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Abstract 

This is the fmal report of a two-year, Laboratory Directed Research an 
Development (LDm) project at the Los Al&os National Laboratory 
(LANL). A barrier to wider use of in situ bioremediation technology is that 
results are often variable and difficult to predict, In situ bioremediation has 
shown some very notable and well publicized successes, but 
implementation of the technology is complex. An incomplete understanding 
of the effects of variable site characteristics and the lack of adequate tools to 
predict and measure success have made the design, control and validation of 
bioremediation more empirical than desired. The long-term objective of this 
project is to improve computational tools used to assess and optimize the 
expected performance of bioremediation at a site. An important component 
of our approach is the explicit inclusion of uncertainties and their effect on 
the end result. We have extended our biokinetics model to include microbial 
competition and predation processes. Predator species can feed on the 
microbial species that degrade contaminants, and our simulation studies 
show that species interactions must be considered when designing in situ 
bioremediation systems. In particular, our results for TCE indicate that 
protozoan grazing could reduce the amount of biodegradation by about 
20%. These studies also indicate that the behavior of barrier systems can 
become complex due to predator grazing. 

Background and Research Objectives 

Contamination of groundwater and soils with chlorinated solvents such as 
trichloroethylene (TCE) is a major national problem. In many cases, these contaminants 
are present at low concentrations (Le., parts per million, ppm) over areas as large as several 
square miles. Cleanup costs are estimated in the billions of dollars, and despite the 
enormous moneys being spent, present remediation efforts are not effective for 
widespread, dilute contamination. 

Currently, the most common remediation approach is to pump the contaminated 
groundwater to the surface where the water is treated to remove the contaminants. This 
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pump-and-treat approach has been most successful where it is feasible to isolate 
contamination by forming a hydraulic barrier, and to remove bulk contaminant at heavily 
contaminated sites. It has been less successful in remediating sites to the near-zero levels 
(<ppm) of residual contamination required by regulatory agencies. One reason for this is 
that some of the contaminant is sorbed to aquifer materials, or present as a separate phase. 
As the contaminant is removed from the aqueous phase, more contaminant leaches from the 
sorbed or separate phase into the groundwater. The result is that after an initial decrease in 
contaminant concentrations, low levels of contaminants remain for very long times making 
pump-and-treat very costly and very slow. Further, for sites at which the contaminant has 
already widely dispersed, pump-and-treat will be very inefficient simply because of the 
enormous volumes that w*ould have to be pumped. 

Clearly, an alternative strategy is needed. In  situ treatment has great advantages 
because it avoids pumping enormous volumes of groundwater in order to remove ppm or 
lower concentrations of contaminants. A very promising technology is in situ 
bioremediation, the use of microbes to convert hazardous chemicals to environmentally 
benign products such as water, carbon dioxide, biomass, and salts. Because 
bioremediation uses autocatalytic processes that occur naturally in the environment, its use 
has great advantages over other in situ destruction techniques that require conditions more 
difficult to achieve in situ. Although applicability in situ is perhaps the most significant 
advantage, bioremediation also has advantages in cost, safety, public acceptance, and 
effectiveness. A cost effectiveness analysis of an in situ bioremediation field demonstration 
at DOE Savannah River facility concluded that in situ bioremediation was -4 times more 
cost-effective than traditional pump-and-treat efforts (Saaty & Booth, 1994). Moreover, as 
shown in Figure 1, field data and simulation results confirm that in situ bioremediation 
results in lower residual contamination levels than alternative treatment technologies. 

A barrier to wider use of in situ bioremediation technology is that results are often 
variable and difficult to predict. In situ bioremediation has shown some very notable and 
well publicized successes (e.g., the Exxon Valdez oil spill, Savannah River and Moffet 
Field), but implementation of the technology is complex. An incomplete understanding of 
the effects of variable site characteristics (notably site soil heterogeneity, indigenous 
microbiology, and contaminant speciation) and the lack of adequate tools to predict and 
measure success, has made the design, control and validation of bioremediation more 
empirical than desired. In large part, it is the uncertainty associated with bioremediation 
options that has driven site owners to choose more costly and less effective treatment 
options. In addition, the performance of bioremediation processes in the field is 
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challenging to measure because it requires integration of site characterization, laboratory 
experiments, modeling, and uncertainty analysis during the design of the field process. 

