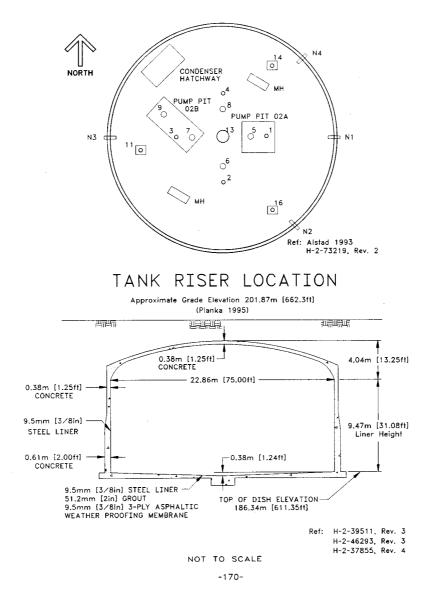
		Single	Shell Tani	4241-SX-10	1		iodel Rev.
				ventory Esti			
Physical Properties					-67 CI	+67 CI	+95 C
Total SMM W	7.16E+05 (kg)	(146 kgal)			-0/ 01	TU/CI	1/3 0
Heat Load	0.567 (kW)	(1.94E+03 BTU/hr)		0.534	0.550	0.584	0.60
Bulk Density*	1.29 (g/cc)	(1.942.05 810/81)		1.27	0.330	1.30	1.3
				1.4/	04.1	1.50	1.3
Water wt%†	59.6			57,7	58.6	60.8	62.
TOC wt% C (w	0.437			0.287	0.360	0.513	0.58
			6.000	101010			
Radiological				-95 CI	-67 CI	+67 CI	+95 C
Constituents	CVL	µCi/g	Ċl	(CVL)	(CI/L)	(CI/L)	(CVL)
H-3	1.23E-04	9.54E-02	68.2	6.55E-05	6.55E-05	1.27E-04	1.32E-0
C-14	1.75E-05	1.35E-02	9.67	5.38E-06	5.38E-06	1.78E-05	1.80E-0
Ni-59	1.13E-06	8.74E-04	0.625	5.61E-07	5.61E-07	1.16E-06	1.19E-0
Ni-63	1.11E-04	8.56E-02	61.2	5.44E-05	5.44E-05	1.14E-04	1.16E-0
Co-60	1.92E-05	1.49E-02	10.6	5.37E-06	5.37E-06	1.96E-05	1.99E-0
Se-79	1.75E-06	1.35E-03	0.965	9.73E-07	9.73E-07	2.03E-06	2.29E-0
Sr-90	5.80E-02	44.8	3.20E+04	5.42E-02	5.60E-02	5.99E-02	6.18E-0
Y-90	5.80E-02	44.8	3.20E+04	3,13E-02	3.13E-02	5.99E-02	6.18E-0
Zr-93	8.57E-06	6.62E-03	4.74	4.70E-06	4.70E-06	9.97E-06	1.13E-0
Nb-93m	6.23E-06	4.81E-03	3.44	3.52E-06	3.52E-06	7.21E-06	8.15E-0
Tc-99	1.25E-04	9.63E-02	68.9	7.95E-05	1.02E-04	1.48E-04	1.70E-0
Ru-106	3.41E-09	2.63E-06	1.88E-03	1.61E-09	1.61E-09	3.81E-09	4.17E-0
Cd-113m	4.48E-05	3.46E-02	24,8	2.16E-05	2.16E-05	5.32E-05	6.13E-0
Sb-125	8.25E-05	6.37E-02	45.6	2.24E-05	2.24E-05	8.40E-05	8.55E-0
Sn-126	2.64E-06	2.04E-03	1.46	1.48E-06	1.48E-06	3.06E-06	3.46E-0
1-129	2.40E-07	1.86E-04	0.133	1.53E-07	1.96E-07	2.85E-07	3.29E-0
Cs-134	1.29E-06	9.95E-04	0.712	9.28E-07	1.06E-06	1.47E-06	1.65E-0
Cs-137	0.136	105	7.50E+04	0.123	0.129	0.142	0.14
Ba-137m	0.128	99.1	7.09E+04	9.84E-02	9.84E-02	0.135	0.14
Sm-151	6.15E-03	4.75	3.40E+03	3.44E-03	3.44E-03	7.13E-03	8.07E-0
Eu-152	1.98E-06	1.53E-03	1.09	1.02E-06	1.02E-06	2.11E-06	2.24E-0
Eu-154	3.13E-04	0.242	(73	1.20E-04	1.20E-04	3.83E-04	4.11E-0
Eu-155	1.17E-04	9.02E-02	64.5	5.97E-05	5.97E-05	1.25E-04	1.33E-0
Ra-226	7,48E-11	5.78E-08	4.13E-05	5.08E-11	5.08E-11	8.35E-11	9.18E-1
Ra-228	6.65E-08	5.14E-05	3.68E-02	2.76E-08	4.67E-08	8.96E-08	1.14E-0
Ac-227	4.70E-10	3.63E-07	2.60E-04	3.31E-10	3.31E-10	5.21E-10	5.69E-1
Pa-231	2.16E-09	1.66E-06	1.19E-03	1.38E-09	1.38E-09	2.44E-09	2.70E-0
Th-229	1.56E-09	1.21E-06	8.63E-04	7.09E-10	1.13E-09	2.07E-09	2.61E-0
Th-232	4.43E-09	3.42E-06	2.45E-03 0.192	2.28E-09	3.33E-09	5.53E-09	6.58E-0
U-232	3.47E-07	2.68E-04	0.192	1.91E-07	2.67E-07	4.39E-07	5.38E-0
U-233	1.33E-06	1.03E-03	0.735	7.33E-07	1.02E-06	1.68E-06	2.06E-0
U-234	4.15E-07	3.21E-04	0.230 9.33E-03	3.99E-07	4.07E-07	4.25E-07	4.28E-0
U-235	1.69E-08	1.30E-05	9.33E-03 7.14E-03	1.62E-08	1.65E-08	1.73E-08	1.74E-0
U-236	1.29E-08	9.98E-06	7.14E-03 0.263	1.25E-08	1.27E-08	1.31E-08 4.85E-07	1.33E-0
U-238	4.76E-07	3.67E-04	0.263	4.58E-07	4.66E-07		
Np-237	4.58E-07	3.54E-04	0.233	3.11E-07	3.83E-07 6.14E-07	5.35E-07 7.91E-07	6.08E-0 8.76E-0
Pu-238 Pu-239	7.03E-07	5.43E-04	13.4	5.29E-07 1.97E-05	6.14E-07 2.19E-05	7.91E-07 2.64E-05	8.76E-0 2.86E-0
	2.42E-05	1.87E-02	2.26			4.52E-06	4.92E-0
Pu-240 Pu-241	4.09E-06 4.74E-05	3.16E-03 3.66E-02	26.2	3.27E-06 3.56E-05	3.67E-06 4.14E-05	4.32E-06 5.35E-05	4.92E-0 5.93E-0
Pu-241 Pu-242	4.74E-05 2.60E-10	3.66E-02 2.01E-07	1.44E-04	1.90E-10	4.14E-03 2.24E-10	2.96E-10	3.31E-1
Pu-242 Am-241	2.60E-10 2.95E-05	2.01E-07 2.28E-02	16.3	2.13E-05	2.53E-05	2.96E-10 3.37E-05	3.77E-0
Am-241 Am-243	2.95E-05	7.83E-07	5.60E-04	7.55E-10	2.33E-03 8.78E-10	1.15E-09	1.28E-0
Cm-243	7.46E-08	5.76E-05	4.12E-02	3.52E-08	3.52E-08	7.96E-08	8.45E-0
Cm-242 Cm-243	6.89E-09	5.32E-06	3.81E-03	3.14E-09	3.14E-09	7.34E-09	7.78E-0
Cm-243	6.85E-08	5.29E-05	3.78E-02	2.98E-08	2.98E-08	8.16E-08	8.99E-0
	0.032400	3.472-03	S. 80 K S. 10	-95 CI	-67 CI	+67 CI	+95 C
				(M er	(M or	(M or	(M or
Totals	м	H\$/8	kg	<u>الا</u> ر	#/L)	₽/L)	8/L)
			0.167				
Pu	3.03E-04 (g/L)	1	0.107	2.19E-04	2.60E-04	3.45E-04	3.86E-0

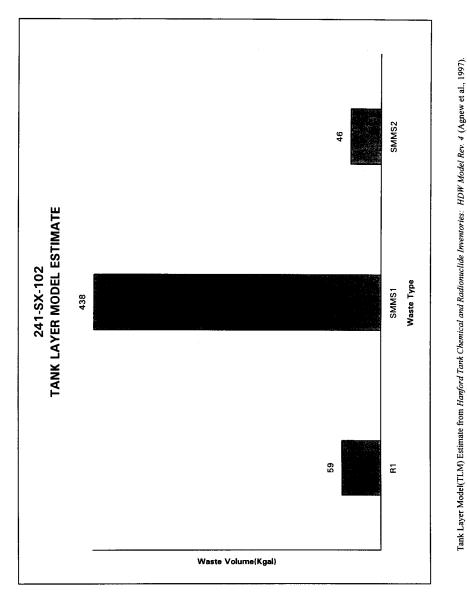
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.


				241-SX-1	01		
		To	tal inventor	y Estimate*			
Physical Properties				-95 CI	-67 C1	+67 CI	+95 (
Total Waste	2.75E+06 (kg)	(456 kgal)		_			
Heat Load	6.30 (kW)	(2.15E+04 BTU/hr)		5.25	5.86	6.60	6.
Bulk Density†	1.59 (g/cc)			1.50	1.52	1.71	L.
						_	
Water wt%†	38.3		i	26.9	30.4	44.3	46
TOC wt% C (w	0.115			7.65E-02	9.55E-02	0.136	0.15
Radiological Constituents	CI/L	μCi/g	c	-95 CI (CV/L)	-67 CI (CI/L)	+67 Cl (CI/L)	+95 ((CI/L
н-3	1.26E-04	7.89E-02	217	4.15E-05	4.15E-05	1.30E-04	1.36E-4
C-14	1.03E-05	6.45E-03	17.7	5.96E-06	5.96E-06	1.06E-05	1.08E-4
Ni-59	7.71E-06	4.84E-03	13.3	5.36E-06	5.36E-06	8.18E-06	8.09E-0
Ni-63	7.30E-04	0.458	1.26E+03	5.02E-04	5.02E-04	7.74E-04	7.65E-0
Co-60	9.99E-06	6.27E-03	17.2	5.54E-06	5.54E-06	1.01E-05	1.05E-0
Sc-79	3.10E-06	1.94E-03	5.35	6.66E-07	6.66E-07	3.19E-06	5.32E-0
Sr-90	0.422	265	7.28E+05	0,332	0.383	0.452	0.45
Y-90	0.422	265	7.28E+05	0.331	0.331	0.452	0.4
Zr-93	1.48E-05	9.26E-03	25.5	3.23E-06	1.23E-06	1.52E-05	2.41E-0
Nb-93m	1.18E-05	7.37E-03	20.3	2.43E-06	2.43E-06	1.21E-05	2.18E-0
Tc-99	7.57E-05	4.75E-02	131	6.12E-05	6.83E-05	8.31E-05	
Ru-106	1.91E-09	1.20E-06	3.29E-03	1.01E-09	0.63E-05	2.03E-09	9.03E-0
Cd-113m	3.26E-05	2.04E-02	\$6.2	_	-		2.15E-0
Sb-125		2.47E-02	68.1	1.51E-05	1.51E-05	5.13E-05	4.95E-0
Sn-126	3.94E-05 4.74E-06	2.98E-03	8.19	2.02E-05	2.02E-05	4.00E-05	4.11E-0
1-129	1.45E-07		0.250	1.01E-06	1.01E-06	4.88E-06	8.32E-0
		9.10E-05	2.09	1.17E-07	1.31E-07	1.59E-07	1.73E-0
Cs-134	1.21E-06	7.58E-04	2.09 2.99E+05	3.50E-07	3.50E-07	1.27E-06	1.33E-0
Cs-137	0.173	109	2.83E+05	0.159	0.166	0.182	0.19
Ba-137m	0.164	103	2.83E+05	4.94E-02	4.94E-02	0.169	0.17
Sm-151	1.10E-02	6.92		2.35E-03	2.35E-03	1.13E-02	1.92E-0
Eu-152	6.03E-06	3.79E-03	10.4	2.97E-06	2.97E-06	6.07E-06	6.12E-0
Eu-154	1.92E-04	0.120		9.88E-05	9.88E-05	2.14E-04	2.23E-0
Eu-155	3.03E-04	0.190	523 9.48E-04	1.47E-04	1.47E-04	3.05E-04	3.08E-0
Ra-226	5.49E-10	3.45E-07		2.38E-10	3.87E-10	7.08E-10	8.61E-1
Ra-228	2.67E-08	1.68E-05	4.61E-02	1.42E-08	2.03E-08	3.41E-08	4.19E-0
Ac-227	2.70E-09	1.69E-06	4.66E-03	1.21E-09	1.75E-09	3.62E-09	4.50E-0
Pa-231	4.47E-09	2.81E-06	7.72E-03	8.77E-10	\$.77E-10	4.91E-09	9.83E-0
Th-229	6.30E-10	3.95E-07	1.09E-03	3.57E-10	4.90E-10	7.92E-10	9.65E-1
Th-232	1.49E-09	9.35E-07	2.57E-03	8.01E-10	1.14E-09	1.84E-09	2.18E-0
U-232	1.35E-07	8.48E-05	0.233	8.52E-08	1.10E-07	1.65E-07	1.96E-0
U-233	5.18E-07	3.25E-04	0.894	3.27E-07	4.20E-07	6.31E-07	7.52E-0
U-234	6.08E-07	3.82E-04	1.05	3.64E-07	4.83E-07	7.44E-07	8.81E-0
U-235	2.47E-08	1.55E-05	4.27E-02	1.48E-08	1.96E-08	3.02E-08	3.58E-0
U-236	2.28E-08	1.43E-05	3.93E-02	1.30E-08	1.79E-08	2.80E-08	3.31E-0
U-238	5.75E-07	3.61E-04	0.992	3.59E-07	4.64E-07	6.96E-07	8.17E-0
Np-237	3.14E-07	1.97E-04	0.542	2.67E-07	2.90E-07	3.39E-07	3.62E-0
Pu-238	3.26E-06	2.05E-03	5.64	2.64E-06	2.95E-06	3.58E-06	3.89E-0
Pu-239	1.93E-04	0.121	333	1.49E-04	1.71E-04	2.16E-04	2.38E-0
Բա-240	2.84E-05	1.79E-02	49.1	2.21E-05	2.52E-05	3.17E-05	3.48E-0
Իս-241	1.91E-04	0.120	329	1.53E-04	1.72E-04	2.10E-04	2.28E-0
Իս-242	9.18E-10	5.76E-07	1.58E-03	7.47E-10	8 3 IE-10	1.01E-09	1.09E-0
Am-241	5.21E-05	3.27E-02	89.9	3.43E-05	4 67E-05	5.79E-05	9.71E-0
Am-243	1.62E-09	1.02E-06	2.80E-03	9.16E-10	1.44E-09	1.76E-09	2.05E-0
Cm-242	7.88E-06	4.94E-05	0,136	6.62E-08	6.62E-08	8.04E-08	8.19E-0
Cm-243	3.46E-09	2.17E-06	5.98E-03	2 26E-09	2.26E-09	3.61E-09	3.75E-0
Cm-244	2.29E-08	1.44E-05	3.95E-02	1.05E-08	1.05E-08	2.71E-08	2.98E-0
				-95 CI	-67 CI	+67 C1	+95 C
				(M or	(M or	(M or	(M or
Fotals	м	HE/E	kg	g/L)	g/L)	s /L)	g/L)
Իս	3.20E-03 (g/L)	I	5.52	2.45E-03	2.82E-03	3.58E-03	3.94E-0
J	6.76E-03	1.01E+03	2.78E+03	4.08E-03	5.38E-03	\$.26E-03	9.78E-0

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-SX-102 SUMMARY


TANK HIS	STORY	TANK DESCRIPTION			
Entered Service	3rd qtr 1954	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	Aug 1980	Nominal Capacity	1,000,000 gal		
Watch Lists	Hydrogen	Cascade Tank	to 241-SX-103		
Integrity	Sound	Total Risers	13		
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)		
Interim Stabilization (IS)	-	Total Waste Volume	543,000 gal		
Partial Interim Isolation (PI)	June 1985	Waste Type	DSSF		
Intrusion Prevention (IP)	*	Drainable Interstitial Liquids	183,000 gal		
TENTATIVELY AVAILABLE RISERS		Pumpable Liquids	216,000 gal		
Riser Number(s)	Size	Saltcake	426,000 gal		
2, 11	4 in	Sludge	117,000 gal		
8	12 in	Supernatant	0 gai		
TANK TEMPERATURE		INTERIOR PHOTOGRAPHS			
Average Tank Temperature	131°F	Date	Jan 7, 1988		
Maximum Temperature	174°F	Montage Number	94041033-28CN		
Date	May 2, 1988	Photo Set Number	8800247		
Elevation from tank bottom	0.21 ft	WASTE SURFACE LEVEL			
Riser Number	16	Devices	Manual ENRAF		
Minimum Temperature	80°F	Max Level	197.8 in		
Date	March 28, 1992	Date	Aug 24, 1992		
Elevation from tank bottom	30.25 ft	Min Level 189 in			
Riser Number	16	Date	April 3, 1995		



-169

WHC-SD-WM-ER-352. Rev.

		Single	e-Shell Lan	k 241-SX-1	02		
		TLM Solids					
Physical			e e ser e			1909-00	
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Wa	3.92E+05 (kg)	(59.0 kgal)			_		
Heat Load	1.45 (kW)	(4.97E+03 BTU/hr)		1.06	1.29	1.56	1.6
Bulk Density	1.76 (g/cc)			1.51	1.53	2.11	2.24
Void Fraction	0.536	_		6.00E-02	0.217	0.737	0.743
Water wt%	27.0			2.64	10.0	42.6	44.2
TOC wt% C (w	0			0	0	0	0
			hensk Gr	1	C. A. Alap	328. X D	
Chemical				-95 CI	-67 Cl	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	
Na+	8.13	1.06E+05	4.17E+04	3.05	3.56	14.7	18.2
A13+	6.99	1.07E+05	4.21E+04	6.58	6,74	7,15	7.15
Fe3+ (total Fe)	1.01	3.22E+04	1.26E+04	0.994	1.00	1.02	1.03
Cr3+	6.19E-02	1.83E+03	718	7.08E-03	3.39E-02	0.522	1.05
Bi3+	0	0	0	1.082-03	3.396-02	0.322	1.08
La3+	0	0	0	0	0	0	
Hg2+	0	0	0	0	0	- 0	
Zr (as ZrO(OH)2	0	0		0	0	0	0
Pb2+	0	0	0	0	0	0	0
Ni2+	5.07E-02	1.69E+03	665	3.66E-02	4.45E-02	5.54E-02	
Sr2+	0	0	005				5.45E-02
Mn4+	0		0	0	0	0	0
Ca2+	0,220	5.02E+03	1.97E+03	0.146	0 182	0 258	0
K+	1.12E-02	250	98.0	0.146 1.28E-03	5.25E-03		0.294
он-	25.6	2.48E+05	9.72E+04			1.52E-02	1.52E-02
NO3-	5.29	1.87E+05	7.32E+04	23.1 6.03E-02	24.3 6.03E-02	26.9	28.4
NO2-	1.46	3.82E+04	1.50E+04			13.5	17.9
C032-	0.220	7.51E+03	2.95E+03	0.132	0.595	2.15	2.15
P043-	0.110	0	1.535.03	0.146	0,182	0.258	0.294
5042-	1.04E-02	569	223	0	0	0	0
Si (as SiO32-)	8.06E-03	129	50.5	1.19E-03	4.87E-03	1.41E-02	1.41E-02
F-	0	0	0	9.21E-04	3.77E-03	1.09E-02	1.09E-02
г. СІ-	5.16E-02	1.04E+03	409	0	0	0	0
C6H5O73-	5.16E-02	1.042+03	405	5.91E-03	2.42E-02	7.00E-02	0.157
EDTA4-		0	0	0	0	0	0
HEDTA3-		0	0	0	0	0	0
	¥	•••••		0	0	0	0
glycolate-			0				
giycolate-		0		0	0	0	0
acetane-		0	-	0	0	0	0
oxalate2-	0		0	0	0	0	0
butano]		0		0	0	0	0
Jutanoi	0	0	0	0	0	0	0
		A 100					
NH3	0.256	2.47E+03	970	6.55E-02	9.25E-02	0.270	0.284

		Singl	e-Shell Tan	k 241-SX-1	02		
		SMM C	omposite In	ventory Est	mate		
Physical							60.00
Properties		ing starting (1.000	-95 CI	-67 CI	+67 CI	+95 CI
Total SMM W	3.20E+06 (kg)	(484 kgal)					_
Heat Load	4.77 (kW)	(1.63E+04 BTU/hr)		4.46	4.62	4.92	5.0
Bulk Density*	1.75 (g/cc)		—	1.68	1.72	1.77	1.80
Water wt%	24.0			21.0	22.3	25.7	27.7
TOC wt% C (w	0.932		_	0.618	0.772	1.09	1.25
Chemical				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	mole/L	ppm	kg .		(mole/L)	<u>``</u>	(mole/L
Na+ Al3+	17.6	2.31E+05	7.39E+05	15.9	16,7	18.2	18.9
	2.03 1 39E-02	3.14E+04 445	1.00E+05	1.87	1.95	2.11	2.19
Fe3+ (total Fe)			1.42E+03	1.12E-02	1.26E-02	1.53E-02	1.66E-02
Cr3+	0.177	5.26E+03	1.68E+04	0.151	0,165	0.182	0.187
Bi3+	1.72E-03	205	657	1.57E-03	1.64E-03	1.79E-03	1.86E-03
+£a3+	6.94E-05	5.51	17.7	5.03E-05	5.96E-05	7.92E-05	8.86E-05
Hg2+	1.17E-05	1.34	4.30	1.10E-05	1.14E-05	1.19E-05	1.21E-05
Zr (as ZrO(OH)2	3.04E-04	15.9	50.B	2.77E-04	2.87E-04	3.15E-04	3.30E-04
Pb2+	1.31E-03	155	496	1.05E-03).18E-03	1.44E-03	1.56E-03
Ni2+	8.08E-03	271	869	7.69E-03	7.88E-03	8.18E-03	8.27E-03
\$r2+	0	0	0	0	0	0	0
Mn4+	5.05E-03	159	508	3.76E-03	4.39E-03	5.70E-03	6.33E-03
Ca2+	4.24E-02	973	3.11E+03	3.86E-02	4.04E-02	4.44E-02	4.63E-02
K+	8.30E-02	1.86E+03	5.95E+03	7.52E-02	7.89E-02	8.73E-02	9.14E-02
он-	12.2	L.19E+05	3.81E+05	11.4	11.8	12.7	13.0
NO3-	6.10	2.16E+05	6.93E+05	5.64	5.91	6,19	6.27
NO2-	3.03	7.97E+04	2.55E+05	2.48	2.73	3.32	3.59
CO32-	0.571	1.96E+04	6.28E+04	0.517	0,543	0.607	0.617
PO43-	0.117	6.35E+03	2.03E+04	0.101	0.107	0.119	0.122
SO42-	0.318	1.75E+04	5.60E+04	0.247	0.281	0.356	0.390
Si (as SiO32-)	9.87E-02	1.59E+03	5.08E+03	8.03E-02	8.93E-02	0.108	0.117
F-	8.46E-02	920	2.94E+03	7.21E-02	7.73E-02	9.07E-02	9.56E-02
CI-	0,304	6.16E+03	1.97E+04	0.272	0.287	0.318	0.331
C6H5O73-	3.81E-02	4.12E+03	1.32E+04	3.50E-02	3.65E-02	3.96E-02	4.11E-02
EDTA4-	1.99E-02	3.28E+03	1.05E+04	6.30E-03	1.30E-02	2.69E-02	3.38E-02
HEDTA3-	3.67E-02	5.76E+03	1.84E+04	9.50E-03	2.28E-02	5.07E-02	6.44E-02
glycolate-	0.117	\$.03E+03	1.61E+04	7.67E-02	9.65E-02	0.138	0.158
acetate-	9.96E-03	336	1.08E+03	8.29E-03	9.11E-03	1.08E-02	1.16E-02
oxalate2-	9.09E-05	4.58	14.7	8.05E-05	8.56E-05	9.62E-05	1.01E-04
DBP	2.57E-02	3.09E+03	9.89E+03	2.12E-02	2.34E-02	2.79E-02	3.01E-02
butanol	2.57E-02	1.09E+03	3.49E+03	2.12E-02	2.34E-02	2.79E-02	3.01E-02
NH3	0.106	1.04E+03	3.31E+03	8.57E-02	9.39E-02	0.122	0.141
Fe(CN)64-	0	0	0	0	0	0	0.11

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

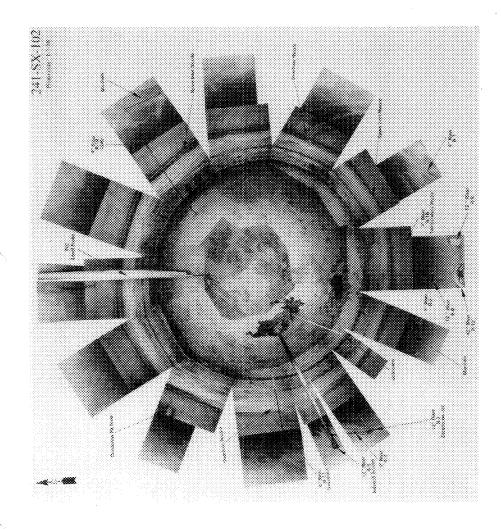
HDW	Model	Rev.	4

		6 '1	<u></u>			HOWN	iodel Rev. 4		
				k 241-SX-1					
Physical	Total Inventory Estimate*								
Properties				DE (71	-67 CI	10.00			
Total Waste			_	-95 CI		+67 C1	_+**5 CI		
Heat Load	3.59E+06 (kg)	(543 kgal)							
Bulk Density†	6.22 (kW) 1.75 (g/cc)	(2.12E+04 BTU/hr)		5.71	6.00	6.40	6.52		
Durk Density?	1.73 (9/00)			1.69	1,71	1.80	1.80		
Water wt%†	24.3			21.6	21.7	26.2	27.6		
TOC wt% C (w	Ö. 8 30	—		0.550	0.687	0.973	1.11		
Chemical				-95 CI		+67 C1	+95 CI		
Constituents	mole/L 16.5	2.17E+05	7.81E+05			(mole/L)	<u>``</u>		
Na+ Al3+	2.57	2.17E+05		15.1	15.8	17.4	17.7		
			1.43E+05	2.43	2.50	2.64	2.71		
Fe3+ (sotal Fe)	0.122	3.91E+03	1.41E+04	0.120	0.121	0.124	0.125		
Cr3+	0.164	4.89E+03	1.76E+04	0.149	0.157	0.203	0.249		
Bi3+	1.53E-03		657	1.40E-03	1,46E-03	1.59E-03	1.66E-03		
La3+	6.18E-05	4,91	17.7	4.48E-05	5.31E-05	7.06E-05	7.90E-05		
Hg2+	1.04E-05	1.20	4.30	9.76E-06	1.01E-05	1.06E-05	1.07E-05		
Zr (as ZrO(OH)2	2.71E-04	14.1	50.8	2.47E-04	2.56E-04	2.80E-04	2.94E-04		
Pb2+	1.16E-03	138	496	9.37E-04	1.05E-03	1.28E-03	1.39E-03		
Ni2+	1.27E-02	427	1.53E+03	1.12E-02	1.20E-02	1.32E-02	1.30E-02		
Sr2+	0	0	0	0	0	0	0		
Mn4+	4.50E-03	141	508	3.35E-03	3.91E-03	5.08E-03	5.65E-03		
Ca2+	6.17E-02	1.41E+03	5.08E+03	5.40E-02	5.84E-02	6.49E-02	6.80E-02		
K+	7.52E-02	1.68E+03	6.05E+03	6.82E-02	7.15E-02	7.91E-02	8.27E-02		
ОН-	13.7	1.33E+05	4.78E+05	12.9	13,3	14.1	14.4		
NO3-	6.01	2.13E+05	7.66E+05	5.31	5.42	6.86	7.20		
NO2-	2.86	7.52E+04	2.70E+05	2.37	2.60	3.11	3.36		
CO32-	0.533	1.83E+04	6.58E+04	0.485	0.508	0.565	0,574		
PO43-	0.104	5.65E+03	2.03E+04	9.04E-02	9.52E-02	0.107	0.109		
SO42-	0.285	1.56E+04	5.62E+04	0.221	0.252	0.319	0.349		
Si (as SiO32-)	8.88E-02	1.43E+03	5.13E+03	7.24E-02	8.05E-02	9.72E-02	0.105		
F-	7.54E-02	819	2.94E+03	6.42E-02	6.89E-02	8.09E-02	8.52E-02		
Cl-	0.276	5.60E+03	2.01E+04	0.248	0.262	0,289	0.300		
C6H5O73-	3.39E-02	3.67E+03	1.32E+04	3.12E-02	3.25E-02	3.53E-02	3.66E-02		
EDTA4-	1.78E-02	2.93E+03	1.05E+04	5.62E-03	1.15E-02	2.40E-02	3.01E-02		
HEDTA3-	3.27E-02	5.13E+03	1.84E+04	8.46E-03	2.03E-02	4.52E-02	5.74E-02		
glycolate-	0.104	4.48E+03	1.61E+04	6.84E-02	8.60E-02	0.123	0,140		
acetate-	8.88E-03	300	1.08E+03	7.39E-03	8.12E-03	9.64E-03	1.04E-02		
oxalate2-	8.10E-05	4.08	14.7	7.18E-05	7.63E-05	8.57E-05	9.02E-05		
DBP	2.29E-02	2.75E+03	9.89E+03	1.89E-02	2.08E-02	2.49E-02	2.68E-02		
butanol	2.29E-02	970	3.49E+03	1.89E-02	2.08E-02	2.49E-02	2.68E-02		
NH3	0.123	1.19E+03	4.28E+03	9.87E-02	0.103	0.137	0.154		
Fe(CN)64-	0	0	0	0	0	0	0		

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

Single-Shell Tank 241-SX-102 TLM Solids Composite Inventory Estimate*									
		TLM Solids	Composite	Inventory E	stimate*				
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Total TLM Wa	3.92E+05 (kg)	(59.0 kgal)				****			
Heat Load	1.45 (kW)	(4.97E+03 BTU/hr)		1.06	1.29	1.56	1.6		
Bulk Density	1.76 (g/cc)	1	l	1.51	1.53	2.11	2.24		
Void Fraction	0.336	1	I	6.00E-02	0.217	0.737	0.74		
Water wt%	27.0	-	1	2.64	10.0	42.6	44.3		
TOC wt% C (w	0			0	0	0	. (
Radiological Constituents	CIL	C 14	CI	-95 CI (CVL)	-67 CI	+67 CI	+95 CI		
H-3	2.92E-05	μCl/g 1.67E-02	6.53	3.05E-06	(CIAL)	(CVL)	(CI/L)		
C-14	2.92E-05	1.67 <u>E-02</u>	0.505	3.03E-06 2.59E-07	1.47E-05 1.06E-06	4.10E-05 3.07E-06	4.10E-0		
Ni-59	2.26E-06 1.49E-05	8.46E-03	1 12		1.31E-05		3.07E-00		
Ni-63	1.49E-03		310	1.07E-05		1.62E-05	1.60E-0		
NI-03 Co-60	1.39E-03 8,94E-07	0.790 5.09E-04	0.200	1.00E-03	1.22E-03	1.52E-03	1.49E-03		
Se-79	8.94E-07		0.107		4.18E-07	1.21E-06	1.21E-0		
Se-79 Sr-90	4.81E-07 0.928	2.74E-04 529	2 07E+05	5.50E-08 0.662	2.25E-07 0.812	6.51E-07	7.15E-00		
Y-90	0.928	529	2.07E+05			1.02	1.03		
Y-90 7r-93	0.929 2.27E-06	1.29E-03	0.507	0.662 2.59E-07	0.812	1.02	1.03		
			0.307		1.06E-06	3.08E-06	3.03E-05		
Nb-93m	1.85E-06	1.06E-03	3 54	2.12E-07	8.68E-07	2.51E-06	3.21E-05		
Tc-99	1.58E-05 2.50E-12	9.02E-03	5.57E-07	1.81E-06	7.42E-06	2.15E-05	2.15E-0		
Ru-106		1.42E-09	1.56	2.86E-13	1.17E-12	3.38E-12	3.38E-12		
Cd-113m	6.99E-06	3.98E-03	0.293	8.00E-07	3.27E-06	9.48E-06	9.48E-06		
Sb-125	1.31E-06	7.47E-04	0.165	1.50E-07	6.14E-07	1.78E-06	1.78E-06		
Sn-126	7.39E-07	4.21E-04	6 80E-03	8.45E-08	3.46E-07	1.00E-06	1.14E-05		
-129	3.04E-08	1.73E-05	6.07E-03	3.48E-09	1.42E-08	4.13E-08	4.13E-06		
Cs-134	2.72E-08	1.55E-05	1.25E+04	7.19E-09	1.52E-08	3.52E-08	3.52E-00		
Cs-137	5.60E-02	31.9	1.236+04	1.48E-02	3.13E-02	7.26E-02	7.26E-02		
Ba-137m	5.30E-02	30.2	383	1.40E-02	2.96E-02	6.87E-02	6.87E-02		
Sm-151	1.71E-03	0.976	1.56	1.96E-04	8.03E-04	2.33E-03	2.64E-02		
Eu-152	7.00E-06	3.98E-03	4.82	6.85E-06	6.91E-06	7.06E-06	7.06E-06		
Eu-154	2.16E-05	1.23E-02	71.8	2.47E-06	1.01E-05	2.93E-05	2.93E-05		
Eu-155	3.30E-04	0,188	2.41E-04	3.23E-04	3.26E-04	3.33E-04	3.33E-04		
Ra-226	1.08E-09	6.15E-07	2.07E-09	1.48E-10	6.04E-10	1.56E-09	2.01E-09		
Ra-228	9.26E-15	5.28E-12	1.06E-03	9.07E-15	9.15E-15	9.34E-15	9.34E-15		
Ac-227	4.76E-09	2.71E-06	1.60E-03	3.06E-10	2.00E-09	7.52E-09	1.02E-08		
Pa-231	7.18E-10	4.09E-07	3.95E-07	8.21E-11	3.36E-10	2.04E-09	1.68E-08		
Th-229	1.77E-12	1.01E-09	1.32E-10	1.73E-12	1.75E-12	1.78E-12	1.78E-12		
Th-232	5.91E-16	1.36E-13	1.17E-06	6.76E-17	2.77E-16	\$.01E-16	8.01E-16		
U-232	5.24E-12	2.98E-09	4.46E-08	5.99E-13	2.45E-12	7.10E-12	7.10E-12		
U-233	2.00E-13	1.14E-10	4.40E-08 2.66E-02	2.28E-14	9.34E-14	2.71E-13	2.7IE-13		
U-234	1.19E-07	6.78E-05	2.00E-02 1.14E-03	1.36E-08	5.58E-08	1.62E-07	1.62E-07		
U-235	5.13E-09	2.92E-06	4.21E-04	5.86E-10	2.40E-09	6.95E-09	6.95E-09		
J-236	1.88E-09	1.07E-06	4.21E-04 2.72E-02	2.16E-10	8.82E-10	2.56E-09	2.56E-09		
J-238	1.22E-07	6.92E-05	2.72E-02 2.30E-02	1.39E-08	5.69E-08	1.65E-07	1.65E-07		
Np-237	1.03E-07	5.86E-05	2.302-02	1.18E-08	4.81E-08	1.39E-07	1.39E-07		
Pu-238	6.61E-06	3.77E-03	1.46	4.75E-06	5.66E-06	7.57E-06	8.48E-06		
Pu-239	4.72E-04	0.269	105	3.39E-04	4.04E-04	5.40E-04	6.05E-04		
Pu-240 Pu-241	6.76E-05	3.85E-02	88.7	4.85E-05	5.78E-05	7.73E-05	8.66E-05		
	3.97E-04	0.226	4.07E-04	2.85E-04	3.40E-04	4.55E-04	5.09E-04		
Pu-242 Am-241	1.82E-09	1.04E-06	1.81	1.31E-09	1.56E-09	2.08E-09	2.34E-09		
	8.09E-06	4.61E-03	1.69E-05	9.26E-07	3.79E-06	1.10E-05	1.43E-04		
Am-243	7.57E-11	4.31E-08	1.69E-03	8.66E-12	3.54E-11	1.03E-10	1.34E-09		
Cm-242	1.61E-07	9.16E-05	8.24E-04	1.58E-07	1.59E-07	1.62E-07	1.62E-07		
Cm-243	3.69E-09	2.10E-06	6.04E-04	3.61E-09	3.64E-09	3.72E-09	3.72E-09		
Cm-244	2.70E-09	1.54E-06		3.09E-10	1.27E-09	3.67E-09	3.67E-09		
			di di	(M or	(M or	(M or	(M or		
Totals	M	PE/E	kg 1.76	(/L)	(/L)	9.03E-03	(1.)		
				5 67E-03	6 76E-03		1.01E-02		
Pu U	7.89E-03 (g/L)	207	\$1.3	1.75E-04	0./6E-03	9.03E-03	2.07E-03		

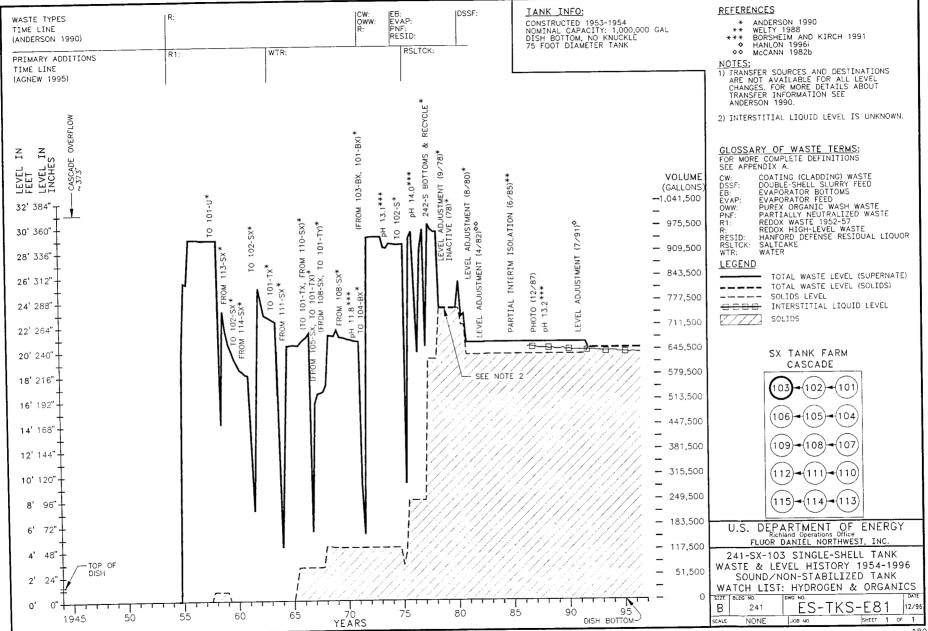
	1 34E-03	1 33E-03 9 82E-04	1 16E-05	2 45E+03	£0+369'1	1.24E-02 8.05E-04 (8/L)	n
	(7/4	(1/4	(1/4	817 1 2014	। इ/इस	W	्रम् जन्म
W)	10 M)	(Mar)	(Mar	-7	8/6**	~	শ্বৰণণ্
	1.8.3572.1		(1997) X X X X X X X X X X X X X X X X X X X				
	10-382 7	10 49- 8 132-08	13 56- 1 13E-08		1 00E-04	10-316 I	\$\$Z-W
	3'09E-08	8 13E 08	60-3EL'8	61-50	50-91111	1.93E-08	E+Z-W
	3 32E-01	80-311 8	80-312 B	3 24E-02			ш-343 ;ш-343
	3116E-05	3736E-00	3'04E-08	185.0	10-36111 90-36511	3.08E-07	242-m
	50-391 E	2 30E-00		E0-E180.2			
	8,236-10	01-361-9	2'#9E-02 2'51E-10	EP1	4 46E-02	\$0-36L'L	(¥Z-Ш
	0-38+1			1.32E-03	4128-07	7.21E-10	n-545
		1.14E-04	6'16E-05	540	7.50E-02	1.31E-04	n-541
	1 33E-06	90-376-0P	90-3LL'8	707	60-39E-03	11112-02	n-540
	116E-03	\$0-388.S	\$.26E-05	611	3.736-02	6.52E-05	6£Z-n
	2.18E-06	1 68E-06	90-3111	ESTE	£0-301.1	1 63E-09	8£2-n
	1.446-06	1.02E-06	8.12E-07	52.5	10-310.7	1.23E-06	[b-337
	1.31E-06	1 51E-06	1'34E-09	95.2	10-396.7	1.29E-06	1-538
	3.48E-08	3.37E-08	3.30E-08	20-382.0	\$0-396 1	3°43E+08	952-1
	4.496-08	4'33E-08	4.23E-08	\$'01E-05	2,528-05	4"40E-08	\$52-
	1.115-06	90-340 I	1 04E-09	66'1	6.23E-04	90°960'1	1-534
81.9	\$ 05E-00	3 09E-09	2.23E-06	0E.T	2.28E-03	3'386'0	5533
	1.318-06	70-320.8	10-318.2	06'1	\$ 95E-04	90-3101	252-1
01.2 1	1.7915-08	1.14E-08	60-3\$E.8	20-369.2	90-309-8	80-941 I	752-4
16 L (50-30P'9	3 63E-00	2.40E-09	£0-366 8	3'81E-00	4-91E-09	677-4
17 L C	9'48E'0	3 20E-00	3'20E-09	1.04E-02	3.25E-06	60-369 \$	162-4
15.1 6	137E-05	8 32E-10	8 33E 10	2.25E-03	1.025-07	60-3EZ 1	L22-01
61°E /	111E-01	1.51E-07	80-361-6	EREO	1 2015-04	2.09E-07	872-8
172 0	3.176-10	I SSE-10	1.25E-10	10-3E2.C	40-3011	1.93E-10	977-87
69°E 1	3 4PE 0	10-3191	1.61E-04	165	581.0	3'53E-04	551-m
PT'L 1	1 0PE-0	10-3EL.E	3'13E-04	1 5812+03	767 0	8.618-04	₩ \$1-11
61 9 5	2.83E-00	374E-06	30-304 Z		3.12E-03	90-359'5	751-17
	1.9015-02	E0-355 8	E0-355'8	\$6'6	126	1 62E-02	[5]-W
	1001	152.0	152.0	10+316 Z	181	915.0	W/EI-01
	SEO	1100	0000	\$0+308.5	161	9120	
	3.97E-0	2.92E-06	3'41E-00	6 13E+05	101	90-3++ E	28-132
	1.0-3158'L	20 316 0F	11116-07	15'9	1 0-926 T		
_	8 156-00	30-319-5	90-311 P	121	E0-316 E	40-385'9	-156
_	0-31E 2	50-302.9	50-397.9	1.21	EELO	90-396'9	971-u
				971		2.33E-04	P-152
	1 44E-0	\$0 THE 02	SO-311 S	520	6.87E-02	1.205-04	₩£11-P;
		4'43E-00	4 43E 00	1.74E-02	2'44E-06	60-305 6	90[-87
	4.07E-0	2.76E-04	2.13E-04	\$79	\$61'0	3.416-04	66-9
_	0-316-1	90-E17.8	8.71E-06	0.05	6°34E-03	SO-2199-1	ш£6-q <u>1</u>
	2 66E-0	\$0-3/11	20-371.1	910	1.29E-02	3.26E-05	£6-J
	51.0	7.81E-02	7.81E-02	5°85E+02	0.88	H\$110	06-7
	51.0	811.0	6143	50+378'Z	0.88	PS1'0	06-3
	6-30F-0	2 45E-09	5 45E-09	117.8	5 63E-03	4 60E-06	62-0
95°S \$	9-374.2	1'42E-02	50-35+ I	5'86	3 08E-02	\$0-386.8	09-03
50 E 🕨	3.026-0	1.34E-04	1.34E-04	865	891'0	3.94E-04	£9-!!
SI'E 9	3.07E-0	90-38E I	90-38E.1	8175	1.71E-03	30-316-0P	65-!!
61 5	4 BSE 0	\$0-355.1	1.35E-05	9'/8	2.74E-02	\$0-38L'+	14
1 3 41	3 30E-0	#0-395 I	1 20E-04	985	£\$1'0	3.20E-04	1 1
	((1/1)) 13 (19+	(CNT) 10 49-	(CNT) -98 CI	a	#CV#	CN	Ladiological Constituents
12	0'1	744 0	819.0			17000	I
	52	6.22	8190	<u> </u>		256.0	w) 2 %in 201
						54.0	Valer wi%†
	21	21. I	89'1	<u> </u>		(33/8) \$2'1	aulk Donaity*
2	6.1	29.4	97 7		(14/UTE H0+3E2 I)	(MA) 11.14	icat Load
- [(484 kga)	3.20E+06 (kg)	WINNE Labor
66+ I	D 49+	13 49-	13 56.				Physical Physical
		otam	entory Esti	un osite Inv	•O MMS		
		7	541-2X-10	VIIII LIONO	າສາມດ		


Density is calculated based on Me, OH-, and AIO2-.
 Water wr% derived from the difference of density and total dissolved species.

