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FUEL FABRICATION TOLERANCES/
STUDY FOCUS

The FFTF MOX fuel was designed and fabricated
to very tight tolerances to reduce analytical
uncertainties on design basis accident scenarios.

Is there sufficient data available to relax some of
those tolerances and reduce fabrication costs,
while not impacting the reliability or capability of
the driver fuel to meet mission needs?
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FFTF OPERATIONAL RESULTS SUMMARY:
SERIES I & Il DRIVER FUEL ASSEMBLIES (DFA4s)

e Irradiated 210 DFAs

¢ Irradiated 119 test DFAs - included advanced
designs

o Enrichment varied from 22.4 to 29.3% (7i17)
 DFA design goal of 80 MWd/kgM
* No fuel pin breaches to design goal peak burnup

» Provides bases for potential fabrication tolerance
reduction




TABLE 1
KEY DESIGN CRITERIA* AND PERFORMANCE EVALUATION ITEMS

1 Cladding strain limits

' Plastic and thermal creep of cladding shall not exceed 0.2% at steady state.
(This does not include irradiation creep)

2 Cladding wastage

Fuel-cladding chemical interaction

Sodium-ciadding chemical interaction

Fabrication scratches

Fabrication dimensional tolerances

Fretting and wear outer surface

Contingency

3 Fuel/cladding mechanical interaction causing inelastic cladding strain
4 Bundle/duct interaction

Axial

Radial

S Wear and fretting between wires and cladding

6 Pin cladding and wire differential

7 Fuel column axial stability (gaps between peliets)
8

9

Fuel melting and restructuring
Fuel fissile redistribution

10 Fission gas release from fuel
11 Fuel burnup
12 Irradiation swelling of cladding and ducts

*RDT standards used for fabrication.

—
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SUMMARY OF IRRADIATION TESTS ON DFA
AND FUEL FABRICATION VARIABLES

« Goal: Improve performance and reduce costs

« Variables tested (tables 2 and 3): Fuel fab and
assembly tolerances and cladding materials

» Significant results:

— Goal lifetimes achieved

— D9/HT9 alloys superior: Reduced swelling potential
— Duct mechanical attachment methods viable

— Test performance per design predictions (Figure 3)




TABLE 2
FUEL FABRICATION VARIABLES AND NUMBER OF
FUEL ASSEMBLIES TESTED
FUEL VARIABLES NUMBER OF TEST ASSEMBLIES*

Pu content [Pu/(Pu + U)] 14
Flat end pellets 22
Annular pellets 15

Pellet density 22
Smeared density 23

oM 15

Pellet diameter 24
Fuel-cladding gap 23

Gel sphere feed 1

Fuel pin diameter 21
Pellet fabrication defects i
Weight-to-length 12
Cladding thickness/diameter 21

*Individual test could have and usually did have multiple fuel fabrication variables tested.




TABLE 3
ASSEMBLY VARIABLES AND NUMBER OF FUEL
ASSEMBLIES TESTED

ASSEMBLY VARIABLES NUMBER OF TEST ASSEMBLIES*
Cladding composition 26
Pin-bundle spacing 8
Bundle-to-duct clearance 6
Wire wrap pitch 23
Duct alloy 31
Duct attachment 16
End cap weld 14

*Individual test could have and usually did have multiple assembly variables tested.




FIGURE 3
STATUS OF BURNUP IN DFA AND TEST PINS IN FETF
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CDE INVESTIGATED RELAXATION OF
FUEL F'AB SPECIFICATIONS

* CDE fab specs based on updated RDT standards
and technical requirements

* Major tolerance differences from Series II DFAs
(design values and pellets)

¢ CDE utilized larger fuel pin diameter

o Test results indicate:
— Successful fuel pin exposure to 230 MWd/kgM

— Reduced fab costs through fewer operational steps and
rejects

— HT9 alloy superior to austenitic steels




EFFECTS OF INCREASED PIN DIAMETER
ON FUEL PERFORMANCE

Irradiation tested larger diameter pin in 169 pin assembly
— 0.275-inch diameter pin with 0.015-inch wall thickness
— 0.270-inch diameter pin with 0.022-inch wall thickness

s All configurations achieved 99.9% reliability goal

o Achieved increased burnup and fluence with 0.022-inch
wall thickness

o Cladding thickness-to-diameter ratio is a critical parameter




FUEL FABRICATION RELAXATION
CANDIDATES

» Pellet end configuration:

— Flat ends: Large potential savings, need confirming
analysis for transient events

— Dished ends: Potential savings with use of small
samples for inspection
« O/M limits: Reduce lower pin limit from 1.94 to
1.93 needs confirming analysis for transient events

» Cracks, chips, voids: Good basis for relaxation.