The long term objective of this project is to develop accurate computational tools 
that will position us to work with site owners and providers of remediation services to 
solve problems in site specific design, implementation, and performance assessment of 
bioremediation strategies for chlorinated solvents in groundwater. The product will 
provide an objective way to estimate and optimize the expected performance of 
bioremediation at a site. An important component of our approach is the explicit inclusion 
of uncertainties and their effect on the end result. 

Importance to LANL’s Science and Technology Base and National R&D 
Needs 

This work addresses one of the five major areas identified by the Environmental 
Management P r o m  Office as best matching primary, near-term customer needs and 
LAhI’s capabilities and interests: the removal of solvents from groundwater. Our work 
brings together LAW’ s capabilities in modeling and advanced computing, environmental 
science, chemistry, and microbiology to help develop and implement solutions to a very 
real and important national problem. Our project helps establish LANL as a leader in 
solving complex remediation problems requiring multidisciplinary technical teams. This 
project supports LANL’ s tactical goals in Great Science, High Performance Computing, 
and Industry and its missions in Environmental Stewardship and Energy and Environment. 

Groundwater contamination by solvents, such as TCE, is one of the most important 
environmental problems facing industry and government. Recently, one of the nation’s 
largest electronic companies, Motorola, issued a challenge to LANL to work with them and 
others in the electronics industry to solve the TCE-contaminated groundwater problem. 
Our work will help to establish LANL as an important R&D partner with industry in 
addressing this critical problem. Other potential customers include other industries with 
contamination problems (e.g., chemical, manufacturing, petroleum), environmental 
remediation service companies, and government (mainly DoD and DOE). 

Scientific Approach and Accomplishments 

Our approach integrates LANL’ s capabilities in modeling and high performance 
computing, hydro-geology, analytical capabilities, and microbiology and biochemistry to 
address the R&D problems that are currently barriers to the successful implementation of in 
situ bioremediation technologies. The focus of this work is on the modeling aspect, in 
which we aim to: 
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- improve our models to include competition and predation in microbial systems, as 
well as a method of capturing subscale soil heterogeneity, e.g., homogenization 
theory; 
rank the sensitivity of bioremediation to various site characteristics and microbial 
metabolic properties; and 
test our improved model against data from a well-characterized site. 

- 

- 
For discussion purposes. we divide our effort into three major areas: transport, microbial 
activity, and performance assessment. 

Transport 
Transport is one of the most critical issues for in situ bioremediation. In situ 

bioremediation will only occur in areas where the appropriate microbes are present in the 
same location as the TCE and the "food" (electron acceptors such as oxygen, an electron 
donor carbon source plus nitrogen and phosphate) necessary for microbial activity. This is 
the goal of any bioremediation technology, whether the technology involves transporting 
food to the microbes or guiding the TCE contaminated groundwater to a treatment zone or 
barrier that contains the microbes and their food. Control or accurate prediction of the flow 
field is obviously important to success of in situ bioremediation. Unfortunately, subsurface 
geology is very heterogeneous and the various injected substances have different transport 
characteristics ( e g ,  diffusivities, sorption coefficients, and solubilities) in different soils. 
These properties tend to vary on many length scales, from the scale of geologic units to the 
pore scale and even to finer features within pores. The flow field will accordingly be 
heterogeneous and multi-scaled. This multi-scale nature of porous flow and reactive 
transport presents a challenge for computational models. 

matter how many wells have been drilled to characterize a site, some uncertainty will 
remain in geologic and hydrologic properties. Rather than regarding data uncertainty as a 
negative, we can account for it through statistical and stochastic methods, and in the 
process, design a more robust system. 