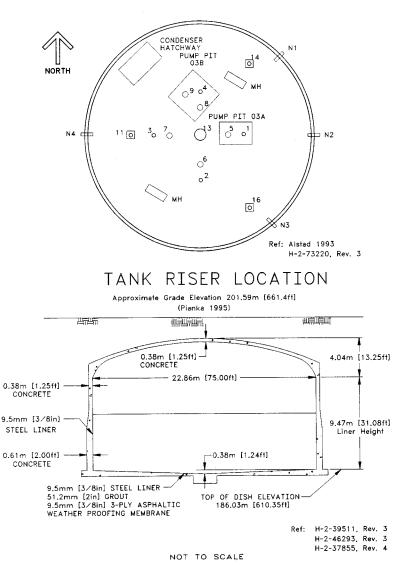
- 9/1 -

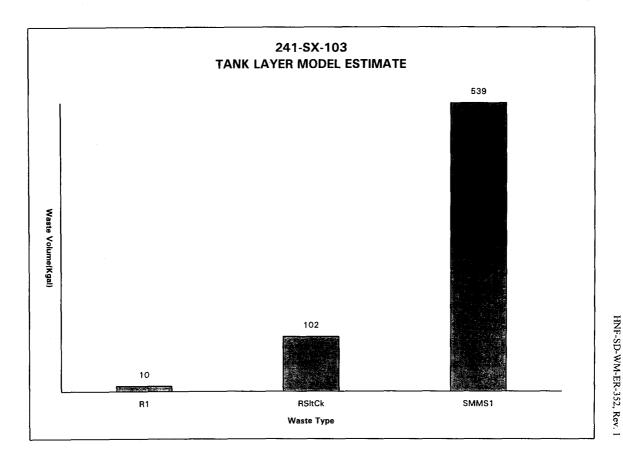
HDW	Model	Rev. 4

				241-SX-10	2				
	Total Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C		
Total Waste	3.59E+06 (kg)	(543 kgal)		_					
Heat Load	6.22 (kW)	(2.12E+04 BTU/hr)		5,71	6.00	6.40	6.5		
Bulk Density†	1.75 (g/cc)			1.69	1.71	1.80	1.8		
				1.07		1.00			
Water wt%†	24.3			21.6	21.7	26.2	27		
TOC wt% C (w	0.830			0.550	0.687	0.973	1.1		
		1204 i.u. 74		0.550		0.913			
Rediological				-95 CI	-67 CI	+67 Cl	+95 C		
Constituents H-3	<u>си</u>	µCi/g	CI 592	(CI/L)	(CI/L)	(CI/L)	(C1/L)		
	2.88E-04	0.165	592	1.42E-04	1.42E-04	2.98E-04	3.10E-0		
C-14	4.29E-05	2.45E-02	8.80	1.23E-05	1.23E-05	4.35E-05	4.41E-0		
Ni-59	4.28E-06	2.45E-03	8.8U 848	2.84E-06	2.84E-06	4.43E-06	4.42E-0		
Ni-63	4.12E-04	0.236	848 98.7	2.70E-04	2.70E-04	4.26E-04	4.27E-0		
Co-60	4.80E-05	2.75E-02		1.30E-05	1.30E-05	4.88E-05	4.97E-0		
Se-79	4.16E-06	2.38E-03	8.54	2.21E-06	2.21E-06	4.86E-06	5.54E-0		
Sr-90	0.238	136	4.89E+05	0.209	0.225	0.248	0.24		
Y-90	0.238	136	4.89E+05	0,171	0.171	0.248	0.24		
Zr-93	2.04E-05	1.17E-02	41.9	1.07E-05	1.07E-05	2.39E-05	2.73E-0		
Nb-93m	1.48E-05	8 46E-03	30.4	7.97E-06	7.97E-06	1.73E-05	1.96E-0		
Tc-99	3.06E-04	0.175	629	1.92E-04	2.48E-04	3.65E-04	4.21E-0		
Ru-106	8.47E-09	4.84E-06	1.74E-02	3.95E-09	3.95E-09	9.48E-09	1.04E-0		
Cd-113m	1.08E-04	6.17E-02	222	4.93E-05	4.93E-05	1.29E-04	1.49E-0		
Sb-125	2.07E-04	0.119	426	5.59E-05	5.59E-05	2.11E-04	2.15E-0		
Sn-126	6.28E-06	3.59E-03	12.9	3.36E-06	3.36E-06	7.34E-06	8.36E-0		
1-129	5.90E-07	3.37E-04	1.21	3.69E-07	4.77E-07	7.03E-07	8.13E-0		
Cs-134	3.07E-06	1.76E-03	6,31	2.15E-06	2.60E-06	3.54E-06	4.01E-0		
Cs-137	0.304	174	6.25E+05	0.274	0.289	0.320	0.33		
Ba-137m	0.288	165	5.91E+05	0.230	0 230	0.303	0.31		
Sm-151	1.46E-02	8.37	3.01E+04	7.80E-03	7.80E-03	1.71E-02	1.95E-0		
Eu-152	5.62E-06	3.21E-03	11.5	3.20E-06	3.20E-06	5.95E-06	6.28E-0		
Eu-154	7.69E-04	0.440	1.58E+03	2.82E-04	2.82E-04	9.46E-04	1.02E-0		
Eu-155	3.24E-04	0.185	665	1.80E-04	1.80E-04	3.44E-04	3.64E-0		
Ra-226	2.89E-10	1.65E-07	5 94E-04	2.10E-10	2.29E-10	3.30E-10	3.69E-1		
Ra-228	1.86E-07	1.07E-04	0.383	1.46E-08	1.34E-07	2.47E-07	3.11E-0		
Ac-227	1.61E-09	9.21E-07	3.31E-03	1.23E-09	1.26E-09	1.85E-09	2.07E-0		
Ac-227 Pa-231		9.21E-07 2.94E-06	1.06E-02	1.23E-09 3.20E-09	3,20E-09				
Th-229	5.15E-09	2.50E-06	1.00E-01		3.20E-09 3.23E-09	5.85E-09 5.70E-09	6.53E-0		
	4.38E-09		2.69E-02	2.14E-09			7.12E-0		
Th-232	1.31E-08	7.48E-06	1.90	7.44E-09	1.02E-08	1.60E-08	1.87E-0		
U-232	9.26E-07	5.30E-04	7,30	5.18E-07	7.17E-07	1.17E-06	1.43E-0		
U-233	3.55E-06	2.03E-03	2.02	1.99E-06	2.75E-06	4.48E-06	5.47E-0		
U-234	9.83E-07	5.62E-04	2.02 8.18E-02	9.44E-07	9.66E-07	9.99E-07	1.02E-0		
U-235	3.98E-08	2.28E-05	8.18E-02 6.32E-02	3.82E-08	3.91E-08	4.05E-08	4.12E-0		
U-236	3.08E-08	1.76E-05	6.32E-02 2.38	2.96E-08	3.03E-08	3.12E-08	3.17E-0		
U-238	1.16E-06	6.63E-04		1.12E-06	1.14E-06	1.17E-06	1.19E-0		
Np-237	1.11E-06	6.33E-04	2.28	7.35E-07	9.17E-07	1.30E-06	1.48E-0		
Pu-238	2.44E-06	1.39E-03	5.01	2.00E-06	2.21E-06	2.66E-06	2.88E-0		
Pu-239	1.09E-04	6.26E-02	225	9.81E-05	1.04E-04	1.15E-04	1.21E-0		
Pu-240	1.72E-05	9.86E-03	35.4	1.52E-05	1.62E-05	1.83E-05	1.93E-0		
Pu-241	1.60E-04	9.15E-02	329	1.30E-04	1.45E-04	1.75E-04	1.90E-0		
Pu-242	8.40E-10	4.81E-07	1.73E-03	6.62E-10	7.50E-10	9.31E-10	1.02E-0		
Am-241	7.03E-05	4.02E-02	144	4.95E-05	5.97E-05	8.09E-05	9.10E-0		
Am-243	2.48E-09	1.42E-06	5.10E-03	1.83E-09	2.14E-09	2.83E-09	3.16E-0		
Cm-242	2.03E-07	1.16E-04	0.417	1.03E-07	1.03E-07	2.15E-07	2.28E-0		
Cm-243	1.76E-08	1.01E-05	3.63E-02	8.18E-09	8.18E-09	1.88E-08	1.99E-0		
Cm-244	1.70E-07	9.73E-05	0.350	7.26E-08	7.26E-08	2.03E-07	2.24E-0		
				-95 CI	-67 CI	+67 C1	+95 C		
				(M or	(M or	(M or	(M or		
Totals	M	H#/2	ke	(L)	s/L)	1 /L)	1/L)		
Pu	1.58E-03 (g/L)		3.24	1.36E-03	1.47E-03	1.68E-03	1.79E-0		


•Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).
 †Volume average for density, mass average Water wt% and TOC wt% C.

TANK 241-5X-103 SUMMARY


СКІРТІОИ	TANK DES	Y901	
¥ 97	Diameter	4th dtr 1954	Entered Service
h si D	Bottom Shape	-	Removed from Service
1,000,000 gal	Nominal Capacity	8261	Inactive
əuou	Cascade Tank	Hydrogen & Organics	Watch Lists
13	Total Risers	punos	Integrity
(19661 NOJNAH)	WASTE VOLUME	-	Assumed Leaker
652,000 gal	Total Waste Volume	-	Interim Stabilization (IS)
NCPLX	Waste Type	2861 anul	Partial Interim Isolation (PI)
232,000 gal	Drainable Interstitial Liquids	-	Intrusion Prevention (IP)
272,000 gal	Pumpable Liquids	וראפרב גופבאפ	
536,000 gal	Saltcake	əzið	Riser Number(s)
112,000 gal	əɓpnıs	ni 4	91 '11
leg 000, f	Supernatant	ni St	L
SH9A90TC	итеяюя рно	ΞΑΔΤΟRΕ	TANK TEMP
7861 ,71 ced	Date	1681	Average Tank Temperature
04041033-59CM	Montage Number	1961	Maximum Temperature
8077078	Photo Set Number	8861 ,2 yeM	Date
	ARUS ATSAW	£.3 ft	Elevation from tank bottom
	Devices	5	Riser Number
243.5 in	Ievel xeM	∃ °1.78	Minimum Temperature
1801, St nsL	Date	Feb 5, 1996	Date
736.41 in	ləvəJ niM	30.55 ft	Elevation from tank bottom
3601, 31 lingA bus 4 nsL	Date	5	Riser Number


WHC-SD-WM-ER-352, Rev. 1

-180

241-SX-103

HNF-SD-WM-ER-352, Rev. 1

HDW	Model	Rev.	4

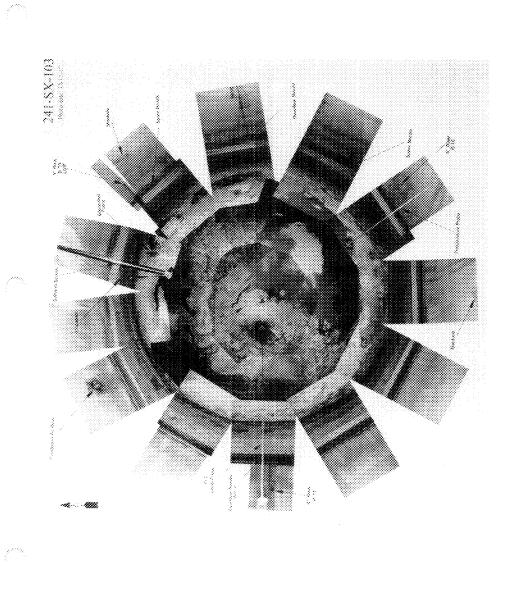
		Single	e-Shell Tan	k 241-SX-1	03		
		TLM Solids				_	
Physical	20. 14 t 10 t	la de creta				100000	et 194
Properties				-95 CI	-67 CI	+67 CI	+95 C
Total TLM Wa	7.28E+05 (kg)	(112 kgal)	_	-	<u> </u>	T _	_
Heat Load	1.52 (kW)	(5.18E+03 BTU/hr)	_	1.41	1.46	1.57	1.63
Bulk Denaity	1.72 (g/cc)		_	1.46	1.60	1.77	1.8
Void Fraction	0.763			0,720	0.734	0.846	0.93
Water wt%	34.0			24.5	28.8	43.8	54
TOC wt% C (w	4.77E-03			4.56E-03	4.66E-03	5.06E-03	5.68E-0
		2 62 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1,2100.0			
Chemical				-95 CI	-67 CI	+67 CI	+95 Cl
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L
Na+	13.0	1.74E+05	1.27E+05	8.51	10.9	141	15.0
Al3+	3.71	5.84E+04	4.25E+04	1.93	2.45	5.07	6.40
Fe3+ (total Fe)	0.106	3.46E+03	2.52E+03	9.92E-02	0,103	0.110	0.113
Cr3+	0.754	2.28E+04	1.66E+04	0.443	0.591	0.820	0.84
Bi3+	6.26E-06	0.762	0.554	5.29E-06	5.76E-06	6.89E-06	7.58E-06
La3+	1.54E-11	1.25E-06	9.08E-07	1.35E-11	1.46E-11	1.70E-11	1.87E-11
Hg2+	9.83E-07	0.115	8.36E-02	8.71E-07	9.26E-07	1.08E-06	1.19E-00
Zr (as ZrO(OH)2	6.25E-07	3.32E-02	2.42E-02	5.74E-07	5.98E-07	6 55E-07	7.06E-07
Pb2+	1.56E-04	18.8	13.7	8.35E-05	1.19E-04	1.93E-04	2.30E-0
Ni2+	1.83E-02	625	455	1.70E-02	1.76E-02	1.93E-04	1.95E-02
Sr2+	0	0	0	1.702-02	0	1.852-02	1.5.102
Min4+	4.55E-05	1.46	1,06	3.26E-05	3.89E-05	5.22E-05	5.89E-05
Ca2+	8.96E-02	2.09E+03	1.52E+03	6.23E-02	7.56E-02	0.103	0.117
K+	3.01E-02	687	500	2.86E-02	2.94E-02	3.27E-02	3.56E-02
OH-	19,3	1.91E+05	1.39E+05	11.1	13.7	25.2	3.362-02
NO3-	5.26	1.90E+05	1.38E+05	2.94	4.57	5.98	6.38
NO2-	1.83	4.92E+04	3 58E+04	1.58	1.71	1.96	2.12
CO32-	9.41E-02	3.29E+03	2.39E+03	6.68E-02	8.01E-02	0.108	0.121
PO43-	4.05E-04	22.4	16.3	3.76E-04	3.93E-04	4.22E-04	4.58E-04
5042-	3.77E-02	2.11E+03	1.54E+03	3.58E-02	3.68E-02	4.10E-02	4.38E-04
Si (as SiO32-)	0,119	1.95E+03	1.42E+03	7.56E-02	0,103	0.136	0.152
P	3.23E-04	3.57	2.60	2.75E-04	3.04E-04	3.55E-04	3.82E-04
CI-	0.126	2.60E+03	1 89E+03	6.99E-02	9.74E-02	0.138	0.145
C6H5O73-	3.33E-04	36.7	26.7	3.23E-04	3.28E-04	3.48E-04	3.79E-04
EDTA4-	1.30E-05	2.18	1.59	9.14E-06	3.28E-04	1.53E-05	3.79E-04
HEDTA3-	1.08E-05	1.72	1.25	3.46E-06	7.41E-06	1.53E-05	1.79E-05
				3.402-00	7.41E-00	1.448-05	1.79E+05
alycolate-	4.71E-04	20.6	15.0	2.55E-04	3.72E-04	5.85E-04	6.95E-04
cetate-	4.89E-05	1.68	1.22	4.73E-04	3.72E-04 4.81E-05	5.85E-04 5.19E-05	6.95E-04
xalate2-	2.02E-11	1.04E-06	7.53E-07	4.73E-05	4.81E-05		
OBP	2,96E-04	36.2	26.4	1.79E-11 2.76E-04	1.90E-11 2.88E-04	2.22E-11	2.44E-11
sutanol	2.96E-04	12.8	9.29			3.20E-04	3.45E-04
			7.29	2.76E-04	2.88E-04	3.20E-04	3.45E-04
7H3	5.56E-02	551	401		1110		
e(CN)64-	3.305-02	331	-10	3.87E-02	4.11E-02	6.02E-02	6.46E-02

		Single	-Shell Tan	k 241-SX-1	03		
		SMM Co	mposite In	ventory Est	imate		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total SMM W	3.45E+06 (kg)	(540 kgal)		_		_	
Heat Load	5.00 (kW)	(1.71E+04 BTU/hr)		4.67	4.83	5,17	5.3
Bulk Density*	1.69 (g/cc)			1.63	1.66	1.71	1.7
Water wt%	27.3			24.6	25.8	28.9	30.
TOC wt% C (w	0.917	_		0.578	0.744	1.09	1.2
Chemical				-95 CI	-67 CI	+67 CI	+95 C
Constituents	mole/L 16.2]	2.20E+05	7.59E+05	· · · · · · · · · · · · · · · · · · ·	A	(mole/L)	<u> </u>
Na+ Al3+	184	2.20E+03		14.8	15.5	16.B	17
Al3+ Fe3+ (total Fe)	1.84 1.29E-02	2.94E+04 427	1.01E+05 1.47E+03	1.69	1.77	1.92	1.9
Cr3+	0,159	427 4.91E+03	1.47E+03	1.06E-02	1.17E-02	1.41E-02	1.52E-0
Bi3+	1.73E-03	4.91E+03 214	1.695+04	0.135	0.148	0.164	0.16
Bi3+	6.48E-05	5 34		1.57E-03	1.65E-03	1.81E-03	1.89E-0
			18.4	4.70E-05	5.57E-05	7.40E-05	8.28E-0
Hg2+	1.12E-05	1.33	4.58	1.03E-05	1.08E-05	1.13E-05	1.15E-0
Zr (as ZrO(OH)2	3.23E-04	17.5	60.3	2.94E-04	3.05E-04	3.35E-04	3.52E-0
Pb2+	1.20E-03	147	507	9.61E-04	1.08E-03	1.32E-03	1.44E-0
Ni2+	7.62E-03	265	914	7.26E-03	7.43E-03	7.70E-03	7.79E-0
Sr2+	0	0	0	0	0	0	
Mn4+	4.40E-03	143	494	3.30E-03	3.84E-03	4.96E-03	5.50E-0
Ca2+	4.01E-02	953	3.29E+03	3.68E-02	3.85E-02	4.18E-02	4.34E-0
K+	7.69E-02	1.78E+03	6.15E+03	7.02E-02	7.34E-02	8.07E-02	8.41E-0
OH-	11.1	1.11E+05	3.84E+05	10.3	10.7	11.5	11.
NO3-	5,73	2.11E+05	7.26E+05	5.22	5.52	5.81	5,8
NO2-	2.73	7.43E+04	2.56E+05	2.26	2.47	2.97	3.2
CO32-	0.531	1.89E+04	6.52E+04	0.480	0.500	0.570	0.57
PO43-	0.112	6.33E+03	2.18E+04	9.57E-02	0.102	0.115	0.31
SO42-	0.295	1.68E+04	5.78E+04	0.234	0.263	0.328	0.35
Si (as SiO32-)	9.15E-02	1.52E+03	5.25E+03	7.57E-02	8.35E-02	9.95E-02	0.10
F-	8.51E-02	958	3.30E+03	7.13E-02	7.71E-02	9.19E-02	9.72E-0
C1-	0.282	5.92E+03	2.04E+04	0.254	0.264	0.294	0.30
C6H5O73-	3.27E-02	3.67E+03	1.26E+04	2.98E-02	3.13E-02	3.42E-02	3.56E-0
EDTA4-	2.02E-02	3.45E+03	1.19E+04	6.04E-03	1.30E-02	2.75E-02	3.47E-0
HEDTA3-	3.80E-02	6.18E+03	2.13E+04	9.67E-03	2.35E-02	5.26E-02	6 69E-0
glycolate-	0.114	5.05E+03	1.74E+04	7.52E-02	9.39E-02	0.133	0.15
acetate-	7.72E-03	270	932	6.34E-03	7.02E-03	8.43E-03	9.11E-0
oxalate2-	8.49E-05	4.43	15.3	7.52E-05	8.00E-05	8.99E-05	9.46E-0
DBP	2.23E-02	2.77E+03	9.56E+03	1.84E-02	2.03E-02	2.42E-02	2.61E-0
butanol	2.23E-02	978	3.37E+03	1.84E-02	2.03E-02	2.42E-02	2.61E-0
NH3	0.102	1.03E+03	3.56E+03	8.47E-02	9.17E-02	0.116	0.13
Fe(CN)64-	0	0	0			0.110	v. 13.

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

		Sing	le-Shell Tan	k 241-SX-1	03		
				y Estimate*			
Physical				12124		14 - Carr	98237
Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	4.18E+06 (kg)	(652 kgal)					
Heat Load	6.52 (kW)	(2.23E+04 BTU/hr)		6.18	6.35	6.69	6.8
Bulk Density†	1.69 (g/cc)			1.64	1.67	1.71	1.7
Water wt%†	28.5			26.2	27,2	30,1	31,8
TOC wt% C (w	0.758			0.477	0.615	0.901	1.04
Chemical				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	mole/L	ррт	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L
Na+ Al3+	15.6	2.12E+05	8.86E+05	14.5	15.0	16.1	16.6
-		3.45E+04	1.44E+05	1.84	1.95	2.40	2.63
Fe3+ (total Fe) Cr3+	2.89E-02	955	3.99E+03	2.70E-02	2.80E-02	2.99E-02	3.08E-02
Lir3+ Bi3+	0.261	8.03E+03	3.35E+04	0.206	0.233	0.273	0.273
	1.43E-03	177	739	1.30E-03	1.37E-03	1.50E-03	1.56E-03
. a 3+	5.37E-05	4.41	18.4	3.89E-05	4.61E-05	6.13E-05	6.86E-05
lg2+	9.43E-06	1.12	4.67	8.74E-06	9.13E-06	9.57E-06	9.70E-06
Zr (as ZrO(OH)2	2.68E-04	14.4	60.3	2.44E-04	2.52E-04	2.78E-04	2.92E-04
% 2+	1.02E-03	125	521	8.23E-04	9.19E-04	1.12E-03	1.22E-03
Ni2+	9.45E-03	328	1.37E+03	9.15E-03	9.30E-03	9.57E-03	9.69E-03
5r2+	0	Ö	0	0	0	0	0
vin4+	3.65E-03	119	495	2.74E-03	3.19E-03	4.12E-03	4.57E-03
Ca2+	4.86E-02	1.15E+03	4.81E+03	4.35E-02	4.60E-02	5.12E-02	5.38E-02
(+	6.89E-02	1.59E+03	6.65E+03	6.33E-02	6.60E-02	7.20E-02	7.48E-02
DH-	12.5	1.25E+05	5.23E+05	10.9	11.5	13.5	14.6
103-	5.65	2.07E+05	8.65E+05	5.23	5.48	5,74	5.78
102-	2.57	7.00E+04	2.92E+05	2.18	2.36	2.78	2.97
2032-	0.456	1.62E+04	6.76E+04	0.414	0.430	0.489	0.493
043-	9.32E-02	5.23E+03	2.18E+04	7.94E-02	8.42E-02	9.57E-02	9.80E-02
042-	0.250	1.42E+04	5.94E+04	0.200	0.224	0.278	0,301
i (an SiO32-)	9.62E-02	1.60E+03	6.67E+03	8.32E-02	8.96E-02	0.103	0.109
-	7.05E-02	792	3.31E+03	5.91E-02	6.39E-02	7.61E-02	8.06E-02
n-	0.255	5.34E+03	2.23E+04	0.232	0.240	0.265	0.274
6H5O73-	2.72E-02	3.03E+03	1.27E+04	2.48E-02	2.59E-02	2.84E-02	2.95E-02
DTA4-	1.68E-02	2.85E+03	1.19E+04	5.01E-03	1.07E-02	2.28E-02	2.87E-02
EDTA3-	3.15E-02	5.10E+03	2.13E+04	8.01E-03	1.95E-02	4.36E-02	5.54E-02
lycolate-	9.41E-02	4.17E+03	1.74E+04	6.23E-02	7.79E-02	0.110	0,126
cetate-	6.41E-03	223	933	5.26E-03	5.82E-03	6.99E-03	7.55E-03
xalate2-	7.03E-05	3.66	15.3	6.23E-05	6.62E-05	7.44E-05	7.84E-05
BP	1.85E-02	2.30E+03	9.59E+03	1.53E-02	1.69E-02	2.01E-02	2.16E-02
utanol	1.85E-02	810	3.38E+03	1.53E-02	1.69E-02	2.01E-02	2.16E-02
нз	9.44E-02	948	3 96E+03	7.97E-02			
(CN)64-	0	0	3.302.03	7.97E-02	8.55E-02 0	0.106	0.119

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

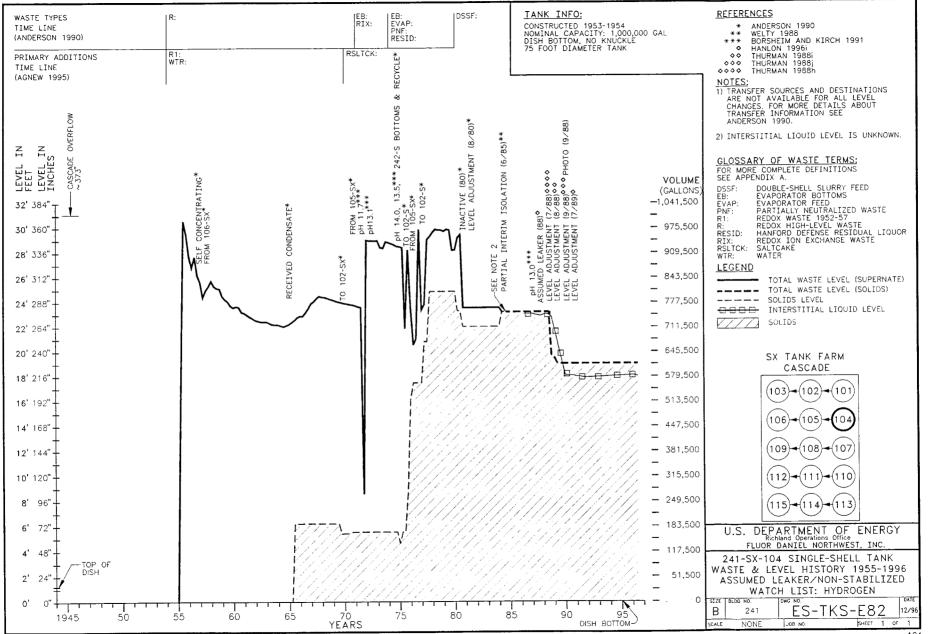

		Single	e-Shell Tanl	k 241-SX-10)3		
		TLM Solids	Composite	Inventory E	stimate*		
Physical Properties				-95 CI	-67 C1	+67 C1	+95 Cl
Total TLM Wa	7.28E+05 (kg)	(112 kgal)			_		_
Heat Load	1.52 (kW)	(5.18E+03 BTU/hr)		1.41	1.46	1.57	1.62
Bulk Density	1.72 (g/cc)		_	1.46	1.60	1.77	1.82
Void Fraction	0.763		_	0.720	0.734	0.846	0,938
Water wt%	34.0			24.5	28.8	43.8	54.3
TOC wt% C (w	4.77E-03			4.56E-03	4.66E-03	5.06E-03	5.68E-03
Radiological Constituents	CVL	µC1/g	a	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI (CI/L)	+95 CI (CVL)
H-3	2.06E-04	0.120	87.2	2.61E-06	2.61E-06	2.16E-04	2.34E-04
C-14	1.06E-05	6.19E-03	4.50	2.02E-07	2.02E-07	1.10E-05	1 20E-05
Ni-59	7.53E-06	4.39E-03	3,19	1.33E-06	1.33E-06	7.84E-06	8.13E-06
Ni-63	7.27E-04	0.423	308	1.24E-04	1.24E-04	7.56E-04	7.84E-04
Co-60	9.46E-06	5.51E-03	4.01	7.98E-08	7.98E-08	9.86E-06	1.07E-05
Se-79	6.37E-06	3.71E-03	2.70	4.29E-08	4.29E-08	6.45E-06	6.97E-06
Sr-90	0.322	188	1.37E+05	0.288	0.305	0.340	0.356
Y-90	0.322	188	1.37E+05	8.29E-02	8.29E-02	0.340	0.356
Zr-93	3.02E-05	1.76E-02	12.8	2.03E-07	2.03E-07	3.05E-05	3.27E-05
Nb-93m	2.45E-05	1.43E-02	10.4	1.66E-07	1.66E-07	2.48E-05	2.72E-05
Тс-99	8.24E-05	4.80E-02	34.9	7.98E-05	8.10E-05	8.85E-05	9.54E-05
Ru-106	2.17E-09	1.26E-06	9.19E-04	2.23E-13	2.23E-13	2.26E-09	2.46E-09
Cd-113m	4.28E-05	2.49E-02	18.2	6.24E-07	6.24E-07	9.43E-05	9.11E-05
Sb-125	3.36E-05	1.96E-02	14.3	1.17E-07	1.17E-07	3.51E-05	3.81E-05
Sn-126	9,78E-06	5,70E-03	4.15	6.59E-08	6.59E-08	9.90E-06	1.07E-05
-129	9.78E-00	9.11E-05	6.63E-02			111000 00	
Ca-134		9.11E-03	0.889	1.51E-07	1.54E-07	1.68E-07	1.816-07
Cs-134 Cs-137	2.10E-06	1.22E-03	1.27E+05	2.43E-09	2.43E-09	2.18E-06	2.35E-06
Ba-137m	0.300		1.20E+05	0.290	0.296	0.321	0.346
	0.284	165	9.63E+03	4.73E-03	4.73E-03	0.294	0.316
Sm-151 Eu-152	2.27E-02	13.2	3.69	1.53E-04	1.53E-04	2.30E-02	2.49E-02
	8.70E-06	5.07E-03	95.8	6.25E-07	6.25E-07	8.76E-06	8.86E-06
Eu-154	2.26E-04	0.132	93.8 186	1.93E-06	1.93E-06	2.36E-04	2.97E-04
Eu-155	4.39E-04	0.256	2 22E-04	2.95E-05	2.95E-05	4.42E-04	4.47E-04
Ra-226	5.24E-10	3.05E-07	6.08E-03	9.65E-11	9.65E-11	6.77E-10	8.24E-10
Ra-228	1.43E-08	8.36E-06	6.08E-03 1.24E-03	8.27E-16	8.27E-16	1.45E-08	1.46E-08
Ac-227	2.93E-09	1.71E-06		4.25E-10	4.25E-10	3.83E-09	4.38E-09
Pa-231	9.48E-09	5.52E-06	4.02E-03	6.41E-11	6.41E-11	9.60E-09	1.09E-08
Гһ-229	3.44E-10	2.00E-07	1.46E-04 8.15E-05	1.58E-13	1.58E-13	3.47E-10	3.51E-10
Гһ-232	1.92E-10	1.12E-07		5.27E-17	5.27E-17	2.42E-10	2.92E-10
U-232	6.41E-08	3.73E-05	2.72E-02	2.27E-08	4.18E-08	9.13E-08	1.22E-07
U-233	2.45E-07	1.43E-04	0.104	8.67E-08	1.60E-07	3.49E-07	4.65E-07
⊔-234	1.17E-06	6.81E-04	0.496	5.18E-07	8.35E-07	1.53E-06	1.89E-06
J-235	4.72E-08	2.75E-05	2.00E-02	2.09E-08	3.37E-08	6.20E-08	7.68E-08
U-236	4.81E-08	2.80E-05	2.04E-02	2.21E-08	3.50E-08	6.19E-08	7.55E-08
U-238	1.03E-06	5.98E-04	0.435	4.52E-07	7.30E-07	1.35E-06	1.67E-06
Np-237	3.62E-07	2.11E-04	0,154	3.47E-07	3.56E-07	3.92E-07	4.24E-07
Pu-238	2.74E-06	1.59E-03	1.16	1.23E-06	1.97E-06	3.51E-06	4.25E-06
Pu-239	1.12E-04	6.50E-02	47.3	6.29E-05	8.67E-05	1.36E-04	1.60E-04
Pu-240	1.75E-05	1.02E-02	7.43	9.48E-06	1.34E-05	2.16E-05	2.56E-05
Pu-241	1.46E-04	8.48E-02	61.7	6.85E-05	1.06E-04	1.85E-04	2.23E-04
Pu-242	7.47E-10	4.35E-07	3.17E-04	3.38E-10	5.38E-10	9.56E-10	1.16E-09
Am-241	1.07E-04	6.23E-02	45.4	6.11E-05	9.26E-05	1.23E-04	1.39E-04
Am-243	3.40E-09	1.98E-06	1.44E-03	1.57E-09	2.94E-09	3.74E-09	4.09E-09
Cm-242	1.58E-08	9.21E-06	6.70E-03	1.44E-08	1.44E-08	1.59E-08	1.59E-08
Cm-243	3.59E-10	2.09E-07	1.52E-04	3.29E-10	3.29E-10	3.62E-10	3.62E-10
Cm-244	4.14E-10	2.41E-07	1.75E-04	2.00E-10	2.41E-10	5.00E-10	5.00E-10
				-95 CI	-67 CI	+67 CI	+95 CI
				(M er	(M er	(M or	(М ог
Fotals	М	µg∕g	kg	g /L)	(L)	s/L)	1/L)
				_			
Pu	1.86E-03 (g/L)	 1.76E+03	0.788 1.28E+03	1.04E-03	1.44E-03	2.28E-03	2.68E-03