Corner chips need mor lysis
/,-""d__"_ ..
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RECOMMENDATIONS FOR POTENTIAL
FUTURE FUEL FABRICATION SAVINGS

» Use flat ended pellets
» Reduce lower o/m limit to 1.93

» Adopt sinter-to-size pellets

~« Utilize programmed startup

» Conduct a “risk vs. cost” benefit analysis

« Develop regulatory acceptance strategy using
analysis techniques
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HANFORD EXPERIENCE

* FFTF operation and safety analysis
« Variety of fuel types, core configurations
» Passive safety tests

« GEMS were developed and tested to mitigate loss
of flow accidents

« What are some other options for enhancing reactor
safety?




AN ALTERNATIVE CONCEPT FOR
ENHANCING SAFETY

o Adding significant number of absorber assemblies
— Increases fuel enrichment
— Hardens neutron spectrum
— Reduces Doppler reactivity feedback
— Reduces positive coolant void reactivity feedback

» Potential beneficial impact on unprotected transients

s No apparent penalties on protected transients




- FFTF METHODS AND DATA USED TO -
EVALUATE SAFETY PERFORMANCE

FFTF core model

— Methods verified by operating data

— FSAR available for comparison
Reference core configuration

— Heterogeneous core arrangement

— No axial or radial blankets

— No radial reflectors

— Pu enrichment <40% experience base
— Boron carbide absorber assemblies
= 16 in-core, 90 peripheral
+ 61 pin control rod fixed shim design
e 125 cm active length
Alternative core configurations with six and zero in-core
absorber assemblies




Reactor Core Map For Enhanced Safety Core

A =Fixed Absorber In Core
A7 =Fixed Absorber Row 7

A8 = Fixed Absorber Row 8A
A9 = Fixed Absorber Row 8B&9
IS =1InCore Shim

F1 =Inner Zone Fuel (Row 1-4)
F2 = Outer Zone Fuel (Row 5-7)
CR = Control Rod (Secondary)
SR = Safety Rod (Primary)



VALIDATED METHODS

e FFTF core reload design procedures

» Operating parameters compared to technical
specification limits

« 10 years FFTF operating experience
 FSAR-quality analyses
e 2D, 3D diffusion theory

 First order perturbation theory

s Selected Monte Carlo used for confirmation




KEY SAFETY PARAMETERS

* Fuel enrichment

* Fuel peak linear power

* Fuel and absorber worth

» Control and safety rod worths
» Radial expansion coefficient
» Axial expansion coefficient

* Doppler constant

* Sodium void reactivity

« Reactivity worth distributions




COMPARISON OF BORON CARBIDE AND FSAR CORE

PARAMETERS
RN TETR RS ESAR Reference B,C Core
CORE BOEC EOEC

Doppler constant (Tdk/dT) -0.005 -0.00055 -0.00069
Uniform Axial Expansion (dk/k per cm) -0.003 -0.0055 -0.0050
Uniform Radial Expansion (dk/k per cm) -0.0125 -0.0090 -0.0093
Total Sodium Void (dk/k) -0.013 -0.0065 -0.0082
Delayed Neutron Fraction 0.00318 0.00276 0.00279

s Reactivity feedbacks compared to FSAR core

— Slightly lower radial expansion feedback

— Factor of 1.8 higher axial expansion coefficient
— Factor of 10 lower Doppler constant

Total fuel sodium void is less ne

ative




VARIATION OF SAFETY-RELATED PARAMETERS
WITH NUMBER OF IN-CORE FIXED ABSORBERS

PARAMETER 16 IN-CORE 6 IN-CORE 0 IN-CORE
ABSORBERS ABSORBERS ABSORBERS

Doppler constant (Tdk/dT) -0.00055 -0.00130 -0.00265
Core radial expansion coefficient -0.0090 -0.0089 -00091
(dk/k per cm)
Fuel axial expansion coefficient (dk/k | -0.0055 -0.0049 -0.0042
per cm)
Worth of voiding sodium from core -0.0042 -0.0030 -0.0020
region of fuel assemblies (dk/k)
Positive sodium void region in fuel 0.0051 0.0073 0.0081
assemblies (dk/k)
Maximum positive void region in one | 0.00016 0.00039 0.0039
assembly (dk/k) (in 2303) (in 2101) (in 2101)