systematic way what we know about a site and the processes involved. They can be used 
for sensitivity studies, interpretation of experimental data, design of field operations, and 
optimal management of resources. Because of the complexity of the governing equations, 
we must resort to numerical solutions solved on computers. Because of the limitations of 
our computers, we are forced to solve the governing partial differential equations on a 
coarse scale, missing the details that are finer than the size of computational mesh cells. It is 
easy to demonstrate however that ignoring the subgrid-scale structure in a field-scale 

Another related issue is data uncertainty regarding the heterogeneity of the site. No 

Mathematical models of flow and transport provide a mechanism for organizing in a 
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simulation can lead to serious errors in estimation of flow direction and speed. If flow 
paths are not correctly captured, then the errors will be compounded in the reactive 
transport calculations. Ths could lead to costly policy and operational mistakes. There are 
several algorithms that approximate subgrid-scale structure, including renormalization 
group theory, level surfaces tracking, stochastic methods, particle tracking, 
homogenization and fractal scaling. We have focused on homogenization theory as an 
attractive alternative to some of the other, more complex multi-scale algorithms. 

momentum transport equations known as Darcy's law which relates flow rate U, fluid 

pressure p, fluid viscosity p, and a property K of the soil or rock called the permeability: 

The relationship that characterizes porous flow is the reduced form of the 

- 
u=-;vp 

The permeability K(x,y,z) in its most general form is a tensor. Generally, porous flow 
models ignore this and either use a scalar value or at most a diagonal tensor form. The flow 
of fluids through subsurface permeable formations can be modeled as a coupled system of 
nonlinear partial differential equations. In most situations, these must be solved 
numerically. Even if a million grid cells are used for a three-dimensional (3-D) field-scale 
simulation (e.g., 100 x 100 x 100 grid cells), the grid cells will be at least several meters in 
size at best. Small-scale variations in material properties such as permeability will not be 
accurately represented; they are typically replaced by a scalar obtained through an averaging 
process. However, a scalar usually is not a good approximation to a tensor (it does not 
capture the direction information carried in the tensor form), resulting in potentially large 
errors in the simulated flow field. There have been various attempts to devise a better 
method of approximating subgrid-scale variability. The recently developed homogenization 
algorithm has had notable success. 

The method of homogenization (Jikov, Kozlov and Oleinik, 1994) essentially 
involves replacing a fine grid representation of a function with a coarser grid in which 
function values on the coarse grid are averaged in a particular way. Harmonic and 
arithmetic averages have been used in the past in an attempt to approximate subgrid-scale 
variability, but it turns out they are accurate over only a limited range of conditions. The 
multigrid method of Dendy (1 982) provides a much more accurate averaging scheme. 
Multigrid was developed as a highly efficient algorithm for solving matrix equations. It 
involves nested grids, with residuals on coarse grids being interpolated to finer grids, and 
with the solution on the coarser grids being propagated back to the finer grid. The 
interpolation preserves important properties such as mass conservation. The multigrid 
concept of averaging from fine grids to coarse grids has been applied to the homogenization 
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problem in porous media for steady saturated flow (Hyman, Shashkov and Steinberg, 
1996). It has shown considerable promise in oil reservoir simulations by simulating 2-D 
water and oil flow in a heterogeneous reservoir on a coarse mesh to the same accuracy as 
was obtained with a finer numerical grid; subgrid-scale effects were successfully captured. 

A comparison between a simulation provided by Durlofsky (199 1) and a 
homogenized simulation illustrates the benefit of this subgrid-scale algorithm. In this 
example, shown in Fig. 2, there are no-flow boundary conditions at the top and bottom of 
the domain and the pressure is prescribed to be p=l along the left side and p = 0 along the 
right side of each square. This sets up a flow through the sand around the shale with a total 
flux though the system equal to 0.5205. The permeability in the small squares (shale) is k 
= elsewhere (sand) it is normalized to k = 1. 