				241-SX-10			
		SMM Co	mposite In	ventory Esti	mate		
Physical Properties				-95 CI	-67 CI	+67 C1	+95 CI
Total SMM W	3.45E+06 (kg)	(540 kgal)	_				
Heat Load	5.00 (kW)	(1.71E+04 BTU/hr)		4.67	4.83	5.17	5.34
Bulk Density*	1.69 (g/cc)			1.63	1.66	1.71	1.73
Water wt%†							
TOC wt% C (w	27.3			24.6 0.578	25.8	28.9	30.8
	0.917			0.578	0.744	1.09	1.26
Radiological				-95 CI	-67 Cl	+67 CI	+95 CI
Constituents	CIL	µCl/g	CI	(CVL)	(CI/L)	(CVL)	(CVL)
H-3	2.86E-04	0.170	585	1.46E-04	1.46E-04	2.97E-04	3.11E-04
C-14	4.21E-05	2.50E-02	86.1	1.27E-05	1.27E-05	4.28E-05	4.35E-05
Ni-59	2.72E-06	1.61E-03	5.57	1.34E-06	L34E-06	2.79E-06	2.86E-06
Ni-63	2.67E-04	0.158	546	1.30E-04	1.30E-04	2.74E-04	2.81E-04
Co-60	4.72E-05	2.80E-02	96.5	1.36E-05	1.36E-05	4.82E-05	4.91E-05
Se-79	4.18E-06	2.48E-03	8.55	2.31E-06	2.31E-06	4.86E-06	5.51E-06
Sr-90	0,141	83.3	2.87E+05	0.131	0 136	0.145	0.150
Y-90	0.141	83.4	2.88E+05	7.59E-02	7.59E-02	0.145	0.150
7±-93	2.05E-05	1.22E-02	42.0	1.12E-05	1.12E-05	2 19F-05	2 225-05
Nb-93m	1.49E-05	8.82E-03	30.4	8.31E-06	8.31E-06	1.73E-05	1.95E-05
Tc-99	3.00E-04	0.178	613	1.90E-04	2.44E-04	3.56E-04	
Ru-106	8.59E-09	5.09E-06	1.75E-02	4.24E-09	4.248-09	9.56E-04	4.11E-04 1.04E-08
Cd-113m	8.39E-09		222				
		6.42E-02	418	5.21E-05	5.21E-05	1.29E-04	1.48E-04
Sb-125 Sn-126	2.04E-04	0.121	12.9	5.88E-05	5.88E-05	2.09E-04	2.13E-04
	6.32E-06	3.75E-03	1.18	3.51E-06	3.51E-06	7.34E-06	8.31E-06
1-129	5.78E-07	3.43E-04	6.97	3.66E-07	4.70E-07	6.87E-07	7.93E-07
Cs-134	3.41E-06	2.02E-03	6.54E+05	2.33E-06	2.86E-06	3.96E-06	4.50E-06
Cs-137	0.320	190	6.19E+05	0.285	0.302	0.338	0.355
Ba-137m	0.303	179	3.01E+04	0.245	0.245	0.320	0.336
Sm-151	1.47E-02	8.72	3.01E+04	8.16E-03	8.16E-03	1.71E-02	1.94E-02
Eu-152	5.03E-06	2.98E-03	1.57E+03	2.71E-06	2.71E-06	5.43E-06	5.81E-06
Eu-154	7.69E-04	0.456		3.00E-04	3.00E-04	9.38E-04	1.01E-03
Eu-155	2.99E-04	0.177	610 3.64E-04	1.60E-04	1.60E-04	3.23E-04	3.46E-04
Ra-226	1.78E-10	1.05E-07		1.20E-10	1.20E-10	1.99E-10	2.19E-10
Ra-228	1.90E-07	1.13E-04	0.389 2.31E-03	7.97E-08	1.34E-07	2.56E-07	3.26E-07
Ac-227	1.13E-09	6.71E-07		7.94E-10	7.94E-10	1.25E-09	1.37E-09
Pa-231	5.20E-09	3.08E-06	1.06E-02	3.32E-09	3.32E-09	5.88E-09	6.53E-09
Th-229	4.46E-09	2.64E-06	9.11E-03	2.03E-09	3.22E-09	5.90E-09	7.43E-09
Th-232	1.26E-08	7.49E-06	2.59E-02	6.53E-09	9.52E-09	1.58E-08	1.88E-08
U-232	9.69E-07	5.74E-04	1.98	5.26E-07	7.42E-07	1.23E-06	1.51E-06
U-233	3.71E-06	2.20E-03	7.59	2.02E-06	2.85E-06	4.72E-06	5.79E-06
U-234	1.01E-06	5.97E-04	2.06	9.67E-07	9.91E-07	1.02E-06	1.04E-06
U-235	4.08E-08	2.42E-05	8.33E-02	3.91E-08	4.01E-08	4.15E-08	4.21E-08
U-236	3.19E-08	1.89E-05	6.51E-02	3.07E-08	3.14E-08	3 24E-08	3.28E-08
U-238	1.19E-06	7.03E-04	2.42	1.15E-06	1.17E-06	1.20E-06	1.22E-06
Np-237	1.08E-06	6.42E-04	2.21	7.25E-07	9.00E-07	1.27E-06	1.45E-06
Pu-238	1.76E-06	1.04E-03	3.60	1.34E-06	1.55E-06	1.97E-06	2.18E-06
Pu-239	5,98E-05	3.54E-02	122	4.90E-05	5.43E-05	6.53E-05	7.05E-05
Pu-240	1.02E-05	6.03E-03	20.8	8.17E-06	9.15E-06	1.12E-05	1.22E-05
Pu-241	1.19E-04	7.07E-02	244	9.06E-05	1.05E-04	1.34E-04	1.48E-04
Pu-242	6.57E-10	3.89E-07	1.34E-03	4.86E-10	5.70E-10	7.44E-10	8.28E-10
Am-241	7.17E-05	4.25E-02	147	5.18E-05	6.15E-05	8.19E-05	9.17E-05
Am-243	2.57E-09	1.52E-06	5.24E-03	1.94E-09	2.24E-09	2.93E-09	3.25E-09
Cm-242	1.93E-07	1.14E-04	0.394	9.73E-08	9.73E-08	2.08E-07	2.22E-07
Cm-243	1.79E-08	1.06E-05	3.66E-02	8.80E-09	8.80E-09	1.92E-08	2.05E-08
Cm-244	1.74E-07	1.03E-04	0.356	\$.05E-08	8.05E-08	2.06E-07	2.26E-07
				-95 CI	-67 CI	+67 CI	+95 CI
		2011년 1월		(M er	(M or	(M or	(M or
Totals	м	P#/8	kg	1/L)	1 /L)	g/L)	g/L)
Pu	7.47E-04 (g/L)		1.53	5.44E-04	6.44E-04	8.51E-04	9.50E-04
υ	1.15E-02	1.62E+03	5.59E+03	1.10E-02	1.13E-02	1.17E-02	1.19E-0

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

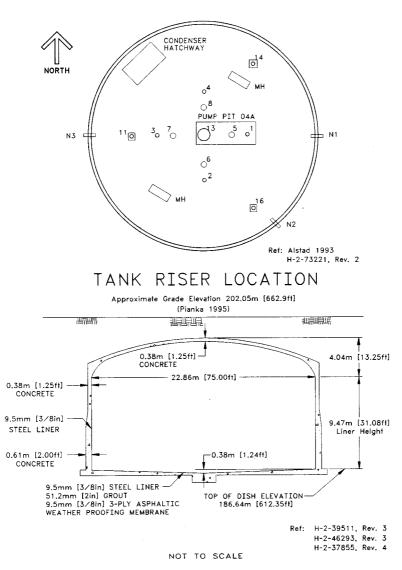
				241-SX-10	13		
		Tot	al Inventory	Estimate*			
Physical Properties				-95 CI	-67 Cl	+67 CI	+95 CI
Total Waste	4.18E+06 (kg)	(652 kgal)					
Heat Load	6.52 (kW)	(2.23E+04 BTU/hr)		6.18	6.35	6.69	6.85
Bulk Density†	1.69 (g/cc)		_	1.64	1.67	3.71	1.73
Water wt%†	28.5			26.2	27.2	30.1	31.8
TOC wt% C (w	0 758			0,477	0.615	0.901	31.8
100 11/00 (11	1 861.0			0,477	0.013	0.901	1.04
Radiological				-95 CI	-67 CI	+67 Cl	+95 CI
Constituents	CIAL	µC1/g	CI	(CVL)	(CI/L)	(CI/L)	(CI/L)
н-3	2.72E-04	0.161	672	1.56E-04	1.56E-04	2.82E-04	2.93E-04
C-14	3.67E-05	2.17E-02	90.6	1.24E-05	1.24E-05	3.73E-05	3.78E-05
Ni-59	3.55E-06	2.10E-03	8.76	2.37E-06	2.37E-06	3.61E-06	3.66E-06
Ni-63	3.46E-04	0.204	854	2.31E-04	2.31E-04	3.52E-04	3.57E-04
Co-60	4.07E-05	2.41E-02	101	1.29E-05	1.29E-05	4.15E-05	4.23E-05
Se-79	4.56E-06	2.69E-03	11.2	3.00E-06	3.00E-06	5.12E-06	5.66E-06
Sr-90	0.172	102	4.24E+05	0.164	0.168	0.176	0.179
Y-90	0.172	102	4.24E+05	0.118	0.118	0.176	0.180
Zr-93	2.22E-05	1.31 E-02	54.7	1.44E-05	1.44E-05	2.50E-05	2.77E-05
Nb-93m	1.65E-05	9.76E-03	40.8	1.13E-05	1.11E-05	1.85E-05	2.04E-05
Tc-99	2.63E-04	0.155	648	1.72E-04	2.16E-04	3.09E-04	3.54E-04
Ru-106	7.48E-09	4.42E-06	1.85E-02	3.88E-09	3.88E-09	8.29E-09	9.02E-09
Cd-113m	9.71E-05	5.74E-02	240	5.05E-05	5.05E-05	1.14E-04	1.30E-04
Sb-125	1,75E-04	0.103	432	5.45E-05	5.45E-05	1.79E-04	1.83E-04
Sn-126	6.91E-06	4.09E-03	17.1	4.58E-06	4.58E-06	7.76E-06	8.57E-06
1-129	5.06E-07	2.99E-04	1.25	3.30E-07	4.16E-07	5.96E-07	6.84E-07
Cs-134	3.18E-06	1.88E-03	7.85	2.29E-06	2.46E-06	3.64E-06	4.09E-06
Cs-137	0.317	187	7.81E+05	0.288	0.302	0.331	0.346
Ba-137m	0.299	177	7.39E+05	0,204	0,204	0.313	0.327
Sm-151	1.61E-02	9.51	3.97E+04	1.07E-02	1.07E-02	1.81E-02	2.00E-02
Eu-152	5.66E-06	3.35E-03	14.0	3.74E-06	3,74E-06	5.99E-06	6.31E-06
Eu-154	6.76E-04	0.399	1.67E+03	2.87E-04	2.87E-04	8.16E-04	8.72E-04
Eu-155	3.23E-04	0.191	797	2.08E-04	2.08E-04	3.43E-04	3.62E-04
Ra-226	2.37E-10	1.40E-07	5.86E-04	1.55E-10	1.55E-10	2.67E-10	2.95E-10
Ra-228	1.60E-07	9.46E-05	0.395	6.85E-08	1.13E-07	2.14E-07	2.72E-07
Ac-227	1.44E-09	8.51E-07	3.55E-03	9.60E-10	9.60E-10	1.61E-09	1.73E-09
Pa-231	5.94E-09	3.51E-06	1.46E-02	4.04E-09	4.04E-09	6 50E-09	7 04E-09
Th-229	3.75E-09	2.22E-06	9.26E-03	1.74E-09	2.72E-09	4.94E-09	6.21E-09
ть-232	1.05E-08	6.21E-06	2.59E-02	5.44E-09	7.92E-09	1.31E-08	1.56E-08
U-232	8.14E-07	4.81E-04	2.01	4.46E-07	6.26E-07	1.03E-06	1.26E-06
U-232	3.12E-06	1.84E-03	7,70	1.71E-06	2.40E-06	3.95E-06	4.84E-06
U-235	1.04E-06	6.12E-04	2.55	9.24E-07	9.78E-07	1,10E-06	1.16E-06
U-235	4.19E-08	2.47E-05	0,103	3.74E-08	3.95E-08	4.44E-08	4.69E-08
U-235	3.47E-08	2.01E-05	8.56E-02	3 03E-08	3 25E-08	3,70E-08	3.93E-08
U-238	1.16E-06	6.84E-04	2.86	1.06E-06	1.11E-06	1.212-06	1.27E-06
	9.59E-07	5.67E-04	2.37	6.63E-07	8.07E-07	1.11E-06	1.26E-06
Np-237	9.39E-07	1.14E-03	4.76	1.58E-06	1.75E-06	2 11E-06	2.28E-06
Pu-238		4.06E-02	169	5.95E-05	6.40E-05	7.34E-05	7.79E-05
Pu-239 Pu-240	6.87E-05	6.76E-02	28.2	9.78E-06	1.06E-05	1.23E-05	1.31E-05
			306	9.78E-06	1.06E-03	1.36E-04	1.48E-04
Pu-241	1.24E-04	7.32E-02	1.66E-03		6.00E-10	7.45E-10	8.14E-10
Pu-242	6.72E-10	3.97E-07	192	5.31E-10	6.00E-10	7.45E-10 8.62E-05	9.43E-05
Am-241	7.78E-05	4.59E-02	6.69E-03	6.13E-05			
Am-243	2.71E-09	1.60E-06	0.400	2.19E-09	2.44E-09	3.01E-09	3.28E-09
Cm-242	1.62E-07	9.59E-05	0.400 3.67E-02	8.33E-08	8.33E-08	1.75E-07	1.87E-07
Cm-243	1.49E-08	8.79E-06	0.356	7.35E-09	7.35E-09	1.60E-08	1.71E-08
Cm-244	1.44E-07	8.53E-05	U, 3 5 6	6.68E-08	6.68E-08	1.71E-07	1.68E-07
				-95 CI	-67 CI	+67 C1	+95 Cl
				(M or	(M or	(M or	(Mor
Totals	M 9.39E-04 (g/L)	ME/E	2.32	<u>()</u>	g/L) 8.53E-04	1.02E-03	1.11E-03
Pu				7.70E-04			

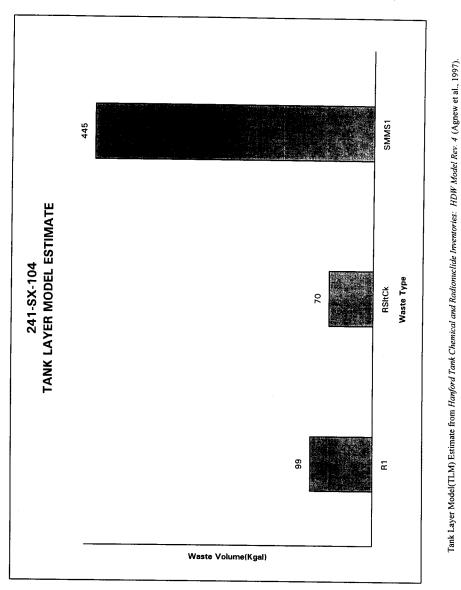
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.



TANK 241-SX-104 SUMMARY

TANK H	STORY	TANK DES	CRIPTION		
Entered Service	1st qtr 1955	Diameter	75 ft		
Removed from Service	-	Bottom Shape	Dish		
Inactive	1980	Nominal Capacity	1,000,000 gal		
Watch Lists	Hyrdogen	Cascade Tank	to 241-SX-105		
Integrity	Assumed Leaker	Total Risers	12		
Assumed Leaker	1988	WASTE VOLUME	(HANLON 1996i)		
Interim Stabilization (IS)	-	Total Waste Volume	614,000 gal		
Partial Interim Isolation (PI)	June 1985	Waste Type	DSSF		
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	201,000 gal		
TENTATIVELY AV	Y AVAILABLE RISERS Pumpable Liquids 195				
Riser Number(s)	Size	Saltcake	478,000 gal		
3, 11	4 in	Sludge	136,000 gal		
7	12 in	Supernatant	0 gal		
TANK TEM	PERATURE	INTERIOR PHOTOGRAPHS			
Average Tank Temperature	145°F	Date	Sept 9, 1988		
Maximum Temperature	200°F	Montage Number	94030320-2CN		
Date	Aug 1, 1988	Photo Set Number	88090675		
Elevation from tank bottom	0.34 ft	WASTE SUR	FACE LEVEL		
Riser Number	2	Devices	Manual ENRAF		
Minimum Temperature	72.3°F	Max Level	235.2 in		
Date	April 1, 1993	Date	July 29, 1991		
Elevation from tank bottom	30.55 ft	Min Level	219.52 in		
Riser Number	2	Date	Sept 17, 1996		


٠


WHC-SD-WM-ER-352, Rev. 1

-191-

241-SX-104

-193-

H	IDW	Model	Rev.	4

HDv Single-Shell Tank 241-SX-104							
Physical		TLM Solids	Composite	inventory l	stimate*		
Properties				-95 CI	67.01	+67 CI	
Total TLM Wa	1.11E+06 (kg)	(169 kgal)		1.5 01	-0/ 01	- 10/ CI	1750
Heat Load	3.31 (kW)	(1.13E+04 BTU/hr)		2.64	3.03		
Bulk Density	1.74 (g/cc)	(1.152.04 810/ш)		1.59		3.49	3.5
Void Fraction	0.639				1.61	1.94	2.0
Water wt%	30 1			0.360	0.452	0.757	0.76
TOC wt% C (w	2.14E-03			13.9	19.1	39.1	40
				1.84E-03	1.92E-03	2.32E-03	2.50E-C
Chemical				-95 CI	-67 CI	+67 CI	+95 C
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/l
Na+	10.3	1.37E+05	1.52E+05	7.36	7.66	14.2	16
Al3+	5.50	8.53E+04	9.49E+04	4.69	4.93	6.12	67
Fe3+ (total Fe)	0.601	1.93E+04	2.15E+04	0.590	0.595	0.606	0.61
Cr3+	0.377	1.13E+04	1.25E+04	0.235	0,303	0.646	0.96
Bi3+	2.85E-06	0.342	0.380	2.40E-06	2.62E-06	3.14E-06	3.45E-0
La3+	7.01E-12	5.60E-07	6.23E-07	6.14E-12	6.63E-12	7.75E-12	8.52E-1
Hg2+	4.47E-07	5.16E-02	5.74E-02	3.96E-07	4.21E-07	4.92E-07	5.40E-0
Zr (as ZrO(OH)2	2.84E-07	1.49E-02	1.66E-02	2.61E-07	2.72E-07	2.98E-07	3.21E-0
Pb2+	7.09E-05	8.45	9,39	3.80E-05	5.40E-05	8.79E-05	1.05E-0
Ni2+	3.59E-02	1.21E+03	1.35E+03	2.77E-02	3.23E-02	3.87E-02	3.82E-0
Sr2+		0	0	2.772-02	3.232-02	3.87E-02	
Mn4+	2.07E-05	0,655	0,728	1.48E-05	1.77E-05	2.38E-05	2.68E-0
Ca2+	0.161	3.70E+03	4.12E+03	0.117	0.138	0.183	2.082-0
K+	1.98E-02	446	496	1.40E-02	1.63E-02	2.22E-02	2.23E-0
OH-	22.7	2.22E+05	2 47E+05	1.402-02	20.2	2.22E-02 25.4	
NO3-	5.27	1.88E+05	2.09E+05	2.21	20.2	10.1	28.
NO2-	1.63	4.31E+04	4.79E+04	0.852	1.12	2.03	12.
032-	0.163	5.62E+03	6.24E+03	0.119	0.140	0.185	2.0
PO43-	1.846-04	10.1	11.2	1.71E-04	1.79E-04		
5042-	2.28E-02	1.26E+03	1.40E+03	1.74E-02	1.96E-04	1.92E-04	2.08E-0
Si (as SiO32-)	5.86E-02	947	1.05E+03	3.88E-02			2.59E-02
F-	1.47E-04	1.60	1.78		5.11E-02	6.61E-02	7.34E-02
7.	8 55E-02	1.74E+03	1946+01	1.25E-04	1.38E-04	1.61E-04	1.74E-0
	1.52E-04	16.5	1.542103	5.87E-02	6.94E-02	9.63E-02	0.14
DTA4-	5.91E-06	0.979	1.09	1.47E-04	1.49E-04	1.58E-04	1.72E-04
EDTA3-	4.918-06	0.774	0.860	4.16E-06	5.11E-06	6.96E-06	8.00E-00
	4.512-00	0.774	0.800	1.57E-06	3.37E-06	6.55E-06	8.15E-06
lycolate-	2.14E-04	9.24	10.3				
cetate-	2.14E-04	9.24	0.839	1.16E-04	1.69E-04	2.66E-04	3.16E-04
xalate2-	9.18E-12	4.65E-07	0.839 5.17E-07	2.15E-05	2.19E-05	2.36E-05	2.52E-05
DBP	9.18E-12 1.35E-04			8.14E-12	8.65E-12	1.01E-11	1.11E-11
sutanoi	1.35E-04	16.3	18.1	1.26E-04	1.31E-04	1.45E-04	1.57E-04
suunoi	1.358-04	5.74	6.38	1.26E-04	1.31E-04	1.45E-04	1.57E-04
				5.33E-02	6.91E-02	0,173	0.181
vH3 e(CN)64-	0.165 0	1.61E+03 0	1.79E+03 0	5.33E-02 0	6.91E-02 0	0,173 0	

		Singl	e-Shell Tan	k 241-SX-1	04		
		SMM C	omposite In	ventory Esti	mate		4.25 1.74 31.0 1.15 +95 CI (mole/L 17.5
Physical							
Properties	n pana 1983		an antar shi	-95 CI	-67 CI	+67 CI	+95 CI
Total SMM W	2.85E+06 (kg)	(445 kga!)					_
Heat Load	4.05 (kW)	(1.38E+04 BTU/hr)		3.80	3.93	4.17	4.29
Bulk Density*	1.69 (g/cc)			1.64	1.67	1.72	1.74
Water wt%	27.3			24.5	25.7	29.0	31.0
TOC wt% C (w	0.859			0.568	0.711	1.01	
Chemical				-95 CI	-67 CI	+67 C1	00000
Constituents	mole/L	ppm	4	(mole/L)	(mole/L)	(mole/L)	(mole/L
Ne+	16.3	2.21E+05	6.30E+05	14.8	15.5	16.9	17,5
Al3+	1.92	3.06E+04	8.71E+04	1.78	1.85	2.00	2.06
Fe3+ (total Fe)	1.27E-02	418	1.19E+03	1.03E-02	1.14E-02	1.39E-02	1.51E-02
Cr3+	0.170	5.22E+03	1.49E+04	0.143	0.157	0.175	0.180
Bi3+	1.45E-03	178	509	1.32E-03	1.38E-03	1.51E-03	1.57E-03
La3+	4.57E-05	3.75	10.7	3.31E-05	3.92E-05	5.21E-05	5.83E-05
Hg2+	1.02E-05	1.21	3.46	9.58E-06	9.95E-06	1.04E-05	1.05E-05
Zr (m ZrO(OH)2	2.64E-04	14.2	40.6	2.41E-04	2.49E-04	2.74E-04	2.87E-04
Р62+	1.15E-03	141	403	9.34E-04	1.04E-03	1.27E-03	1.37E-03
Ni2+	7.39E-03	256	731	7.06E-03	7.22E-03	7.48E-03	7.57E-03
Sr2+	0	0	0	0	0	0	0
Mn4+	4.47E-03	145	413	3.31E-03	3.88E-03	5.06E-03	5.63E-03
Ca2+	3.88E-02	917	2.62E+03	3.53E-02	3.70E-02	4.05E-02	4.22E-02
K+	7.51E-02	1.73E+03	4.94E+03	6.80E-02	7.13E-02	7.89E-02	8.26E-02
он-	11.6	1.16E+05	3.32E+05	10.7	11.1	12.0	12.3
NO3-	5.61	2.06E+05	5.86E+05	5.21	5.45	5.70	
NO2-	2.83	7.68E+04	2.19E+05	2.33	2.56	3.09	3.33
CO32-	0,506	1.79E+04	5.11E+04	0.456	0.480	0.537	0.548
PO43-	0.103	5.76E+03	1.64E+04	8.94E-02	9.41E-02	0.105	0.107
SO42-	0.281	1.60E+04	4.55E+04	0.217	0.248	0.316	
Si (as SiO32-)	9.02E-02	1.50E+03	4.27E+03	7.36E-02	8.18E-02	9.87E-02	
F-	7.09E-02	796	2.27E+03	6.00E-02	6.46E-02	7.63E-02	
CI-	0.280	\$.86E+03	1.67E+04	0.252	0.266	0.293	
C6H5O73-	3.40E-02	3.80E+03	1.08E+04	3.12E-02	3.26E-02	3.54E-02	
EDTA4-	1.78E-02	3.03E+03	8.63E+03	5.58E-03	1.15E-02	2.41E-02	
HEDTA3-	3.29E-02	5.33E+03	1.52E+04	8.51E-03	2.04E-02	4.55E-02	5.77E-02
glycolate-	0.107	4.74E+03	1.35E+04	6.95E-02	8.78E-02	0,126	0.144
cetate-	8.51E-03	296	846	6.97E-03	7.72E-03	9.29E-03	1.00E-02
oxalate2-	5.98E-05	3.11	8.87	5.30E-05	5.63E-05	6.33E-05	6.66E-05
DBP	2.25E-02	2.80E+03	7.98E+03	1.85E-02	2.05E-02	2.46E-02	2.65E-02
outanol	2.25E-02	986	2.81E+03	1.85E-02	2.05E-02	2.46E-02	2.65E-02
NH3	9.60E-02	963	2.75E+03	7.73E-02	8.46E-02	0.110	0.127
Fe(CN)64-	0	0	0	0	0.102.02	0.110	0.127

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HNF-SD-WM-ER-352, Rev. 1

HDW	Model	Rev.	4

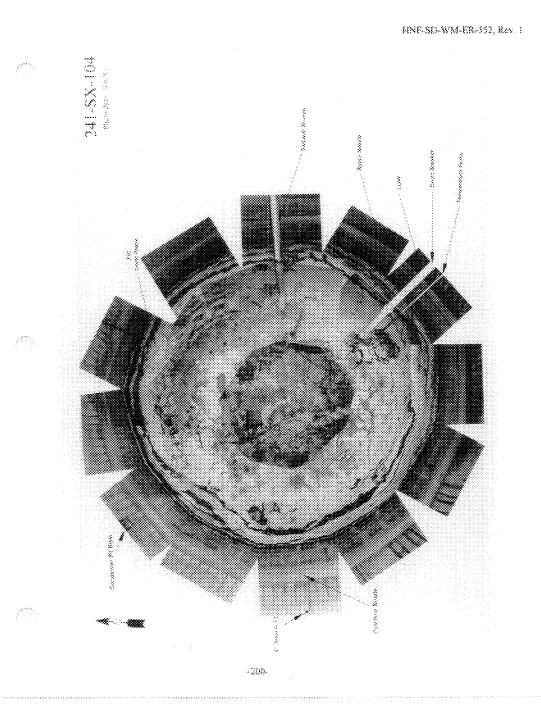
		Simul	Chall Tan	k 241-SX-1	0.4		Idel Rev. 4
	··			y Estimate*			
Physical		10	a inventor	y Esumate.	- <u></u>		-2433-113
Properties				-95 CI	-67 CI		
Total Waste	2015101 0-1			-95 CI		*0/ CI	+95 CI
Heat Load	3.96E+06 (kg)	(614 kgal)				<u> </u>	
Bulk Density†	7.36 (kW)	(2.52E+04 BTU/hr)		6.59	7.03	7.61	7.60
Duk Deilsity				1.64	1.66	1.77	1.78
Water wt%†	28.1			23.6	24.4	30.9	32.6
TOC wt% C (w	0.619			0.409	0.512	0.726	0.831
Chemical				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	1.97E+05	kg 7.82E+05		(mole/L)		
Al3+	2.90	4 59E+04	1.82E+05	13.3	13.7	15.9	16.1
Fe3+ (total Fe)	0.175	4.39E+04 5.71E+03	2.26E+04	2.66	2.75	3.07	3 25
Cr3+	0.173	5.71E+03 6.92E+03	2.26E+04	0.172	0.173	0.176	0.177
Bi3+	1.05E-03	6.92E+03	2.74E+04 509	0.184	0.207	0.292	0.368
BI3+ La3+		2.69		9.57E-04	1.00E-03	1.09E-03	1.14E-03
	3.31E-05	0.887	10.7	2.40E-05	2.84E-05	3.78E-05	4.23E-05
Hg2+	7.54E-06		3.52	7.06E-06	7.34E-06	7.65E-06	7.76E-06
Zr (as ZrO(OH)2	1.91E-04	10.2	40.6	1.75E-04	1.81E-04	1.98E-04	2.08E-04
Pb2+	8.56E-04	104	412	6.96E-04	7.74E-04	9.37E-04	1.01E-03
Ni2+	1.53E-02	525	2.08E+03	1.30E-02	1.43E-02	1.60E-02	1.58E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	3.24E-03	104	414	2.40E-03	2.81E-03	3.67E-03	4.08E-03
Ca2+	7.23E-02	1.70E+03	6.73E+03	6.09E-02	6.69E-02	7.77E-02	8.28E-02
K+	5.99E-02	L.37E+03	5.44E+03	5.47E-02	5.71E-02	6.27E-02	6.53E-02
он-	14.7	1.46E+05	5.79E+05	13.5	13.9	15.4	16.2
NO3-	5.52	2.01E+05	7.95E+05	4.57	4.66	6.80	7.40
NO2-	2.50	6.73E+04	2.67E+05	2.14	2.30	2.68	2.86
CO32-	0.411	1.45E+04	5.74E+04	0,375	0.393	0.434	0.442
PO43-	7.46E-02	4,15E+03).65E+04	6.48E-02	6.82E-02	7.63E-02	7.79E-02
SO42-	0.210	1.18E+04	4.69E+04	0.164	0.186	0.235	0.257
Si (as SiO32-)	8.15E-02	1.34E+03	5.32E+03	6.95E-02	7.54E-02	8.77E-02	9.36E-02
F-	5.15E-02	573	2.27E+03	4.35E-02	4.69E-02	5.53E-02	5.84E-02
CI-	0.227	4.70E+03	1.87E+04	0.206	0.216	0.236	0.244
C6H5O73-	2.47E-02	2.74E+03	1.08E+04	2.27E-02	2.36E-02	2.57E-02	2.67E-02
EDTA4-	1.29E-02	2.18E+03	8.63E+03	4.05E-03	8.37E-03	1.74E-02	2.19E-02
HEDTA3-	2.39E-02	3.83E+03	1.52E+04	6.17E-03	1.48E-02	3.30E-02	4.19E-02
glycolate-	7.76E-02	3.41E+03	1.35E+04	5.04E-02	6.37E-02	9.15E-02	0.105
acetate-	6.17E-03	214	847	5.04E-02	5.60E-03	9.13E-02 6.74E-03	7.29E-03
oxalate2-	4.34E-05	2.24	8.87	3.84E-05	4.08E-05	6.74E-03	4.83E-05
DBP	1.64E-02	2.02E+03	8.00E+03	3.84E-05			
butanol	1.64E-02	711	2.82E+03		1.49E-02	1.78E-02	1.93E-02
	1.046-02	///	a.84E-03	1.34E-02	1.49E-02	1.78E-02	1.93E-02
NH3	0,115	1.14E+03	4.54E+03				
Fe(CN)64-	0,113	1.1412+03	4.346703	8.14E-02	8.72E-02	0.125	0.138
		v are assigned by Ta		0	0	0	0

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.	4

		Singl	e-Shell Tan	k 241-SX-1	04		lodel Rev.
		TLM Solids					
Physical			Composite	invenier y c	Stilling.	A Denson	140 contras
Properties Total TLM Wa				-95 CI	-67 CI	+67 C1	+95 C
Heat Load	1.11E+06 (kg)	(169 kgal)					
	3.31 (kW)	(1.13E+04 BTU/hr)		2.64	3.03	3.49	3.5
Bulk Density	1.74 (g/cc)			1.59	1.61	1.94	2.0
Void Fraction	0.639			0.360	0 452	0.757	0.76
Water wt%	30.1	_		13.9	19.1	39.1	40.
TOC wt% C (w	2.14E-03			1.84E-03	1.92E-03	2.32E-03	2.50E-0
Radiological Constituents	CVL	μCl/g	a	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI	+95 C
H-3	1.09E-04	6.30E-02	70.0	1.71E-05	1.71E-05	(CI/L)	(CVL)
C-14	6.06E-06	3.49E-03	3.88	1.33E-06	1.33E-06	6.54E-04	1.23E-0 6.69E-0
Ni-59	1.15E-05	6.63E-03	7 37	8.70E-06		-	
			695		8.70E-06	1.23E-05	1.22E-0
Ni-63	1.09E-03	0.625	3.06	8.13E-04	8.13E-04	1.16E-03	1.15E-0
Co-60	4.79E-06	2.75E-03	2.02	5.23E-07	5.23E-07	4.97E-06	5.36E-0
Se-79	3.16E-06	1.82E-03	4.17E+05	2.81E-07	2.81E-07	3.26E-06	7.07E-0
Sr-90	0.653	376		0.497	0.585	0.705	0.71
Y-90	0.653	376	4.18E+05	0.497	0.544	0.705	0.71
Zr-93	1.50E-05	8.60E-03	9.56	1.33E-06	1.33E-06	1.54E-05	3.14E-0
Nb-93m	1.21E-05	6.99E-03	7.77	1.09E-06	1.09E-06	1.25E-05	2.98E-0
Tc-99	4.61E-05	2.65E-02	29.5	3.79E-05	4.12E-05	4.94E-05	5.20E-0
Ru-106	9.87E-10	5.68E-07	6.31E-04	1.46E-12	1.46E-12	1.03E-09	1.12E-0
Cd-113ms	2.33E-05	1.34E-02	14.9	4.10E-06	4.10E-06	4.67E-05	4.52E-0
Sb-125	1.60E-05	9.21E-03	10.2	7.69E-07	7.69E-07	1.67E-05	1.81E-0
Sn-126	4.85E-06	2.79E-03	3.10	4.33E-07	4.33E-07	5.00E-06	1.11E-0
1-129	8.77E-08	5.05E-05	5.61E-02	7.19E-08	7.82E-08	9.40E-08	9.90E-0
Св-134	9.69E-07	5.57E-04	0.620	1.59E-08	1.59E-08	1.01E-06	1.08E-0
Cs-137	0,167	96.1	1.07E+05	0.143	0,152	0.177	0.18
Ba-137m	0.158	90.9	1.01E+05	3.10E-02	3.10E-02	0.167	0.17
Sm-151	1.13E-02	6.48	7.21E+03	1.00E-03	1.00E-03	1.16E-02	2.57E-0
Eu-152	7.77E-06	4.47E-03	4.97	4.10E-06	4.10E-06	7.81E-06	7.84E-0
Eu-154	1.15E-04	6.59E-02	73.3	1.26E-05	1.26E-05	1.19E-04	1.47E-0
Eu-155	3.80E-04	0.219	243	1.94E-04	1.94E-04	3.82E-04	3.83E-0-
Ra-226	8.27E-10	4.76E-07	5.29E-04	2.81E-10	5.49E-10	1.11E-09	1.37E-0
Ra-228	6.53E-09	3.75E-06	4.17E-03	5.43E-15	5.43E-15	6.59E-09	6.66E-0
Ac-227	3.93E-09	2.26E-06	2.51E-03	1.32E-09	2.31E-09	5.55E-09	7.10E-0
Pa-231	4.70E-09	2.71E-06	3.01E-03	4.208-10	4.20E-10	5.48E-09	1.41E-08
Th-229	1.57E-10	9.06E-08	1016-04	1.04E-12	1.04E-12	3.48E-09	1.61E-10
Th-223	8.74E-11	5.03E-08	5.59E-05	3.46E-16	3.46E-16	1.39E-10	1.33E-10
U-232	2.92E-08	3.03E-08	1.86E-02	3.40E-16			
U-232 U-233			7 145-02	1.052.00	1.90E-08	4.15E-08	5.53E-0
	1.12E-07	6.42E-05	0.382	3.94E-08	7.28E-08	1.59E-07	2.12E-0
U-234	5.97E-07	3.43E-04	1.55E-02	3.01E-07	4.45E-07	7.61E-07	9.27E-0
U-235	2.43E-08	1.40E-05	1.33E-02	1.23E-08	1.81E-08	3.10E-08	3.77E-0
U-236	2.29E-08	1.32E-05	0.341	1.11E-08	1.69E-08	2.92E-08	3.54E-08
U-238	5.33E-07	3.07E-04		2.72E-07	3.98E-07	6.79E-07	8.27E-0
Np-237	2.21E-07	1.27E-04	0.[4]	1.68E-07	1.89E-07	2.42E-07	2.49E-0
Pu-238	4.85E-06	2.79E-03	3,10	3.76E-06	4.29E-06	5.41E-06	5.94E-0
Pu-239	3.08E-04	0.177	197	2.30E-04	2.68E-04	3.48E-04	3.86E-04
Pu-240	4.48E-05	2.58E-02	28.7	3.36E-05	3.91E-05	5.05E-05	5.60E-0
Pu-241	2.83E-04	0.163	181	2.17E-04	2.49E-04	3.16E-04	3.49E-0-
Pu-242	1.33E-09	7.67E-07	8.53E-04	1.03E-09	1.18E-09	1.49E-09	1.63E-0
Am-241	5.31E-05	3.05E-02	34.0	3.22E-05	4.65E-05	6.01E-05	1.32E-0-
Am-243	1.59E-09	9.13E-07	1.02E-03	7.54E-10	1.38E-09	1.74E-09	2.33E-0
Cm-242	9.49E-08	5.46E-05	6.07E-02	9.29E-08	9.37E-08	9.57E-08	9.57E-0
Cm-243	2.17E-09	1.25E-06	1.39E-03	2.13E-09	2.15E-09	2.19E-09	2.19E-0
Cm-244	1.66E-09	9.57E-07	1.06E-03	2.60E-10	8.20E-10	2.23E-09	2.23E-0
				-95 CI	-67 CI	+67 CI	+95 CI
				(M er	(M or	(M or	(M or
Fotals	м	HE/E	kg	#/L)	#/L)	g/L)	∎/L)
Pu	5.15E-03 (g/L)		3.29	3.84E-03	4.48E-03	5.82E-03	6.45E-0
0	6.60E-03	904	1.01E+03	3.36E-03	4.93E-03	8.42E-03	1.03E-02
-		.04		5.0000	4.730-03	0.74D-03	1.030-02