AS N UMBER OF IN-CORE ABSORBERS IS REDUCED:

 Fuel enrichment reduced

« Neutron spectrum softened

« Doppler coefficient becomes more negative
 Radial and axial expansion coefficient insensitive

« Maximum positive sodium void coefficient in a single
assembly increased

« Magnitude of positive sodium void region increased




REACTIVITY EFFECTS OF SODIUM
VOIDING OF REFERENCE CORE

REACTIVITY EFFECT, dk/k ($)
REGION VOIDED
BOEC EOEC

All fuel assemblies over active fuel height -0.0065 (-2.4%) -0.0082 (-2.9%)
(92.28 cm)

Central positive void region of the 3 Row 2 fuel 0.00038 (0.14%) 0.00037 (0.13%)
assemblies

Maximum positive void region in fuel assembly 0.00016 (0.0589%) 0.00014 (0.050$)
Positive void region in all fuel assemblies 0.0051 (1.8%) 0.0046 (1.6%)




CONCLUSIONS

 Identified an alternative concept for improving
safety with potential application to DFBR

» Adding fixed absorber assemblies
— Provides more attractive reactivity feedbacks

— All operational limits satisfied, including component
worths, shutdown margins, cycle length, peak linear
power, temperatures

 Other potential applications
— Increased capacity factor by varying absorber loading
— Alternate absorbers to produce beneficial isotopes
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

DISCUSSION TOPICS

» Purpose

Model development

Analysis methodology
* Results

* Summary and conclusions




SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS
PURPOSE

» Perform safety assessment of alternate core designs
— Unprotected transients (ULOF and UTOP)
— 3 variations in absorber loading

— Significant changes in reactivity and neutronic parameters
¢ Evaluate sensitivity of alternate core designs

— Fuel Doppler temperature coefficient

— Fuel axial expansion

— Core radial expansion coefficient

 Evaluate impact on core margins
— Margin-to-Sodium boiling (ULOF)
— Extent of fuel melting (UTOP)




SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

MODEL DEVELOPMENT
» SAS4A/SASSYS-1 Transient Model

» Core model
— Reference (16 in-core) fixed absorber assemblies
— 41 channels; 31-fuel, 10-absorber
— Approximated alternate designs via adjustable reactivity coefficients

— Separate thermal pin models for driver fuel and absorbers
» Balance-of-Plant model

— Three FFTF loops represented by two SASSY'S loops

— Reactor control systems

— Reactor shutdown systems




SAFETY ASSESSMENT OF UNPROTECTED

TRANSIENTS FOR ALTERNATE CORE DESIGNS

MODEL DEVELOPMENT (cont)
¢ Required input (data)
— Mechanical design
— Neutronic
— Thermal-hydraulic
— Thermo-physical material properties
— Balance-of-plant

¢ Axial expansion reactivity feedback models
— Simple
s Used with fixed absorber assemblies
+ Based on differential thermal expansion
» Cladding controlled force balance
— Detailed
s Used with driver fuel assemblies
+ Based on fuel-clad interaction (FCI) performance analyses
+ Cladding controlled axial-plane strain model for ULOF
+ Mixed axial-plane strain m for UTOP




SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS
MODEL DEVELOPMENT (cont)

s Core radial expansion reactivity feedback model
— Detailed mechanistic beam model

Three point contact and restraint treatment

!

Accounts for assembly bowing
Validated and verified against FFTF data
Based on full compliment of DFA in Rows 1-6

Increased uncertainty when applied to alternate core designs

s Initiating events and programmed system features
—ULOF; loss-of-forced-flow (primary pump torque = 0.0)
—UTOP; reactivity insertion (0.50%/s, 4$ total)
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS
ANALYSIS METHODOILOGY

Series of parametric analyses
s Reference (16 in-core) fixed absorber loading

* Corresponding to EOEC conditions
s Total fuel Doppler coefficient (TOTDOP)
— 16 in-core absorbers, -0.00069
— 6 in-core absorbers, -0.00130
~ 0 in-core absorbers, -0.00265
— Other values, -0.004, -0.005, -0.006
+ Fuel axial expansion multiplier (EXPCOF); 1.0, 0.5, 0.0
s Core radial expansion coefficient ($/m) (RDEXCF); -334.10, -167.05
v Base case (TOTDOP = -0.00069, EXPCOF = 0.5, RDEXCF = -334.10)

v Reference condition: 400MW, 633°K (680°F) inlet temperature, 143°K
(258°F) reactor vessel temperature rise




SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Normalized Reactor Power, Decay Power, and Channel 1 Flow Versus Time
During a ULOF for the Reference Fixed Absorber.Loading

1.25 LA T L I R B B e
(TOTDOP = -0.00069, EXPCOF = 0.5, RDEXCF = -334.10 $/m) ]
1.00 ) —]
2 A 3
Q
s ]
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Peak Fuel, Clad, Coolant, and Inlet Temperatures for Channel I Versus Time
During a ULOF for the Reference Fixed Absorber Loading

25000 F———7 T T T T T [ T T ] "
I 1| — Fuel
<
(TOTDOP = -0.00069, EXPCOF = 0.5, RDEXCF = -334.10$/m) [ p— Clad
2000.0 _]} -=-- Coolant
~ I 11— Tsar
& ]! - - Inlet
8 - . . . S °
g 1500.0 Min. Margin-to-Sodium Boiling = 142 'K ]
g L
£
= +
10000 |~ —
500.0 L 1 I 1 l 1 T S l 1 W} A l b It 1 [ I 1 l 1 Al L
0.0 50.0 100.0 150.0 200.0 250.0 300.0

Tiine (Seconds)




SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Reactivity ($)
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Components to Net Reactivity Versus Time During a ULOF for the
Reference Fixed Absorber Loading
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS
Margin-To-Sodium Boiling Versus Time. During a ULOF for Variations in the
Total Doppler Coefficient for the Refefpnce Fixed Absorber Loading
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o 400 [ EXPCOF = 0.5 ' Reference a6 Total(?c‘)ﬁ%%Cocff.
b 1* Alternate (6) \j — oD
% 000 L 2 Alemate©) N ] | 20,0013
‘2 . e N 0.00265
g R R PUPY L E
e % 5. S N e .24
8. 200 |- T s TR Py
E‘) e C T — -0.006
[
=

—_
A =
(=]
o

250.0

200.0

150.0

Time (Seconds)

300.0




Ll
SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS
. Normalized Reactor Power, Decay Power, and Channel 1 Flow Versus Time
» During a UTOP for the Reference Fixed Absorber Loading
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SAFETY ASSESSMEN T OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Peak Fuel, Clad, Coolant, and Inlet Temperatures for Channel 1 Versus Time
During a UTOP for the Reference Fixed Absorber Loading
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Reactivity ($)

Components to Net Reactivity Versus Time During a UTOP for the
Reference Fixed Absorber Loading :

—— Programmed

---- Doppler

—— Axial Exp.

- .- Radial Exp.
—— CRDL Exp.

- . Coolant Density

—— Fuel Relocation
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

Normalized Reactor Power Versus Time During a UTOP for Variations in the
Total Doppler Temperature Coefficient for Reference Fixed Absorber Loading
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SAFETY ASSESSMENT OF UNPROTECTED
TRANSIENTS FOR ALTERNATE CORE DESIGNS

SUMMARY AND CONCLUSIONS
* ULOF

- Safety margins have increased (no sodium boiling)

— Core radial expansion is dominant negative reactivity feedback

— Greater uncertainty with core radial expansion due to “mixed” inner core loading
- UTOP

— Safety margins unchanged (results similar to FFTF FSAR)

— Fuel relocation required to terminate transient

— Axial expansion is dominant negative reactivity feedback prior to fuel relocation

+ Safety margins for ULOF have increased without a detrimental impact
on UTOP

15
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LA

CONTINUE WORK ON ALTERNATE CORE DESIGNS

Variations in core configuration
— Number and location of absorbers

Effect of core size

Fuel types

Absorber materials

Further understanding/enhancement of feedbacks

— Axial fuel expansion
— Radial expansion and bowing

Application of concepts to actual core designs and
development of operational strategies




AREAS OF POSSIBLE COMMON INTEREST

o Sodium spill and fire
— Component (e.g., thermowell) design and testing
— Sodium leak accommodation
+ Leak detection
¢+ Spill containment
¢+ Fire suppression (e.g., nitrogen flooding)
— Sodium fire analyses and testing
o Fuel Manufacturing
— Manufacturing processes/equipment
— Fuel design/manufacturing tolerances _
— Facility fire accommodation (e.g., ventilation system design)

» Medical isotope production
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