In Durlofsky's 1991 study (Fig. 2a) on a grid with 1600 unknowns, a mixed finite- 
element method estimated a total flux of 0.4508 (-13.4% error). Recently Hyman and 
Dendy found that the same accuracy can be obtained with a coarser grid (Fig. 2b) using a 
form of homogenization. Efforts are ongoing to fully implement homogenization 
algorithms into our in situ biorernediation simulator. 

Microbia 1 Me ta bolism/Ec o logy 
Bioremediation performance in the field is usually different from that observed in 

the laboratory. Two reasons for this, a heterogeneous subsurface environment and issues 
of transport, were discussed above. Another reason is that, in the laboratory, a species of 
bacteria is studied in isolation, whereas in the field, these bacteria live in a complex 
microscopic biosphere. The bacterial species of interest have to compete for resources with 
other bacterial species, as well as with other microorganisms such as fungi and protozoa. 
Moreover. these bacterial populations are dynamic. They are capable of rapid adaptation. 
The rate at which a particular species of bacteria utilizes a substrate, for example, may 
increase over time. Bacteria can share genetic information, even across species, through 
transmembrane exchange of plasmids. Competition and predation has been studied in 
small laboratory batch reactors (see, e.g., Smith and Waltman, 1995), but to our 
knowledge no previous modeling work has included this type of microbial ecology in a 
subsurface flow and transport model. We have extended our biokinetics model to include 
microbial competition and predation processes. 

An example of how microbial interactions can affect in situ bioremediation is clearly 
illustrated in the following example. In this simple 1-D geometry, a hydrocarbon 
contaminant plume is moving from left to right with groundwater through a region at a 
fixed velocity of 0.8 ft/day. The groundwater contains dissolved oxygen and nutrients. A 
bacterial species that will grow on the hydrocarbon substrate is present in the soil. There is 
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also a common soil protozoan species that will consume the bacterial species. Protozoan 
grazing of Contaminant-eating bacteria has been observed (Sinclair et al, 1993). Protozoan 
grazing has been found to follow Monod kinetics (Menon et al, 1996). In isolation, the 
indigenous bacteria would be able to consume the invading contaminant plume rapidly. The 
presence of a predatory protozoan species complicates this. 

concentration as a function of position and time. The time window is between 200 and 300 
days after first arrival of the plume at X=O. Interesting nonlinear behavior arises due to 
microbial species interactions that are not seen when only one species is considered. The 
bacterial and protozoan species experience episodic growth and decay. The oscillations are 
very regular in the first meter, then undergo a period doubling and become less regular 
where the substrate is greatly diminished. The contaminant penetrates only about 1 meter 
into the domain when the microbes are at high levels, but advances 5 meters or more when 
the microbe levels are low due to protozoan grazing. A barrier design that involved the 
particular species modeled in this simulation would need to be wide enough to capture all 
the contaminant, even during protozoan growth episodes. 

example, in the case of a very aggressive predator species and a moderate to slow growing 
microbial species, the microbial species will experience regular intervals of sustained 
growth followed by shorter intervals of almost total extinction due to predation. The 
contaminant is completely removed when the microbes are vigorous, but breaks through 
completely when the protozoans are at high population levels. This has significant 
implications for in situ bioremediation. especially for barrier methods. A barrier may 
function well for a period of time, but then experience almost total failure for a short period 
of time (a week or so), but then recover. Species interactions must be considered when 
designing in situ bioremediation systems. 

One final task is to consider pore clogging. Data is becoming available (e.g., 
Jennings et al, 1995) that indicates change in permeability as a function of biomass in 
pores. Local changes in permeability due to elevated microbial biomass levels will lead to 
local changes in flow direction and rate, which will strongly affect the rate of 
bioremediation, another result of the dynamics of soil microbial systems. 