				241-SX-10							
				entory Esti		<u> </u>					
Physical Properties				-95 CI	-67 CI	+67 Cl	+95 CI				
Total SMM W	2.85E+06 (kg)	(445 kgal)					_				
Heat Load	4.05 (kW)	(1.38E+04 BTU/hr)		3.80	3.93	4.17	4.29				
Bulk Density*	1.69 (g/cc)		1	1.64	1.67	1.72	1.74				
Water wt%†	27.3		_	24.5	25.7	29.0	31.0				
TOC wt% C (w	0.859	_		0 568	0,711	1.01	1.15				
Radiological Constituents	CVL	µCi/g	a	-95 CI (CVL)	-67 CI (CI/L)	+67 CI (CI/L)	+95 CI (CVL)				
H-3	2.96E-04	0.175	498	1.48E-04	1.48E-04	3.05E-04	3.17E-04				
C-14	4.32E-05	2.55E-02	72.8	1.23E-05	1.23E-05	4.38E-05	4.44E-05				
Ni-59	2.73E-06	1.61E-03	4.60	1.28E-06	1.28E-06	2.80E-06	2.88E-06				
Ni-63	2.68E-04	0.158	451	1.24E-04	1.24E-04	2.75E-04	2.82E-04				
Co-60	4.81E-05	2.84E-02	B 1.0	1.27E-05	1.27E-05	4.89E-05	4.97E-05				
Se-79	4.23E-06	2.50E-03	7.12	2.25E-06	2.25E-06	4.94E-06	5.63E-06				
Sr-90	0.141	83.4	2.38E+05	0.131	0.136	0.146	0.151				
Y-90	0.141	83.4	2.38E+05	7.30E-02	7.30E-02	0.146	0.151				
Zr-93	2.07E-05	1.22E-02	34.9	1.09E-05	1.09E-05	2.43E-05	2.77E-05				
Nb-93m	1.50E-05	8.89E-03	25.3	8.14E-06	8.14E-06	1.76E-05	2.00E-05				
Tc-99	3.08E-04	0.182	518	1.92E-04	2.49E-04	3.67E-04	4.24E-04				
Ru-106	8.55E-09	5.05E-06	1.44E-02	3.98E-09	3.98E-09	9.58E-09	1.05E-08				
Cd-113m	1.09E-04	6.45E-02	184	5.00E-05	5.00E-05	1.31E-04	1.51E-04				
Sb-125	2.07E-04	0.122	349	5.40E-05	5.40E-05	2.11E-04	2.15E-04				
Sn-126	6.39E-06	3.77E-03	10.8	3.43E-06	3.43E-06	7.46E-06	8.49E-06				
-129	5.93E-07	3.50E-04	0,999	3.70E-07	4.79E-07	7.08E-07	8.19E-07				
Cs-134	3.10E-06	1.83E-03	5.22	2.18E-06	2.60E-06	3.57E-06	4.04E-06				
Cs-137	0.311	183	5.23E+05	0.251	0.295	0.326	0.341				
Ba-t37m	0.294	174	4.95E+05 2.51E+04	0.228	0.228	0.308	0.322				
Sm-151	1.49E-02	8.79	2.51E+04 8.27	7.97E-03	7.97E-03	1.74E-02	1.98E-02				
Eu-152	4.91E-06	2.90E-03	8.27 1.31E+03	2.46E-06	2.46E-06	5.25E-06	5.58E-06				
Eu-154	7.76E-04	0.458	489	2.82E-04	2.82E-04	9.54E-04	1.03E-03				
Eu-155 Ra-226	2.90E-04	0.171	3.00E-04	1.45E-04	1.45E-04	3.11E-04 2.00E-10	3.31E-04				
	11.000 10	1.05E-07	0.285	1.17E-10	1.17E-10	1.000	2.22E-10				
Ra-228 Ac-227	1.69E-07	9.98E-05 6.66E-07	1 90E-03	7.18E-08 7.72E-10	1.19E-07 7.72E-10	2.27E-07 1.26E-09	2.88E-07				
	1.13E-09		1.76E-03			1.26E-09 5.91E-09	1.38E-09				
Pa-231 Th-229	3.97E-09	3.07E-06 2.35E-06	6.69E-03	3.23E-09 1.84E-09	3.23E-09 2.88E-09	5.91E-09 5.24E-09	6.60E-09 6.59E-09				
Th-229	3.97E-09	6.74E-06	1.92E-02	6.04E-09	2.88E-09 8.67E-09	3.24E-09	0.59E-09				
U-232	8.71E-08	5.14E-06	1.47	4.81E-07	6.72E-07	1.42E-06	1.35E-06				
U-232	3.34E-06	1.978-03	5.63	1.85E-06	2.58E-06	4.22E-06	5.17E-06				
U-234	9.90E-07	5.84E-04	1.67	9.52E-07	9.71E-07	1.01E-06	1.02E-06				
U-235	4.01E-08	2.37E-05	6.76E-02	3.86E-08	3.93E-08	4.10E-08	4.15E-08				
U-236	3.09E-08	1.83E-05	5.21E-02	2.98E-08	3.04E-08	3.14E-08	3.19E-08				
U-238	1.15E-06	6.80E-04	1.94	1.12E-06	1.13E-06	1.17E-06	1 18E-06				
Np-237	1.12E-06	6.61E-04	1,88	7.42E-07	9.26E-07	1.31E-06	1.50E-06				
Pu-238	1.74E-06	1.03E-03	2.93	1.30E-06	1.51E-06	1.97E-06	2.18E-06				
Pu-239	5.90E-05	3.49E-02	99.4	4.77E-05	5.33E-05	6.48E-05	7.03E-05				
Pu-240	1.00E-05	5.93E-03	16.9	7.94E-06	8.97E-06	1.11E-05	1.22E-05				
Pu-241	1,18E-04	6.97E-02	199	8.79E-05	1.03E-04	1.33E-04	1.48E-04				
Pu-242	6.50E-10	3.84E-07	1.09E-03	4.70E-10	5.58E-10	7.42E-10	8.30E-10				
Am-241	7.14E-05	4.22E-02	120	5.04E-05	6.07E-05	8.22E-05	9.24E-05				
Am-243	2.53E-09	1.49E-06	4.25E-03	1.87E-09	2.18E-09	2.88E-09	3.21E-09				
Cm-242	1.87E-07	1.10E-04	0.315	8.66E-08	8.66E-08	2.00E-07	2.12E-07				
Cm-243	1.74E-08	1.03E-05	2.93E-02	7.80E-09	7.80E-09	1.85E-08	1.97E-08				
Cm-244	1.72E-07	1.02E-04	0.290	7.36E-08	7.36E-08	2.06E-07	2.27E-07				
				-95 CI	-67 C1	+67 CI	+95 CI				
				(M or	(M or	(M or	(M or				
1963 . DE DOMES	M	HE/E	ke	∎/L)	∎⁄L)	g/L)	#/L)				
Totals Pu	7.35E-04 (g/L)		1.24	5 20E-04	6.26E-04	8.44E-04	9.48E-04				

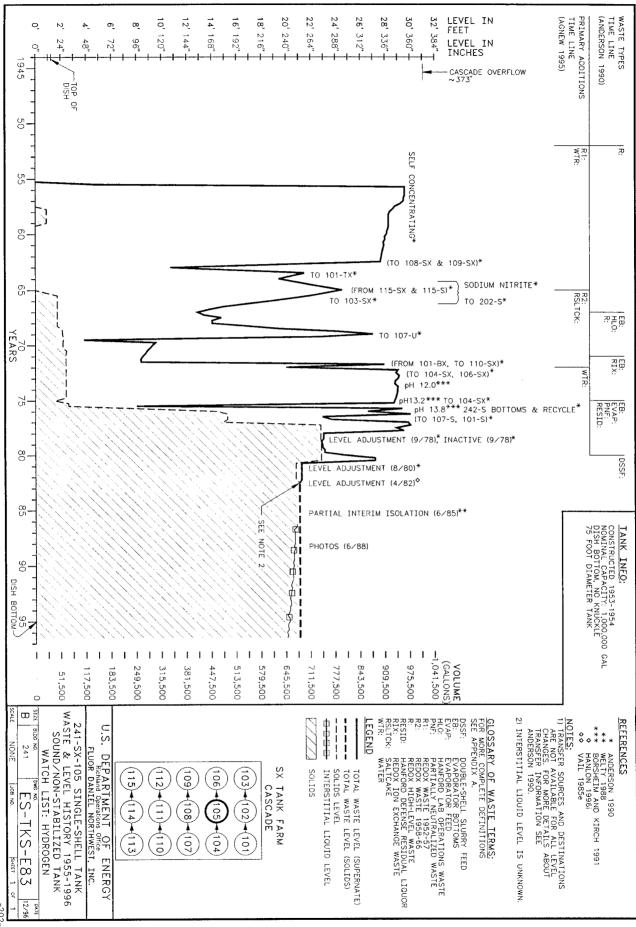

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

.

HDW	Model	Rev.	4

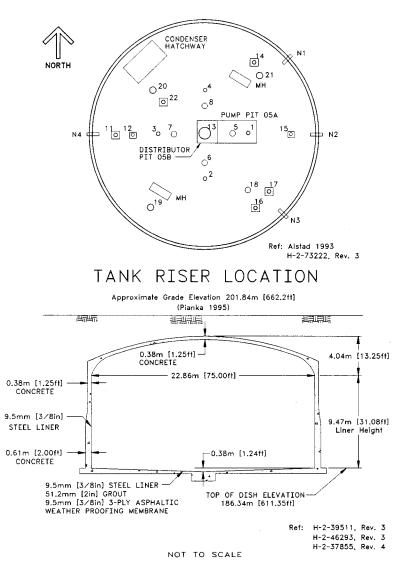
			c-Shell Tan		04		
		То	tal Inventor	y Estimate*			-
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	3.96E+06 (kg)	(614 kgal)					
Heat Load	7.36 (kW)	(2.52E+04 BTU/hr)		6.59	7.03	7.61	7.6
Bulk Density†	1.71 (g/cc)	(1.64	1.66	1.77	1.7
	, y == /			1.01			
Water wt%†	28.1			23.6	24.4	30,9	32
TOC wt% C (w	0.619			0.409	0.512	0,726	0.83
				1.0		0.000.000	0.000
Radiological				-95 CI	-67 CI	+67 Cl	+95 C
Constituents	CI/L	µCl/g	Cl	(CI/L)	(CI/L)	(CVL)	(Cl/L)
H-3	2.44E-04	0.143	568	1.37E-04	1.37E-04	2.51E-04	2.60E-0
C-14	3.30E-05	1.93E-02	76.7	1.06E-05	1.06E-05	3.34E-05	3.38E-0
Ni-59	5.15E-06	3.02E-03	12.0	4.10E-06	4.10E-06	5.37E-06	5.31E-0
Ni-63	4.93E-04	0.289	1.15E+03	3.89E-04	3.89E-04	5.14E-04	5.08E-0
Co-60	3.62E-05	2.12E-02	84.0	1.05E-05	1.05E-05	3.68E-05	3.73E-0
Se-79	3.93E-06	2.31E-03	9,14	2.50E-06	2.50E-06	4.45E-06	4.95E-0
Sr-90	0.282	165	6.55E+05	0.239	0.263	0.296	0.29
Y-90	0.282	165	6.55E+05	0.233	0.233	0.296	0.29
Zr-93	1.91E-05	1.12E-02	44.5	1.20E-05	1.20E-05	2.17E-05	2.42E-0
Nb-93m	1.42E-05	8.35E-03	33.1	9.24E-06	9.24E-06	1.61E-05	1.85E-0
Tc-99	2.36E-04	0.138	548	1.52E-04	1.93E-04	2.79E-04	3.20E-0
Ru-106	6.47E-09	3.79E-06	1.50E-02	3.15E-09	3.15E-09	7.21E-09	7.89E-0
Cd-113m	8.56E-05	5.02E-02	199	4.27E-05	4.27E-05	1.01E-04	1.16E-0
Sb-125	1.55E-04	9.06E-02	359	4.35E-05	4.35E-05	1.57E-04	1.60E-0
Sn-126	5.97E-06	3.50E-03	13.9	3.82E-06	3.82E-06	6.74E-06	7.49E-0
-129	4.54E-07	2.66E-04	1.06	2.92E-07	3.71E-07	5.37E-07	6.18E-0
Cs-134	2.51E-06	1.47E-03	5.84	1.84E-06	1.89E-06	2.86E-06	3.19E-0
Cs-137	0.271	159	6.30E+05	0.249	0.260	0.282	0.29
Ba-137m	0.256	150	5.96E+05	0.174	0.174	0.267	0.27
Sm-151	1.39E-02	8.14	3.23E+04	8.88E-03	8.88E-03	1.57E-02	1.74E-0
Eu-152	5.70E-06	3.34E-03	13.2	3.93E-06	3.93E-06	5.94E-06	6.18E-0
Eu-154	5.94E-04	0.348	1.38E+03	2.36E-04	2.36E-04	7.23E-04	7.75E-0
Eu-155	3.15E-04	0.185	732	2.09E-04	2.09E-04	3.30E-04	3.45E-0
Ra-226	3.57E-10	2.09E-07	8.29E-04	2.25E-10	2.90E-10	4.24E-10	4.89E-1
Ra-228	1.24E-07	7.29E-05	0.289 4.41E-03	5.39E-08	8.83E-08	1.66E-07	2.11E-0
Ac-227	1.90E-09	1.11E-06	4.41E-03 1.18E-02	1.27E-09	1.51E-09	2.29E-09	2.66E-0
Pa-231	5.06E-09	2.97E-06	1.18E-02 6.79E-03	3.61E-09	3.61E-09	5.58E-09	7.33E-0
пь-229	2.92E-09	1.71E-06	8.79E-03	1.38E-09	2.13E-09	3.84E-09	4.82E-0
Th-232	8.30E-09	4.87E-06	1.936-02	4.40E-09	6.31E-09	1.03E-08	1.22E-0
U-232 U-233	6.39E-07	3.75E-04	5.70	3.57E-07	4.95E-07	8.07E-07	9.85E-0
U-233 U-234	2.45E-06	1.44E-03	2.05	1.37E-06	1.90E-06	3.09E-06	3.78E-0
U-234 U-235	8.81E-07	5.17E-04	8.32E-02	8.01E-07	8.40E-07	9.26E-07	9.72E-0
J-235	3.58E-08 2.87E-08	2.10E-05 1.68E-05	6.64E-02	3.25E-08 2.56E-08	3.41E-08	3.76E-08	3.95E-0
J-238	9.81E-07	5.75E-04	2.28	2.56E-08 9.10E-07	2.71E-08 9.44E-07	3.04E-08 1.02E-06	3.21E-0
Np-237	8.72E-07	5.11E-04	2.03	5.99E-07	9.44E-07 7.32E-07	1.02E-06	1.15E-00
Pu-238	2.60E-06	1.52E-03	6.03	2.28E-06	2.43E-06	2.76E-06	2.92E-00
Pu-239	1.28E-04	7.48E-02	296	1.09E-04	1.18E-04	1.37E-04	1.46E-04
Pu-240	1.96E-05	1.15E-02	45.6	1.69E-05	1.82E-04	2.10E-05	2.23E-0
Pu-241	1.63E-04	9.58E-02	380	1.42E-04	1.52E-04	1.75E-04	1.85E-0
Pu-242	8.38E-10	4.91E-07	1.95E-03	7.07E-10	7.71E-10	9.04E-10	9.69E-10
Am-241	6.64E-05	3.89E-02	154	5.12E-05	5.86E-05	7.42E-05	\$.54E-0
Am-243	2.27E-09	1.33E-06	5.27E-03	1.79E-09	2.02E-09	2.53E-09	2.77E-0
Cm-242	1.62E-07	9.48E-05	0.376	8.89E-08	8.89E-08	1.71E-07	1.80E-0
Cm-243	1.32E-08	7.73E-06	3.07E-02	6.25E-09	6.25E-09	1.40E-08	1.48E-08
Cm-244	1.25E-07	7.35E-05	0.291	5.38E-08	5.38E-08	1.50E-07	1.65E-0
				-95 CI	-67 CI	+67 C1	+95 CI
				(M or	(M or	(M or	(M or
Fotals	м	H#/K	kg	∎/L)	g/L)	∎/L)	1/L)
ν	1.95E-03 (g/L)		4.53	1.64E-03	1.79E-03	2.11E-03	2.26E-0
	1.00E-02	1.40E+03	5.55E+03	9.15E-03	9.58E-03	1.05E-02	1.108-0
J	1.00E-02	1.40E+03	5.55E+03	9.15E-03	9.58E-03	1.05E-02	1.10

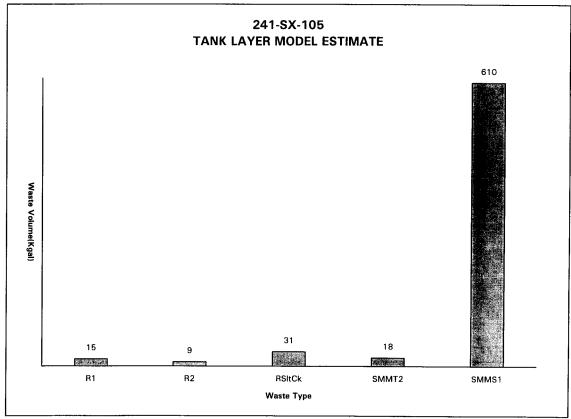
⁴Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.


Entered Service Removed from Service Inactive Watch Lists			***************************************	r.
Removed fram Service Inactive Watch Lists	2nd qtr 1955	E Diameter	75 #	~~~~~
Inactive Watch Lists		Bottom Strape	Dish	~~~~~
Watch Lists	July 1978	Nominal Capacity	1,000,000 gai	
- And wards -	Hyrcogen	Cascade Tank	to 241-SX-108	
	Sound	f Tatai Risers	20	~~~~
Assumed Leaker	***************************************	WASTE VOLUME ((HANLON 1996!)	çaaaay
Interim Stabilization (IS)		Total Waste Volume	683,000 gai	*****
Partial Interim Isolation (PI)	June 1985	Wasts Type	DSSF	00000
Intrusion Prevention (IP)		Drainable Interstitial Liquids	261.000 gai	*****
TENTATIVELY AVAILABLE RISERS	ABLE RISERS	Pumpebie Liquids	288,030 gai	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Riser Number(s)		Sattcake	510,000 gai	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Siudge	73,000 gai	
6, 7	12 m	Supernatant	0 ପୂର୍ଣ	-
TANK TEMPERATURE	£	INTERIOR PHC	ytografhs	r 7
Average Tarik Temperature	158°F	Date	June 15, 1988	~~~~
Msximum Temperature	205°F	i Montage Number	84041033-6CN	-
Date	May 2, 1388	Photo Set Number	8603377	
Elevation from tank bottom	0.21 K	WASTE SURFACE LEVEL	ace level	~~~~
Riser Number	2	Devices	Manusi Enraf	*****
Minimum Temperature	3-77	å Max Level	247.3 in	
Date	Auly 8, 1933	Date	July 15, 1991	
Elevation from tank bofforn	30.25 r	i Min Level	241.67 m	
Riser Kumber	2	Date	Jan 2, 1996	

TANK 241-SX-105 SUMMARY

-201-


HNF-SD-WM-ER-352, Rev. 1


.....



707







Tank Layer Model(TLM) Estimate from Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997).

-204-

#### HNF-SD-WM-ER-352, Rev. 1

HDW	Model	Rev.	4
-----	-------	------	---

						HOWM	odel Rev. 4
				241-SX-10			
		TLM Solids	Composite	Inventory E	stimate*		
Physical							
Properties	<u>1973 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985 - 1985</u>		19. s.	•95 CI	-67 CI	+67 C1	+95 CI
Total TLM Wa	3.60E+05 (kg)	(\$5.0 kgal)					
Heat Load	3.66 (kW)	(1.25E+04 BTU/hr)		3.56	3.62	3.69	3.72
Bulk Density	1.73 (g/cc)			1.57	1.66	1.83	1.86
Void Fraction	0.685			0.555	0.598	0.739	0.793
Water wt%	32.1			23.7	26.5	37.9	43.6
TOC wt% C (w	2.93E-03			2.72E-03	2.78E-03	3.15E-03	3.42E-03
						282. S	
Chemical				0.001101000-004	-67 CI		+95 CI
Constituents	mote/L	ppm	kg			(mole/L)	
Na+	10,5	1.39E+05	5.02E+04	7.71	9,18	12.3	13.2
Al3+	5.18	8.08E+04	2.91E+04	4.08	4.40	6.02	6.88
Fe3+ (total Fe)	0.725	2.34E+04	8.43E+03	0.718	0.722	0.729	0,733
Cr3+	0.491	1.48E+04	5.32E+03	0.298	0.390	0.661	0.875
Bi3+	3.87E-06	0.468	0.168	3.27E-06	3.57E-06	4.27E-06	4.69E-06
La3+	9.54E-12	7.66E-07	2.76E-07	8.36E-12	9.02E-12	1.05E-11	1.16E-11
Hg2+	6.08E-07	7.05E-02	2.54E-02	5.39E-07	5.73E-07	6.70E-07	7,35E-07
Zr (as ZrO(OH)2	3.87E-07	2.04E-02	7.34E-03	3.55E-07	3.70E-07	4.05E-07	4.37E-07
Pb2+	9.65E-05	11.6	4.16	5.17E-05	7.3\$E-05	1.20E-04	1.42E-04
Ni2+	4.16E-02	1.41E+03	508	3.77E-02	3.99E-02	4.29E-02	4.31E-02
Sr2+	0	0	0	0	0	0	0
Mn4+	2.82E-05	0.895	0.322	2.01E-05	2.41E-05	3.23E-05	3.64E-05
Ca2+	0.166	4 32E+03	1.55E+03	0.157	0.171	0.201	0.216
K+	2.30E-02	521	187	2.03E-02	2.14E-02	2.46E-02	2.64E-02
OH-	23.2	2.28E+05	8.22E+04	18.2	19.8	26.9	30.4
NO3-	4.40	1.58E+05	5.68E+04	2.97	2.98	6.63	7.84
NO2-	1.71	4.55E+04	1.64E+04	1.35	1.48	1.90	1.9
C032-	0.189	6.56E+03	2.36E+03	0.160	0.174	0,204	0.21
PO43-	2.51E-04	13.8	4.95	2.33E-04	2.43E-04	2.61E-04	2.84E-0
\$042-	2.85E-02	1.58E+03	570	2.60E-02	2.67E-02	3.05E-02	3.27E-0
Si (as SiO32-)	0.153	2.49E+03	897	7.98E-02	8.13E-02	0.226	0.29
F-	2.00E-04	2.19	0,790	1.70E-04	1.88E-04	2.20E-04	2.37E-0
CI-	9.82E-02	2.01E+03	724	6.34E-02	8.04E-02	0.106	0.12
C6H5O73-	2.06E-04	22.6	8.12	2.00E-04	2.03E-04	2.15E-04	2.34E-0
EDTA4-	8.04E-06	1.34	0.482	5.65E-06	6.96E-06	9.47E-06	1.09E-0
HEDTA3-	6.68E-06	1.06	0.381	2.14E-06	4.59E-06	8.91E-06	1.11E-0
				1			
glycolate-	2.91E-04	12.6	4.55	1.58E-04	2.30E-04	3.62E-04	4.30E-0
acciate-	3.02E-05	1.03	0.372	2.93E-05	2.97E-05	3.21E-05	3.43E-0
oxalate2-	1.25E-11	6.36E-07	2.29E-07	1.0E-11	1.18E-11	1.38E-11	1.51E-1
DBP	1.83E-04	22.2	8.01	1.71E-04	1.78E-04	1.98E-04	2.14E-0
butanol	1.83E-04	7.84	2.82	1.71E-04	1.78E-04	1.98E-04	2.14E-0
				1	1	-	
NH3	0,166	1.64E+03	589	0,115	0,122	0.288	0.17
Fe(CN)64-	0		- 0		0.122	0.200	

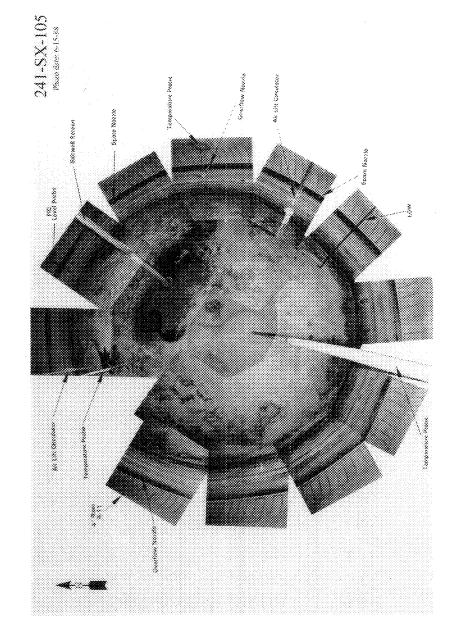
HDW	Model	Rev.	4
-----	-------	------	---

		Sine	e-Shell To	nk 241-SX-1	05		Aodel Rev.
				nventory Es			
Physical			ompointe i	TTCINOTY La	amate	17 6 4 5 7	1.1. T. A.
Properties					(** ***	+67 CI	
Total SMM W	4.06E+06 (kg)	(628 kgal)	1		-0/U	- +0/ CI	-+95 C
Heat Load	5.83 (kW)	(1.99E+04 BTU/hr)		+			
Bulk Density*	1.71 (g/cc)	(1.99E+04 B10/hr)		5,45	5.65	6.00	6.1
				1.65	1.68	1.73	1.7
Water wt%	26.5			23.5	24.9	28.3	30.3
TOC wt% C (w	0.887			0.590	0.736	1.04	J0.2
Chemical				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	CE 1997 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 19			
Na+	16.6	2.23E+05	9.07E+05			(mole/L)	
Al3+	1.95	3 08E+04	1.25E+05	15.0	15.8	17.3	17.9
Fe3+ (sotal Fe)	1.31E-02	427	1.73E+03	1.81	1.88	2.03	2.09
Cr3+	0.173	5.28E+03	2.14E+04	1.05E-02	1.18E-02	1.44E-02	1.56E-02
Bi3+	1.43E-03	176	712	0.146	0.161	0.179	0.184
L#3+	5.31E-05	4.32	17.5	1.31E-03	1.37E-03	1.50E-03	1.55E-03
Hg2+	1.03E-05	1.21	4,90	3.85E-05	4.56E-05	6.06E-05	6.78E-05
Zr (as ZrO(OH)2	2.57E-04	13.8	55.8	9.63E-06	1.00E-05	1.04E-05	1.06E-05
*b2+	1.17E-03	13.8	576	2.35E-04	2.43E-04	2.66E-04	2.79E-04
Ni2+	7.54E-03	259	1.05E+03	9.46E-04	1.06E-03	1.28E-03	1.39E-03
ir2+	0	239	1.05E+03	7.20E-03	7.36E-03	7.63E-03	7.72E-03
404+	4.68E-03		611	0	0	0	0
a2+	3.95E-02	928	3.76E+03	3.45E-03	4.05E-03	5.30E-03	5.91E-03
(+	7.69E-02	920 1.76E+03	7.15E+03	3.58E-02	3.76E-02	4.14E-02	4.32E-02
Эн-	11.8	1.18E+05	4.77E+05	6.94E-02	7.29E-02	8.10E-02	8.49E-02
103-	5.68	2.07E+05	4.77E+05 8.38E+05	11.0	11.4	12.3	12.6
102-	2.89	2.07E+05		5.29	5.52	5,77	5.85
3032.	0.520		3.16E+05	2.37	2.61	3.16	3.42
043-	0.104	1.83E+04	7.42E+04	0.468	0.494	0.550	0.565
042-	0.104	5.81E+03	2.36E+04	9.13E-02	9.59E-02	0.107	0.109
	9.25E-02	1.62E+04	6.58E+04	0.220	0,253	0.325	0.357
i (as SiO32-)		1.52E+03	6.18E+03	7.49E-02	8.35E-02	0.101	0.110
· · · · · · · · · · · · · · · · · · ·	7.04E-02	784	3.18E+03	5.99E-02	6.43E-02	7.56E-02	7.97E-02
	0.285	5.92E+03	2.40E+04	0.255	0.270	0.299	0.311
6H5073-	3.59E-02	3.97E+03	1.61E+04	3.29E-02	3.44E-02	3.74E-02	3.88E-02
DTA4-	1.84E-02	3.11E+03	1.26E+04	5.83E-03	1.20E-02	2.49E-02	3.12E-02
EDTA3-	3.40E-02	5.46E+03	2.21E+04	8.80E-03	2.11E-02	4.69E-02	5.96E-02
ycolate-	0.111	4 89E+03	1.98E+04	7.22E-02	9.12E-02	0.131	0.150
etate-	9.18E-03	317	1.29E+03	7.50E-03	8.32E-03	1.00E-02	1.09E-02
calate2-	6.96E-05	3.59	14.6	6.16E-05	6.55E-05	7.36E-05	7.75E-05
BP	2.35E-02	2.90E+03	1.18E+04	1.92E-02	2.13E-02	2.57E-02	2.77E-02
itinol	2.35E-02	1.02E+03	4.14E+03	1.92E-02	2.13E-02	2.57E-02	2.77E-02
ю	9.69E-02	965	3.91E+03	7.71E-02	8.49E-02	0.112	0.130
(CN)64-	0.	0	0	0	0	0	0.150

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

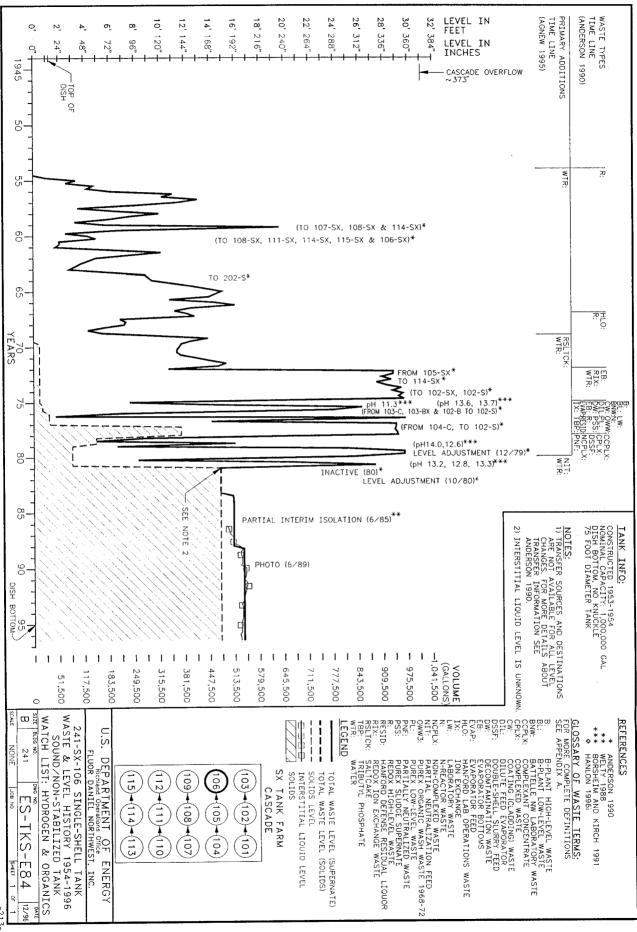
#### HNF-SD-WM-ER-352, Rev. 1

HDW Model Re	rv. 4
--------------	-------


		Single	e-Shell Tan	k 241-SX-1	05		
				y Estimate*			
Physical							14.5
Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	4.42E+06 (kg)	(683 kgal)	_				
Heat Load	9.48 (kW)	(3.24E+04 BTU/hr)		9.11	9.31	9.66	9.8
Bulk Density†	1.71 (g/cc)			1.65	1.68	1.73	1.7
Water wt%†	27.0			24.2	25.5	28.6	30.
TOC wt% C (w	0.815			0.542	0.676	0.955	1.0
1990 (1991)		en en al tren		100.03			
Chemical				-95 CI	-67 CI	+67 CI	+95 C
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L
Na+	16.1	2.17E+05	9.57E+05	14.7	15.4	16.7	17.3
Al3+	2.21	3.49E+04	1.54E+05	2.08	2.14	2.28	2.3
Fe3+ (total Fe)	7.04E-02	2.30E+03	1.02E+04	6.81E-02	6.92E-02	7.16E-02	7.28E-0
Cr3+	0.199	6.06E+03	2.67E+04	0.176	0.189	0.211	0.220
Bi3+	1.32E-03	161	712	1.21E-03	1.26E-03	1.38E-03	1.43E-0
La3+	4.88E-05	3.97	17.5	3.54E-05	4.19E-05	5.57E-05	6.24E-0
Hg2+	9.49E-06	1.11	4.92	8.91E-06	9.24E-06	9.64E-06	9.78E-0
Zr (as ZrO(OH)2	2.37E-04	12.6	55.8	2.16E-04	2.23E-04	2.45E-04	2.57E-04
Pb2+	1.08E-03	131	580	8.77E-04	9.78E-04	1.19E-03	1.29E-03
Ni2+	1.03E-02	353	1.56E+03	9.97E-03	1.01E-02	1.04E-02	1.04E-0
Sr2+	0	0	0	0	0	0	
Mn4+	4.30E-03	138	611	3.17E-03	3.73E-03	4.88E-03	5.43E-0
Ca2+	5.13E-02	1.20E+03	5.32E+03	4.80E-02	4.96E-02	5,31E-02	5.47E-0
K+	7.26E-02	1.66E+03	7.33E+03	6.56E-02	6.89E-02	7.63E-02	7.99E-02
OH-	12.7	1.27E+05	5.60E+05	12.0	12.3	13.1	13.5
NO3-	5.58	2.03E+05	8.95E+05	5.22	5.43	5.72	5.73
NO2-	2.80	7.53E+04	3.33E+05	2.31	2,54	3.05	3.29
CO32-	0.494	1.73E+04	7.66E+04	0.446	0.469	0.521	0.534
PO43-	9.60E-02	5.34E+03	2.36E+04	8.40E-02	8.82E-02	9.81E-02	0.100
SO42-	0.267	1.50E+04	6.64E+04	0.205	0.235	0.301	0.330
Si (as SiO32-)	9.74E-02	1.60E+03	7.07E+03	8.13E-02	8.92E-02	0,106	0.114
F-	6,47E-02	720	3.18E+03	5.50E-02	5.91E-02	6.95E-02	7.33E-02
C1-	0.270	5.60E+03	2.47E+04	0.242	0.256	0.283	0.294
C6H5O73-	3.30E-02	3.65E+03	1.61E+04	3.03E-02	3.16E-02	3.44E-02	3.57E-02
EDTA4-	1.69E-02	2.86E+03	1.26E+04	5.36E-03	1.10E-02	2.29E-02	2.87E-02
HEDTA3-	3.12E-02	5.01E+03	2.21E+04	8.09E-03	1.94E-02	4.31E-02	5.48E-02
glycolate-	0.102	4.49E+03	1.98E+04	6.64E-02	8.39E-02	0.121	0.138
acctate-	8.44E-03	292	1.29E+03	6.90E-03	7.66E-03	9.23E-03	9.98E-03
oxalate2-	6.40E-05	3.29	14.6	5.67E-05	6.02E-05	6.77E-05	7.12E-05
DBP	2.16E-02	2.66E+03	1.18E+04	1.77E-02	1.96E-02	2.36E-02	2.55E-0
butanol	2.16E-02	939	4.15E+03	1.77E-02	1.96E-02	2.36E-02	2.55E-0
	·						
лнз	0.102	1.02E+03	4.50E+03	8.43E-02	9.15E-02	0.117	0.13
Fe(CN)64-	0	0	0	0	0	0	

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

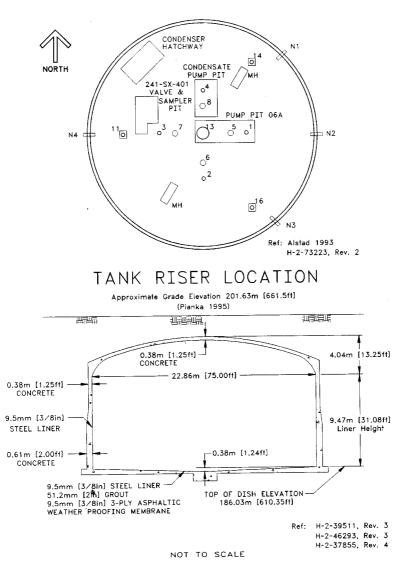
			e-Shell Tani				
		TLM Solids	Composite	Inventory E	stimate*		
Physical							
Properties		na una da a		-95 CI	-67 C1	+67 C1	+95 C
Total TLM Wa Heat Load	3.60E+05 (kg)	(55.0 kgal)			—		
	3.66 (kW)	(1.25E+04 BTU/hr)	-	3.56	3.62	3.69	3,7
Bulk Density	1.73 (g/cc) 0.685			1.57	1.66	1.83	1.8
Void Fraction				0.555	0.598	0.739	0.79
Water wt%	32.1 2.93E-03			23.7	26.5	37.9	43.
TOC wt% C (w	2.93E-03			2.72E-03	2.78E-03	3.15E-03	3.42E-03
Radiological				-95 CI	-67 CI	+67 CI	+95 Cl
Constituents	CIL	µĈi/g	CI	(CVL)	(CI/L)	(CVL)	(CI/L)
н-3	1.58E-04	9.12E-02	32.8	3.20E-05	3.20E-05	1.64E-04	1.75E-04
C-14	8.10E-06	4.68E-03	1.69	1.65E-06	1.65E-06	8.36E-06	8.95E-06
Ni-59	2.12E-05	1.22E-02	4.40	1.73E-05	1.03E-00	2.19F-05	2.22E-0
Ni-63	2.06E-03	1.19	429	1.69E-03	1.73E-03	2.19E-03	2.17E-03
Co-60	7.20E-06	4 16E-03	1.50	1.69E-05	1.69E-03	2.14E-03	
Se-79	9.75E-06	5.64E-03	2 03	4.30E-06	1.40E-06 4.30E-06		7.98E-06
Sr-90	9.758-06	5.64E-03	5 ORE+05			1.59E-05	2.17E-05
Y-90	2.44	1.41E+03	5.08E+05	2.37	2.41	2.47	2,48
Y-90 Zr-93			5.08ET05 8.95	2.29	2.29	2.47	2.48
	4.30E-05	2.49E-02	7.94	2.04E-05	2.04E-05	7.35E-05	1.03E-04
Nb-93m Tc-99	3.82E-05	2.21E-02	13,1	1.65E-05	1.68E-05	5.96E-05	8.01E-05
	6.29E-05	3.64E-02	3.45E-04	5.91E-05	5.76E-05	6.67E-05	7.10E-05
Ru-106	1.66E-09	9.57E-07		3.15E-10	3.15E-10	2.37E-09	1.70E-08
Cd-113m	3.28E-05	1.89E-02	6.82	6.66E-06	6.66E-06	1.28E-04	3.04E-04
Sb-125	2.56E-05	1.48E-02	5.32	4.83E-06	4.83E-06	2.65E-05	2.84E-05
Sn-126	1.34E-05	7.75E-03	2.79	6.58E-06	6.58E-06	2.26E-05	3.14E-05
-129	1.19E-07	6.90E-05	2.48E-02	1.12E-07	1.09E-07	1.27E-07	1.35E-07
Cs-134	1.70E-06	9.84E-04	0.354	4.05E-07	4.05E-07	1.75E-06	1.86E-06
Cs-137	0.241	139	5.01E+04	0.229	0.222	0.254	0.269
Ba-137m	0.228	132	4.74E+04	5.50E-02	5.50E-02	0.234	0.248
Sm-151	3.49E-02	20.2	7.26E+03	1.53E-02	1.53E-02	5.63E-02	7.68E-02
Eu+152	2.52E-05	1.46E-02	5.25	2.02E-05	2.02E-05	2.53E-05	2.53E-05
Eu-154	1.73E-04	9.99E-02	36.0	3.41E-05	3.41E-05	1.79E-04	1.42E-03
Eu-155	1.28E-03	0.740	267	1.03E-03	1.03E-03	1.28E-03	1.29E-03
Ra-226	1.77E-09	1 02E-06	3.69E-04	1.40E-09	1.51E-09	1.96E-09	2.14E-09
Ra-228	8.88E-09	5.13E-06	1.85E-03	3.47E-14	3.47E-14	8.96E-09	9.07E-09
Ac-227	8.26E-09	4.77E-06	1.72E-03	6.10E-09	6.71E-09	9.36E-09	1.04E-08
Pa-231	1.20E-08	6.93E-06	2.50E-03	6.16E-09	6.16E-09	1.81E-08	2.40E-08
ГЪ-229	2.15E-10	1.24E-07	4.48E-05	2.46E-12	2.46E-12	2.17E-10	2.19E-10
ГЪ-232	1.19E-10	6.88E-08	2.48E-05	1.18E-15	1.18E-15	1.50E-10	1.81E-10
U-232	3.97E-08	2.29E-05	8.26E-03	1.40E-08	2.59E-08	5.65E-08	7.53E-08
U-233	1.52E-07	8.78E-05	3.16E-02	5.37E-08	9.90E-08	2.16E-07	2.88E-07
U-234	7.73E-07	4.47E-04	0.161	3.70E-07	5.66E-07	9.96E-07	1.22E-06
U-235	3.12E-08	1.81E-05	6.50E-03	1.49E-08	2.28E-08	4.03E-08	4.95E-08
U-236	3.18E-08	1.84E-05	6.61E-03	1.56E-08	2.36E-08	4 03E-08	4.87E-08
U-238	6.78E-07	3.92E-04	0.141	3 22E-07	4.95E-07	8.77E-07	1.08E-06
Np-237	2.77E-07	1.60E-04	5.76E-02	2.52E-07	2.58E-07	2.95E-07	3.15E-07
Pu-238	1.54E-05	8,93E-03	3.21	1.27E-05	1.41E-05	1.68E-05	1.81E-05
Pu-239	4.10E-04	0.237	85.3	3.58E-04	3.83E-04	4.37E-04	4.62E-04
Pu-240	7.17E-05	4.14E-02	14.9	6.16E-05	6.65E-05	7.68E-05	\$ 18E-05
Pu-241	7.67E-04	0.444	160	6.38E-04	7.01E-04	8.34E-04	8.97E-04
Pu-242	4.25E-09	2.46E-06	8.84E-04	3.50E-09	3.87E-09	4.63E-09	4,99E-09
Am-241	4.23E-09	0.247	89.1	2.48E-04	3.36E-04	4.03E-09	6.07E-04
Am-243	4.28E-04	1.06E-05	3.82E-03	1.02E-08	1.42E-08	2.25E-08	2.64E-08
Cm-243		5.27E-04	0.190		9.06E-07		
Cm-242	9.12E-07 8.89E-08	5.14E-04	1.85E-02	9.11E-07 8.88E-08	9.06E-07 8.83E-08	9.13E-07 8.89E-08	9.13E-07 8.89E-08
Cm-243 Cm-244		5.14E-05 1.54E-03	0.554				
_m-244	2.66E-06	1.54E-03	P.C., P	2.06E-06	2.36E-06 -67 CI	2.97E-06 +67 CI	3.26E-06 +95 CI
				(M ər	(M or	(M or	(M or
Totals	M	<u> 112/8</u>	kg	₹/L)	∎/L)	<b>(/L)</b>	<b>(</b> /L)
על	6.91E-03 (g/L) 8.39E-03	 1.15E+03	1.44	6.02E-03	6.46E-03	7.36E-03	7.80E-03
U I	8.39E-03	1.156+03	415	3.98E-03	6.11E-03	1.09E-02	1.34E-02