Figure 3 shows simulated bacterial and protozoan concentrations and the substrate 

A range of other behavior is possible for various combinations of species. For 

Field Application 
An important difference between the use of microbes to destroy hydrocarbon 

contaminants (such as petroleum spills) and their use to destroy highly chlorinated solvents 
(such as TCE) is that microbes can acquire energy for growth from the metabolism of most 
hydrocarbons, but metabolism of highly chlorinated solvents (TCE, for example) does not 
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yield sufficient energy to support microbial growth. Some microbes can, however, 
transform these contaminants to benign products through a process called cometabolism. 
Cometabolism results from the fortuitous transformation of non-growth substances (in this 
case TCE) by enzymes whose function in the microbe is to transform a naturally occurring 
substrate (such as methane). 

strategy is which of several cometabolic strategies is most promising. At present, five 
enzymes found in bacteria have been shown to transform TCE cometabolically under 
aerobic conditions: methane monooxygenase (MMO), toluene dioxygenase, ammonia 
monooygenase, propane mono-oxygenase (PMO) and P45Ocam. TCE transformations 
catalyzed by methane monooxygenase (MMO) have been most thoroughly studied in the 
laboratory and most of the field demonstrations have attempted to stimulate MMO activity 
to degrade TCE. Methane has a number of advantages: it is cheap, available and a naturd 
constituent of subsurface environments, and it is a gas that is easy to deliver and diffuses 
readily. Although some notable successes have been shown with MMO, its effectiveness 
is limited by the irreversible inactivation of the enzyme by the reactive TCE epoxide 
intermediates generated by the enzyme during TCE transformation. In the analysis that 
follows, we applied our in situ bioremediation model to a site at which methanotrophs 
producing MMO were used to remove TCE. 

The U.S. Department of Energy (DOE) conducted a field demonstration of 
bioremediation technology at its Savannah River site in 1992- 1993. TCE contamination 
occurred from the 1950s into the 1980s from a leaking process sewer line. The cleanup 
technology employed a novel combination of injection of air, methane, N20 and triethyl 

phosphate (in an aerosol) below the water table and vacuum extraction in the vadose zone 
using a pair of subparallel horizontal wells (Fig. 4). The objective was to stimulate aerobic 
in situ bioremediation of TCE contamination in the vadose and saturated zones by certain 
methanotrophs, methane-oxidizing bacteria that are capable of fortuitously cometabolizing 
TCE under various conditions. 

One of the major questions in designing an effective site-specific bioremediation 

A generalized description of the hydrogeology at the Savannah River site includes a 
sand unit, four major clay units, and a water table that lies about 40 m below the surface 
(Eddy et al, 1991). These sediments are heterogeneous, varying greatly in thickness and 
continuity across the site. The in situ bioremediation demonstration began in late February, 
1992, lasted 428 days, and consisted of seven injection and extraction phases. 

A plan view schematic of the site is given in Fig. 5, showing the traces of the 
horizontal wells, the location of monitoring well MHT-4 (data from it was used to test our 
model), and the orientation of the cross-section (A'-A) used in this study for the model 
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domain. We use this cross section because ths  region exhibited the greatest activity during 
the field demonstration, in terms of methanotroph population changes and TCE 
mineralization. 

A great deal of hydrologic. chemical and microbiological sampling data is available 
for this site (Eddy et al, 1991; Hazen, 1992, 1993), providing a good test for an in situ 
bioremediation simulator. Our goals were (1) to model the changes in methanotroph 
population and TCE concentration observed during the Savannah River field demonstration 
and (2) to examine the sensitivities of TCE biodegradation to key model biokinetic 
parameters. Models help us to understand complex subsurface remediation efforts such as 
those at Savannah River because they provide a mechanism for integrating the many 
different kinds of data involved (e.g., hydrological, microbiological). Moreover, a 
calibrated model can provide estimates of the temporal and spatial distribution of 
concentrations, pressures and saturations everywhere in the subsurface region. and can 
therefore be used to estimate important quantities that are difficult or impossible to measure 
in the field, such as the total mass of TCE biodegraded. 

This modeling study differs from previous modeling studies in that it includes both 
the vadose and groundwater zones. unsteady air and water flow, limited nutrients and 
airborne delivery of nutrients, in addition to toxicity, cometabolic kinetics, predator grazing 
and kinetic sorption. Previous models (Sturman et al, 1995) have focused almost 
exclusively on steady saturated flow with waterborne delivery of nutrients or with nutrients 
in excess. None have considered predator grazing of microbes. Soil protozoan predators 
include amoebae, various flagellates and fungi, and are observed in many soils at 
significant numbers (103-105 /g dry soil weight). A limited sampling at the Savannah 
River site found enhanced protozoan activity at several wells, and laboratory tests on soil 
samples from the site indicated that protozoa are present that would in fact feed on 
methanotrophs (Hazen et al, 1992. 1993). 

Only a sampling of results are included here. Details of the simulator, the numerical 
solution algorithms and simulation results are given in Travis & Rosenberg (1997). Model 
results for methanotroph cell counts at monitoring well MHT-4 are shown in Fig. 6a, along 
with field data. When the injection well was turned on at the start of phase two, flooding 
the subsurface with'fresh air, the methanotroph population increased only slightly in 
response to the higher oxygen content. Population counts rose several orders of magnitude 
during the methane injection phases (3 and 4), but paradoxically, decreased even though 
high concentrations of methane were being injected. At late times, during nutrient addition, 
(phases 6 and 7), population counts oscillated (Fig. 6a). Our model results are shown in 
Fig. 6b. Two cases were considered. In the first, no protozoan grazing was operating 
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(dashed curve). This simulation did not show the declines in methanotrophs at 150 and 
200 days seen in the data, and the decline at 250-280 days was much shallower than 
observed. The solid curve is the result of the case with protozoan grazing. Qualitatively, it 
is a better match to the data; we can not expect a perfect match to data because of the 
limitations in OUT model, among other things. 

A number of microbial species other than methanotrophs were measured in site soil 
samples. These included several nitrogen transformers whose population densities also 
responded to the air, methane and especially the nutrient injection. The population changes 
in all cases were characterized by oscillatory rises and declines rather than a steady 
maintained increase. The collective effect of these species on methanotroph dynamics is 
uncertain. Perhaps the important lesson here is that our modeling indicates that microbial 
interactions of some kind, predation and/or competition, appear necessary to explain the 
field data. 

Fig. 7 plots the model domain-wide integrated mass of TCE extracted (via vacuum 
extraction) and biodegraded as a function of time. This plot indicates that most of the TCE 
degradation occurred during the 4% methane phase (phase four), with additional 
degradation occurring during the nutrient addition phase (phase seven). The model result 
for total extracted TCE is very close to the observed values. These model results indicate 
that protozoan grazing could reduce the amount of TCE biodegraded by about 20%, a 
significant factor. This adverse effect on the rate of biodegradation may lead to 
underestimation of remediation times at other sites if predator grazing is not considered. 

Sensitivity Analysis 
We determine the sensitivity of the enhanced removal of TCE due to microbial 

degradation through a series of simulations in which biokinetic parameters of the system 
were varied one at a time. The parameters varied are: kCH4, KCH4, KN, kTCE, KTCE, 

1 ~ ~ 4 ,  Tc, and kp. Sensitivity is defined as: 

where X is a biokinetic parameter, ATCE is the total TCE removed by extraction and 
biodegradation minus the total TCE extracted when biokinetics is not operating, and the 
subscript "base" refers to the simulation of the Savannah River site with biokinetics and 
protozoan grazing. Resulting sensitivities are listed in Table 1. The first row of numbers 
are the sensitivities as defined above. The second row of numbers are the sensitivities for 
biodegradation only (vapor extraction differences neglected). These results are specific to 
the Savannah River site since the amount of TCE removed is a function of the 
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injectiodextraction strategy, the site hydrogeology, and the initial distribution of TCE. 
Since our model is nonlinear, these sensitivities strictly apply only to a limited part of the 
parameter space. The relative rankings of the sensitivities, however, are likely to hold 
more generally and be somewhat site-independent. 