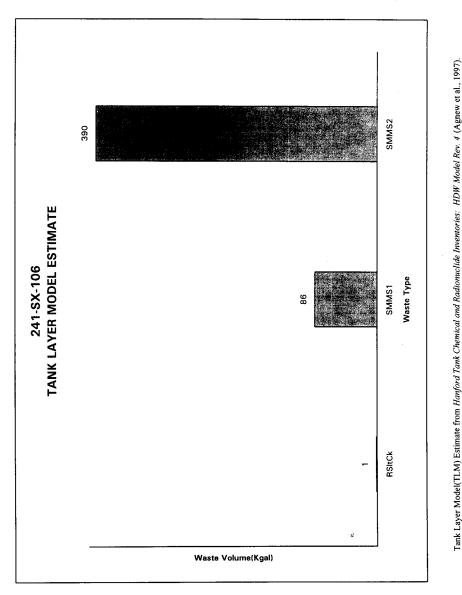

		Single	c-Shell Tanl	241-SX-10	15		
		SMM Co	omposite Inv	ventory Esti	mate		
Physical Properties				-95 CI	-67 CI	+67 C1	+95 CI
Total SMM W	4.06E+06 (kg)	(628 kgal)					
Heat Load	5.83 (kW)	(1.99E+04 BTU/hr)		5.45	5.65	6.00	6.10
Bulk Density*	1.71 (g/cc)	-		1.65	1.68	1.73	1.70
Water wt%†	26.5			23.5	24,9	28.3	30.3
TOC wt% C (w	0.887			0.590	0 736	1.04	1.19
Radiological Constituents	CVL	µCl/g	CI	-95 CI (CV/L)	-67 CI (CI/L)	+67 CI (CVL)	+95 CI (CI/L)
H-3	3.06E-04	0.179	726	1.49E-04	1.49E-04	3.15E-04	3.28E-04
C-14	4.50E-05	2.64E-02	107	1.43E-04	1.23E-05	4.56E-05	4.62E-0
Ni-59	2.82E-06	1.65E-03	6.69	1.28E-06	1.28E-06	4.36E-05	2.97E-06
Ni-63	2.76E-04	0.162	656	1.24E-04	1.24E-04	2.89E-06	2.97E-04
Co-60	5.02E-05	2.94E-02	119	1.24E-04	1.24E-04	5.10E-05	5.18E-0
Se-79	4.36E-06	2.56E-03	10.4	2.27E-06	2.278-06	5.12E-06	5.18E-00
Sr-90	4.30E-00 0.146	2.368-03	3.47E+05	0.136	0.141	5.12E-06 0.151	5.84E-06
Y-90	0.146	85.5	3.47E+05	7.37E-02	0.141 7.37E-02	0.151	
7-90 Zz-93	2.14E-05	85.5 1.25E-02	50.9	7.37E-02 1.10E-05			0.150
Nb-93m	2.14E-05	9.10E-03	36.9	1.10E-05 8.21E-06	1.10E-05	2.52E-05 1.82E-05	2.88E-05
ND-93m Tc-99	1.55E-05 3.20E-04	9.10E-03 0.188	762	8.21E-06 1.98E-04	8.21E-06 2.58E-04		2.07E-0
			2.12E-02			3.83E-04	4.44E-04
Ru-106	8.91E-09	5.22E-06	2.120-02	4.07E-09	4.07E-09	9.99E-09	1.10E-08
Cd-113m	1.13E-04	6.63E-02	515	5.05E-05	5.05E-05	1.36E-04	1.58E-04
56-125	2.17E-04	0.127	15.7	5.43E-05	5.43E-05	2.21E-04	2.25E-04
Sn-126	6.60E-06	3.86E-03	15.7	3.46E-06	3.46E-06	7.73E-06	8.82E-06
-129	6.18E-07	3.62E-04	1.47	3.82E-07	4.97E-07	7.40E-07	8.57E-07
Cs-134	3.15E-06	1.85E-03		2.20E-06	2.64E-06	3.64E-06	4.12E-06
Cs-137	0.313	184	7.45E+05	0.284	0.298	0,329	0.343
Ba-137m	0.297	174	7.05E+05	0.229	0.229	0.311	0.325
Sm-151	1.54E-02	9.00	3.65E+04	8.05E-03	8.05E-03	1.80E-02	2.05E-02
Eu-152	5.09E-06	2.98E-03	12.1	2.50E-06	2.50E-06	5.44E-06	5.78E-06
Eu-154	8.08E-04	0.473	1.92E+03	2.85E-04	2.85E-04	9.97E-04	1.07E-03
Eu-155	3.01E-04	0.176	716	1.47E-04	1.47E-04	3.22E-04	3.43E-04
Ra-226	1.82E-10	1.07E-07	4.34E-04	1.18E-10	1.18E+10	2.06E-10	2.28E-10
Ra-228	1.69E-07	9.90E-05	0.402	7.14E-08	1.19E-07	2.27E-07	2.88E-07
Ac-227	1.15E-09	6.77E-07	2.74E-03	7.78E-10	7.78E-10	1.29E-09	1.42E-09
Pa-231	5.34E-09	3.13E-06	1.27E-02	3.25E-09	3.25E-09	6.10E-09	6.83E-09
Ռ-229	3.98E-09	2.33E-06	9.46E-03	1.84E-09	2.88E-09	5.25E-09	6.60E-09
Гһ-232	1.14E-08	6.68E-06	2.71E-02	6.01E-09	8.65E-09	1.42E-08	1.68E-08
U-232	8.77E-07	5.14E-04	2.09	4,86E-07	6.78E-07	1.11E-06	1.36E-06
U-233	3.36E-06	1.97E-03	8.00	1.87E-06	2.60E-06	4.25E-06	5.20E-06
U-234	1.01E-06	5.91E-04	2.40	9.70E-07	9.90E-07	1.03E-06	1.04E-06
U-235	4.09E-08	2.40E-05	9.72E-02	3.94E-08	4.01E-08	4.18E-08	4.24E-08
U-236	3.15E-08	1.85E-05	7.50E-02	3.04E-08	3.10E-08	3.21E-08	3.26E-08
J-238	1.17E-06	6.88E-04	2.79	L14E-06	1.16E-06	1.20E-06	1.21E-06
Np-237	1.16E-06	6.81E-04	2.76	7.64E-07	9.59E-07	1.37E-06	1.57E-06
Pu-238	1.81E-06	1.06E-03	4.30	1.34E-06	1.57E-06	2.05E-06	2.28E-06
Pu-239	6.10E-05	3.57E-02	145	4.90E-05	5.49E-05	6.71E-05	7.29E-05
Pu-240	1.04E-05	6.10E-03	24.7	8.17E-06	9.27E-06	1.15E-05	1.26E-05
Pu-241	1 236-04	7.20E-02	292	9.09E-05	1 07E-04	1 39E-04	1.55E-04
Pu-242	6.76E-10	3.96E-07	1.61E-03	4.86E-10	5.79E-10	7,74E-10	8.68E-10
Am-241	7.35E-05	4 31E-02	175	5.13E-05	6 22E-05	8.49E-05	9.57E-05
Am-243	2.61E-09	1.53E-06	6.21E-03	1.92E-09	2.25E-09	2.99E-09	3.34E-09
Cm-243	2.01E-09	1.14E-04	0.462	8 81E-08	8.81E-08	2.08E-07	2.21E-07
Cm-242	1.81E-08	1.06E-05	4.30E-02	7,95E-09	7.95E-09	1.93E-08	2.04E-08
.m-243 Cm-244	1.81E-08 1.80E-07	1.05E-04	0.427	7.95E-09	7.95E-09 7.51E-08	2.15E-08	2.04E-08
cur-244	1.002-0/	1.002-04		-95 Cl	-67 CI	+67 CI	+95 CI
				(Mer	(Mor	(Mør	(M or
	м		kr	(M. er g/L)	(m or s/L)	(Mor g/L)	(Mor g/L)
Catala 1							
iotala ¹ u	7.55E-04 (g/L)	<u>HI/I</u>	1.80	5 28E-04	6.40E-04	8 71E-04	9.81E-04

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.



# TANK 241-SX-106 SUMMARY


TANK H	STORY	TANK DES	SCRIPTION
Entered Service	3rd qtr 1954	Diameter	75 ft
Removed from Service		Bottom Shape	Dish
Inactive	1980	Nominal Capacity	1,000,000 gal
Watch Lists	Hydrogen and Organics	Cascade Tank	none
Integrity	Sound	Total Risers	12
Assumed Leaker	-	WASTE VOLUME	(HANLON 1996i)
Interim Stabilization (IS)	-	Total Waste Volume	538,000 gal
Partial Interim Isolation (PI)	June 1985	Waste Type	NCPLX
Intrusion Prevention (IP)	-	Drainable Interstitial Liquids	194,000 gal
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids	264,000 gal
Riser Number(s)	Size	Saltcake	465,000 gai
11	4 in	Sludge	12,000 gal
6	12 in	Supernatant	61,000 gal
TANK TEM	PERATURE	INTERIOR PH	IOTOGRAPHS
Average Tank Temperature	102°F	Date	June 1, 1989
Maximum Temperature	124.8°F	Montage Number	94041033-20CN
Date	Feb 7, 1989	Photo Set Number	89060146
Elevation from tank bottom	0.21 ft	WASTE SUR	FACE LEVEL
Riser Number	16	Devices	Manual and Auto ENRAF
Minimum Temperature	63.8°F	Max Level	209.9 in
Date	Feb 16, 1991	Date	May 17, 1991
Elevation from tank bottom	14.83 ft	Min Level	198.06 in
Riser Number	16	Date	Sept 23, 1996




-215

WHC-SD-WM-ER-352. Rev.

241-SX-106





-215-

HDW	Model	Rev. 4	
-----	-------	--------	--

				k 241-SX-1			
		TLM Solids					
Physical	800 I.S. 1960	1 EAA BOILES	composite	Inventory I	aumate	-	
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Wa	6.48E+03 (kg)	(1.00 kgal)					
Heat Load	1.24E-02 (kW)	(42.5 BTU/hr)		1.14E-02	1.19E-02	1.30E-02	1.35E-02
Bulk Density	1.71 (g/cc)		_	1.44	1.58	1.78	1.82
Void Fraction	0.785			0.741	0.757	0.876	0.978
Water wt%	34.7			24.3	29.0	45.7	57.6
TOC wt% C (w	5.25E-03			5.01E-03	5.13E-03	5.56E-03	6.28E-03
		<u> </u>			5.132.43	3.501,405	0.26E-03
Chemical				-95 CI	-67 CI	+67 C1	+95 CI
Constituents	moie/L	ppm	kg	(mole/L)	(mole/L)	1002007773	
Na+	13.5	1 81E+05	1.17E+03	8.55	11.2	14.6	15.6
Al3+	3.39	5.34E+04	346	1.44	2.01	4,89	6.41
Fe3+ (total Fe)	1.74E-02	568	3.68	9.62E-03	1.34E-02	2.14E-02	2.52E-02
Cr3+	0.822	2.50E+04	162	0.480	0.643	2.14E-02 0.894	2.52E-02 0.897
Bi3+	6.87E-06	0.838	5.43E-03	5.80E-06	6.32E-06	0.894 7.57E-06	0.897 8.32E-06
La3+	1.69E-11	1.37E-06	8.90E-09	1.48E-11	6.32E-06	1.57E-06	
Hg2+	1.08E-06	0,126	8.19E-04	9.56E-07			2.06E-11
Zr (as ZrO(OH)2	6 86E-07	3.65E-02	2.37E-04	9.56E-07 6.30E-07	1.02E-06	1.19E-06	1.30E-06
Pb2+	1.71E-04	20.7	0.134		6.57E-07	7.19E-07	7.75E-07
Ni2+	1.51E-02	518	3 36	9.17E-05	1.30E-04	2.12E-04	2.53E-04
Sr2+	0	0	3.36	1.37E-02	1.44E-02	1.58E-02	1.65E-02
Mn4+	5.00E-05	1.60	1.04E-02	0	0	0	0
Ca2+	7.68E-02	1.80E+03	1.042-02	3.57E-05	4.27E-05	5.74E-05	6.46E-05
K+	3.20E-02	731	4 74	4.68E-02	6.15E-02	9.19E-02	0.106
он-	18.7	1.86E+05	1.20E+03	3.03E-02	3.12E-02	3.48E-02	3.80E-02
N03-	5.25	1.86E+05	1.20E+03	9.70	12.6	25.1	31.5
NO2-	1.87	5.03E+04		2.71	4.50	5.40	5.56
CO32-	8.17E-02	2.86E+03	326	1.59	1.73	2.01	2.18
PO43.	4.45E-04		18.6	5.18E-02	6.64E-02	9.69E-02	0.111
5042-		24.7	0.160	4.13E-04	4.31E-04	4.63E-04	5.03E-04
	4.04E-02	2.27E+03	14.7	3.83E-02	3.94E-02	4.40E-02	4.78E-02
Si (as SiO32-) F.	0.130	2.13E+03	13.8	8.22E-02	0.112	0.148	0.166
	3.54E-04	3.93	2.55E-02	3.02E-04	3.34E-04	3.90E-04	4.20E-04
CI-	0.133	2.76E+03	17.9	7.17E-02	0.102	0.147	0.154
C6H5O73-	3.66E-04	40.4	0.262	3.55E-04	3.60E-04	3.82E-04	4.16E-04
EDTA4-	1.43E-05	2.40	1.56E-02	1.00E-05	1.23E-05	1.68E-05	1.93E-05
HEDTA3-	1.18E-05	1.90	1.23E-02	3.80E-06	8.14E-06	1.58E-05	1.97E-05
glycolate-	5.17E-04	22.6	0 147	2.80E-04	4.09E-04	1 425 61	2 (ap
cetate-	5.36E-05	1.85	1.20E-02	-		6.43E-04	7.63E-04
oxalate2-	2.22E-11	1.14E-06	7.39E-02	5.19E-05	5.28E-05	5.70E-05	6.09E-05
DBP	3 25E-04	39.9	0.258	1.96E-11	2.09E-11	2.44E-11	2.68E-11
butanol	3.25E-04	14.1	9.11E-02	3.03E-04	3.16E-04	3.51E-04	3.79E-04
Juliano	3.230-04	(4.)	9.11E-02	3.03E-04	3.16E-04	3.51E-04	3.79E-04
0H1	3.60E-02	358	2.32				
				2.78E-02	3.21E-02	4.11E-02	4.59E-02
Fe(CN)64-	0	0	0	2.760-02	3.21E-02	4.TE-02	4.3964

		Single	e-Shell Tan	k 241-SX-1	ю		
		SMM Co	mposite In	ventory Esti	mate		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM W	3.27E+06 (kg)	(537 kgal)					_
Heat Load	4.30 (kW)	(1.47E+04 BTU/hr)		4.03	4.16	4.44	4.57
Bulk Density*	1.61 (g/cc)			1.56	1.58	1.63	1.65
Water wt%	32.7			30.1	31.3	34.2	36.0
TOC wt% C (w	0.750			0.491	0.618	0.883	1.01
Chemical Constituents	mole/L	ppm	ke	-95 Cl (mole/L)	-67 CI	+67 CI (mole/L)	+95 Cl
Na+	14.2	2.03E+05	6.64E+05	13.0	13.6	14.7	15.2
Al3+	1.67	2.80E+04	9.16E+04	1.55	1.61	1.74	1.79
Fe3+ (total Fe)	1.09E-02	378	1.24E+03	8.93E-03	9.89E-03	1.19E-02	1.29E-02
Cr3+	0,148	4.79E+03	1.56E+04	0 123	9.892-03	0 152	0 157
Bi3+	1.38E-03	179	586	1.25E-03	1.32E-03	0.132 1.45E-03	1.51E-03
La3+	4.14E-05	3.57	11.7	1.23E-03	1.52E-05	4.72E-05	5.29E-05
He2+	9.27E-06	1.16	3.78	3.00E-05 8.60E-06	3.55E-05 8.98E-06	9.40E-06	9.53E-06
Zr (as ZrO(OH)2	2.60E-04	14.8	48.2	2.37E-04	2 45E-04	2.70E-04	2.83E-04
Pb2+	1.01E-03	110	425	8.17E-04	9.11E-04	1.11E-03	1.20E-03
Ni2+	6.50E-03	237	776	6.21E-03	6.35E-03	6.58E-03	6.65E-03
Sr2+	0	0	0	0.212-03	0.352-03	0.362-03	0.032-03
Mn4+	3.89E-03	133	435	2.95E-03	3.41E-03	4.37E-03	4.84E-03
Ca2+	3.41E-02	850	2.78E+03	3.13E-02	3.27E-02	3.55E-02	3.69E-02
K+	6.60E-02	1.60E+03	5.24E+03	6.02E-02	6.29E-02	6.91E-02	7.21E-02
OH-	9.97	1 05E+05	3 45E+05	9.21	9.57	10.4	10.6
NO3-	5.09	1.96E+05	6.41E+05	4.68	4.92	5.17	5.22
NO2-	2.45	7.00E+04	2.29E+05	2.04	2.23	2,66	2.86
C032-	0.435	1.62E+04	5.31E+04	0 395	0.410	0.466	0.471
PO43-	9.16E-02	5.41E+03	1.77E+04	7,83E-02	8.30E-02	9.40E-02	9.62E-02
SO42-	0.245	1.47E+04	4.79E+04	0,193	0.218	0.273	0.298
Si (as SiO32-)	7.80E-02	1.36E+03	4.45E+03	6.45E-02	7.11E-02	8.49E-02	9.15E-02
F-	6.78E-02	801	2.62E+03	5.67E-02	6.14E-02	7.32E-02	7.74E-02
Cl-	0.246	5.42E+03	1.77E+04	0.223	0.231	0.257	0.265
C6H5O73-	2.76E-02	3.24E+03	1.06E+04	2.53E-02	2.64E-02	2.87E-02	2.99E-02
EDTA4-	L49E-02	2.66E+03	8.70E+03	4.55E-03	9.59E-03	2.02E-02	2.54E-02
HEDTA3-	2.78E-02	4.74E+03	1.55E+04	7.16E-03	1.72E-02	3.84E-02	4.88E-02
glycolate-	8.75E-02	4.08E+03	1.33E+04	5.74E-02	7.21E-02	0,103	0.118
acetate-	6.21E-03	228	745	5.09E-03	5.64E-03	6.78E-03	7.32E-03
oxalate2-	5.42E-05	2.97	9,70	4.80E-05	5.10E-05	5.73E-05	6.04E-05
DBP	1.88E-02	2.46E+03	8.03E+03	1.55E-02	1.71E-02	2.05E-02	2.20E-02
butanol	1.88E-02	866	2.83E+03	1.55E-02	1.71E-02	2.05E-02	2.20E-02
NH3	8.69E-02	919	3.00E+03	7.17E-02	7.77E-02	9.87E-02	0.112
Fe(CN)64-	0	0	0	0	1.176-02	9.872-02	0.112

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

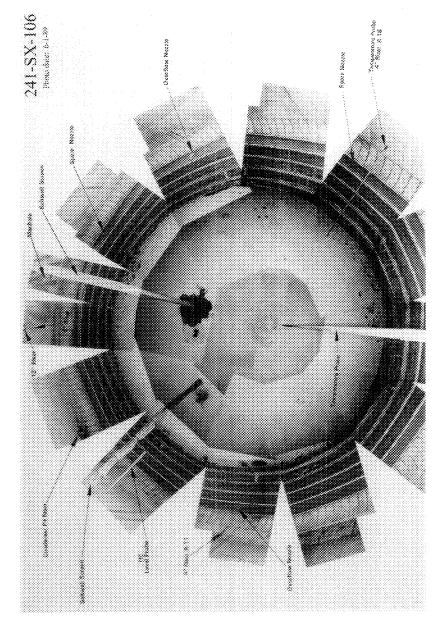
		Single	e-Sheil Tan	k 241-SX-1	36					
Total Inventory Estimate*										
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total Waste	3.27E+06 (kg)	(538 kgal)								
Heat Load	4.31 (kW)	(1.47E+04 BTU/hr)	_	4.05	4.18	4.45	4.58			
Bulk Density†	1.61 (g/cc)	aa	-	1.56	1.58	1.63	1.65			
Water wt%†	32.7			30.1	31.3	34.2	36.0			
TOC wt% C (w	0.749			0.490	0.617	0.881	1.01			
Chemical Constituents	mole/L	ррл	kg	-95 CI	-67 Cl	+67 Cl (mole/L)	10.000 M (M)			
Na+	14.2	2.03E+05	6.66E+05	<u>مس</u> حد	2		<u> </u>			
Al3+	1.67	2.81E+04	9.19E+04	13.0	13.6	14.7	15.2			
Fe3+ (total Fe)	1.09E-02	379	1.24E+03		1.61	1.74	1.79			
Cr3+	0.149	4.83E+03	1.58E+04	8.95E-03	9.91E-03	1.19E-02	1.29E-02			
Bi3+	1.38E-03	4.63E+03	1.362-104	0.125	0.138	0.153	0.157			
La3+	4,13E-05	3.57	11.7	1.25E-03	1.31E-03	1.44E-03	1.50E-03			
Hg2+	9.25E-06	1.15	3.78	2.99E-05	3.55E-05	4.71E-05	5.28E-05			
rig∠+ Zr (as ZrO(OH)2	9.23E-08 2.60E-04	1.13	48.2	8.59E-06	8.97E-06	9.39E-06	9.52E-06			
Ph2+	1.016-03	14.7	425	2.36E-04	2.45E-04	2.69E-04	2.82E-04			
P02+ Ni2+	6,52E-03	238	423	8.16E-04	9.10E-04	1.10E-03	1.20E-03			
Sr2+	0.322-03		0	6.23E-03	6.37E-03	6.59E-03	6.66E-03			
5r2+ Mn4+	3.88E-03	133	435	0	0	0	0			
мл4+ Са2+	3.42E-03	852	433 2.79E+03	2.94E-03	3.40E-03	4.36E-03	4.83E-03			
K+	6.59E-02	832 1.60E+03	2.79E+03 5.25E+03	3.14E-02	3.27E-02	3.56E-02	3.70E-02			
OH-	9.99	1.06E+05	3.46E+05	6.02E-02	6.29E-02	6.91E-02	7.20E-02			
NO3-	5.09	1.96E+05	3.40E+05	9.23	9.59	10.4	10.6			
NO2-	2.45	7.00E+04	0.42E+03	4.68	4.92	5.17	5.22			
NU2- CO32-	0.434	7.00E+04	2.29E+05 5.31E+04	2.04	2.23	2.66	2.85			
P043-	9 14E-02	5 40E+03	1 77E+04	0.394	0.409	0.466	0.470			
P043- S042-	9.146-02	5.40E+03	1.77E+04 4.79E+04	7.82E-02	8.28E-02	9.38E-02	9.61E-02			
	0.245 7.81E-02	1.46E+04	4.79E+04	0.193	0.218	0.273	0.297			
Si (as SiO32-) F-	6.76E-02	1.36E+U3 799	4.4/E+03 2.62E+03	6.46E-02	7.12E-02	8.50E-02	9.16E-02			
F-	0.246	799 5.41E+03	2.62E+03	5.66E-02	6.12E-02	7.30E-02	7.73E-02			
C6H5O73-	2 75E-02	3.41E+03	1.77E+04	0.223	0.231	0.256	0.265			
EDTA4-	2.75E-02	3.24E+U3 2.66E+03	1.06E+04 8.70E+03	2.53E-02	2.64E-02	2.87E-02	2.98E-02			
EDTA4- HEDTA3-	1.48E-02	2.66E+03 4.73E+03	8.70E+03	4.54E-03	9.57E-03	2.01E-02	2.53E-02			
HEDTA3-	2.778-02	4.73E+03	1.338+04	7.14E-03	1.72E-02	3.83E-02	4.87E-02			
glycolate-	8.74E-02	4.08E+03	1.33E+04	5.72E-02	7.20E-02	0.103	0.118			
acetate-	6.20E-03	227	745	5.09E-03	5.63E-03	6.76E-03	7.31E-03			
oxalate2-	5.41E-05	2.96	9.70	4.79E-05	5.09E-05	5.72E-05	6.03E-05			
DBP	1.88E-02	2.45E+03	8.03E+03	1.54E-02	1.71E-02	2.04E-02	2.20E-02			
butanol	1.88E-02	865	2.83E+03	1.54E-02	1.71E-02	2.04E-02	2.20E-02			
NH3	8.69E-02	918	3.01E+03	7.17E-02	7.77E-02	9.86E-02	0.112			
Fe(CN)64-	0	0	0	0	0	0	0			

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

.

2.17E-03	1.73E-03	\$ 10E-04	10-369 E	121 E0-308 1	1.91E+03	20-38E 1 1 31E-03 (B/F)	nd
(7/4	(1/4	(1/8	(1/#	254 254	8/8ri	W N	elato T
10 M)	(M or	(Mor	M er		7		1
10 56+	10 19+	13 19-	10 56				1.2
2 12E-10	01-356 1	0	0	1.165-07	10-3111	1 866-10	Cm-244
11-315.5	3.276-11	10	0	1.226-07	80-269-1	3 338-11	Cm-243
60-9729-1	1 COE-00	0	0	90-366-5	40-312 6	60-385 1	Z\$72-W2
60-387 7	60-301 1	3 22E-09	60-314 T	\$00E-00	518E-00	60-371.1	£#Z-WV
1.516-04	1'34E-04	101E-04	6.63E-05	200 0	20-328.9	111/16-04	1+Z-mV
60-360.1	01-31/.8	4 13E-10	1.92E-10		10-35L'E	6.42E-10	Z#Z-%
3 06E-04	1 646-04	50-38/	3.63E-05	5'43E-09	20-390 4	1.21E-04	192-14
5.15E-05	50-3121	8 126-06	90-364 C		1.0.38E.03	50-392'1	0#Z-nd
1.30E-04	1 03E-04	\$0-306 Y	2.28E-05	4"78E-02	1 42E-05	1 30E 02	662-nd
1 30E 01	3.20E-06	90-EIS'I	10-310-1	882.0	E0-38E'1	3 395-00	8£Z-nd
10-395 1	4.20E-07	10-318-67	10 3101	\$ 65E-03	3 398-04	10-388°C	LEZ-dN
90-928 1	20 30C V	10-306.1	10 311 1	£0-31/1+1	HO-315 9	1.126-06	852-0
80-328 1	90 327 1 90 327 1	3 85E-08		1.728-03	<u> </u>		
			241E-08	10-366-1	3.00E-05	87.27E-08	D-536
\$0-38E-08	10-35L'9	3 65E-08	2.24E-08	10-316-1	3.005-05	80-314E-08	n-532
2.07E-06	90-3491	9.05E-07	10-3125'5	4'8'E-03	743E-04	1'31E-06	1-534
20-311'S	10-3HE E	1.76E-07	6'25E-08	1.02E-03	10-345-1	20-369:2	1-533
1.346-07	10-3001	\$0-365°b	3.49E-08	2.66E-04	411E-02	2.04E-08	n-535
3 \$0E-10	01-299972	0	0	LO-366"L	1.235-07	5'11E-10	752-41
3.85E-10	01-318.C	0	0	1 43E-09	2.21E-07	01-384 6	672-41
1.06E-08	80-350 I	0	0	30-316-C	90-210.9	1'03E-08	182-831
4'32E-06	3"13E-09	0	0	1 OHE O2	90-3091	3 15E-09	4c-227
1 61E-08	80-365 I	0	0	SO-396 S	90-302-06	1.58E-08	K#-228
1.996-10	01-386.0	0	0	90-384 1	2.74E-07	41 TOE-10	F#-226
4"28E-04	40-3E2.4	0	0	04.1	697.0	4.50E-04	551-M3
3 34E-04	2.57E-04	0	0	126'0	<b>11</b> 10	3"49E-04	#\$1-N3
6 Off: 10	\$ 63E-09	0	0	3 36E-02	5.18E-03	90-918°8	Z\$1-03
2.53E-02	2.51E-02	0	0	8.69	5'01	2 48E-02	12[-m5
2¢£'0	815.0	0	0	E0+391'1	641	905.0	m761-66
¥LE'0	20°342	615.0	E1E.0	1.23E+03	681	0.324	4£1-\$3
5 27E-06	3.39E-06	0	0	8'11E-03	1.34E-03	2.30E-06	PE1-93
40 396 1	10-3191	40-3991	1.63E-07	10-380.9	50-358'6	10-369 1	671-
\$0~360°L	\$0-380.1	0	0	4'04E-03	6.23E-03	\$0-3L0-1	971-uS
\$0-31/1°	3'84E-02	0	0	661.0	20-3151-22	3'98E-02	\$21-95
9.93E-05	1.03E-04	0	0	\$41'0	20-311.2	\$0-3E9"¥	ш£11-РЭ
3 10E-09	5 48E-06	0	0	90-300'6	90-3661	2 38E-09	90(-na
1.03E-04	6 20E-02	\$0-3+L'8	8'91E-02	966.0	20-361 S	\$0-368.8	66-91
2.73E-05	50-312 2	0	0	101.0	20-395 1	5 PLE 02	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
3.36E-05	3 33E-02	0	0	#ZI'0	20-326 I	3 296-05	£6-JZ
0000	782'0	0	0	\$66	651	697.0	06-2
005.0	782'0	¥¥Z'0	SZZ'O	-	651	£92'0	06-19
90-91172	90-310-2	0	0	\$66 To-Tro-T	10-390't	90-356'9	64-95
111/E-02	50-31/01	0	0	2.63E-02	E0-310 9	1.03E-05	09-03
112E-04	PO-3P6'9	0	0	3.90E-02	28E'0	01E-02	69-!N
1 14TE-06	2115E-06	0	0	15.5	E0-386 E	0°85E-04	65-IN
1.29E-05	50-B61-1	0	0	20-385.2	E0-386 E	90°328'9	05*!N 0*!*0
50-30E-04	2.34E-04	0		4.33E-02			
		<u> </u>	0	***	0130	133E-04	£-H
(CNP) +62 CI	(CNF) 10 19+	(CI/ID) 49- CI	(CNF) -92 CI	С	PrCI/8	CNF	Radiological Constituents
6 28E-03	2.56E-03	20-3EL S	E0-310'S		T	Longer a	H) 2 8/10 20
9725	L'SP	0.62	EVZ			5.25E-03	N) 3 %14 201
826'0	948'0	LSL'0	11/2	+		L'WE	Water wt%
28.1	82.1	85.1	192.0	+ <u>-</u>	<u> </u>	582.0	Void Fraction
20-356-1	20-30E-1	20-361		<u>                                      </u>	(10010(10))	(30/8) [1]	Bulk Density
wast I	1 201-201-1	1 10E W	1.146-02	+	(47,UTA 2.54)	1.24E-02 (FM)	beo.i tasH
	1		L	L	(148×1001)	(8) (F8) (F8)	8W MJT 1810T
10 <del>56+</del>	10 L9+	1D 49-	13 Se-				Properties
991940			<u> </u>	<u> </u>			Physical
		្ទាមហា	ALONGAN	1 amodulo 🗅	spiloS M.IT		

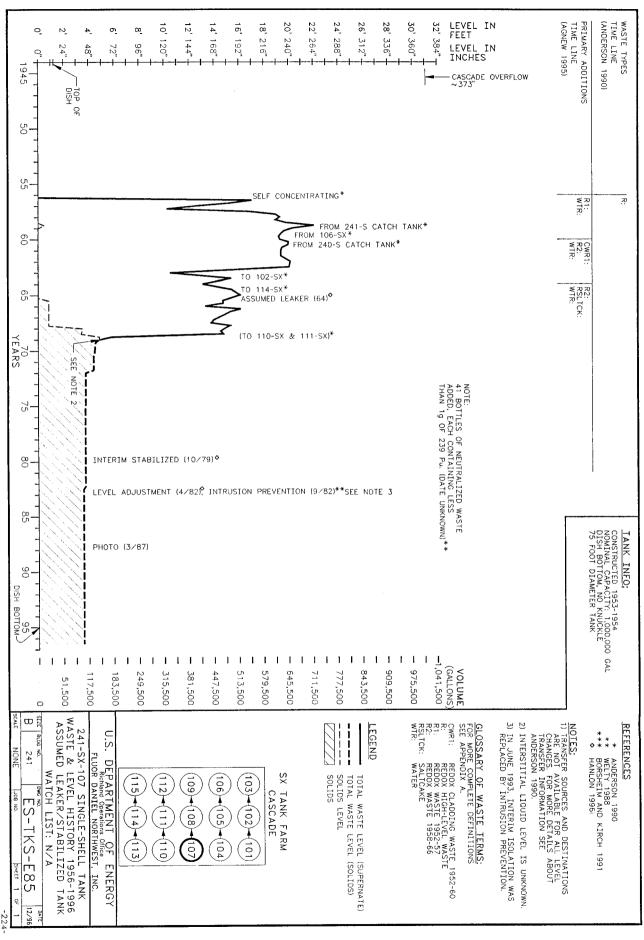
1	0.34E-04 (\$\r/)	£0+32*1	₹81E+03	4.59E-04	PO-359 5	7.22E-04	8.07E-04
S 830	W	\$/8#	31	(7/4	(7/	(7/4	(1/4
1 7 7	••			Te M)	(M or	Jo W)	.w w)
				13 56	1019	13 49+	ID 56+
m-244	1.448-07	\$0-EL6'8	£6Z'0	80-36E-9	80-366.9	1.71E-07	10-368 1
E\$7-00	80-39#1	90-380 6	2.97E-02	60-301 9	60-908.9	80-395 I	1.65E-08
Z#Z-W	1.5485.07	50-308 6	025.0	80-365 L	80-3651	10-389-1	10-361.1
£\$7-UT	5'13E-06	1.32E-06	4°37E-03	60-365'l	60-358 I	5 41E-06	5'69E-00
142-00	\$0-3E1 9	3.81E-02	SZI	4'43E-02	SO-392'S	2.01E-05	1.84E-05
Z#Z-M	01-399 5	10-30+ E	11111-03	01-300 V	01-314 +	6.21E-10	01-3E6.9
1\$Z-n	50-ES6'6	20-361.9	202	50-36P L	\$0-E69.8	1126-04	1'54E-04
012-0	90-545'8	E0-3EE S	¥'21	90-358.9	30-E07.7	90-35¢ 6	1.03E-05
6£7-1	\$0-290'S	3146-02	£01	\$0-3E1'	\$0-365°	\$0-322.2	\$0-316 S
8£2-n	90-341	10-951 6	66'7	1.11E-06	1 36E-06	90-399'I	1.83E-06
152-d	6 436-01	10-31/8'S	26.1	10-31E.0	10-3981	90-3011	1.25E-06
862-	101E-06	10-31E-04	507	10-351-6	10-306.6	1 03E-06	1.03E-06
952-	3.72E-08	50-369 T	20-3E5.2	2.62E-08	2.68E-08	37.76E-08	3'80E-08
\$62-	30-3155'E	3, 19E-05		80-36E E	3'42E-08	80-309 E	3.64E-08
-534	40-369'8	10-BLFS	20-91/17/ ///1	10-31E.0	40-BES 8	10-318.8	40-396'8
£62-	90-386 Z	E0-358 1		1 93E-09	90-362 Z	30.386.0	4.63E-06
752-	10-39011	4'83E-04	\$0'9	4 24E-01	40-396'\$	10-358'6	1 31E-06
752-4	1016-08	90-352'9	851	\$ 20E-03	60-385'L	1.25E-08	80-36FT
672-4	60-315 2	3'30E-00	2 O4E-02	60-319 I	50-355°C	60-389'	60-306 \$
152-8	60-31/5 T	30200	7.20E-03	50-3/19 T	60-51/872	60-350.5	60-119'S
122-0		40-390 9	£0-360 6	01-398.9	01-398'9	60-350 S	118E-00
822-9	01-352'6		£0-386 l		1.065-07	1 08E-00	20-365 Z
972-8	10-3151	\$0-368.6	105.0	80-37E-08		1.72E-10	01-368 1
	1	80-365 6	3'13E-04	1.04E-10	1.046-10		
n-122	5 49E-04	£\$1'0	200	1.27E-04	1'31E-04	2.63E-04	2.80E-04
	PO-315'9	500 0	1 328+03	2.50E-04		10-EL6'L	8.55E-04
7\$[-N	4119E-06	2,59E-03	51/8	2.17E-06	3.17E-06	4 44E-06	4.72E-06
[\$]-w	1 37E-02	68 L	3 28E+04	£0-390 L	7.06E-03	1 41E-05	1.678-02
m7č1-a	0'764	191	\$0+39E'S	102.0	£02'0	842.0	162'0
751-8	627'0	Þ/l	\$0+31/9°S	152.0	0'592	£6Z'0	105.0
7E1-8	2,73E-06	E0-302 1	95'5	90-356 I	2.31E-06	90-21+1 C	3 33E-06
671	40-386 Þ	10-301 E	101	10-391 1	4.058-07	10-316'5	10-328.9
971-u	S.44E-06	EO-36E E	TH .	3 03E-09	3 03E-09	6.32E-06	2 12E-00
\$21-9	10-3EL 1	201.0	158	\$0-382.4	4 78E-05	1 76E-04	1.79E-04
₩€11-P	9.28E-05	20-91/L S	681	\$0-19# P	\$0-399 b	1.10E-04	1.27E-04
90[-11	214E-09	4'44E-06	1.45E-02	3 45E-09	3 45E-06	60-316.T	8'13E-09
66-3	2,58E-04	1910	szs	1.64E-04	3 10E-04	3.07E-04	3.53E-04
m£9-d	1.285-05	£0-386 L	1'92	7.21E-06	131E-06	1.49E-05	\$0-389'1
£6-J	\$0-92211	1.10E-02	6'55	90-359 ⁻ 6	90-359'6	2 06E-05	2.34E-05
06-	071.0	974	5°#4E+02	6.45E-02	20-35F-9	0.124	821.0
06-1	071.0	972	5'##E+02	211.0	9110	0.124	921.0
64-2	3'90E-09	2.24E-03	26.7	2.00E-06	3.00E-06	4' 18E-09	4.74E-06
09-0	4.01E-05	20-308-02	9.18	\$0-3EL.I	50-3EL I	4 09E-05	4' 19E-02
E9-!!	2.30E-04	6110	894	1.135-04	(,13E-04	5'39E-04	5'45E-04
65-!	3"32E-06	1 46E-03	U.V	90-32111	90-92/1 1	2'41E-06	5 41E-09
-14	20-369.E	2.25E-02	1.11	111E-02	111E-02	3.68E-05	3.73E-05
E-1	2.52E-04	451 0	215	1326-04	1.32E-04	2.60E-04	3"10E-04
lacitological stanutitaes	CN	Inclu	С	(CNF) *** CI	(CIVL) 13 73-	(CI/ID) +94 CI	(CNF) +32 CI
1	Locuo			167.0	819'0	E88'0	10'1
OC #1% C (*	052.0				£'1£	2.4.2	0.95
fater wt%†	275			1'05			
ulk Density.	(35/8) 191	· · · · · · · · · · · · · · · · · · ·		951	85.1	£9°I	\$9°I
рвол звэ	(M3) 0E >	(1.47E+04 BTU/hr)	—	£0'¥	91'#	4.44	15.4
roperties W MMS Into	3'521E+06 (kg)	(ועמא גבג)		 13 \$6*	13 49-	10 49+	 +67 CI
hysical	<u>a an an</u>			1. i.i.i.ii	<u></u>	- 666 - 66	
			ral stizoqme				
		Single	AnsT llod2-	01-28-167	9		


•Density is calculated based on Na, OH., and AIO2-*Water wr% derived from the difference of density and total dissolved species.

- 022 -

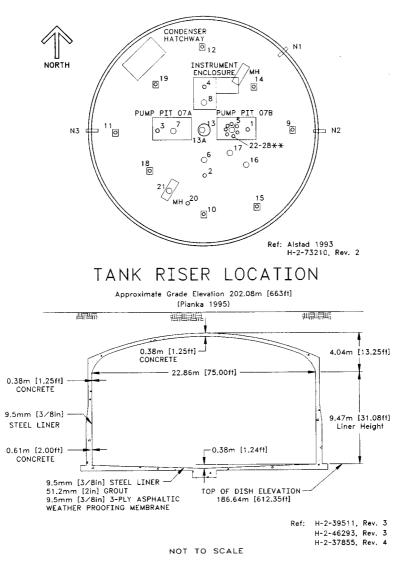
HDW	Model	Rev.	4

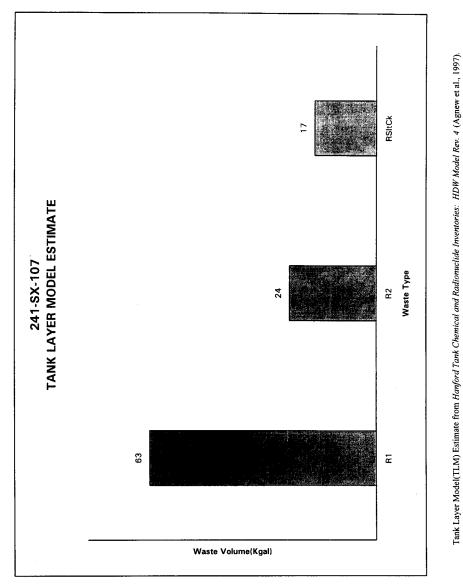
		Singl	e-Shell Tan	k 241-SX-1	06		odel Rev
			tal inventor				
Physical	Cherry Marson	10	a. myentor	, _sumate		<u>in as er</u>	
Properties Total Waste				-95 CI	-67 CI	+67 CI	+95 (
Heat Load	3.27E+06 (kg)	(538 kgal)					
	4.31 (kW)	(1.47E+04 BTU/hr)		4.05	4.18	4.45	4.:
Bulk Density†	1.61 (g/cc)			1.56	1.58	1.63	1.6
Water wt%†	32.7			30.1	31.3	34.2	36
TOC wt% C (w	0.749			0.490	0.617	0.881	1.0
Radiological	<b>C</b> 1 <b>A</b>	<b>A</b> 1		-95 CI	-67 CI	+67 Cl	+95 C
Constituents H-3	CVL	µCl/g	Ci 513	(CI/L)	(CI/L)	(CI/L)	(CI/L
H-3 C-14	2.52E-04	0.157	73.7	1.32E-04	1.32E-04	2.60E-04	2.70E-0
	3.62E-05	2.25E-02	480	1.11E-05	1.11E-05	3.68E-05	3.73E-0
Ni-59	2.36E-06	1.47E-03	4.80	1.18E-06	1.18E-06	2.42E-06	2.47E-0
Ni-63	2.31E-04	0.144		1.14E-04	1.14E-04	2.37E-04	2.43E-0
Co-60	4.01E-05	2.49E-02	81.6 7.35	1.13E-05	1.13E-05	4.08E-05	4.16E-0
Se-79	3.61E-06	2.24E-03		2.00E-06	2.00E-06	4.19E-06	4.74E-0
Sr-90	0.120	74.8	2.45E+05	0.112	0.116	0.124	0.12
Y-90	0.120	74.8	2.45E+05	6.49E-02	6.49E-02	0.124	0.12
Zr-93	1.77E-05	1.10E-02	36.1	9.69E-06	9.69E-06	2.06E-05	2.34E-0
Nb-93m	1.29E-05	8.00E-03	26.2	7.25E-06	7.25E-06	1.49E-05	1.68E-0
Tc-99	2.58E-04	0.160	525	1.64E-04	2.10E-04	3.06E-04	3.53E-0
Ru-106	7.13E-09	4.44E-06	1.45E-02	3.42E-09	3.42E-09	7.96E-09	8.72E-0
Cd-113m	9.27E-05	5.76E-02	189	4.46E-05	4.46E-05	1.10E-04	1.27E-0
Sb-125	1.72E-04	0.107	351	4.78E-05	4.78E-05	1.76E-04	1.79E-0
Sn-126	5.45E-06	3.39E-03	1.1	3.05E-06	3.05E-06	6.32E-06	7.16E-0
-129	4.97E-07	3.09E-04	1.01	3.16E-07	4.05E-07	5.91E-07	6.81E-0
Cs-134	2.73E-06	1.70E-03	5.57	1.95E-06	2.30E-06	3.13E-06	3.53E-0
Cs-137	0.279	174	5.68E+05	0.251	0.265	0.293	0.30
Ba-137m	0.264	164	5.38E+05	0.207	0.207	0.278	0.29
Sm-151	1.27E-02	7.90	2.59E+04	7.09E-03	7.09E-03	1.47E-02	1.67E-0
Eu-152	4.17E-06	2.59E-03	8.49	2.18E-06	2.18E-06	4.45E-06	4.73E-0
Eu-154	6.51E-04	0.405	1.33E+03	2.50E-04	2.50E-04	7.96E-04	8.53E-0
Eu-155	2.46E-04	0.153	501	1.28E-04	1.28E-04	2.64E-04	2.81E-0
Ra-226	1.55E-10	9.62E-08	3.15E-04	1.05E-10	1.05E-10	1.73E-10	1.90E-1
Ra-228	1.51E-07	9.37E-05	0.307	6.31E-08	1.06E-07	2.03E-07	2.58E-0
Ac-227	9.78E-10	6.08E-07	1.99E-03	6.90E-10	6.90E-10	1.08E-09	1.18E-0
Pa-231	4.48E-09	2,79E-06	9.13E-03	2.88E-09	2.88E-09	5.06E-09	5.62E-0
Th-229	3.53E-09	2.20E-06	7.20E-03	1.61E-09	2.55E-09	4.68E-09	5.89E-0
Th-232	1.00E-08	6.24E-06	2.04E-02	5.19E-09	2.55E-09 7.56E-09	1.25E-08	3.89E-0
U-232	7.75E-07	4.82E-04	1.58	4.24E-07	5.95E-09	9.83E-07	
U-233	2.97E-06	1.85E-03	6.05	4.24E-07	2.28E-06		1.21E-0
U-234	8.70E-07	5.41E-04	1.77	8,38E-07	2.28E-00 8.53E-07	3.77E-06	4.62E-0
J-234	8.70E-07 3.53E-08	2.19E-05	7.19E-02	8.38E-07 3.39E-08		8.88E-07	8.97E-0
J-235			5.55E-02		3.46E-08	3.61E-08	3.64E-0
	2.73E-08	1.70E-05	2.05	2.63E-08	2.68E-08	2.77E-08	2.81E-0
J-238	1.01E-06	6.27E-04	1.92	9.75E-07	9.91E-07	1.03E-06	1.03E-0
Np-237	9.42E-07	5.86E-04	1.92	6.36E-07	7.85E-07	1.10E-06	1.25E-0
าม-238	1.47E-06	9.16E-04	3.00	1.11E-06	1.29E-06	1.66E-06	1.83E-0
Pu-239	5.06E-05	3.15E-02	103	4.14E-05	4.59E-05	5.5318-05	5.98E-0
-u-240	8.58E-06	5.34E-03	203	6.86E-06	7.71E-06	9.45E-06	1.03E-0
Pu-241	9.95E-05	6.19E-02		7.50E-05	8.70E-05	1.12E-04	1.24E-0
Pu-242	5.46E-10	3.40E-07	1.11E-03	4.00E-10	4.72E-10	6.21E-10	6.93E-1
Am-241	6.14E-05	3.82E-02	125	4.44E-05	5.27E-05	7.01E-05	7.85E-0
Am-243	2.13E-09	1.32E-06	4.34E-03	1.59E-09	1.85E-09	2.42E-09	2.69E-0
Cm-242	1.57E-07	9.78E-05	0.320	7.58E-08	7.58E-08	1.68E-07	1.79E-0
Cm-243	1.46E-08	9.06E-06	2.97E-02	6.79E-09	6.79E-09	1.55E-08	1.65E-0
Cm-244	1,44E-07	8.95E-05	0.293	6.38E-08	6.38E-08	1.71E-07	1.88E-0
			0.000	-95 CI	-67 CI	+67 C1	+95 C
				(M or	(M er	(M or	(М от
l'otals	М	<u>48/8</u>	kg	g/L)	g/L)	∎/L.)	<b>g</b> /L)
			1 79 1				
Pu l	6.35E-04 (g/L) 9.96E-03	 1.47E+03	1.29 4.83E+03	4.61E-04	5.46E-04	7.23E-04	8.08E-0


Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).
 †Volume average for density, mass average Water wt% and TOC wt% C.



-222-


## TANK 241-SX-107 SUMMARY


TANK H	ISTORY	TANK DES	CRIPTION	
Entered Service	2nd qtr 1956	Diameter	75 ft	
Removed from Service	-	Bottom Shape	Dish	
Inactive		Nominal Capacity	1,000,000 gal	
Watch Lists	none	Cascade Tank	to 241-SX-108	
Integrity	Assumed Leaker	Total Risers	29	
Assumed Leaker	1964	WASTE VOLUME	(HANLON 1996i)	
Interim Stabilization (IS)	Oct 1979	Total Waste Volume	104,000 gal	
Partial Interim Isolation (PI)	-	Waste Type	NCPLX	
Intrusion Prevention (IP)	Sept 1982	Drainable Interstitial Liquids	5,000 gal	
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids 0 gal		
Riser Number(s)	Size	Saltcake	0 gal	
6, 16, 17	12 in	Sludge	104,000 gal	
13A	18 in	Supernatant	0 gal	
TANK TEM	PERATURE	INTERIOR PHO	DTOGRAPHS	
Average Tank Temperature	145°F	Date	March 6, 1987	
Maximum Temperature	177.4°F	Montage Number	94041033-34CN	
Date	Nov 7, 1994	Photo Set Number	8701420	
Elevation from tank bottom	0.5 ft	WASTE SURF	ACE LEVEL	
Riser Number	10	Devices	Manual Tape	
Minimum Temperature	109°F	Max Level	41.75 in	
Date	Dec 4, 1992	Date	April 4, 1994	
Elevation from tank bottom	4.33 ft, 5.0 ft, 5.66 ft	Min Level	35 in	
Riser Number	10 and 14	Date	Oct 2, 1996	



WHC-SD-WM-ER-352, Rev.

241-SX-107





-226-

0	0	0	0	0	0	0	-+9(ND)
982.0	100	0/10	£\$1.0	E0+308.1	50+319'Z	692'0	CH CH
							1
6.20E-05	\$0-314E-05	S0-391 S	4 BEE 02	<u>\$</u> \$'I	52.2	\$0-31E-02	louiti
6.20E-05	\$0-3#L \$	\$0-391.S	\$0-396 P	66'9	65'9	\$0-EIE-02	86
4'36E-15	21-366 E	3.416-12	3.21E-12	1 36E-07	10-3691	3.62E-12	-Sotelas
90-396 ⁻ 6	90-32E-06	8 93E-09	90-361-8	0.204	962'0	90-ELL'8	
1'52E-04	1 02E-04	SO-389'9	4"28E-02	540	E9'E	\$0-3\$P 8	Acojute-
3.22E-06	2.58E-06	1'33E*00	6.21E-07	0.209	905.0	90-316-1	-EDTA3-
3.16E-06	2.75E-06	2.02E-06	1'94E-08	¥92'0	SHED	2.33E-06	-#¥10
\$0-308 9	6.25E-05	\$0-368.8	\$0-308'S	59.4	81.9	\$0-366'S	-tLOSHS
671 0	7.68E-02	4.90E-02	3,796-02	\$16	1.33E+03	6.56E-02	-
6.86E-05	\$0-31E-05	\$ 46E-05	4-93E-05	6.433	059'0	\$0-364.'\$	
965.0	852.0	3 438-05	3 22E-02	1.50E+03	5 196+03	961.0	(-ZEOIS 88)
1.925-02	1.92E-02	1.37E-02	1 14E-03	2149	\$£6	1,706-02	-7+0
8 33E-02	50-315°L	7.05E-05	50-352.9	24.2	56°E	1.27E-05	-610
60£.0	182.0	0.241	612'0	E0+3E2 9	£0+390'6	0.264	-250
<i>L</i> 6 1	L6 1	£0 I	152'0	381E+04	+0+360 P	55'1	03-
411	10'6	\$68.0	\$68'0	9.91E+04	50+3 <b>**</b> 1	90'#	-60
L'8Z	L'LZ	9'57	1.252	\$0+384'I	50+365°Z	36.6	-H
1.72E-02	1.72E-02	1.11E-02	8.74E-03	122	OEE	1 48E-03	+
80E'0	982.0	0*2'0	812'0	£0+3\$1 ¥	£0+3£0'9	0.263	
1.06E-05	90-38E'6	90-386.9	90-EP8'S	4410	452.0	90-381'8	+++
0	0	0	0	0	0	0	+2+
6.26E-02	6 32E-02	\$ 99E-02	20-381.2	E0+36E 1	2.03E+03	20-360.9	+7
4 13E-05	3.47E-05	2.13E-05	SO-305 1	87.2	25.5	2.80E-05	+79
1.27E-07	1.18E-07	10-9401	1.03E-07	4 03E-03	£0-398'S	1126-07	Z(HO)OJZ ==) J
2.13E-07	20-31-61	1.66E-07	1.56E-07	ZO-36E.1	20-3E0.2	1.76E-07	+78
3.366-12	3 06E-12	2 62E-12	2.42E-12	10-3151	2.20E-07	21-34L 2	+6
90-396.1	1'54E-09	1.03E-06	10-361 6	20-3+2 6	HEI'0	1115E-00	+8
162'0	9910	851.0	161.0	2 83E+03	£0+385'S	481.0	+£1
52.1	1.24	133	77.1	3772E+04	10+356 E	¢Z'1	e3+ (total Fe)
1.20	\$6.9	81-9	61.9	112E+04	\$0+E+01	14.9	
14.2	1.21	16.2	00'5	1'31E+04	1.06E+05	80'8	+61
(J/əłom)	(I/alona)	(T/alom)	(т/эюш)	87	udd	T'alom	sjuanjijstud
13 <b>56</b> +	ID 49+	L) 49-	13 56-			<b>0</b> -4	Chemical
90-356-04	P0-3/116	1.50E-04	7.20E-04			8 45E-04	M) 3 %14 30.
¥'6E	5'8£	0.81	8.21			£'6Z	Valet w1%
£120	012.0	565'0	00£.0			885'0	notices T bio
5.04	961	191	65 1	-		(20/8) 52.1	only Density
89'6	19'6	6.33	80.6		(3.25E+04 BTU/hr)	(MT) 15'6	test Losd
					(104 kgal)	(83) 50+388.9	BW W.TT 1810
13 <del>56+</del>	ID 49+	ID 49-	13 26-				Pysical Pysical
		alimate	пленогу Е	ansoquiou	spilos M.IT	2000 A 190304083	T Instruction
			)1-XS-1+2 >				

		Single	Shell Tan	k 241-SX-1	07		
		SMM Co	mposite In	ventory Esti	mate		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total SMM W	0 (kg)	(1.10E-02 kgal)					
Heat Load	0 (kW)	(0 BTU/hr)		0	0	0	
Bulk Density*	0 (g/cc)			0	0	0	0
Water wt%	0			0		0	
TOC wt% C (w	0			0	0	0	0
Chemical Constituents	maje/L			-95 CI	-67 CI	+67 CI	+95 CI
Na+	0	<b>ppm</b> 01	<b>kg</b> 0		(mole/L)		
Al3+			0	0	0	0	0
Fe3+ (total Fe)			0	0	0	0	0
Cr3+			0	0	0	0	0
Bi3+			0	0	0	0	0
La3+				0	0	0	0
Hg2+				0	0	0	0
Zr (as ZrO(OH)2			0		0	0	0
Pb2+				0	0	0	0
Ni2+				0	0	0	0
Sr2+			0	0	0	0	0
Mn4+			0	0	0	0	0
Ca2+	0			0	0	0	0
K+	0		0	0	0	0	0
он.	0	0	0	0	0	0	0
NO3-		0	0	0	0	0	0
NO2-	0	0	0	0	0	0	0
CO32-	0		0	0			0
PO43-	0		0	0		0	0
SO42-	0	0	0	0	0	0	0
Si (aa SiO32-)	0	0	0	0	0	0	0
F-	0	0	0	0	0	0	0
CI-	0		0	0		ō	0
C6H5O73-	0		0	0	0	0	0
EDTA4-	0	0	0	0	0	0	0
HEDTA3-	0	0	Ő	0	0	0	0
glycolate-	0		0	0		0	0
acetate-	0	0	0	0	0	- 0	0
oxalate2-	0	0	0	0	0	0	0
DBP	0	0	0	0	0	0	0
butanol	0	0	0	0	- 0	0	0
		i i i i i i i i i i i i i i i i i i i					
NH3	0	0	0	0		0	Ó
Fe(CN)64-	0	0	0	0	- 0	0	0

*Density is calculated based on Ns, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

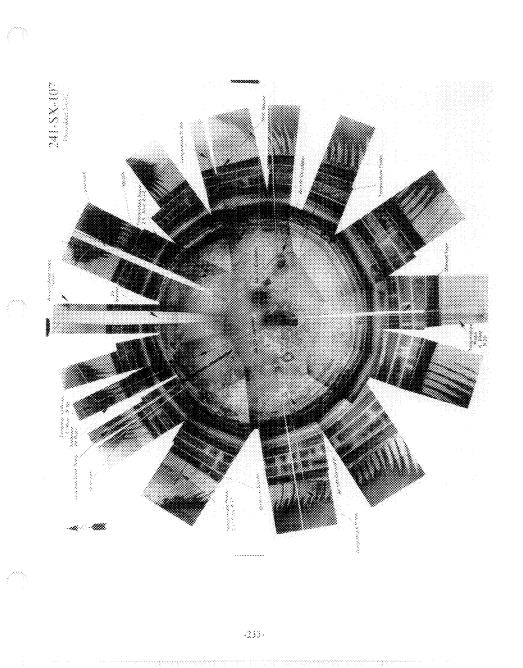
		Singl	e-Shell Tan	k 241-SX-1	07		_
		To	al inventor	y Estimate*			
Physical		498 - C.C Ali	., K., K.		e a la ala		110340
Properties				-95 Cl	-67 CI	+67 CI	+95 CI
Total Waste	6.88E+05 (kg)	(104 kgal)					
Heat Load	9.51 (kW)	(3.25E+04 BTU/hr)		9.08	9.33	9.63	9.68
Bulk Density†	1.75 (g/cc)			1.59	1.61	1.96	2.04
Water wt%†	29.3		_	12.8	18.0	38.5	39.4
TOC wt% C (w	8.42E-04			7.20E-04	7.50E-04	9.17E-04	9.95E-04
Chemical			Carle (	-95 CI	-67 CI	+67 CI	+95 CI
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L
Na+	8.08	1.06E+05	7.31E+04	5.00	5.31	12.1	14.2
Al3+	6.70	1.04E+05	7.12E+04	6.39	6.48	6.95	7.20
Fe3+ (total Fe)	1.24	3.95E+04	2.72E+04	1.22	1.23	1.24	1.25
Cr3+	0.187	5.58E+03	3.83E+03	0.131	0.158	0.466	0.791
Bi3+	1.12E-06	0.134	9.24E-02	9.49E-07	1.03E-06	1.24E-06	1.36E-06
La3+	2.77E-12	2.20E-07	1.51E-07	2.42E-12	2.62E-12	3.06E-12	3.36E-12
Hg2+	1.76E-07	2.03E-02	1.39E-02	1.56E-07	1.66E-07	1.94E-07	2.13E-07
Zr (as ZrO(OH)2	1.12E-07	5.86E-03	4.03E-03	1.03E-07	1.07E-07	1.18E-07	1.27E-07
Pb2+	2.80E-05	3.32	2.28	1.50E-05	2.13E-05	3.47E-05	4.13E-05
Ni2+	6.03E-02	2.03E+03	1.39E+03	5.18E-02	5.66E-02	6.32E-02	6.26E-02
Sr2+	0	0	Ő	0	0	0	0
Min4+	8.17E-06	0.257	0.177	5.84E-06	6.98E-06	9.38E-06	1.06E-05
Ca2+	0.263	6.03E+03	4.15E+03	0.218	0.240	0.286	0.308
K+	1.48E-02	330	227	8.74E-03	1.11E-02	1.72E-02	1.72E-02
OH-	26.6	2.59E+05	1.78E+05	25 1	25.6	27.7	28.7
NO3-	4.06	1.44E+05	9.91E+04	0.895	0.895	9.01	11.7
NO2-	1.55	4.09E+04	2.81E+04	0.751	1.03	1.97	1.97
CO32-	0.264	9.06E+03	6.23E+03	0 219	0.241	0,287	0.309
PO43-	7.27E-05	3.95	2.72	6 75E-05	7.05E-05	7.57E-05	8.23E-05
5042-	1.70E-02	935	643	1.14E-02	1.37E-02	1.92E-02	1.92E-02
Si (as SiO32-)	0.136	2.19E+03	1.50E+03	3.22E-02	3.43E-02	0.238	0.336
F.	5.79E-05	0.630	0.433	4.93E-05	5.46E-05	6.37E-05	6.86E-05
CI-	6.56E-02	1.33E+03	915	3.79E-02	4.90E-02	7.68E-02	0.129
C6H5O73-	5.99E-05	6.48	4.45	5.80E-05	5.89E-05	6.25E-05	6.80E-05
EDTA4-	2.33E-06	0.385	0.264	1.64E-06	2 02E-06	2.75E-06	3.16E-06
HEDTA3-	· 1.94E-06	0,304	0.209	6.21E-07	1.336-06	2.58E-06	3.22E-06
l and late	8.45E-05						
giycolate-		3.63	2.49	4.58E-05	6.68E-05	1.05E-04	1.25E-04
icetate-	8.77E-06	0.296	0.204	8.49E-06	8.63E-06	9.32E-06	9.96E-06
xalate2-	3.62E-12	1.83E-07	1.26E-07	3.21E-12	3.41E-12	3.99E-12	4.39E-12
DBP	5.31E-05	6.39	4.39	4.96E-05	5.16E-05	5.74E-05	6.20E-05
outanoi	5.31E-05	2.25	1.55	4.96E-05	5.16E-05	5.74E-05	6.20E-05
NH3	0.269	2.61E+03	1.80E+03	0.153	0.170	0.441	0,286
Fe(CN)64-	0	0	0	0.133	0.170	0.441	0.260

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.	4

		Singl	e-Shell Tan	k 241-SX-1	07		
		TLM Solids					
Physical Properties					-67 CI	+67 C1	+95 C
Total TLM Wa	6.88E+05 (kg)	(104 kgal)					1,5 0
Heat Load	9.51 (kW)	(3.25E+04 BTU/hr)		9.08	9 13	9.63	9.6
Bulk Density	1.75 (g/cc)	(3 232+04 B10/m)		9.08	1.61	9.63	2.0
Void Fraction	0.588			0.300	0.395	0.710	0.71
Water wt%	29.3						_
TOC wt% C (w	8.42E-04		1	12.8 7.20E-04	18.0 7.50E-04	38.5 9.17E-04	39. 9.95E-0
Radiological	é a di kang			-95 CI	-67 CI	+67 CI	+95 C
Constituents	CIL	µCl/g	CI	(Ci/L)	(CI/L)	(CVL)	(CI/L)
H-3	8.81E-05	5.04E-02	34.7	5.16E-05	5.16E-05	9.52E-05	9.52E-0
C-14	4.70E-06	2.69E-03	1.85	2.83E-06	2.83E-06	5.19E-06	5.19E-0
Ni-59	2.88E-05	1.65E-02	11.3	2.61E-05	2.75E-05	2.99E-05	3.03E-0
Ni-63	2.80E-03	1.60	1.10E+03	2.53E-03	2.67E-03	2.91E-03	2.94E-0
Co-60	3.86E-06	2.21E-03	1.52	2.17E-06	2.17E-06	4.05E-06	4.08E-0
Se-79	9.47E-06	5.42E-03	3.73	1.78E-06	1.78E-06	1.81E-05	2.64E-0
Sr-90	3.48	2.00E+03	1.3716+06	3.32	3.41	3,54	3.5
Y-90	3.49	2.00E+03	1.37E+06	3.32	3.41	3.54	3.5
Zr-93	4.04E-05	2.31E-02	15.9	8.47E-06	8.47E-06	8.35E-05	1.25E-0
Nb-93m	3.74E-05	2.14E-02	14.7	6.78E-06	7.22E-06	6.76E-05	9.65E-0
Tc-99	3.60E-05	2.06E-02	14.2	2.75E-05	2.86E-05	3.95E-05	3.95E-0
Ru-106	8.34E-10	4.77E-07	3.28E-04	4.45E-10	4.45E-10	1.85E-09	2.25E-0
Cd-113m	1.85E-05	1.06E-02	7.29	1.09E-05	1.09E-05	1.52E-04	4.00E-0
Sb-125	1.31E-05	7.51E-03	5.16	7.11E-06	7.11E-06	1.34E-05	1.39E-0
Sn-126	1.23E-05	7.06E-03	4.85	2.71E-06	2.71E-06	2.53E-05	3.77E-0
-129	6.85E-08	3.92E-05	2.70E-02	5.22E-08	5.44E-08	7.51E-08	7.51E-0
Cs-134	9.53E-07	5.46E-04	0.375	5.77E-07	5.77E-07	9.68E-07	9.98E-0
Cs-137	0.147	84.4	5.80E+04	0.122	0.121	0.157	0.15
Ba-137m	0.139	79.8	5.49E+04	8.94E-02	8.94E-02	0.137	0.15
Sm-151	3.39E-02	19.4	1.34E+04	6.35E-02	6.35E-03	6.41E-02	9.31E-0
Eu-152	3.15E-05	1.81E-02	12.4	3.01E-05	3.01E-05	3.16E-05	9.51E-0.
Eu-154	9.31E-05	5.33E-02	36.6	5.28E-05	5.28E-05		
Eu-155	1.59E-03	0.913	628	1.52E-03	3.2ME-03	9.77E-05	1.86E-0
Ra-226	2.44E-09	1.40E-06	9.61E-04			110000 00	1.60E-0
Ra-228	2.44E-09	1.40E-06	1.01E-03	1.88E-09	2.15E-09	2.73E-09	3.01E-0
Ac-227	2.58E-09		4.32E-03	5.10E-14	5.10E-14	2.60E-09	2.63E-09
Pa-231	1.05E-08	6.28E-06	4.15E-03	7.93E-09	9.29E-09	1.26E-08	1.42E-0
ra-231 Th-229		6.04E-06	2.58E-05	2.49E-09	2.49E-09	1.92E-08	2.74E-0
Th-232	6.56E-11	3.76E-08	1.36E-05	3.87E-12	3.87E-12	6.61E-11	6.68E-1
	3.45E-11	1.98E-08	4.53E-03	1.79E-15	1.79E-15	4.35E-11	5.24E-11
U-232	1.15E-08	6.\$9E-06	4.53E-03	4.07E-09	7.51E-09	1.64E-08	2.18E-08
J-233	4.40E-08	2.52E-05	0.123	1.56E-08	2.87E-08	6.27E-08	8.36E-08
J-234	3.13E-07	1.79E-04		1.96E-07	2.53E-07	3.78E-07	4.43E-01
J-235	1.27E-08	7.29E-06	5.01E-03	8.00E-09	1.03E-08	1.54E-08	1.80E-08
J-236	1.20E-08	6.85E-06	4.71E-03	7.28E-09	9.60E-09	1.44E-08	1.69E-08
J-238	2.79E-07	1.60E-04	0,110	1.76E-07	2.26E-07	3.37E-07	3.95E-01
Np-237	1.68E-07	9.63E-05	6.62E-02	1.13E-07	1.35E-07	1.90E-07	1.90E-07
Pu-238	2.18E-05	1.25E-02	8.56	1.79E-05	1.98E-05	2.37E-05	2.56E-05
Pu-239	6.34E-04	0.363	250	5.54E-04	5.93E-04	6.76E-04	7.15E-04
Դս-240	1.08E-04	6.19E-02	42.5	9.38E-05	1.01E-04	1.15E-04	1.22E-0
Դս-241	1.09E-03	0.626	431	9.11E-04	1.00E-03	1.19E-03	1.28E-0
Pu-242	5.99E-09	3.43E-06	2.36E-03	4.94E-09	5.45E-09	6.52E-09	7.04E-0
Am-241	5.32E-04	0.304	209	2.78E-04	4.02E-04	6.61E-04	7.85E-04
Am-243	2.35E-08	1.35E-05	9.27E-03	1.21E-08	1.77E-08	2.94E-08	3.50E-0
Cm-242	1.32E-06	7.57E-04	0.520	1.32E-06	1.31E-06	1.32E-06	1.32E-0
Cm-243	1.26E-07	7.23E-05	4.97E-02	1.26E-07	1.25E-07	1.26E-07	1.26E-01
Cm-244	3.75E-06	2.15E-03	1.48	2.91E-06	3.32E-06	4.18E-06	4.60E-06
0.0000				-95 CI	-67 CI	+67 CI	+95 CI
이 옷을 하는 물				(M or	(M or	(M or	(M or
Fotels	M	<b>#8/8</b>	ke	∎/L)	₩L)	1/L)	₽/L)
2u	1.07E-02 (g/L)		4.21	9.34E-03	1.00E-02	1.14E-02	1.20E-02
<u>,</u>	3.47E-03	472	325	2.19E-03	2.81E-03	4.19E-03	4.91E-03
		: • <b>-</b>		A. 1757-03		1.170.00	4.210-03

				k 241-SX-10			
				ventory Esti			
Physical				10.20		0016400	1.1.1.1.1.
Properties		생활이 있었다.	- 11 - De 14	-95 CI	-67 CI	+67 C1	+95 C
Total SMM W	0 (kg)	(1.10E-02 kgal)					
Heat Load	0 (kW)	(0 BTU/hr)		0	0	0	
Bulk Density*	0 (g/cc)			0	0	0	
W							
Water wt%† TOC wt% C (w	0			0	0	0	(
10C Wt% C (W	0	l		0	0	0	
Destination					<u></u>	6.645	1.000
Radiological Constituents	CNL	<b>27</b> 11 C	~	-95 CI	-67 CI	+67 CI	+95 CI
H-3		µCl/g	<u>Cl</u>	(CVL)	(Ci/L)	(CI/L)	(CI/L)
C-14	0	0	0	0	0	0	(
	0	0	0	0	0	0	
Ni-59	0	0	0	0	0	0	
Ni-63	0	0	0	0	0	0	
Co-60	0	0		0	0	0	(
Se-79	0	0	0	0	0	0	(
Sr-90	0	0	-	0	0	0	
Y-90	0	0	0	0	0	0	
Zr-93	0	0	0	0	0	0	0
Nb-93m	0	0	0	0	0	0	C
Tc-99	0	0	0	0	0	0	0
Ru-106	0	0		. 0	0	0	0
Cd-113m	0	0	0	0	0	0	0
Sb-125	0	0	0	0	0	0	0
Sn-126	0	0	0	0	0	0	0
-129	0	0	0	0	0	0	0
Cs-134	0	0	0	0	0	0	0
Cs-137	0	0	-	0	0	0	0
Ba-137m	0	0	0	0	0	0	0
Sm-151	0	0		0	0	0	0
Eu-152	0	0	0	0	0	0	0
Eu-154	0	0	0	0	0	0	0
Eu-155	0	0	6	0	- 0	0	0
Ra-226	0	0	0	0	0	0	0
Ra-228	0	•	0	•	0	0	0
Ac-227	0	0	0	0	0	0	0
Pa-231	0	0	0	0	0	0	0
Th-229	0	0	0	0	0	0	0
h-232	0	0	0	0	0	. 0	0
)-232	0	0	0	0	0	0	0
)-233	0	0	0	0	0	0	0
J-234	0	0	0	0	0	0	0
J-235 J-236		0	0		0	0	0
J-236 J-238		0	0	•	0	0	0
vp-238	0	0		•	0	0	0
Np-237 Pu-238	0		0	0	0	0	0
12-238 72-239	0	0	- 0	0	0	0	0
-u-239 -u-240			- 0	0	0	-	0
าบ-240 าบ-241	0	- 0	0		0	0	0
น-241 น-242	0	0	- 0	0	0		0
u-242 um-241	0	0		0	0	0	0
um-241	0	0		- 0	0	0	0
-243 Cm-242	0	0		0	0	0	0
.m-242 Cm-243	0	0	- 0	0	0	0	
m-243	0	0		0	0	0	0
.m-247		<u> </u>	• •	-95 CI	-67 CI	+67 CI	+95 CI
<b>Totals</b>	м	<b>PS/</b> 5	kg	-35 Cl (M or g/L)	(M or g/L)	(M or y/L)	-75 CI (M or g/L)
<u>ในสาร</u>	0 (g/L)		0	0	0	0	0

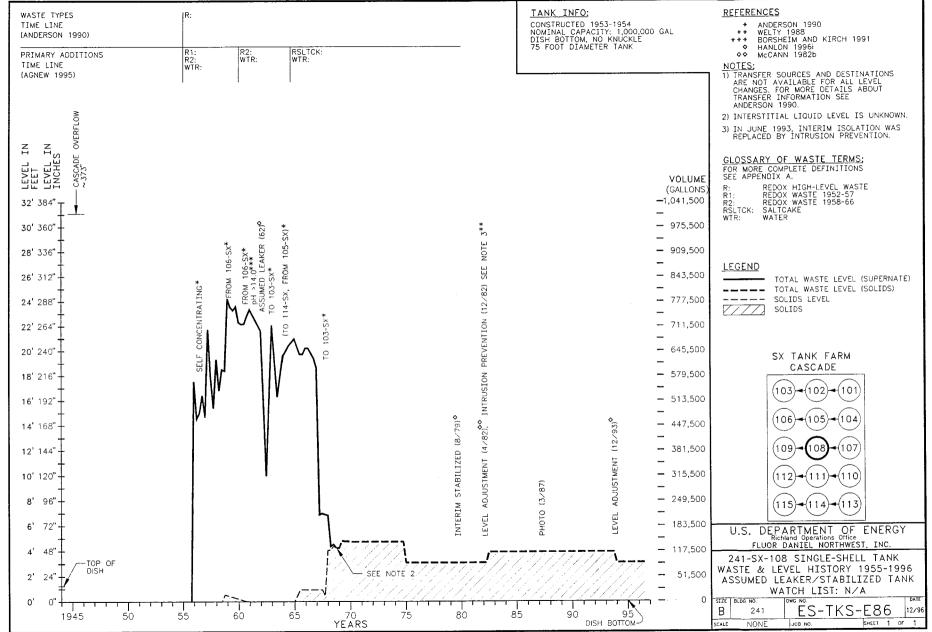

*Density is calculated based on Ns, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

				k 241-SX-10	)7		
		Tot	al Inventory	y Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	6.88E+05 (kg)	(104 kgal)					
Heat Load	9.51 (kW)	(3.25E+04 BTU/hr)		9.08	9.33	9.63	9.6
Bulk Density†	1.75 (g/cc)			1.59	1.61	1.96	2.04
Water wt%†					-		
TOC wt% C (w	29.3 8.42E-04			12.8 7.20E-04	18.0 7.50E-04	38.5 9.17E-04	39. 9.95E-0
	0.442-04			7.200-04	7.30E-04	9.17E-04	9.955-04
Radiological				-95 CI	-67 C1	+67 CI	+95 C
Constituents	CI/L	µCl/g	Ci	(CI/L)	(CI/L)	(CVL)	(CI/L)
H-3	8.81E-05	5.04E-02	34.7	5.16E-05	5.16E-05	9.52E-05	9.52E-0
C-14	4.70E-06	2.69E-03	1.85	2.83E-06	2.83E-06	5.19E-06	5.19E-0
Ni-59	2.88E-05	1.65E-02	11.3	2.61E-05	2.75E-05	2.99E-05	3.03E-0
Ni-63	2.80E-03	1.60	1.10E+03	2.53E-03	2.67E-03	2.91E-03	2.94E-0
Co-60	3.86E-06	2.21E-03	1.52	2.17E-06	2.17E-06	4.05E-06	4.08E-06
Sc-79	9.47E-06	5.42E-03	3.73	1.78E-06	1.78E-06	1.81E-05	2.64E-05
Sr-90	3.48	2.00E+03	1.37E+06	3.32	3.41	3.54	3.5
Y-90	3.48	2.00E+03	1.37E+06	3.32	3,41	3.54	3.5
Zr-93	4.04E-05	2.31E-02	15.9	8.47E-06	8.47E-06	8.35E-05	1.25E-04
Nb-93m	3 74E-05	2.14E-02	14.7	6.78E-06	7.22E-06	6.76E-05	9.65E-0
Tc-99	3.60E-05	2.06E-02	14.2	2.75E-05	2.86E-05	3.95E-05	3.95E-0
Ru-106	8.34E-10	4.77E-07	3.28E-04	4.45E-10	4.45E-10	1.85E-09	2.25E-0
Cd-113m	1.85E-05	1.06E-02	7.29			-	
Sb-125	1.85E-05		5.16	1.09E-05	1.09E-05	1.52E-04	4.00E-04
		7.51E-03	4.85	7.11E-06	7.11E-06	1.34E-05	1.39E-05
Sn-126	1.23E-05	7.06E-03	4.85 2.70E-02	2.71E-06	2.71E-06	2.53E-05	3.77E-05
-129	6.85E-08	3.92E-05		5.22E-08	5.44E-08	7.51E-08	7.51E-08
C8-134	9.53E-07	5.46E-04	0.375	5.77E-07	5.77E-07	9.68E-07	9.98E-07
Cs-137	0.147	84.4	5.80E+04	0.122	0.121	0.157	0.157
Ba-137m	0.139	79.8	5.49E+04	8.94E-02	8.94E-02	0.149	0.145
Sm-151	3.39E-02	19.4	1.34E+04	6.35E-03	6.35E-03	6.41E-02	9.31E-02
Eu-152	3.15E-05	1.81E-02	12.4	3.01E-05	3.01E-05	3.16E-05	3.16E-05
Eu-154	9.30E-05	5.33E-02	36.6	5.28E-05	5.28E-05	9.77E-05	1.86E-03
Eu-155	1.59E-03	0.913	628	1.52E-03	1.52E-03	1.60E-03	1.60E-03
Ra-226	2.44E-09	1.40E-06	9.61E-04	1.88E-09	2.15E-09	2.73E-09	3.01E-09
Ra-228	2.58E-09	1.47E-06	1.01E-03	5.10E-14	5.10E-14	2.60E-09	2.63E-09
Ac-227	1.10E-08	6.28E-06	4.32E-03	7.93E-09	9.29E-09	1 26E-08	1.42E-08
-231	1.05E-08	6.04E-06	4.15E-03	2.49E-09	2.49E-09	1.92E-08	2.74E-08
Th-229	6.56E-11	3.76E-08	2.58E-05	3.87E-12	3.87E-12	6.61E-11	6.68E-11
ГЪ-232	3.45E-11	1.98E-08	1.36E-05				
U-232	1.15E-04	6.59E-06	4 53E-03	1.79E-15 4.07E-09	1.79E-15	4.35E-11	5.24E-11
U-232			1.73E-02		7.51E-09	1.64E-08	2.18E-08
	4.40E-08	2.52E-05	0 123	1.56E-08	2.87E-08	6.27E-08	8.36E-08
U-234	3.13E-07	1.79E-04	5.01E-03	1.96E-07	2.53E-07	3.78E-07	4.43E-07
J-235	1.27E-08	7.29E-06		8.00E-09	1.03E-08	1.54E-08	1.80E-08
J-236	1.20E-08	6.85E-06	4.71E-03	7.28E-09	9.60E-09	1.44E-08	1.69E-08
J-238	2.79E-07	1.60E-04	0.110	1.76E-07	2.26E-07	3.37E-07	3.95E-07
Np-237	1.68E-07	9.63E-05	6.62E-02	1.13E-07	1.35E-07	1.90E-07	1.90E-07
Pu-238	2.17E-05	1.25E-02	8,56	1.79E-05	1.98E-05	2.37E-05	2.56E-05
Դս-239	6.34E-04	0.363	250	5.54E-04	5.93E-04	6.76E-04	7.15E-04
-u-240	1.08E-04	6.19E-02	42.5	9.38E-05	1.01E-04	1.15E-04	1.22E-04
-u-241	1.09E-03	0.626	431	9.11E-04	1.00E-03	1.19E-03	1.28E-03
Դս-242	5.99E-09	3.43E-06	2.36E-03	4.94E-09	5.45E-09	6.52E-09	7.04E-09
-241	5.32E-04	0.304	209	2.78E-04	4.02E-04	6.61E-04	7.85E-04
Am-243	2.35E-08	1.35E-05	9.27E-03	1.21E-08	1.77E-08	2.94E-08	3.50E-08
Cm-242	1.32E-06	7.57E-04	0.520	1.32E-06	1.31E-06	1.32E-06	1.32E-06
Cm-243	1.26E-07	7.23E-05	4.97E-02	1.26E-07	1.25E-07	1.26E-07	1.26E-07
Cm-244	3.75E-06	2.15E-03	1.48	2.91E-06	3.32E-06	4.18E-06	4.60E-06
		100-201.2		-95 CI	-67 CI	+67 CI	+95 Cl
				(Mor	(M or	(M or	(Mor
lotais	M		kg				(*************************************
1000005 ² 1	1.07E-02 (g/L)	<u></u>	4.21	g/L) 9.34E-03	1.00E-02	1.14E-02	1.20E-02

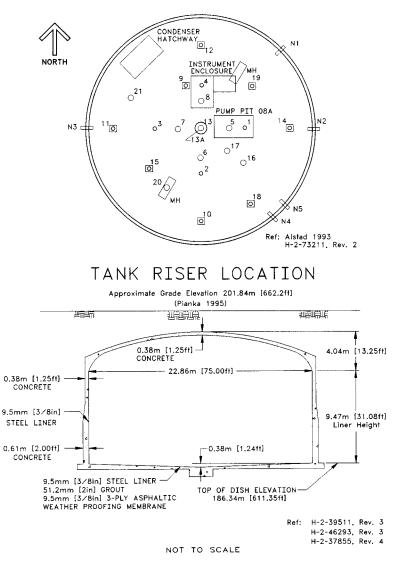
 U
 5.415400 [ 215200 ] 2.6

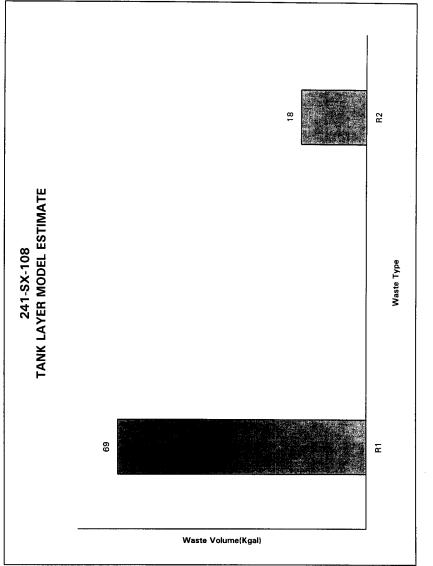
 *Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

 †Volume average for density, mass average Water wt% and TOC wt% C.