Table 1. Sensitivities of TCE removal to key parameters 

kCH4 KCH4 KN kTCE KTCE ICH4 TC kP 
full simulation 1.86 -1.00 -0.42 -1.20 0.06 -0.004 -1.43 -0.24 
biokinetics only 1.83 -0.94 -0.45 -1.08 0.07 -0.008 -1.30 -0.27 

There are two main conclusions that can be drawn from this sensitivity analysis. 
First. and the most obvious, is that TCE degradation is strongly sensitive to the factors 
controlling the rate at which microbes can grow (e.g., k c ~ 4 ,  KCH4, KN). Second, 

toxicity is also quite important. There is a strong sensitivity to kTCE, the maximum 
utilization rate for TCE, but it is a negative correlation because TCE degradation products 
are toxic to methanotrophs. The faster TCE is degraded, the more toxic products are 
created and the more microbes are killed. These results imply that using bacteria that are not 
damaged by TCE. or that can even utilize TCE for energy, will be much more effective than 
simply using bacteria with higher growth rates. Sensitivity to predators (kp), although 

significant, was not as strong as to toxicity. 
The simulations support the observations that removal rate of TCE was enhanced by 

biostimulation of methanotrophs but diminished by protozoan predation. However, no 
attempt was made to find an optimal field operation. Several modeling results imply that a 
more efficient operation was likely possible. For example the model shows that much of 
the TCE between the injection and extraction wells was already removed by the time 
nutrients were added. Also, the area of high TCE removal rate was limited by the reduced 
spatial distribution of methane during pulsing. Optimization algorithms, such as developed 
by Lang (1999, could be used in conjunction with our model to develop a more efficient 
field operation by determining the best distribution and location of wells, injection- 
extraction schedules, and pulsing patterns for growth substrates and nutrients. Novel 
variations may be found. For example, in a very simple optimization model we found that 
pulsing nutrients as well as methane and systematically changing the length of the time 
interval between pulses could extend the area of high removal rate. Further use of transport 
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models coupled with optimization algorithms has considerable potential for reducing 
remediation time as well as operational costs. 

Bioremediation Workshop 
The principal investigators of this LDRD-sponsored research were organizers for 

the first S I M C N L S  Workshop on "Mathematical Issues in Bioremediation and 
PorousFracture Flow," which took place at Los Alamos June 11-13, 1997, as a satellite 
meeting to the SIAM Conference on Mathematical and Computational Issues in the 
Geosciences held the following week in Albuquerque, New Mexico. SIAM and the LANL 
Center for Nonlinear Studies sponsored the workshop. Fifty scientists attended, with a 
good balance of representatives from universities, industry and national laboratories, and a 
few participants from Europe, Canada and South America. The purpose of the workshop 
was to bring together microbiologists, chemists, hydrologists, engineers and 
mathematicians to review the state-of-the art in mathematical analysis of in situ 
bioremediation and to identify major unsolved problems. 

between bacteria and their chemical environment, the state of the art in coupling biological 
degradation with complex chemical reactions in mathematical models (coupled nonlinear 
equations), major differences between microbial degradation of organics and sequestering/ 
mobilization of metals, bioavailability of contaminants to microbes (sorptioddesorption 
models), optimization of field remediation procedures (neural nets, genetic algorithms), 
impact of heterogeneity on in situ bioremediation (stochastic differential equations), 
stability analysis, upscaling, biofilm dynamics, and microbial community dynamics. Major 
advances have occurred in the last few years in mathematical analysis of bioremediation- 
related processes and, just as important, much new physical data is available that can be 
used as a basis for further model development. In particular, the startling recent advances 
by experimentalists to measure biofilm structure, growth and dynamics will lead to much 
improved models and predictability. In addition, experimentalists are finding that our 
Darwinian notions of microbial competition have neglected a very important consideration: 
microbial community dynamics also rely heavily on cooperation between members. 