## TANK 241-SX-108 SUMMARY


TANK H	ISTORY	TANK DES	CRIPTION	
Entered Service	4th qtr 1955	Diameter	75 ft	
Removed from Service	-	Bottom Shape	Dish	
Inactive	-	Nominal Capacity	1,000,000 gal	
Watch Lists	none	Cascade Tank	to 241-SX-109	
Integrity	Assumed Leaker	Total Risers	22	
Assumed Leaker	1962	WASTE VOLUME	(HANLON 1996i)	
Interim Stabilization (IS)	Aug 1979	Total Waste Volume	87,000 gal	
Partial Interim Isolation (PI)	•	Waste Type	NCPLX	
Intrusion Prevention (IP)	Dec 1982	Drainable Interstitial Liquids	5,000 gal	
TENTATIVELY AV	AILABLE RISERS	Pumpable Liquids 0 gal		
Riser Number(s)	Size	Saltcake	0 gal	
7, 16, 17	12 in	Sludge	87,000 gal	
		Supernatant	0 gal	
TANK TEM	PERATURE	INTERIOR PHO	OTOGRAPHS	
Average Tank Temperature	158°F	Date	March 6, 1987	
Maximum Temperature	204°F	Montage Number	94041033-31CN	
Date	Oct 31, 1994	Photo Set Number	8701429	
Elevation from tank bottom	0.5 ft	WASTE SURF	ACE LEVEL	
Riser Number	19	Devices	Manual Tape	
Minimum Temperature	129.74°F	Max Level	37.75 in	
Date	March 25 - April 5, 1996*	Date	Jan 3, 1994	
Elevation from tank bottom	4.67 ft	Min Level	32 in	
Riser Number	10	Date	July 2, 1994	


• Numerous dates in this time span

WHC-SD-WM-ER-352, Rev. 1



241-SX-108





Tank Layer Model(TLM) Estimate from Hanford Tank Chemical and Radionuclide Inventories: HDW Model Rev. 4 (Agnew et al., 1997).

				k 241-SX-1						
	TLM Solids Composite Inventory Estimate*									
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total TLM Wa	5.78E+05 (kg)	(87.0 kgal)								
Heat Load	7.51 (kW)	(2.56E+04 BTU/hr)		7,04	7 32	7.64	7.65			
Bulk Density	1.75 (g/cc)			1.56	1 58	2.03	2.14			
Void Fraction	0.547			0.169	0.294	0.706	0.710			
Water wt%	28.0		****	7,54	13.9	40.1	41.3			
TOC w1% C (w	0			0	0	0				
Chemical				-95 CI	-67 CI	+67 CI	+95 CI			
Constituents	mole/L	ppm	kg	(mole/L)	(mole/L)	(mole/L)	(mole/L			
Na+	7.30	9.57E+04	5.53E+04	3.27	3.67	12.5	15.3			
A13+	7.26	1.12E+05	6.45E+04	6.94	7.07	7.39	7.39			
Fe3+ (total Fe)	1.36	4.33E+04	2.50E+04	1.34	1.35	1.37	1.37			
Cr3+	6.29E-02	1.86E+03	1.08E+03	1.94E-02	4.07E-02	0.428	0.854			
Bi3+	0	0.	0	0	0	0	C			
La3+	0	0	0	0	0	0	0			
Hg2+	0	0	0	0	0	0	0			
Zr (as ZrO(OH)2		0	0	0	0	0	0			
Pb2+	0	0	0	0	0	0	0			
Ni2+	6.45E-02	2.16E+03	1.25E+03	5.33E-02	5.97E-02	6.83E-02	6.76E-02			
Sr2+	0	0	0	0	0	0	0			
Mn4+	0	0	0	0	0	0	0			
Ca2+	0.279	6.38E+03	3.69E+03	0,220	0.249	0.310	0.339			
K+	1.13E-02	253	146	3.46E-03	6.61E-03	1.45E-02	1.45E-02			
DH-	27.5	2.67E+05	1.54E+05	25.5	26.5	28.6	29.8			
N03-	4.19	1.48E+05	8.56E+04	4.78E-02	4.78E-02	10.7	14.2			
NO2-	1.48	3.89E+04	2.25E+04	0.432	0.799	2.03	2.03			
CO32-	0.279	9.56E+03	5.52E+03	0,220	0,249	0.310	0.339			
PO43-	0	0	0	0	0	0	0,000			
5042-	1.19E-02	653	377	4.61E-03	7.53E-03	1.49E-02	1.49E-02			
Si (as SiO32-)	0.105	1.68E+03	971	1.18E-02	1.37E-02	0.197	0,284			
P	0	0	0	0	0	0	0			
CI-	5.22E-02	1.05E+03	609	1.59E-02	3.04E-02	6.68E-02	0 136			
C6H5O73-	0	0	0	0	0	0	0			
EDTA4-	0	0	0	0	0	0	0			
HEDTA3-	0	0	0	0	0	0	0			
glycolate-	- 0	0	0	. 0		0				
cetate-	0	0		0	0	0	0			
oxalate2-	0	0		0		0	0			
DBP	0	0		0	0	0	0			
outenol	0	0	0	a	. 0	0	0			
инз	0.299	2.90E+03	1.68E+03	0.149	0.170	0.454	0.322			

		Single	-Shell Tan	k 241-SX-1	08		lodel Rev. 4		
	Single-Shell Tank 241-SX-108 SMM Composite Inventory Estimate								
Physical Properties						+67 CI	+95 (1		
Total SMM W	0 (kg)	(1.50E-02 kgal)							
Heat Load	0 (kW)	(0 BTU/hr)		0	0	0			
Bulk Density*	0 (g/cc)			0	0	0	0		
Water wt%	0			0	0	0	0		
TOC wt% C (w	0		_	0	0	o	0		
Chemical Constituents	mole/L	ppm	kg	-95 Cl (mole/L)	-67 Cl (male/[.)	+67 Cl (mole/L)	+95 CI		
Na+	0	0	0	0	0	0	0		
Al3+	0	0	0	0	0	0	0		
Fe3+ (total Fe)	0	0	0	0	0	0	0		
Cr3+	0	0	0	Ō	0	0	0		
Bi3+	0	0	0	- ů	0	0	0		
La3+	0	0	0	0	0	0	o		
Hg2+	0	0	0	0	0	0	0		
Zr (as ZrO(OH)2	0	Ó	0	0	0	0	0		
Pb2+	0	0	0	0	0	0	0		
Ni2+	0	0	0	0	0	0	0		
Sr2+	0	0	0	0	0	0	0		
Mn4+	0	0	0	0	0	ō	0		
Ca2+	0	0	0	0	0	0	0		
K+	0	0	0	0	0	0	0		
он-	0	0	. 0	0	0	0	0		
NO3-	0	0	Ó	0	0	0	0		
NO2-	0	Ó	0	0	0	0	0		
CO32-	0	0	0	0	0	0	0		
PO43-	0	0	0	0	0	0	0		
SO42-	0	0	ō	0	0	0	0		
Si (as SiO32-)	0	0	0	0	0	0	0		
F-	0	0	0	0	0	0	0		
CI-	0	0	0	0	0	0	0		
C6H5O73-	0	0	0	0	0	0	0		
EDTA4-	0	0	0	0	0	0	0		
HEDTA3-	0	0	0	0	0	0	0		
glycolate-	0	0	0	0	0	0	0		
acetate-	0	0	0	0	0	0	0		
oxalate2-	0	0	0	0	0	0	0		
DBP	0	0	0	0	0	0	0		
butanol	0	0	0	0	0	0	0		
NH3	0	0	0	0	0	0	0		
Fe(CN)64-	0	0	0	0	0	0	0		

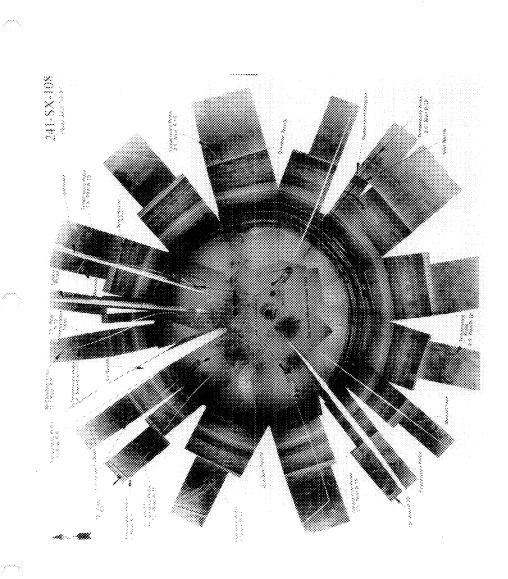
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

#### HNF-SD-WM-ER-352, Rev. 1

HDW Model Rev	. 4
---------------	-----

	Single-Shell Tank 241-SX-108									
	Total Inventory Estimate*									
Physical		68 P 1 5 P	95	1.1		1.1.1.1.1.1				
Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total Waste	5.78E+05 (kg)	(87.0 kgal)								
Heat Load	7.51 (kW)	(2.56E+04 BTU/hr)		7.04	7.32	7.64	7.6			
Bulk Density†	1.75 (g/cc)			1.56	1.58	2.03	2.14			
Water wt%†	28.0		_	7.54	13.9	40.1	41 3			
TOC wt% C (w	0	_		0	0	0				
Chemical Constituents	mole/L	Ppm	kg	-95 CI (mole/L)	-67 CI (mole/L)		+95 Cl (mole/L			
Na+	7.30	9.57E+04	5.53E+04	3.27	3.67	12.5	15.3			
Al3+	7.26	1.12E+05	6.45E+04	6.94	7.07	7.39	7.39			
Fe3+ (total Fe)	1.36	4.33E+04	2.50E+04	1.34	1.35	1.37	1.3			
Cr3+	6.29E-02	1.86E+03	1.08E+03	1.94E-02	4.07E-02	0.428	0.854			
Bi3+	0	0	0	0	0	0				
La3+	0	0	0	0	0	0				
Hg2+	0	0	0	0	0	0				
Zr (as ZrO(OH)2	0	0	0	0	0	0				
Pb2+	0	0	0		0	0				
Ni2+	6.45E-02	2.16E+03	1.25E+03	5.33E-02	5.97E-02	6.83E-02	6.76E-01			
Sr2+	0	0	0	0	0	0	(			
Mn4+	0	Ö	0	0	0	0				
Cn2+	0.279	6.38E+03	3.69E+03	0.220	0 249	0.310	0.335			
K+	1.13E-02	253	146	3.46E-03	6.61E-03	1.45E-02	1.45E-02			
DH-	27.5	2.67E+05	1.54E+05	25.5	26.5	28.6	29.8			
NO3-	4.19	1.48E+05	8.56E+04	4,78E-02	4.78E-02	10.7	14.2			
NO2-	1.48	3.89E+04	2.25E+04	0.432	0,799	2.03	2.03			
CO32-	0.279	9.56E+03	5.52E+03	0.220	0.249	0.310	0.339			
PO43-	0	0	0	0	0	0	0			
5042-	1.19E-02	653	377	4.61E-03	7.53E-03	1.49E-02	1.49E-02			
Si (as SiO32-)	0.105	1.68E+03	<b>97</b> 1	1.18E-02	1.37E-02	0.197	0.284			
F-	0	0	0	0	0	0	0			
CI-	5.22E-02	1.05E+03	609	1.59E-02	3.04E-02	6.68E-02	0.136			
C6H5O73-		0	0	0	0	0	0			
EDTA4-	0	0	0	0	0	0	0			
HEDTA3-	0	0	Ö	0	0	0	6			
glycolate-	0	0	0	0	0	0	C			
icetate-	0	0	0	0	0	0	0			
xalate2-	0	0	0	0	0	0	0			
)BP	0	0	0	0	0	0	0			
outanol	0	0	0	0	0	0	0			
NH3	0.299	2.90E+03	1.68E+03	0.149	0 170	0.454				
Fe(CN)64-	0.239	2.50,2113	1.082.105	U, 149	0.170	0.434	0.322			

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

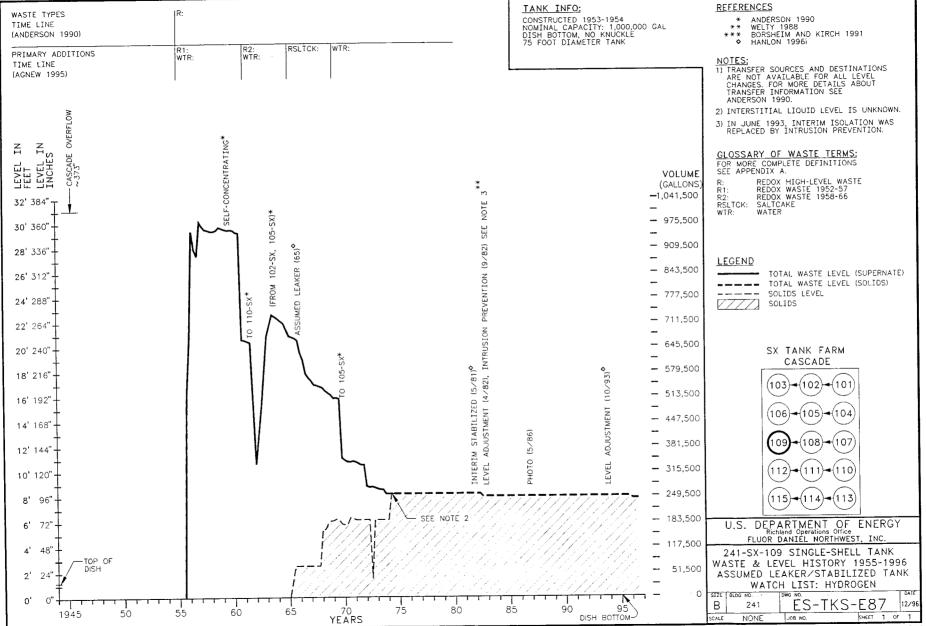

	Single-Shell Tank 241-SX-108								
		TLM Solids							
Physical Properties				-95 CI	-67 CI	+67 CI	+95 Cl		
Total TLM Wa	5.78E+05 (kg)	(87.0 kgal)							
Heat Load	7.51 (kW)	(2.56E+04 BTU/hr)		7.04	7.32	7.64	7.65		
Bulk Density	1.75 (g/cc)			1.56	1.58	2.03	2.14		
Void Fraction	0.547	****		0.169	0.294	0.706	0.710		
Water wt%	28.0			7.54	13.9	40.1	41.3		
TOC wt% C (w	0			0	0	0	(		
Radiological Constituents	CVL	µCl/g	CI	-95 CI (CVL)	-67 CI (CI/L)	+67 CI (CI/L)	+95 CI (CI/L)		
H-3	5.36E-05	3.06E-02	17.7	3.28E-05	3.43E-05	6.30E-05	6.30E-05		
C-14	3.10E-06	1.77E-03	1.02	1.51E-06	2.15E-06	3.74E-06	3.74E-06		
Ni-59	2.86E-05	1.63E-02	9.40	2.53E-05	2.71E-05	2.96E-05	2.99E-05		
Ni-63	2.76E-03	1.57	908	2.45E-03	2.63E-03	2.86E-03	2.89E-03		
Co-60	2.17E-06	1.24E-03	0.715	1.54E-06	1.26E-06	2.42E-06	2.42E-06		
Se-79	7.59E-06	4.33E-03	2.50	7.02E-07	7.02E-07	1.53E-05	2.27E-05		
Sr-90	3.32	1.89E+03	1.09E+06	3.11	3.23	3.39	3.40		
Y-90	3.32	1.89E+03	1.09E+06	3.11	3.23	3.39	3.40		
Zr-93	3.19E-05	1.82E-02	10.5	3.34E-06	3.34E-06	7.06E-05	1.08E-04		
Nb-93m	3.01E-05	1.71E-02	9.90	2.63E-06	3.02E-06	5.71E-05	8.31E-05		
Tc-99	2.32E-05	1.33E-02	7.65	1.21E-05	1.66E-05	2.77E-05	2.77E-05		
Ru-106	3.99E-10	2.28E-07	1.32E-04	3.53E-10	1.51E-10	1.31E-09	1.99E-08		
Cd-113m	1.16E-05	6.59E-03	3.80	6.64E-06	7.79E-06	1.31E-04	3.54E-04		
Sb-125	6.70E-06	3.82E-03	2.21	5.78E-06	3.16E-06	7.07E-06	7.07E-06		
Sn-126	9.67E-06	5.52E-03	3.19	1.05E-06	1.05E-06	2.13E-05	3.24E-05		
-129	4.43E-08	2.53E-05	1.46E-02	2.29E-08	3.15E-08	5.29E-08	5.29E-08		
Cs-134	5.24E-07	2.99E-04	0.173	4.84E-07	3.07E-07	5.38E-07	5.38E-07		
Cs-137	9.87E-02	56.3	3.25E+04	6.60E-02	7.52E-02	0.112	0.112		
Ba-137m	9.34E-02	53.2	3.07E+04	6.24E-02	7.12E-02	0,106	0.106		
Sm-151	2.72E-02	15.5	8.96E+03	2.49E-03	2.49E-03	5.43E-02	8.02E-02		
Eu-152	2.87E-05	1.64E-02	9.46	2.86E-05	2.86E-05	2.88E-05	2.88E-05		
Eu-154	5.28E-05	3.01E-02	17.4	3.76E-05	3.04E-05	5.89E-05	1.64E-03		
Eu-155	1.45E-03	0.825	476	1.44E-03	1.44E-03	1.45E-03	1.45E-03		
Ra-226	2.39E-09	1.36E-06	7.87E-04	1.65E-09	2.01E-09	2.77E-09	3.136-09		
Ra-228	4.BOE-14	2.74E-11	1.58E-08	4.78E-14	4.77E-14	4.81E-14	4.81E-14		
Ac-227	1.06E-08	6.05E-06	3.50E-03	7.09E-09	8.43E-09	1.28E-08	1.49E-08		
Pa-231	8.12E-09	4.63E-06	2.67E-03	8.94E-10	8.94E-10	1.58E-08	2.33E-08		
ГЪ-229	3.91E-12	2.23E-09	1.29E-06	3.88E-12	3.89E-12	3.92E-12	3.92E-12		
Th-232	1.75E-15	9.99E-13	5.77E-10	1.34E-15	9.48E-16	1.92E-15	1.92E-15		
U-232	7.05E-12	4.02E-09	2.32E-06	3.37E-12	4.84E-12	8.52E-12	8.52E-12		
U-233	2.25E-13	1.28E-10	7.42E-08	8.52E-14	1.41E-13	2.82E-13	2.82E-13		
U-234	1.24E-07	7.06E-05	4.06E-02	4.01E-08	7.35E-08	1.57E-07	1.57E-07		
U-235	5.17E-09	2.95E-06	1.70E-03	1.57E-09	3.01E-09	6.62E-09	6.62E-09		
U-236	3.47E-09	1.98E-06	1.14E-03	2.15E-09	2.24E-09	4.01E-09	4.01E-09		
J-238	1.17E-07	6.67E-05	3.85E-02	3.15E-08	6.56E-08	1.51E-07	1.51E-07		
Np-237	1.20E-07	6.82E-05	3.94E-02	4.74E-08	7.62E-08	1.49E-07	1.49E-07		
าม-238	2.08E-05	1.19E-02	6.85	1.74E-05	1.91E-05	2.25E-05	2.42E-05		
-u-239	6.76E-04	0.385	222	5.70E-04	6.22E-04	7.30E-04	7.81E-04		
Pu-240	1.12E-04	6.38E-02	36.8	9.68E-05	1.04E-04	1.20E-04	1.27E-04		
Pu-241	1.06E-03	0.606	350	8.99E-04	9.79E-04	1.15E-03	1.23E-03		
Pu-242	5.73E-09	3.27E-06	1.89E-03	4.79E-09	5.25E-09	6.21E-09	6.67E-09		
Am-241	4.62E-04	0.263	152	2.34E-04	3.46E-04	5.77E-04	6.89E-04		
Am-243	2.06E-08	1.17E-05	6.78E-03	1.03E-08	1.54E-08	2.58E-08	3.08E-08		
Cm-242	1.22E-06	6.98E-04	0.403	1.22E-06	1.22E-06	1.23E-06	1.23E-06		
Cm-243	1.14E-07	6,50E-05	3.76E-02	1.14E-07	1.13E-07	1.14E-07	1.14E-07		
Cm-244	3.37E-06	1.92E-03	3.11	2.61E-06	2.98E-06	3.75E-06	4.12E-06		
		2.0.0		-95 CI	-67 CI	+67 C1	+95 Cl		
				(M er	(M or	(M or	(M or		
Totals	м	H\$/\$	ke	<b>1</b> ,	s/L)	g/L)	1/L)		
2	1.14E-02 (g/L)	_ 1	3.74	9.61E-03	1.05E-02	1.23E-02	1.31E-02		

				241-SX-10			
		SMM Con	posite Inv	entory Estin	nate		
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI
fotal SMM W	0 (kg)	(1.50E-02 kgal)					
leat Load	0 (kW)	(0 BTU/hr)		0	0	0	0
Bulk Density*	0 (g/cc)			0	0	0	0
Vater wt%†	0			0	0		0
FOC wt% C (w	0	1		0	0	0	0
Radiological Constituents	CIL	µCi/g	CI	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI (CI/L)	+95 CI (Ci/L)
1-3	0	0	0	0	0	0	0
C-14	0	0	0	0	0	0	0
Ni-59	0	0	0	0	0	0	0
Ni-63	0	0	0	0	0	0	0
Co-60	0	0	0	0	0	0	0
Se-79	0	0	0	0	0	0	0
Sr-90	0	0	0	0	0	0	0
Y-90	0	0	0	0	0	0	0
Zr-93	0	0	0	0	0	0	0
Nb-93m	0	0	0	0	0	0	0
Tc-99	0	0	0	0	0	0	0
Ru-106	0	0	0	0	0	0	0
Cd-113m	0	0	0	0	0	0	0
Sb-125	0	0	0	0	0	0	0
Sn-126	0	0	0	0	0	0	0
-129	0	0	0	0	0	0	0
Cs-134	0	0	0	0	0	0	0
Cs-137	0	0	Ő	0	0	0	0
Ba-137m	0	0	0	0	0	0	0
Sm-151	0	0	0	0	0	0	0
Eu-152	0	0	0	0	0	0	G
Eu-154	0	0	0	0	0	0	c
Eu-155	0	0	0	0	0	0	0
Ra-226	0	0	0	0	0	0	
Ra-228	0	0	0	0	0	0	
Ac-227	0	0	0	0	0	0	
Pa-231	0	0	0	0	0	0	
Th-229	0	0	0	0	0	0	(
Th-232		0	ů Ó	0	0	0	
U-232	0	0	0	0	0	0	
U-233	0	0	0	0	0	0	
U-234	0	0	0				
U-235	0	0	- 0	0	0	0	
U-236	0	0				_	
U-238	0	0	0	0	0	0	
Np-237	0	0		0	0	0	
Pu-238	0		0	0	0	0	
Pu-239	<u>0</u>	0		0	0	0	
Pu-240	0	0	0	0	0	0	
Pu-241	0	0	0	0	0	0	
Pu-242	0	0	0	0	0	0	
Am-241	0	0	0	0	0	0	
Am-243	0	0	0	0	0		<u> </u>
Cm-242 Cm-243	0	0	0	0	0	0	
Cm-243 Cm-244	0	0	0	0	0		+
CIII*244	<u>                                     </u>	1		-95 CI	-67 CI	+67 CI	+95 C
				(M ər	(M or	(M or	(M er
Totals	м	<b>H2/2</b>	kg	∎/L)	8/L)	<b>s</b> /L)	(۱.)
Pu	0 (g/L)		0	0	0	0	
υ	0000	0		0	0	0	

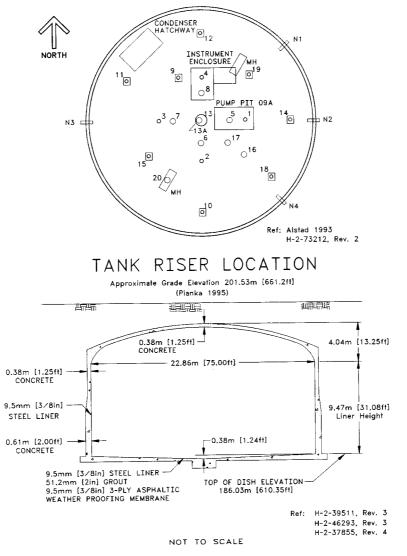
*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

			c-Shell Tani		18				
	Total Inventory Estimate*								
Physical Properties				-95 CI	-67 CI	+67 CI	+95 CI		
Total Waste	5.78E+05 (kg)	(87.0 kgal)			_				
Heat Load	7.51 (kW)	(2.56E+04 BTU/hr)		7.04	7.32	7.64	7,6		
Bulk Density†	1.75 (g/cc)	****		1.56	1,58	2.03	2.1		
Water wt%†	28.0			7,54	13.9	40.1	41.3		
TOC wt% C (w	0			0	0	0			
Radiological Constituents	CVL	uCi/g	a	-95 CI (CVL)	-67 CI (CVL)	+67 CI (CV/L)	+95 CI (CI/L)		
H-3	5.36E-05	3.06E-02	17.7	3.28E-05	3.43E-05	6.30E-05	6.30E-0		
C-14	3.10E-06	1.77E-03	1.02	1.51E-06	2.15E-06	3.74E-06	3.74E-0		
Ni-59	2.85E-05	1.63E-02	9,40	2.53E-05	2.71E-05	2.96E-05	2.99E-0		
Ni-63	2.76E-03	1.652-62	908	2.45E-03	2.63E-03	2.96E-03	2.89E-0		
Co-60	2.17E-06	1.24E-03	0.715	1.54E-06	1.26E-06	2.80E-05	2.49E-0		
Se-79	7,59E-06	4.33E-03	2.50	7.02E-07	7.02E-07	1.53E-05	2.42E-0		
Sr-90	3 32		1.09E+06						
Sr-90 Y-90	3.32	1.89E+03 1.89E+03	1.09E+06	3.11	3.23	3.39	3.4		
Y-90 Zr-93	3.32 3.19E-05		1.096100	3.11	3.23	3.39	3.4		
Zr-93 Nb-93m		1.82E-02	9.90	3.34E-06	3.34E-06	7.06E-05	1.08E-0		
	3.01E-05	1.71E-02	9.90	2.63E-06	3.02E-06	5.71E-05	8.31E-0		
Гс-99	2.32E-05	1.33E-02		1.21E-05	1.66E-05	2.77E-05	2.77E-0		
Ru-106	3.99E-10	2.28E-07	1.32E-04	3.53E-10	1.51E-10	1.31E-09	1.99E-0		
Cd-113m	1.16E-05	6.59E-03	3.80	6.64E-06	7.79E-06	1.31E-04	3.54E-0		
Sb-125	6.70E-06	3.82E-03	2.21	5.78E-06	3.16E-06	7.07E-06	7.07E-0		
Sn-126	9.67E-06	5.52E-03	3.19	1.05E-06	1.05E-06	2.13E-05	3.24E-0		
-129	4.43E-08	2.53E-05	1.46E-02	2.29E-08	3.15E-08	5.29E-08	5.29E-0		
Cs-134	5.24E-07	2.99E-04	0.173	4.84E-07	3.07E-07	5.38E-07	5.38E-0		
Ca-137	9.87E-02	\$6.3	3.25E+04	6.60E-02	7.52E-02	0.112	0.11		
Ba-137m	9.33E-02	53.2	3.07E+04	6.24E-02	7.12E-02	0.106	0.10		
Sm-151	2.72E-02	15.5	8.96E+03	2.49E-03	2.49E-03	5.43E-02	8.02E-02		
Eu-152	2.87E-05	1.64E-02	9,46	2.86E-05	2.86E-05	2.88E-05	2.88E-0		
Eu-154	5.28E-05	3.01E-02	17.4	3.76E-05	3.04E-05	5.89E-05	1.64E-03		
Eu+155	1.45E-03	0.825	476	1.44E-03	1.44E-03	1.45E-03	1.45E-03		
Ra-226	2.39E-09	1.36E-06	7.87E-04	1.65E-09	2.01E-09	2.77E-09	3.13E-09		
Ra-228	4.80E-14	2.74E-11	1.58E-08	4.78E-14	4.77E-14	4.81E-14	4.81E-14		
Ac-227	1.06E-08	6.05E-06	3.50E-03	7.09E-09	8.43E-09	1.28E-08	1.49E-08		
Pa-231	8.12E-09	4.63E-06	2.67E-03	8.94E-10	8.94E-10	1.58E-08	2.33E-0		
Th-229	3.91E-12	2.23E-09	1.29E-06	3.88E-12	3.89E-12	3.92E-12	3.92E-12		
Dr-232	1.75E-15	9.99E-13	5.77E-10	1.34E-15	9.48E-16	1.92E-15	1.92E-1		
J-232	7.05E-12	4.02E-09	2.32E-06	3.37E-12	4.84E-12	8.52E-12	8.52E-12		
J-233	2.25E-13	1.24E-10	7.42E-08	8.52E-14	1.41E-13	2.82E-12	2.82E-13		
J-234	1.24E-07	7.06E-05	4 08E-02	4.01E-08	7.35E-08	1.57E-07	1.57E-07		
J-235	5.17E-09	2.95E-06	1.70E-03	1.57E-09	3.01E-09	6.62E-09	6.62E-05		
J-235	3.47E-09	1.98E-06	1.14E-03	2.15E-09	2.24E-09	4.01E-09	4.01E-05		
J-238	1.17E-07	6.67E-05	3.85E-02	2.15E-09 3.15E-08	6.56E-08	4.01E-09	4.01E-05		
	1.20E-07		3.94E-02	3.15E-08	7.62E-08	1.51E-07			
Np-237		6.82E-05	6.85				1.49E-0		
Pu-238	2.08E-05	1.19E-02	222	1.74E-05	1.91E-05	2.25E-05	2.42E-0		
Pu-239	6.76E-04	0.385	16.8	5.70E-04	6.22E-04	7.30E-04	7.81E-0		
Pu-240	1.12E-04	6.38E-02	350	9.68E-05	1.04E-04	1.20E-04	1.27E-04		
Pu-24 i	1.06E-03	0.606	350 189E-03	8.99E-04	9.79E-04	1.15E-03	1.23E-03		
Ры-242	5.73E-09	3.27E-06		4.79E-09	5.25E-09	6.21E-09	6.67E-09		
Am-241	4.61E-04	0.263	152	2.34E-04	3.46E-04	5.77E-04	6.89E-0-		
Am-243	2.06E-08	1.17E-05	6.78E-03	1.03E-08	1.54E-08	2.58E-08	3.08E-08		
Cm-242	1.22E-06	6.98E-04	0.403	1.22E-06	1.22E-06	1.23E-06	1.23E-00		
Cm-243	1.14E-07	6.50E-05	3.76E-02	1.14E-07	1.13E-07	1.14E-07	1.14E-07		
Cm-244	3.37E-06	1.92E-03	1.11	2.61E-06	2.98E-06	3.75E-06	4.12E-06		
				-95 CI	-67 Cl	+67 CI	+95 Cl		
				(M or	(M or	(M or	(M er		
l'otals	М	₩Ø/E	kg	∎⁄L)	g/L)	∎⁄L)	₽/L)		
Pu	1.14E-02 (g/L)	[	3.74	9.61E-03	1.05E-02	1.23E-02	1.31E-02		
u t	1.47E-03	200	115	3.97E-04	8.26E-04	1.90E-03	1.90E-0		
							1.702-0.		

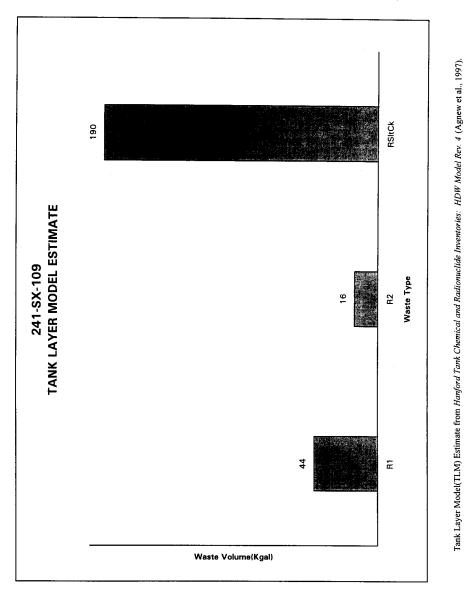
*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.




## TANK 241-SX-109 SUMMARY


TANK HIS	TORY	TANK DE	SCRIPTION
Entered Service	3rd qtr 1955	Diameter	75 ft
Removed from Service	-	Bottom Shape	Dish
Inactive	-	Nominal Capacity	1,000,000 gal
Watch Lists	Hydrogen	Cascade Tank	none
Integrity	Assumed Leaker	Total Risers	21
Assumed Leaker	1965	WASTE VOLUM	E (HANLON 1996i)
Interim Stabilization (IS)	May 1981	Total Waste Volume	244,000 gal
Partial Interim Isolation (PI)	-	Waste Type	NCPLX
Intrusion Prevention (IP)	Sept 1982	Drainable Interstitial Liquids	48,000 gal
TENTATIVELY AVAI	LABLE RISERS	Pumpable Liquids	25,000 gal
Riser Number(s)	Size	Saltcake	244,000 gal
6	12 in	Sludge	0 gal
13A	20 in	Supernatant	0 gal
TANK TEMPE	RATURE	INTERIOR PI	IOTOGRAPHS
Average Tank Temperature	140°F	Date	May 21, 1986
Maximum Temperature	153.9°F	Montage Number	94041033-21CN
Date	Feb 28, 1995	Photo Set Number	8603308
Elevation from tank bottom	unknown	WASTE SUF	RFACE LEVEL
Riser Number	19	Devices	Manual Tape
Minimum Temperature	115.5°F	Max Level	96 in
Date	Nov 6, 1994	Date	Oct 2, 1993 - Jan 2, 1994*
Elevation from tank bottom	unknown	Min Level	92 in
Riser Number	10	Date	Jan 4, 1991 - July 1, 1991*

• Numerous dates in this time span


## WHC-SD-WM-ER-352, Rev. 1



241-SX-109







HOW	Model	Rev.	4

		<b>6</b> ( 1	- C1 11 77			1,211.1	lodel Rav.
				k 241-SX-1			
Physical	and a second	TLM Solids	Composite	Inventory E	stimate*		
Properties				-95 CI	-67 CI	+67 CI	+95 CI
Total TLM Wa	1.63E+06 (kg)	(250 kgal)	_				[
Heat Load	8.61 (kW)	(2.94E+04 BTU/hr)		8.32	8.49	8.71	8.8
Bulk Density	1.72 (g/cc)	A	_	1.51	1.62	1.78	1.8
Void Fraction	0.728			0.645	0.672	0.798	0.87
Water wt%	33.1			25.2	28.8	41.2	49.4
TOC wt% C (w	3.97E-03	_		3.78E-03	3.83E-03	4.23E-03	4.69E-01
Chemical Constituents	mole/L	ppm	ke	-95 C1 (mole/L)	-67 CI (mole/L)	+67 CI (mole/L)	+95 CI (mole/L
Na+	11.9	1.59E+05	2.59E+05	8 19	10.2	13.1	13.7
A13+	4.34	6.80E+04	1.11E+05	2.86	3.29	5.48	6.63
Fe3+ (total Fe)	0.363	1.18E+04	1.92E+04	0.358	0.360	0.366	0.365
Cr3+	0.640	1.93E+04	3.15E+04	0.380	0.504	0.721	0.815
Bi3+	5.22E-06	0.634	1.03	4.41E-06	4.81E-06	5,75E-06	6.32E-06
La3+	1.29E-11	1.04E-06	1.69E-06	1.13E-11	1.22E-11	1.42E-11	1.56E-11
Hg2+	8.20E-07	9.55E-02	0.156	7.27E-07	7.72E-07	9.03E-07	9.91E-07
Zr (as ZrO(OH)2	5.21E-07	2.76E-02	4.50E-02	4.79E-07	4.99E-07	5.47E-07	5.89E-07
Pb2+	1.30E-04	15.6	25.5	6.97E-05	9.91E-05	1.61E-04	1.92E-04
Ni2+	2.79E-02	952	1.55E+03	2.54E-02	2.68E-02	2.881-02	2.90E-02
Sr2+	0	0	0	2.346-02	2.08E-02	2.885-02	2.906-02
Mn4+	3.80E-05	1.21	1.98	2.72E-05	3.25E-05	4.36E-05	4.91E-05
Ca2+	0,130	3.01E+03	4 91E+03	0,107	0.118	4.362-03	0.152
K+	2.71E-02	614	1.00E+03	2.53E-02	2.60E-02	2.92E-02	3.16E-02
он.	21.0	2.07E+05	3.37E+05	2.332-02	2.00E-02	2.922-02	3.16E-02
NO3-	4.92	1.77E+05	2.89E+05	2.99	4 00	6 36	7.14
NO2-	1.78	4.75E+04	7.75E+04	1.55	1.63	1.90	2.02
CO32-	0.133	4.65E+03	7.57E+03	0,111	0.122	0 145	0.156
P043-	3.38E-04	18.6	30,4	3.14E-04			
SO42-	3 37E-02	1.88E+03	3.06E+03	3.14E-04 3.20E-02	3.28E-04	3.52E-04	3.83E-04
Si (as SiO32-)	0.131	2.13E+03	3.48E+03		3.27E-02	3.64E-02	3.93E-02
F-	2.69E-04	2.97	4.84	9.44E-02 2.29E-04	0.103	0.159	0.186
CI-	0.114	2.34E+03	3.82E+03		2.54E-04	2.96E-04	3.19E-04
C6H5O73-	2.78E-04	30.5	49.8	6.71E-02	9.00E-02	0.124	0.133
EDTA4-	1.08E-05	1.81	2.96	2.69E-04	2.74E-04	2.91E-04	3.16E-04
HEDTA3-	9.00E-06	1.81	2.90	7.62E-06	9.38E-06	1.28E-05	1.47E-05
			2.55	2.89E-06	6.19E-06	1.20E-05	1.50E-05
glycolato-	3.93E-04	17.1	27.9				
cetate-	4.08E-05	1.40	2.28	2.13E-04	3.11E-04	4.88E-04	5.80E-04
oxalate2-	1.68E-11	8.61E-07	1.40E-06	3.95E-05	4.01E-05	4.33E-05	4.63E-05
DBP	2.47E-04	B.012-07 30,1	49.1	1.49E-11	1.59E-11	1.86E-11	2.04E-11
butanol	2.47E-04	10.6	17.3	2.30E-04	2.40E-04	2.67E-04	2.88E-04
	4.71074	10.0	11.3	2.30E-04	2.40E-04	2.67E-04	2.88E-04
NH3	0.102	1.01E+03	1.65E+03				
FerCN)64-	0.102		1.65E+03	6.88E-02	7.36E-02	0.150	0.110
-4C/1/04-	U	0	0	0	0	0	0

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM).

	Single-Shell Tank 241-SX-109									
	SMM Composite Inventory Estimate									
Physics: Properties				-95 CI	-67 CI	+67 CI	+95 CI			
Total SMM W	0 (kg)	(2.00E-03 kgal)	••••							
Heat Load	0 (kW)	(0 BTU/hr)		0	0	0				
Bulk Density*	0 (g/cc)			0	0	0				
Water wt%	0		_	0	0	0				
TOC wt% C (w	0			0	0	0	C			
Chemical Constituents	mole/L	ppm	kg	-95 CI (mole/L)	-67 Cl (mole/L)	+67 Cl (mole/L)	+95 CI			
Na+	0	0	0	0	0		_			
Al3+			0	0	. 0	0	0			
Fe3+ (total Fe)				0	0	0	0			
Cr3+		0		0	0	0	0			
Bi3+			0	- 0	0	0	0			
La3+	0		0	0	0	0	0			
Hg2+	0	0	0		0	0	0			
Zr (as ZrO(OH)2	Ó	0	0	0	0		0			
Pb2+		- 0		0	0	0				
Ni2+	0		0	0	0	0	0			
Sr2+	0		0	- 0	0	0	0			
Mn4+	0	0			0	0	0			
Ca2+	0	0	0	0	0	0	0			
K+			0	0	0	0	0			
он-	0		0	0	0	0	0			
N03-	0		0	0	0	0	0			
NO2-	0	0	0		0	0	0			
CO32-	0	0	0		0		0			
PO43-	0		0	0	0	-	<u> </u>			
SO42-	0	0	0		0	0	0			
Si (au SiO32-)		0	0	0	0	0	0			
F.	0	0	0			0	0			
Cl+	0	0	0		0	- 0	0			
C6H5O73-	0	0	0		0		0			
EDTA4-	0	0	0	0	0	0				
HEDTA3-	0	0	0	0	0	0	0			
dycolate-	0	0	0	0	0	0	0			
cetate-	0	0	0	0	0	0	0			
oxalate2-	0	0	0	0	0	0	0			
DBP	0	0	0	0	0	0	0			
outanol	0	0	0	0	0	0	0			
							<u></u>			
4H3	0	0	0	0	0	0	0			
e(CN)64-	0	0	0	0	0	0	0			

*Density is calculated based on Na, OH-, and AIO2-. †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.	4

						710111	Addel Rev.
· · · · · ·				k 241-SX-1			
hysical	www.week	To	tal Inventor	y Estimate*			
roperties				-95 CI	-67 CI	+67 CI	+95 CI
otal Waste	1.63E+06 (kg)	(250 kgal)	****				
leat Load	8.61 (kW)	(2.94E+04 BTU/hr)		B.32	8.49	8.71	8.8
Bulk Density†	1.72 (g/cc)	••••	·	1.51	1.62	1.78	1.8
Vater wt%†	33.1			25.2	28.8	41.2	49.4
OC wt% C (w	3.97E-03			3.78E-03	3.83E-03	4.23E-03	4.69E-0
Chemical Constituents	mole/L	ррт	kg	2000 C C C C C C C C C C C C C C C C C C	-67 CI (mole/L)	+67 CI (mole/L)	10 IN 17 17 17 17 17 17 17 17 17 17 17 17 17
ia+	11.9	1.59E+05	2.59E+05	8.19	10.2	13.1	13.7
.13+	4.34	6.80E+04	1.11E+05	2.86	3.29	5.48	6.63
e3+ (total Fe)	0.363	1.18E+04	1.92E+04	0.358	0.360	0,366	0.369
r3+	0.640	1.93E+04	3.15E+04	0.380	0.504	0.721	0.815
i3+	5.22E-06	0.634	1.03	4.41E-06	4.81E-06	5.75E-06	6.32E-06
a3+	1.29E-11	1.04E-06	1.69E-06	1.13E-11	1.22E-11	1.42E-11	1.56E-11
g2+	8.20E-07	9.55E-02	0.156	7.27E-07	7.72E-07	9.03E-07	9.91E-07
r (as ZrO(OH)2	5.21E-07	2.76E-02	4.50E-02	4.79E-07	4.99E-07	5.47E-07	5.89E-07
b2+	1.30E-04	15.6	25.5	6.97E-05	9.91E-05	1.61E-04	1.92E-04
i2+	2.79E-02	952	1.55E+03	2.54E-02	2.68E-02	2.88E-02	2.90E-02
2+	0	0	0	0	2.082-02	2.002-02	2.902-02
ln4+	3.80E-05	1.21	1.98	2.72E-05	3.25E-05	4.36E-05	4.91E-05
2+	0.130	3.01E+03	4.91E+03	0.107	0.118	0.141	
+	2.71E-02	614	1.00E+03	2.53E-02	2.60E-02	2.92E-02	0.152 3.16E-02
H-	21.0	2.07E+05	3.37E+05	14.1	16.3	2.926-02	3.16E-02 30.7
03-	4.92	1.77E+05	2.89E+05	2.99	4.00	6.36	7.14
02-	1.78	4.75E+04	7.75E+04	1.55	1.63	1.90	2.02
032-	0.133	4.65E+03	7.57E+03	0.111	0.122	0.145	0,156
043-	3.38E-04	18.6	30.4	3.14E-04	3.28E-04	3.52E-04	
042-	3.37E-02	1.88E+03	3.06E+03	3.20E-02	3.28E-04	3.54E-02	3.83E-04 3.93E-02
(as SiO32-)	0.131	2.13E+03	3.48E+03	9.44E-02	0.103	0.159	
<u> </u>	2.69E-04	2.97	4,84	2.29E-04	2.54E-04	2.96E-04	0.186 3.19E-04
	0.114	2.34E+03	3.82E+03	6.71E-02	9.00E-02	0.124	0.133
5H5O73-	2.78E-04	30,5	49.8	2.69E-04	2.74E-04	2.91E-04	0.133 3.16E-04
DTA4-	1.08E-05	1.81	2.96	7.62E-04	9.38E-06	1.28E-05	3.16E-04
EDTA3-	9.00E-06	1.43	2.33	2.89E-06	9.38E-06 6.19E-06	1.28E-05	1.47E-05
				2.072-00	0.19E-00	1.202-03	1.908-05
ycolate-	3.93E-04	17.1	27.9	2.13E-04	3.11E-04	4.88E-04	5.80E-04
ctale-	4.08E-05	1.40	2.28	3.95E-05	4.01E-04	4.33E-04	4.63E-04
alate2-	1.68E-11	8.61E-07	1.40E-06	1.49E-11	1.59E-11	4.33E-05	4.03E-05
3P	2.47E-04	30.1	49.1	2.30E-04	2.40E-04	2.67E-04	2.04E-11 2.88E-04
tanol	2.47E-04	10.6	17.3	2.30E-04	2.40E-04	2.67E-04	_
				2.308-04	4.902-04	2.07E-04	2.88E-04
-B	0,102	1.01E+03	1.65E+03	6.88E-02	7.36E-02	0.150	0.110

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Water wt% derived from the difference of density and total dissolved species.

				241-SX-10			
		TLM Solids	Composite	Inventory E	stimate*		
Physical Properties				-95 CI	-67 C1	+67 CI	+95 C
Total TLM Wa	1.63E+06 (kg)	(250 kgal)				_	
Heat Load	8.61 (kW)	(2.94E+04 BTU/hr)		8.32	8.49	8,71	8.8
Bulk Density	1.72 (g/cc)			1.51	1.62	1.78	1.6
Void Fraction	0.728	****	_	0.645	0.672	0.798	0.87
Water wt%	33.1		_	25.2	28.8	41.2	49
TOC wt% C (w	3.97E-03	_		3.78E-03	3.83E-03	4.23E-03	4.69E-0
				2.66.654	1.6+ 0.66		
Radiological Constituents	CI/L	µCl/g	CI	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI (CI/L)	+95 C
н-3	1.84E-04	0.107	174	1.46E-05	1.46E-05	1.92E-04	2.08E-0
C-14	9.50E-06	5.51E-03	8.99	8.03E-07	8.03E-07	9.85E-06	1.06E-0
Ni-59	1.30E-05	7.54E-03	12.3	7.80E-06	7.80E-06	1.33E-05	1.35E-0
Ni-63	1.26E-03	0.732	1.19E+03	7.57E-04	7.57E-04	1.29E-03	1.31E-0
Co-60	8.43E-06	4.90E-03	7.98	6.10E-07	6.10E-07	8.77E-06	9.48E-0
Se-79	7.60E-06	4.41E-03	7.19	2.31E-06	2.31E-06	9.99E-06	1.23E-0
Sr-90	1.16	675	1.10E+06	111	1.14	1.18	1.152~
Y-90	1.16	675	1.10E+06	0.962	0.962	1.18	1.1
Zr-93	3.47E-05	2.02E-02	32.9	9.73E-06	9.73E-06	4.67E-05	5.81E-0
Nb-93m	2.95E-05	1.71E-02	27.9	9.17E-06	9.17E-06	3.78E-05	4.59E-0
Tc-99	7.37E-05	4.28E-02	69.7	7.12E-05	7.16E-05	7.87E-05	8.45E-0
Ru-106	1.93E-09	1.12E-06	1.83E-03	1.23E-10	1.23E-10	2.21E-09	7.95E-0
Cd-113m	3.83E-05	2 22E-02	36.2	1.23E-10	3.09E-06	8,13E-05	1.44E-0
56-125	2.99E-05	1.74E-02	28.3	1.98E-06	1.98E-06	3.12E-05	3.37E-0
Sn-126	1.10E-05	6.41E-03	10.5	2.94E-06	2.94E-06	1.46E-05	1.81E-0
-129	1.40E-07	8.12E-05	0.132	1.35E-07	1.36E-07	1.46E-03	1.61E-0
Cs-134	1.40E-07	1.11E-03	1.61	1.60E-07	1.60E-07	1.98E-06	2.12E-0
Cs-134	0.273		2.58E+05	0.265	0.266		
Ba-137m	0.273	158	2.44E+05	2.52E-02	2.52E-02	0.291	0.31
Sm-151	2.71E-02	150	2.57E+04	2.32E-02 8.30E-03	2.32E-02 8.30E-03	3.55E-02	4.35E-0
Eu-152	2.71E-02	8,79E-03	14.3	8.30E-03 8.40E-06	8.40E-06		
Eu-152	2.02E-04	0.117	191		8.40E-08	1.52E-05	1.53E-0
Eu-154 Eu-155	7.67E-04	0.445	725	1.48E-05 4.25E-04	4.25E-04	2.10E-04 7.69E-04	6.92E-0-
Ra-226	1.02E-09	5.93E-07	9.67E-04	4.25E-04 6.65E-10			1.27E-0
Ra-228	1.02E-09	6.95E-06	1.13E-02	0.03E-10	6.65E-10 1.42E-14	1.15E-09	
			4.77E-02			1.21E-08	1.22E-0
Ac-227 Pa-231	5.04E-09 1.03E-08	2.93E-06	9.77E-03	2.96E-09	2.96E-09	5.79E-09	6.26E-09
Th-229	2.88E-10	1.67E-07	2.73E-04	2.46E-09 1.09E-12	2.46E-09 1.09E-12	1.27E-08 2.91E-10	1.50E-00
Th-232	1.60E-10	9.32E-08	1.52E-04	5.01E-16	5.01E-16	2.91E-10 2.02E-10	2.94E-10 2.43E-10
U-232			5.06E-02	5.01E-16			
	5.35E-08	3.11E-05	0.194		3.49E-08	7.62E-08	1.01E-0
U-233	2.05E-07	1.19E-04	0.943	7.24E-08	1.34E-07	2.92E-07	3.88E-01
U-234	9.97E-07	5.79E-04	3.81E-02	4.53E-07	7.18E-07	1.30E-06	1.60E-00
U-235	4.03E-08	2.34E-05	3.81E-02	1.83E-08	2.90E-08 3.00E-08	5.26E-08	6.49E-0
	4.10E-08	2.38E-05	0.828			5.25E-08	6.38E-0
J-238	8.75E-07	5.08E-04	0.828	3.96E-07	6.28E-07	1.14E-06	1.41E-00
Np-237	3.25E-07	1.88E-04	7.35	3.09E-07	3.15E-07	3.49E-07	3.76E-03
Pu-238	7.77E-06	4.51E-03	7.33	6.51E-06	7.13E-06	8.41E-06	9.03E-0
Pu-239	2.34E-04	0.136	37.4	1.94E-04	2.14E-04	2.55E-04	2.75E-0
Pu-240	3.95E-05	2.30E-02	37.4	3.28E-05	3.61E-05	4.30E-05	4.63E-0
Pu-241	3.93E-04	0.228	2.02E-03	3.29E-04	3.60E-04	4.26E-04	4.57E-04
Pu-242	2.13E-09	1.24E-06	2.022-03	1.79E-09	1.96E-09	2.31E-09	2.48E-0
Am-241	2.31E-04	0.134	8.70E-03	1.61E-04	1.95E-04	2.67E-04	3.01E-0
Am-243	9.19E-09	5.34E-06	8.70E-03 0.349	6.02E-09	7.58E-09	1.08E-08	1.24E-0
Cm-242	3.69E-07	2.14E-04	3.32E-02	3.68E-07	3.67E-07	3.69E-07	3.69E-0
Cm-243	3.51E-08	2.04E-05	0.985	3.50E-08	3.48E-08	3.51E-08	3.51E-0
Cm-244	1,04E-06	6.05E-04	v.767	8.07E-07	9.22E-07	1.16E-06	1.28E-00
1					-67 CI	+67 CI	+95 Cl
I				(M er	(M or	(M or	(M er
Totais Pu	<u>M</u>	HE/E	kg	∎/L)	<b>s</b> /L)	g/L)	∎/L)
	3.93E-03 (g/L) 1.08E-02		3.72 2.44E+03	3.25E-03	3.59E-03	4.28E-03	4.62E-0
U I	08E-02	1.496+03	2 44E+03	4.87E-03	7.75E-03	1.42E-02	1.75E-02

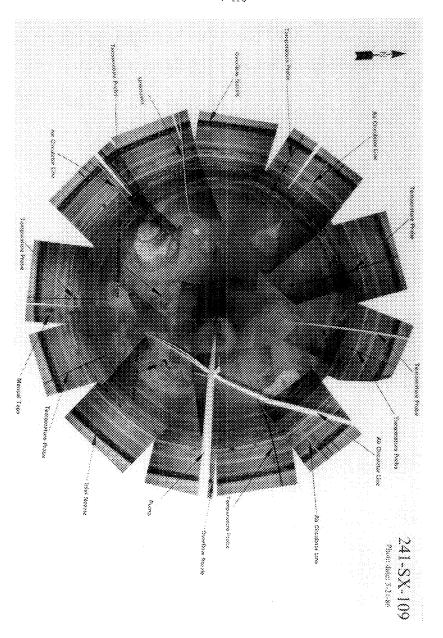
HDW Model Re

				241-SX-10			
		SMM Con	nposite Inv	entory Estin	nate		
Physical							
Properties	eser reelê			-95 CI	-67 CI	+67 CI	+95 Cl
Total SMM W	0 (kg)	(2.00E-03 kgal)	-				
leat Load	0 (kW)	(0 BTU/hr)		0	0	0	0
Bulk Density*	0 (g/cc)			0	0	0	0
Water wt%†	0			0	0	0	0
FOC wt% C (w	0			0	0	0	0
Radiological				-95 CI	-67 CI	+67 CI	+95 CI
Constituents	CI/L	µCi/g	CI	(CI/L)	(CI/L)	(CI/L)	(CVL)
1-3	0	0	0	0	0	0	0
C-14	0	0	0	0	0	0	0
Ni-59	0	0	- 0	0	0	0	0
Ni-63	0	0	0	0	0	0	0
Co-60	0	0	0	0	0	0	0
Se-79	0	0	0	0	0	0	0
Sr-90	0	0	0	0	0	0	0
Y-90	0	0	0	0	. 0	0	0
Zr-93	0	0	0	0	0	0	0
Nb-93m	0	0	0	0	0	0	0
Tc-99	0	0	0	0	0	0	0
Ru-106	0	0	0	0	0	0	0
Cd-113m	0	0	0	0	0	0	0
Sb-125		0	0	0	0	0	0
Sn-126	0		0	0	0	0	0
-129	0	- 0	0	0	0	0	0
Cs-134	- 0				0	0	0
Cs-137		0	0	- 0	0	0	0
Ba-137m	0		0	0	0	0	0
Sm-151	0		0	0	0	0	0
Eu-152			0	0	0	0	0
Eu-152			0	0	0	0	0
Eu-155	0		0	0	0	0	0
	0		0	0	0	0	0
Ra-226			0	0	0	0	0
Ra-228			0	0	0	0	0
Ac-227	0	0	0	0	0	0	0
Pa-231		0	0	0	0	0	0
Th-229	0	0	0	0	0	0	0
Пь-232		0	0	0	0	0	0
U-232	0	0		0	0	0	0
U-233	0	0	0	0	0	0	
U-234	0	0	0	0	0	0	0
U-235		0	0	0	0	0	0
U-236	0	0	0	0	0	0	0
U-238		0	0	0	0	0	0
Np-237	0		0	0	0	0	
Pu-238	0	0	0	0	0	0	
Pu-239	0		0		0	0	
Pu-240	0	0		0	0	0	
Pu-241	0				0	0	C
Pu-242	0	0	0	0	0	0	0
Am-241	0	0	0	0	0	0	
Am-243	0	0	0	0	0	0	
Cm-242	0	0			0	0	
Cm-243	0	0	0	0			
Cm-244	0	0		-95 CI	-67 CI	• +67 CI	+95 CI
				(M er	(Mor	(M or	(Mer
	M	unte	j.	(m ər (/L)	(Mor g/L)	(M 01 g/L)	(/// // g/L)
Totals Pu	M 0 (g/L)	HE/E	kg 0	0	0	0	

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.

HDW	Model	Rev.	4

			e-Shell Tan				
		To	tal Inventor	y Estimate*			
Physical Properties				-95 CI	-67 CI	+67 CI	+95 C
Total Waste	1.63E+06 (kg)	(250 kgal)					-
Heat Load	8.61 (kW)	(2.94E+04 BTU/hr)		8.32	8.49	8.71	8.8
Bulk Density†	1.72 (g/cc)			1.51	1.62	1.78	1.8
Water wt%†	33.1			25.2	28.8	41.2	49
TOC wt% C (w	3.97E-03			3.78E-03	28.8 3.83E-03	41.2 4.23E-03	49 4.69E-0
Radiological Constituents	CVIL	µCl/g	Ci	-95 CI (CI/L)	-67 CI (CI/L)	+67 CI	+95 C
H-3	1.84E-04	0.107	174	1.46E-05		(Ci/L)	(CI/L)
C-14	9.50E-06	5.51E-03	8.99	1.46E-05 8.03E-07	1.46E-05 8.03E-07	1.92E-04	2.08E-0
Ni-59			12.3	_		9.85E-06	1.06E-0
Ni-63	1.30E-05	7.54E-03	1 19E+01	7.80E-06	7.80E-06	1.33E-05	1.35E-0
N1-03 Co-60	1.26E-03	0.732	7,98	7.57E-04	7.57E-04	1.29E-03	1.31E-0
Se-79	8.43E-06 7.60E-06	4.90E-03	7.19	6.10E-07	6.10E-07	8.77E-06	9.48E-0
		4.41E-03	1.10E+06	2.31E-06	2.31E-06	9.99E-06	1.23E-0
Sr-90	1,16	675		1.11	1.14	1.18	1.1
Y-90	1.16	675	1.10E+06 32.9	0.962	0.962	1.18	1.1
Zz-93	3.47E-05	2.02E-02		9.73E-06	9.73E-06	4.67E-05	5.81E-0
Nb-93m	2.95E-05	1.71E-02	27.9	9.17E-06	9.17E-06	3.78E-05	4.59E-0
Tc-99	7.37E-05	4.28E-02	69.7	7.12E-05	7.16E-05	7.87E-05	8.45E-0
Ru-106	1.93E-09	1.12E-06	1.83E-03	1.23E-10	1.23E-10	2.21E-09	7.95E-0
Cd-113m	3.83E-05	2.22E-02	36.2	3.09E-06	3.09E-06	B.13E-05	1.44E-0
Sb-125	2.99E-05	1.74E-02	28.3	1.98E-06	1.98E-06	3.12E-05	3.37E-0
Sn-126	1.10E-05	6.41E-03	10.5	2.94E-06	2.94E-06	1.46E-05	1.81E-0
1-129	1.40E-07	8.12E-05	0.132	1.35E-07	1.36E-07	1.49E-07	1.61E-0
Cs-134	1.91E-06	1.11E-03	1.81	1.60E-07	1.60E-07	1.98E-06	2.12E-0
Cs-137	0.273	158	2.58E+05	0.265	0.266	0.291	0.31
Ba-137m	0.258	150	2.44E+05	2.52E-02	2.52E-02	0.267	0.28
Sm-151	2.71E-02	15.8	2.57E+04	8.30E-03	8.30E-03	3.55E-02	4.35E-02
Ear-152	1.51E-05	8.79E-03	14.3	8.40E-06	8.40E-06	1.52E-05	1.53E-0
Eu-154	2.02E-04	0.117	191	1.48E-05	1.48E-05	2.10E-04	6.92E-04
Eu-155	7.67E-04	0.445	725	4.25E-04	4.25E-04	7.69E-04	7.73E-04
Ra-226	1.02E-09	5.93E-07	9.67E-04	6.65E-10	6.65E-10	1.15E-09	1.27E-09
Ra-228	1.20E-08	6.95E-06	1.13E-02	1.42E-14	1.42E-14	1.21E-08	1.22E-0
Ac-227	5.04E-09	2.93E-06	4.77E-03	2.96E-09	2.96E-09	5.79E-09	6 26E-04
Pa-231	1.03E-08	5.99E-06	9.77E-03	2.46E-09	2.46E-09	1.27E-08	1.50E-0
Th-229	2.88E-10	1.67E-07	2.73E-04	1.09E-12	1.09E-12	2.91E-10	2.94E-10
Th-232	1,60E-10	9.32E-04	1.52E-04	5.01E-16	5.01E-16	2.02E-10	2.43E-10
J-232	5.35E-08	3.11E-05	5.06E-02	1.89E-08	3.49E-08	7.625-08	1.01E-07
J-233	2.05E-07	1.19E-04	0.194	7.24E-08	1.34E-07	2.92E-07	3.88E-07
J-234	9.97E-07	5.79E-04	0.943	4.53E-07	7.18E-07	1.30E-06	1.60E-06
J-235	4.03E-08	2.34E-05	3.81E-02	1.83E-08	2.90E-08	5.26E-08	6.49E-08
J-236	4.10E-08	2.38E-05	3.88E-02	1.92E-08	3.00E-08	5.25E-08	6.38E-08
J-238	8.75E-07	5.08E-04	0.828	3.96E-07	6.28E-07	1.14E-06	1.41E-06
Np-237	3.25E-07	1.88E-04	0.307	3.09E-07	3.15E-07	3.49E-07	3.76E-07
2u-238	7.77E-06	4.51E-03	7.35	6.51E-06	7.13E-06	8.41E-06	9.03E-06
	2.348-04	0.136	222	1.94E-04	2.14E-04	2.55E-04	
2-240	3.95E-05	2.30E-02	37.4	3.28E-05	3.61E-05	4.30E-05	2.75E-04 4.63E-05
h-241	3.93E-04	0.228	372	3.29E-04	3.60E-04	4.30E-03	4.57E-04
u-242	2.13E-09	1.24E-06	2.02E-03	1.79E-04	1.96E-09	4.26E-04 2.31E-09	4.57E-04 2.48E-05
4m-241	2.13E-09	0.134	219	1.61E-04	1.96E-09		
4m-243	9.19E-09	5.34E-06	8.70E-03	6.02E-09	7.58E-09	2.67E-04 1.08E-08	3.01E-04
Cm-243	9.19E-09 3.69E-07	5.34E-06 2.14E-04	0.349				1.24E-08
.m-242	3.69E-07 3.51E-08	2.14E-04 2.04E-05	3.32E-02	3.68E-07 3.50E-08	3.67E-07	3.69E-07	3.69E-07
			0.985		3.48E-08	3.51E-08	3.51E-08
Cm-244	1.04E-06	6.05E-04	0.763	8.07E-07	9.22E-07	1.16E-06	1.28E-06
200000 B					-67 CI	+67 CI	+95 CI
Fotals				(M or	(M or	(M er	(M or
( <b>(FEELS</b> )	M	HE/E	<u>kg</u>	vL)	g/L)	1/L)	2/L)
່ນ )	3.93E-03 (g/L)		3.72 2.44E+03	3.25E-03 4.87E-03	3.59E-03 7.75E-03	4.28E-03 1.42E-02	4.62E-03

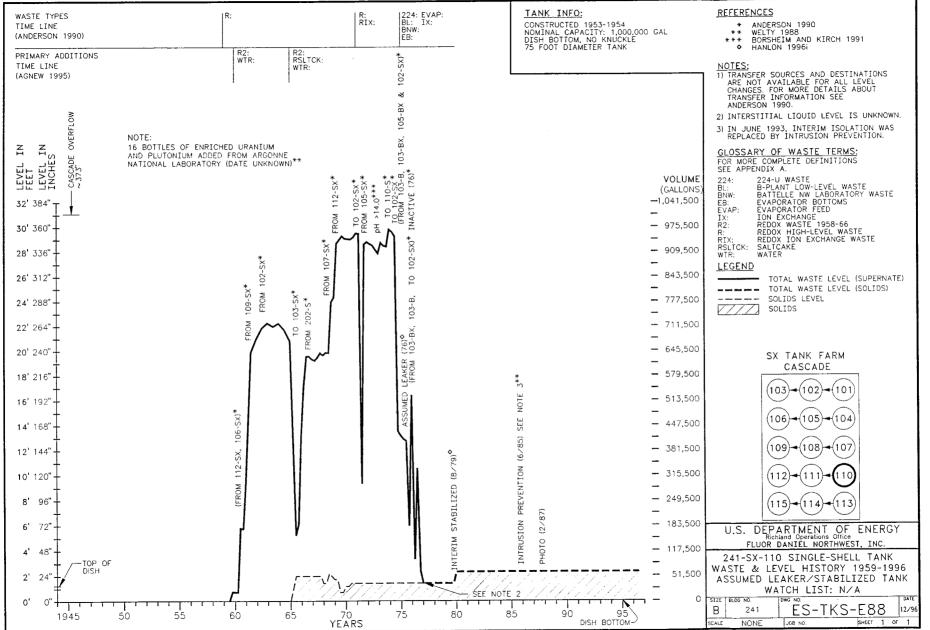

*Unknowns in tank solids inventory are assigned by Tank Layering Model (TLM). †Volume average for density, mass average Water wt% and TOC wt% C.

G. K. Patello L. R. Pederson K. M. Remund P. A. Scott	P7-28 K2-44 K5-12 K9-46	X X X X
G. L. Smith J. J. Toth T. L. Traub J. D. Vienna K. D. Wiemers P. D. Whitney J. Y. Young	K7-74 K7-94 H2-53 P8-37 K6-51 K5-12 K4-16	X X X X X X X
<u>Rust Federal Services Hanford, Inc.</u> T. H. Bushaw C. T. Narquis	T6-30 T6-16	X X
<u>SGN Eurisys Services Corp.</u> D. B. Engelman D. B. Hagmann D. E. Place F. R. Reich E. F. Riedel K. V. Scott	B4-51 H6-12 H5-27 L5-55 S3-90 B4-51	X X X X X X X
OFFSITE Los Alamos National Laboratory S. F Agnew Los Alamos National Laboratory CST-14, MS-J586 Bikini Atoll Rd, SM30 Los Alamos, NM 87545		X
<u>Los Alamos Technical Associates</u>		х
T. T. Tran 903 Bradley Boulevard Richland, Washington 99352		^
<u>Ogden Evironmental</u>		
C. R. Ungerich 1404 Potter Richland, Washington 99352		Х
Tank Advisory Panel		
D. O. Campbell 102 Windham Road Oak Ridge, TN 37830		Х

D. Powers Sandia National Laboratory P. O. Box 5800 MS-0744, Dept. 6404 Albuquerque, NM 87815 J. L. Kovach Nuclear Consulting Services Inc. P. O. Box 29151		x x
Columbus, OH 43229-0151 B. C. Hudson Chemical Reaction Sub-TAP 202 Northridge Court Lindsborg, KS 67456		X
Department of Energy - Headquarters K. T. Lang J. A. Poppitti U. S. Department of Energy Office of Environmental Restoration and Waste Management (EM-563) 12800 Middlebrook Road Germantown, MD 20874		X X
<u>Science Applications International Corpo</u> H. Sutter 555 Quince Orchard Rd. Suite 500 Germantown, MD 20874	ration	X
Columbia Basin College D. E. Campbell 2600 North 20th Avenue Pasco, Washington 99301		X
<u>Wastren Inc.</u> E. E. Oscarson Wastren, Inc. 1050 Gilmore Ave, Suite C Richland, WA 99352	B2-69	X
<u>MACTEC - ERS</u> J. R. Brodeur MACTEC - ERS 303 Bradley Boulevard, Suite 104 Richland, WA 99352	B1-45	X

Washington State Department of Ecology

A. B. Stone B5-18 X Washington State Department of Ecology 1315 W. 4th Kennewick, WA 99336




## TANK 241-SX-110 SUMMARY

TANK HISTORY		TANK DESCRIPTION			
Entered Service	3rd qtr 1959	Diameter	75 ft		
Removed from Service	-	Bottom Shape Dish			
Inactive	1976	Nominal Capacity	1,000,000 gal		
Watch Lists	none	Cascade Tank	to 241-SX-111		
Integrity	Assumed Leaker	Total Risers	22		
Assumed Leaker	1976	WASTE VOLUM	E (HANLON 1996i)		
Interim Stabilization (IS)	Aug 1979	Total Waste Volume	62,000 gal		
Partial Interim Isolation (PI)	-	Waste Type	NCPLX		
Intrusion Prevention (IP)	June 1985	Drainable Interstitial Liquids	0 gal		
TENTATIVELY AVA	ILABLE RISERS	Pumpable Liquids	0 gal		
Riser Number(s)	Size	Saltcake	0 gal		
3	4 in	Sludge	62,000 gal		
6, 7, 16, 17	12 in	Supernatant	0 gal		
13	42 in	INTERIOR PHOTOGRAPHS			
TANK TEMPERATURE Date Feb 2		Feb 20, 1987			
Average Tank Temperature	145°F	Montage Number	94041033-35CN		
Maximum Temperature	176.2°F	Photo Set Number	8701204		
Date	Nov 3, 1994	WASTE SURFACE LEVEL			
Elevation from tank bottom	unknown	Devices Manual Tape			
Riser Number	12	Max Level 28.5 in			
Minimum Temperature	111.02°F	Date	Oct 2, 1994 - April 2, 1996*		
Date	March 24, 1996	Min Level	26.5 in		
Elevation from tank bottom	unknown	Date	July 1, 1996 - Oct 2, 1996*		
Riser Number	20		and the second secon		

• Numerous dates in this time span

## WHC-SD-WM-ER-352, Rev. 1



				k 241-U-10			
		SMM Co	mposite Inv	entory Esti	nate		
Physical Properties				-95 CI	-67 CI	+67 Cl	+95 CI
Total SMM W	2.70E+06 (kg)	(436 kgal)	****				
Heat Load	3.68 (kW)	(1.26E+04 BTU/hr)		3.43	3,55	3.81	3.94
Bulk Density*	1.64 (g/cc)		-	1.59	1.61	1.66	1.68
Water wt%†	30.8			28.2	29.3	32.3	34.0
TOC wt% C (w	0.841		_	0.530	0.682	1.000	1,15
Radiological			n e salaw Zarapitrita	-95 CI	-67 CI	+67 CI	+95 CI
Constituents	CNL	µCi/g	а	(CI/L)	(Ci/L)	(CI/L)	(CVL)
H-3	2 595-04	0 158	427	1 34E-04	1.34E-04	2.69E-04	2.81E-04
C-14	3.78E-05	2.31E-02	62 3	1.17E-05	1.17E-05	3.84E-05	3.90E-05
Ni-59	2.47E-06	1.51E-02	4.08	1.1/E-03	1.1/E-03	2.53E-06	2.59E-06
Ni-59 Ni-63	2.47E-06	0.148	400	1.24E-06	1.24E-06	2.53E-06	2.59E-00
			69.6				
Co-60	4.22E-05	2.58E-02	6.22	1.23E-05	1.23E-05	4.31E-05	4.39E-05
Se-79	3.77E-06	2.31E-03	2 10E+05	2.10E-06	2.10E-06	4.37E-06	4.95E-06
Sr-90	0.127	77.7	2.10E+03	0.119	0.123	0.131	0.135
Y-90	0,127	77.7	30.5	6.95E-02	6.95E-02	0.131	0.135
Zr-93	1.85E-05	1.13E-02	30.5	1.02E-05	1.02E-05	2.15E-05	2.44E-05
Nb-93m	1.34E-05	8.21E-03	22.2	7.59E-06	7.59E-06	1.55E-05	1.76E-05
Tc-99	2.69E-04	0.164		1.72E-04	2.19E-04	3.19E-04	3.67E-04
Ru-106	7.64E-09	4.67E-06	1.26E-02	3.77E-09	3.77E-09	8.50E-09	9.29E-09
Cd-1i3m	9.74E-05	5.95E-02	161	4.74E-05	4.74E-05	1.15E-04	1.33E-04
Sb-125	1.82E-04	0.112	301	5.29E-05	5.29E-05	1.86E-04	1.90E-04
Sn-126	5.70E-06	3.49E-03	9,40	3.20E-06	3.20E-06	6.60E-06	7.47E-06
-129	5.18E-07	3.17E-04	0.856	3.30E-07	4.22E-07	6.15E-07	7.09E-07
Cs-134	3.09E-06	1.89E-03	5.09	2.13E-06	2.60E-06	3.58E-06	4.06E-06
Cs-137	0.294	180	4.84E+05	0.261	0.277	0.310	0.327
Ba-137m	0.278	170	4.58E+05	0.226	0.226	0.294	0.309
Sm-151	1.33E-02	8.12	2.19E+04	7.44E-03	7.44E-03	1.54E-02	1.74E-02
Eu-152	4.51E-06	2.76E-03	7.45	2.45E-06	2.45E-06	4.86E-06	5.20E-06
Eu-154	6.88E-04	0.421	1.13E+03	2.71E-04	2.71E-04	8.38E-04	8.98E-04
Eu-155	2.68E-04	0.164	442	1.45E-04	1.45E-04	2.89E-04	3.10E-04
Ra-226	1.62E-10	9.91E-08	2.67E-04	1.10E-10	1.10E-10	1.81E-10	1.99E-10
Ra-228	1.77E-07	1.08E-04	0.292	7.30E-08	1.24E-07	2.38E-07	3.04E-07
Ac-227	1.03E-09	6.32E-07	1.70E-03	7.33E-10	7.33E-10	1.14E-09	1.25E-09
Pa-231	4.73E-09	2.89E-06	7.80E-03	3.06E-09	3.06E-09	5.33E-09	5.91E-09
Th-229	4.14E-09	2.53E-06	6.83E-03	1.86E-09	2.97E-09	5.49E-09	6.93E-09
Th-232	1.16E-08	7.11E-06	1.92E-02	5.87E-09	8.69E-09	1.46E-08	1.74E-08
U-232	9.02E-07	5.52E-04	1.49	4.85E-07	6.89E-07	1.15E-06	1.41E-06
U-233	3.46E-06	2.11E-03	5.71	1.86E-06	2.64E-06	4.40E-06	5.41E-06
U-234	9.33E-07	5.71E-04	1.54	8.96E-07	9.18E-07	9.50E-07	9.61E-07
U-235	3.78E-08	2.31E-05	6.23E-02	3.62E-08	3.71E-08	3.85E-08	3.89E-08
U-236	2.94E-08	1.80E-05	4.86E-02	2.83E-08	2.90E-08	2.99E-08	3.03E-08
U-238	1.10E-06	6.73E-04	1.82	1.06E-06	1.08E-06	1.12E-06	1.13E-06
Np-237	9.74E-07	5.96E-04	1.61	6.56E-07	8.11E-07	1.14E-06	1.30E-06
Pu-238	1.57E-06	9.63E-04	2.60	1.20E-06	1.38E-06	1.77E-06	1.95E-06
Pu-239	5.39E-05	3.30E-02	88,9	4.43E-05	4.90E-05	5.87E-05	6.34E-05
Pu-240	9.15E-06	5.59E-03	15.1	7.36E-06	8.24E-06	1.01E-05	1.09E-05
Pu-241	1.06E-04	6.51E-02	176	8.10E-05	9.35E-05	1.20E-04	1.32E-04
Pu-242	5.86E-10	3.58E-07	9.67E-04	4.34E-10	5.08E-10	6.63E-10	7.38E-10
Am-241	6.49E-05	3.97E-02	107	4.72E-05	5.58E-05	7.39E-05	8.26E-05
Am-243	2.29E-09	1.40E-06	3.79E-03	1.74E-09	2.00E-09	2.62E-09	2.89E-05
Cm-242	1.73E-07	1.465-06	0.285	8.78E-08	8.78E-08	1.86E-07	1.99E-07
Cm-242 Cm-243	1.73E-07	9.79E-06	2.64E-02	7 93E-09	7.93E-09	1.72E-08	1.84E-08
Cm-243 Cm-244	1.56E-07	9.52E-05	0.257	7.23E-08	7.23E-08	1.846-07	2.02E-01
<u></u>	1.30E-07	7,340403		-95 Cl	-67 CI	+67 CI	+95 CI
				(M or	(M or	(M or	(M or
10.085.0 00 000							
Totals Pu	M 6.83E-04 (g/L)	<u>µg/g</u>		g/L) 5.02E-04	g/L) 5.91E-04	7.75E-04	g/L) 8.63E-0-

*Density is calculated based on Na, OH-, and AlO2-. †Water wt% derived from the difference of density and total dissolved species.