The central problems yet to be solved center on the following issues: 
heterog;eneitv/multiscale Drocesses/umcalinp. Bioremediation involves complex 
biogeochemical interactions operating on many time scales and taking place in a 
stochastic medium that itself has structure over many space scales. How can 
upscaling to the field scale be accomplished efficiently under these conditions? 
predictabilitv and sensitivitv. What level of predictability can we achieve, given the 
uncertainty in data, in characterization of the subsurface environment and even in 

Workshop presentations and discussions focused on the complex interactions 

- 
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knowledge of processes? Apart from this, how inherently predictable or 
unpredictable is bioremediation? How can measurements at certain scales be used to 
predict dynamics at other scales? 
communication . How can we create more interaction between the applied 
mathematics community and the microbiologists, chemists and engineers who 
measure what happens in the laboratory and in the field? Mathematicians build 
models; engineers want reliable predictions. Models presently come in a great 
variety of types but their usefulness is doubted, or not understood, by many 
laboratory and field scientists. How can greater acceptance of models be promoted? 
How do we bridge the 'terminology gap' between different disciplines? Is it time to 
create a bioremediation community model, or at least a community library, much 
like the community climate model? 
Areas for  Future Work 
We have identified several areas to investigate with our extended model. The first 

is the transport limitations associated with different proposed microbial co-metabolite 
strategies (e.g., methane + methanotrophs vs. propane + propane oxidizing bacteria) and 
different environments, beginning with a very simple system of well injection and 
extraction. The second is optimization of well injectiodextraction, such as changing well 
location and pumping schedules (i.e., time-dependent rather than steady), taking into 
consideration data and hydrogeological uncertainties. The third area for investigation 
concerns ways to increase transport into lower permeability areas, such as using other 
forces (e.g., electro-osmotic), using surfactants and using the microbes themselves 
(through pore-clogging) to help channel flow into low-permeability zones. The higher 
permeability areas will be relatively easy to remediate because the microbes will grow more 
readily there (better access to the injected co-substrate). We may want to consider 
stimulating their growth sufficiently to clog pores deliberately in regions of high 
permeability to force flow into regions of low permeability. Finally our model can be used 
to evaluate the essential role of microbial competition, cooperation, predation, and gene 
transfer on in situ bioremediation efficiency. This is an area that is only just beginning to 
be investigated experimentally. We have developed a computational tool that makes 
possible all of these lines of study. 

- 
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Figure 1. Typical reduction in TCE concentration over time between in situ 
bioremediation and pump-and-treat technologies. 
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Fig. 2a. The nodal control volume method with 
1600 unknowns has a 12% error in the flux. 

Fig. 2b. The homogenized solution with 
400 unknowns has the same accuracy. 
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Figure 3. Banded gray scale shading of bacterial and protozoan dynamics. Flow is from 
left to right at 1 cm/hr, and substrate concentration at X=O is a constant 10 ppm. 
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Fig. 4. Vertical section at the Savannah River site contaminated with TCE showing the 
depths of geologic units, the water table and traces of the subhorizontal injection 
and extraction wells. TCE is present between depths of 10 to 60 meters. 
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Figure 5. Plan view schematic of the Savannah River treatment site, showing 
the traces of the horizontal wells, monitoring well MHT-4, and the orientation 
of the cross-section A-A', used for the modeling study. 
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Figure 6. Measured (a) and computed (b) microbial concentrations versus time at the 
principal monitoring well. Vertical dashed lines mark the beginning of injection phases. In 
(b), the solid curve is the computed result with-predators, the dashed line without- 
predators. 
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Figure 7. Cumulative TCE removed, through vacuum extraction and biodegradation 
versus time. Vertical dashed lines mark the injection phases. Solid curves include 
predation; dashed curves do not. 
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